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Spin systems on hierarchical lattices. Introduction and thermodynamic limit
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(Received 25 June 1982)

A number of exactly soluble models in statistical mechanics can be produced with the use

of spins interacting with nearest neighbors on a hierarchical lattice. A general definition
and several examples of such lattices are given, and the topological properties of one of
these, the "diamond" lattice, are discussed in detail. It is shown that the free energy has a
well-defined thermodynamic limit for a large class of discrete spin models on hierarchical
lattices.

I. INTRODUCTION

It is difficult to overestimate the importance of
exactly soluble models for the development of the
statistical mechanics of phase transitions. One has
only to note Onsager's solution' of the two-
dimensional Ising model or Baxter's solution of the
eight-vertex model to realize that exact solutions
can have a profound effect on theoretical ideas. To
be sure, few exactly soluble models have been as in-
fluential as those just mentioned, but even the less
important examples have played a very significant
role, both in terms of explicit results and as a guide
to and a test of approximate methods.

In this paper we shall be concerned with classical
"spin" models, such as Ising and Potts models, on
hierarchical lattices. These constitute a large and
quite diverse class of exactly soluble models exhibit-

ing a wide variety of phase transitions, only a few
of which have thus far been studied in any detail.
Examples of hierarchical lattices will be found in
Sec. II below, and a general definition is given in
Sec. V. (It is important not to confuse soluble
models on hierarchical lattices with Dyson's soluble
hierarchical model and its generalizations; as far as
we know, the two are quite distinct. ) We shall dis-
cuss certain topological properties of hierarchical
lattices in Sec. III, and present a proof of the ex-
istence of a thermodynamic limit for the free energy
of spin models on a class of such lattices in Sec. IV.

Cayley trees ("Bethe lattice with a boundary")
form an important subclass of hierarchical lattices,
and the properties of the corresponding spin sys-
tems have been studied extensively. " Another
important subclass, of which the "diamond"
hierarchical lattice (Sec. II) is a simple example, has
developed from the important observation' ' that
various approximate real-space renormalization-

group schemes applied to spin systems on Bravais
lattices are actually exact if the spins are, instead,
placed on an appropriate hierarchical lattice.
Several papers treating models in this subclass as
objects of interest in and of themselves (and not
simply as approximations for the corresponding
Bravais lattices) have now appeared. ' ' Still
another subclass consists of various models with no
phase transitions at finite temperature, though tran-
sitions can occur in the limit of zero tempera-
ture. ' '

It is worth emphasizing that hierarchical lattices
have very different geometrical and topological
properties from Bravais lattices, as is intuitively ob-
vious in the case of Cayley trees, and less obvious
but nevertheless true (see the discussion of the "dia-
mond" hierarchical lattice in Sec. III) in other cases.
This means that the results one obtains for soluble
models on hierarchical lattices may be misleading in
terms of Bravais lattices (and vice versa). Neverthe-
less, the former may well be a valuable source of in-
sights and ideas which can be applied to, or at least
tried out on the latter. Furthermore, an exploration
of the ways in which hierarchical and Bravais lat-
tice models differ from each other could yield addi-
tional understanding of the basic statistical mechan-
ics of phase transitions.

As noted above, there is a close connection be-
tween hierarchical lattices and certain approximate
real-space renormalization-group methods. Those
approximate methods which are "realizable", in the
sense that there is some hierarchical lattice for
which the recursion formulas are exact, can be
guaranteed to lead to "sensible" thermodynamic
properties' in the sense that if there is a thermo-
dynamic limit for the free energy, this limit
possesses appropriate convexity properties: posi-
tive heat capacities, susceptibilities, etc. (Not all ap-
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proximate real-space methods are "realizable" in
this sense, and it is perhaps worth noting that there
are cases ' in which the approximation would be
realizable except that the recursion equations for the
free energy violates the relationship B=b of Sec.
III below. ) In addition, in the case of those realiz-
able real-space methods which do give rise to
surprising results, an examination of the corre-
sponding hierarchical lattice may provide some in-
sight into the source of the difficulties. " This is of
some importance because, despite the considerable
practical success of the renormalization-group ap-
proach to phase transitions, there remain some seri-
ous doubts as to the mathematical validity of
these procedures, and their range of validity.

Among the more interesting recent develop-
ments' in the theory of spin systems on hierarchi-
cal lattices is the study of cases with competing in-
teractions giving rise to "frustration. " The corre-
sponding nonlinear recursion relations can exhibit
period doubling and chaotic flows. Hierarchical
lattices have also been used in the study of random
conductance and percolation.

The contents of the remainder of this paper is as
follows. Section II gives selected examples indicat-
ing the general nature of hierarchical lattices and
suggesting something of the enormous variety
which is possible. (A few of these will be treated in
more detail in a subsequent paper. ) In Sec. III there
is a discussion of the topology of hierarchical lat-
tices, regarded as finite or infinite graphs, with spe-
cial emphasis on the "diamond" lattice as an illus-
tration of the very inhomogeneous structure which
can be present. A proof of the existence of a ther-
modynamic limit for a fairly general class of
discrete spin models on hierarchical lattices will be
found in Sec. IV. Those features which seem (to us)
most essential for characterizing hierarchical lat-
tices in an abstract sense are written down as a de-
finition of a general hierarchical lattice in Sec. V.

(c)
FIG. 1. Construction of the diamond hierarchical lat-

tice.

from 1(a) to 1(b) to form a bond of order 2, shown
in 1(c). The process can be iterated an arbitrary
number of times to form a bond of arbitrarily large
order. We shall call this a "diamond" hierarchical
lattice; the name is suggested by Fig. 1(b).

An alternative interpretation of Fig. 1 which is
often useful is that of "miniaturization": What ap-
pear in 1(a) is actually a bond of order N() 2), but
the drawing shows only its surface sites, the two
vertices at the top and bottom, and not its internal
structure. The latter begins to appear in 1(b), where
we see that the original bond is actually a composite
formed of four smaller bonds of order X—1. To
obtain 1(c), we start with 1(b) and expand each of
the bonds in the latter in a manner precisely analo-
gous to the step from 1(a) to 1(b). Again, this pro-
cess can be iterated an arbitrary number of times.

An Ising model on the diamond hierarchical lat-
tice is constructed by associating an Ising spin vari-
able 0;=+1 with the ith vertex of the lattice, and
assigning a dimensionless interaction ( A lkt)—of
the form

H =Kpcrroi+ i Ap(cr( +crj ) (2.1)

to the primitive bond which joins sites i and j. Here
Eo is the dimensionless exchange interaction and ho
is proportional to the magnetic field. The dimen-
sionless Hamiltonian for a composite unit is ob-
tained by adding up the contributions from the
primitive bonds of which it is composed. Thus for
the bond of order 1 in Fig. 1(b) we have

II. EXAMPLES OF HIERARCHICAL
LATTICES

H" = Kp(oio2+o2cri+crio4+o4oi)(1)

+b p(0'i +cry+ 0'3+ cr4), (2.2)

We begin with the case discussed by Berker and
Ostlund, ' in which the lattice is generated in an
iterative manner as shown in Fig. 1. This figure
may be interpreted in two different ways. The first,
which we call "aggregation, " is that four of the
primitive or order zero bonds sketched in 1(a) are
assembled to form a unit shown in 1(b), a bond of
order 1. Then four of these bonds of order 1 are as-
sembled in precise analogy with the step leading

1

where hp appears without the —, found in (2.1) be-

cause at each site there is a contribution from two
primitive bonds.

Of course it is possible to place other classical
(non-quantum-mechanical) "spin" systems, such as
Potts models, XFmodels, etc., on a diamond or oth-
er hierarchical lattice. The essential feature which
makes such models soluble by iterative procedures
is the requirement that the interactions extend no
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FIG. 2. Examples of hierarchical lattices.

further than between the sites at the two ends of a
primitive bond.

Generating procedures for various other examples
of hierarchical lattices are shown in Figs. 2, 3, and
4. In Fig. 2 we show, as in Fig. 1, two steps of the
aggregation or miniaturization process in order to
remove all ambiguity as to what is meant by the
first step. The interpretation of Figs. 2(a) and 2(b)
is quite similar to that of Fig. 1. However, 2(c)
displays a new feature. The dashed line represents
an interaction for the spins at its ends of the form
(2.1), but with a different choice of constants.
However, during the iteration procedure this bond
is neither "aggregated" nor "miniaturized"; it
remains invariant. The constants which are associ-
ated with this interaction, however, can be made to
depend on the state of aggregation in the sense that
when four order-n bonds are put together to form
one of order n+1, the new "dashed" interactions
added at this stage can depend on n.

Figures 2(d) and 2(e) show two different ways of
producing what is, in effect, very similar to a finite
portion of a Bethe lattice or Cayley tree of coordi-
nation number 3. Indeed, with appropriate choices
of constants (in this case, those associated with the
dashed lines do not depend on n), one obtains the
problem studied by Eggarter and Miiller-Hartmann
and Zittartz. Finally, Fig. 2(fl indicates how one

can, if desired, include closed loops.
There is no reason why the objects which are ag-

gregated (or miniaturized) need be bonds. Figure 3

(a

0 0

(b

0 0/
/

(c)

0 0

FIG. 3. Additional examples of hierarchical lattices.

shows some examples of generating procedures for
other units. Owing to the added complexity, a
second stage in the iteration is not shown. The unit

on the right side indicated by the bracket actually
occurs a number of times given by the integer, with

the units "glued together" at the vertices indicated

by solid circles. Thus in 3(a) one is to imagine two

separate triangles connected at each of the three
inner vertices; repeated iteration then proceeds to
produce a structure whose elements resemble por-
tions of a Cayley tree with coordination number 3.
In 3(b) the right side consists of six triangles in two
sheets, one above the other, with the open vertices
(of which there are three), but not the solid vertices

(of which there are six) common to both sheets. Fi-
nally, Fig. 3(c) shows schematically what results if
Kadanoff's lower bound bond-shifting approxima-
tion for the Ising square lattice is regarded as the
exact solution for the problem on a hierarchical lat-

tice. The dashed lines represent exchange interac-
tions equal to Kadanoff's p parameter, and the
dashed circle a set of two-spin and four-spin in-

teractions which depend on p.
Figure 4 shows a case in which the lattice in-

volves pieces which are iterated separately. That is
to say, at each stage of aggregation not one but two
new units are formed by employing the two types of
units available at the earlier stage.

The examples we have discussed are only a small
fraction of the possible hierarchical structures
which lead to statistical problems which can (in

principle) be solved by iterative methods. In each of
the cases considered above the lattices are self
similar in the sense that the aggregation procedure
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FIG. 4. Example of a nonuniform hierarchical lattice.

is identical each time units of the next higher order
are assembled, and uniform in that (with the excep-
tion of Fig. 4) identical units are assembled at each
step. Neither of these properties is essential though
both of them facilitate the process of determining
the thermodynamic and other properties of the cor-
responding statistical model. (For a discussion of
what we do regard as essential properties, see Sec.
V.)

We have deliberately used the term "uniform"
rather than "homogeneous" because several of the
examples in Fig. 1 to 3 are rather more inhomo-
geneous as assembled lattices than the uniformity of
the individual units might at first suggest, as will be
discussed in detail for the diamond lattice in Sec.
III. This inhomogeneity of the lattice leads {in gen-

eral) to inhomogeneous local statistical properties of
the corresponding Ising (or other) models.

III. TOPOLOGY OF HIERARCHICAL LATTICES

The purpose of this section is to discuss certain
geometrical or topological properties of hierarchical
lattices, regarded as graphs, which are of impor-
tance for the thermodynamic and statistical proper-
ties of Ising and similar lattice models. The discus-
sion is limited to self-similar and uniform lattices,
as defined at the end of Sec. II, though some of the
definitions and procedures have a broader applica-
tion. A labeling procedure for the diamond
hierarchical lattice is given in some detail because
of its utility for discussing the inhomogeneous char-
acter of this lattice.

The aggregation number B of a hierarchical lat-

tice is the number of subunits assembled at each

step to form a new unit. For the diamond lattice,
Fig. 1., 8=4, and for the six cases shown in Fig. 2,
B is 3, 5, 4, 2, 2, and 5, respectively. Note that the
number of noniterated "dashed" bonds is not count-
ed when determining 8, nor is the number of addi-
tional vertices [as in Fig. 2(d) or 3(a)] which must
be added to those already present in the subunits.
For the cases shown in Fig. 3, Bis 2, 6, and 4. (In a
lattice which is not self-similar, B can vary from

step to step. )

The quantity B is often denoted by b when a
hierarchical lattice is used as a renormalization-

group approximation for a Bravais lattice of dimen-
sion d, where b is the factor by which the linear di-
mension of the Bravais lattice is decreased at each
step. However, it is not clear how to define d or b
for a hierarchical lattice (at least in general), and for
the purpose of discussing thermodynamic critical
exponents it is B rather than d or b which is impor-
tant. Thus we shall not refer to d (or b) again in
this paper.

A unit in a hierarchical lattice will, in general,
contain sites or vertices of several different sorts.
We shall use the term bound sites for sites which
are part of one or more subunits, and free sites for
those which are not. That is to say, when a unit is
assembled out of subunits, the free sites must be ad-
ded to those already present in the subunit. The
surface sites of a unit of a given order are those at
which units of this order are attached to other units
of the same order —either by making sites coincide,
or adding noniterated bonds between sites—to form
units of higher order. That is to say, they play a de-

finite role in the aggregation procedure by which
units of higher order are formed. Sites which are
not surface sites are interior sites. In our diagram-
matic representation, these are the sites which make
their appearance during "miniaturization. " The
surface sites are denoted by open circles in Figs. 1,
2, and 3. Sometimes, as in Fig. 1, 2(a), 3(b), etc. ,
these surface sites are bound sites, while in Fig. 2(e),
3(a), and 3(c) they are free sites. For the examples
shown in Figs. 1 —3 the free sites are also surface
sites, but this need not be the case in general. We
shall always assume that a unit of finite order con-
tains only a finite number of sites (of whatever
type).

It is also convenient to employ the terms "sur-
face" and "interior" for the subunits (of whatever
order) which make up a particular unit. If at least
one surface site of a subunit coincides with a sur-
face site of the unit under consideration, the subunit
is a surface subunit or "on the surface", otherwise it
is an interior subunit or 'in the interior. " Inspec-
tion of Fig. 1(c) shows that in the diamond lattice
all bonds of order N —1, but only half the bonds of
order X—2, are on the surface of a bond of order

The terms surface and interior suggest a rough
but useful analogy between a single unit of large but
finite order in a hierarchical lattice and a finite por-
tion of a Bravais lattice, such as that part within a
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large cube. Proofs of the thermodynamic limit for
spin systems on a Bravais latt'ice make use of the
fact that in a large cube or other "thick" object the
fraction of sites on or near the surface is small com-

pared with the fraction in the interior. Certain
hierarchical lattices possess a similar property,
which we shall now discuss.

We shall call l the separation index of a hierarchi-
cal lattice provided a unit of order N & l has at least
one unit of order X—l in its interior, and provided l
is the smallest integer for which this is the case.
For the diamond hierarchical lattice, 1=2. For the
case shown in Fig. 2, l =2 for 2(a) and 2(c)—note
that the dashed line in the latter does not constitute
a "unit" as we use the term —l = 1 for 2(b), 2(e), and

2(f); 2(d) does not possess a separation index
(i= ao ), since the subunits are never in the interior.
For Fig. 3, 1= 1 for 3(a) and 3(c), and 2 for 3(b).

Provided a hierarchical lattice possesses a separa-
tion index, it is "thick" in the sense that the ratio of
the number of subunits of a given fixed order n on
the surface of a unit of order X & n to the number
of similar subunits in the interior tends to zero as X
tends to infinity. That this is true can be seen as
follows. There is at least one subunit of order N —1

in the interior, so at most 8'—1 such subunits are
on the surface of a unit of order N. But subunits of
order N —2l are themselves subunits of the units of
order N —l, and as the former can only be on the
surface of the unit of order N if they are on the sur-

faces of units of order N —l which are on the sur-

face of the unit of order N, it follows that no more
than (B 1) units of—order N 2l, or a frac—tion
(1 B') of the —total, can be on the surface of the
unit of order E. This argument may be continued,
and of course (1 B')r' goes to —zero as p ~ oo.

In order to provide a systematic description of a
hierarchical lattice, it is useful to introduce labels
for the sites (vertices) and edges or other com-
ponents of the lattice. A convenient way of doing
this is to assign to a unit of order 1V one of 8 sym-
bols in a manner which indicates its location ("ad-
dress") within the unit of order N+1 which con-

tains it. The label for the unit of order 1V consists
of this symbol followed on the right by the corre-

sponding symbol for the unit of order N+1 which
contains it, followed by the symbol for the unit of
order %+2 which contains the unit of order X+1,
etc. The label is of finite or infinite length depend-

ing on whether the lattice is finite or infinite, and

may be preceded by something which designates the
order of the unit under consideration, when this is
not clear from the context. Similarly, a site can be

labeled with a symbol indicating its location within
a unit of a particular order, followed by the label

for this unit.
This procedure as applied to the diamond lattice

is illustrated in Fig. 5, where the symbols attached
to the four bonds are +r, —r, +s, and —s. For
convenience in making the labels, the + signs have
been omitted and the —signs placed above the
symbols: r, s. We use the convention that within a
bond of order N the symbols +r and rar—e used
for the bonds of order N —1 attached to that sur-
face site of the bond of order N which has the
higher coordination number in the larger structure
of which this bond is a part, and +s and —s are
used for the remaining two bonds of order N 1. —
That the coordination number of the two surface
bonds will be different is, unfortunately, not ap-
parent in Fig. 5(a), nor even in 5(b) in which four of
the diamonds have been assembled to form a dia-
mond of one higher order. However, from the fact
that the surface sites in Fig. 5(b)—the open
circles—will have a coordination number of at least
8 when this is incorporated in a still larger struc-
ture, one sees that each of the four smaller dia-
monds extends from a site of coordination number
4 to one of coordination number 8 or more. As a
consequence the first symbol labeling each of the
(primitive) edges in 5(b) is r or r if that edge is adja-
cent to one of the open circles, and otherwise it is s
or s. By contrast with r and s, the use of + or —is
a matter of indifference, apart from the convention,
evident in Fig. 5(a), that the edges r and s are adja-
cent to the same vertex, while r and s are not.

Thus a bond or order N in the diamond lattice
contains 4 primitive bonds labeled by a string of
symbols P~b~, Pqb2 . ., or [P.,b] for short, in which

p~, the jth element of p, is +1 or —1, and bj, the
jth element of b, is r or s. We shall say that two
primitive bonds are related to each other by or are
equivalent under. symmetry if one can be mapped
onto the other by an element of the automorphism
group of the bond of order N, regarded as a graph.
This group consists of one-to-one maps of the set of

(b)

FIG. 5. Labels for the bonds of a diamond lattice.
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vertices onto itself in a manner which preserves the
structure of edges (primitive bonds), and which car-

ry each surface vertex onto itself. (The two surface
vertices are treated in a special way because they are
obviously inequivalent to all the other vertices and

to each other when the bond of order X is imbedded
in a larger structure. ) In the same way, two bonds of
order n &X are equivalent under symmetry if one
can be mapped onto the other by an element of the
automorphism group.

In fact, two primitive bonds (P,b) and (P', b') are

related by symmetry if and only if b=b'. To see

this, we note that if b=b' and P=P' except

P~QP&, the two bonds can be mapped into each
other by a "rotation" of the bond of order 1 which
contains both of them (see Fig. 5). Since the lattice
is self-similar, the same argument shows that bonds
of order one can be mapped onto each other if they
differ only in P2, i.e., in the sign of the symbol
which gives their location within the bond of order
two which contains them, by a rotation of this
bond. This procedure can be continued so as to
generate an appropriate map whenever PQP' but
b=b'. On the other hand, suppose that b~+b'&.
Then one of the bonds (s) connects vertices of coor-
dination number 2 and 4, the other (r) vertices of
coordination number 2 and 8 or more. Thus they
are obviously inequivalent. If b, =bI but b2+bz,
the bonds of order one containing each of the primi-
tive bonds cannot be mapped onto each other as
their surface sites do not have the same coordina-
tion numbers, and thus the primitive bonds in one
are inequivalent to the priInitive bonds in the other.
A similar argument can be applied if bj@bj' for
any j.

A large diamond hierarchical lattice is actually a
very inhomogeneous structure, despite the initial
impression given by Fig. 1. The preceding discus-
sion shows that the class of primitive bonds
equivalent to one another under symmetry in a
bond of order E numbers 2, which is a fraction
2 of the total number of primitive bonds. Simi-

larly, it is easy to show that the 2(4 ") vertices of
coordination number 2" for n &X—1 in a bond of
order N divide up into equivalence classes of
2(2 ") elements, so that the fraction in each
equivalence class tends to zero as X becomes infin-

ite. (This is in marked contrast to a Bravais lattice
in which all sites are equivalent under translational
symmetry. ) Thus one must in general anticipate a
corresponding inhomogeneity in the Gibbs probabil-

ity distribution for an Ising (or similar) model on a
diamond lattice, even when the same interactions

are associated with all of the primitive bonds.
The inhomogeneity of finite hierarchical dia-

mond lattices has an importance consequence for
the infinite lattice, which is not unique. By an in-

finite lattice we shall mean a collection of primitive
bonds labeled [P,b], where /3 and b are now infinite
sequences of appropriate symbols, which form a
connected graph. The requirement of connectivity
is a natural one for statistical mechanics, because
the probability distribution for a disconnected sys-

tem is a product of the distributions of its connect-
ed components, as there are no interactions between
disconnected pieces. Two primitive bonds [P,b]
and [f3',b'] are in the same (connected) lattice pro-
vided they are both contained in some larger com-
posite bond of finite order, that is, if there is some
k & co (which of course depends on the pair of
primitive bonds one is considering) such that

bj' =b& (3.l)

for all j&k.
Consequently the infinite graph consisting of

primitive bonds corresponding to all possible sym-

bols [P,b] splits up into an infinite collection of
connected components, each of which is an infinite
lattice. Our previous discussion of symmetries then
shows that two of these lattices are equivalent, in

the sense of a one-to-one map of one onto the other
which preserves the edge structure, if and only if
they contain precisely the same set of b symbols for
their primitive bonds (i.e., strings of r and s ignor-

ing the + or —sign). Thus there are an (uncount-

ably) infinite number of inequiualent infinite con-
nected lattices which can be generated by the pro-
cedure indicated in Fig. 1. For example, the primi-
tive bonds rsrsrs . and rrsrrsrrs . (repeating
periodically) belong to inequivalent infinite lattices.
%hile these inequivalent lattices lead to the same
thermodynamic properties (under appropriate re-

strictions discussed in Sec. IV below), the corre-
sponding Gibbs states will, in general, be different.
Such a state of affairs is quite different from what
encounters in the case of models with the transla-
tional invariance of a Bravais lattice.

Many other hierarchical lattices are extremely in-

homogeneous in the sense just discussed. In partic-
ular this is true of the cases shown in Figs.
2(a) —2(c) and 2(f), and in Fig. 3(b). On the other
hand, those corresponding to Figs. 2(d) and 2(e),
and Figs. 3(a) and 3(c) are much more symmetrical,
in the sense that while not all sites are equivalent,
the number in a particular equivalence class is a fin-

ite fraction of the total as X~ Oo.
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IV. THERMODYNAMIC LIMIT
FOR THE FREE ENERGY

In this section we shall examine conditions for
the existence of a thermodynamic limit for the free
energy for Ising and similar models associated with
uniform and self-similar hierarchical lattices of the
sort described in Sec. II. The essential results of
this section are contained in theorems 1 and 2. We
shall illustrate various points of the argument with
reference to an Ising model on a diamond hierarchi-
cal lattice, but of course the theorems apply in
much more general cases (though hardly the most
general case in which one could imagine a well-

defined free energy).
We shall assume that at each step in the iteration

process a collection of B)2 identical units of order
N 1 are as—sembled along with a certain number of
free sites to form a unit of order N. (Self-similarity
implies that the number of free sites added is in-

dependent of N. ) As a matter of terminological con
Uenience, me shall throughout this section consider
all free sites to be surface sites, whether or not they
are actually on the surface of the unit in the sense
defined in Sec. III.

With each site of the lattice we associate a "spin"
variable which can take a finite number of values,
the same number at each site. The letters o. and v

will be used to denote the collect&on of spin variables
associated with the surface (i.e., surface or free) sites
of a unit of a particular order, where the superscript
a will distinguish variables associated with units of
the same order. Since different units will in general
have certain vertices in common, the different col-
lections are not independent. Keeping track of this
"overlap" is a notational inconvenience, and for this
reason we shall actually assign separate (i.e., in-

dependent) variables to the different subunits, and
introduce Kronecker delta functions of an appropri-
ate sort in the YN functions (defined below) in order
to enforce the identity produced by common ver-
tices. Since we have assumed (Sec. III) that the
number of surface sites is finite, and as this number
cannot depend on the unit in a uniform, self-similar
lattice, the total number of possible values for o. or

is always the same finite number A,. (For an Is-
ing model on the diamond lattice, each unit has two
sites, and thus a takes on A, =4 values. )

The dimensionless ( A lkT) Hamilton—ian H'
for a unit of order X is given by

(4.1)

The sum is over the primitive (n =0) subunits of

which this unit is composed, with H' ' the same
function for each subunit. Thus, for example, in
(2.1) the constants Ko and ho are independent of the
primitive bond considered. The term H' ' is the
sum of all of the noniterated interactions.

The restricted partition function ZN(o. ) associat-
ed with a unit of order N ls the sum of expH(N)
over the variables associated with the interior sites
of the unit while those associated with the surface
sites, denoted by 0, are held fixed. The partition
function ZN and the dimensionless free.energy per
primitive unit fN are given by

ZN=expB fN QZN——(o) . (4.2)

The effectiue Hamiltonian HN(0), which should be
carefully distinguished from H' ', is defined by

ZN(a) =exp[HN(o )+CN ],
and by the requirement that it have zero trace,

QHN(o) =0,
o

(4.3)

(4.4)

a condition which fixes the value of the constant
Cz. For X=O, Ho is identical with H' ' apart
from constant Po (which is zero if H' ' has zero
trace).

The restricted partition function for a unit of or-
der N can be expressed in terms of the restricted
partitions function for a unit of order N can be ex-
pressed in terms of the restricted partition functions
of the subunits of order E—1 which it contains. In
the case of an Ising model on a diamond lattice we
have

ZN(O'1, &2)= g g ZN 1(o1,&3)ZN 1(&'1,%4)
3 a4

XZN —1(&2~+3) N —1(&2~04) ~

(4.5)

where o.
&

and o.
2 are associated with the top and

bottom, and o3 and o.4 with the left and right sites
in Fig. 1(b). In the general case the analog of (4.5)
can be written in the form

a=1
(4.6)

where r denotes the collection of surface variables
associated with the ath subunit of order 1V —1.
These variables (as explained above) are treated as
independent and are collectively denoted by
which thus takes on A, different values. The fact
that various surface sites are identified with one
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another during the assembly process, and some of
these become surface sites of the larger unit, is tak-
en account of by setting YE =0 whenever its argu-
ments are inconsistent with this identification. [In
the case of (4.5) the required identification has been
achieved by using the same variables as arguments
of more than one restricted partition function. ]

In addition, the FN contain the Boltzmann
weights associated with the noniterated interactions
(e.g., the dashed lines in Figs. 1 —3). If these in-
teractions are the same at each step of the assembly
process, the subscript N can be deleted from Y, as Y
is always the same function. We shall retain the
possibility that these noniterated interactions can
vary, both because such situations are of interest in
practice [as when p is allowed to vary in Kadanoff's
procedure corresponding to Fig. 3(c)], and because
this additional generality causes no particular com-
plications in the following proofs.

If (4.6} is iterated a finite number of times, the re-
sult is as follows:

(4.7)

(4 g)

The constant f~ is unique provided (4.3) is satis-
fied, and is related to Civ in (4.2) through

CN PN +BCN —i (4.9)

We shall define $0 to be the same as Cii.
A comparison of (4.2}, (4.3), and (4.9) shows that

the thermodynamic limit for the free energy

f= lim f~
N —+ao

is given by

(4.10}

N=O

provided the sum converges and provided

lim B ln gexpHiv(o) =0.
N-+ to

I

(4.11)

(4.12)

The existence of the limit (4.10) and the validity

where a is now a label consisting of a string of /

symbols (see Sec. III), and r again denotes the col-
lection of all the r Of cour.se, Yi'v' is the same as

N'

Equation (4.6) may be rewritten using the effec-
tive Hamiltonians introduced in (4.2):

8
exp[tv(a}+gatv]= g Yiv(o;r)exp g Hiv i(r )

'r a=1

of (4.11) depend entirely on the properties of Hio'

and of the Yiv. We now list the conditions which
will be used in theorems 1 and 2:

(i) The Hamiltonian H' '(cr) of a primitive unit
takes on finite (real) values.

(ii) 0 & Y~(o,r ) & 00.
(iii) For every N and for every value of o there is

at least one value of w for which Yiv(cr;r ) is greater
than zero.

(iv) The sum gg, B G~ converges, where

Giv
——max in Y&(o",r) . (4.13)

(v) The sum gg, B giv converges, where

giv
——min' ln Yiv (o",v ), (4.14)

and min denotes the minimum over those choices

of o and r for which Y~(o;r ) & 0.
(vi) There is a finite i such that for every N & l

and for every value of o there is at least one a
(which may depend on o) such that for any value of

there is some r (i.e., some choices for the r
with P+a) for which Yv'(o;r) &0.

As these conditions are somewhat abstract, the
following should be noted. Ordinarily the zeros of
Yiv will arise from the fact that certain variables

are, in fact, identical, i.e., correspond to the same
site in a hierarchical lattice. When its arguments
satisfy this consistency condition, 1'z will be strict-

ly positive, with a value determined by the noni-

terated interactions (assumed to be finite}. In this
situation (ii) and (iii) are automatically satisfied. If
in addition the hierarchical lattice has a finite
separation index (Sec. III), (vi) is satisfied with 1

equal to the separation index. %hen there are no
iterated interact. ions, FN is either 0 or 1, so that

Gz ——giv=0, and (iv) and (v) are satisfied. When

there are iterated interactions, (iv} and (v} are, in ef-
fect, a demand that these not grow too rapidly with

N.
Thus in most applications of interest, (i), (ii), and

(iii) will be satisfied, while (iv) and (v) provide some
(not very restrictive) limits on the way in which the
noniterated interactions grow with N. It is only (vi)

which reflects an interesting topological property of
the hierarchical lattice. [In theorem 1, (iii) and (v}
are actually only used to establish that fz has a
lower bound independent of N, so that if an alterna-
tive argument for such a lower bound is available, it
can replace (iii) and (v).]

Theorerri l. If conditions (i)—(iii}, (iv}, and (v)

are satisfied, the limit (4.10) for f (the free energy
per primitive unit) exists and is finite.
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fN(cr)=B lnZN(0),

fN ma——x fN(o ),
(4.15)

(4.16)

Theorem 2. If in addition to (i) —(v), (vi) is satis-
fied, f is given by the sum (4.11).

In proving these theorems we shall make use of
the quantities

where the a notation is the same as in (4.7), and the
sum is over 8' different values. If o has the value
which minimizes fN(o ) and 1 is the integer which
appears in conditions (vi), that condition implies
that (4.24) holds for at least one r with the property
that for some a, fN l(r ) is equal to its maximum
value. Consequently, we conclude that

fN = m111fN(0') .

An immediate consequence of (4.2) is

fN &fN &fN +8 "In~,-

(4.17)

(4.18)

1 —1

fN& QB gN t-
t=O

+8 'l(B' 1)fN—1+f-N 1] . - (4.25)

f~~&8 NGN+8-' Nlnz+fN—M , , (4.19)

follows from (4.13) and the fact that r in (4.6) can
take on only A, values.

Another consequence of (4.6) is the inequality

so that if fN has a limit as N —+ ao, fN has the same
limit. A second inequality,

minHN(o) &0, maxHN(o) &0. (4.26)

Consequently (4.2) and (4.3) along with (4.9) imply
that

By taking the limit of this inequality as N~ ao, we
see that f cannot be less than f =f, so it must be
equal to f.

To establish (4.11) we note that (4.4) implies that

fN(tr)&8 "gN+8 ' g fN J(r—(4.20)
fN &8 CN= QB Pf&fN

j=0
(4.27)

fN &8 "gN+fN 1 ~—(4.21)

From (4.19) and (4.21) we see that the sequences

and

fN + Q 8 G„+8' (1—8) 'in'.
n=N+1

fN+
n=N+1

(4.22)

(4.23)

whose existence is guaranteed by conditions (iv) and

(v), are monotone decreasing and monotone increas-

ing, respectively, as N increases. Since for each N,
(4.23) is evidently smaller than (4.22), both se-

quences must have well-defined limits, which we
denote by f and f, as N tends to infinity. These
are, of course, the same as the limits of fN and fN
as N~oo, by conditions (iv) and (v) and f is, in
view of (4.18), the same as f. This completes the
proof of theorem 1.

To prove theorem 2, we iterate (4.20) to obtain

which holds at least for those choices of the ~, and

thus r, for which I'N(o-, r) does not vanish; by con-

dition (iii) there is at least one such r for every o..
Consequently,

The limit of these inequalities as N~0o yields

(4.11). This completes the proof of theorem 2.
If in addition one has appropriate estimates for

g„and G„, it is possible to use (4.19), (4.25), and

(4.27) to estimate the rate of convergence of (4.11).
In particular, if g„and G„are bounded as n~ ao,
the error in using the first N terms of (4.11) de-

creases exponentially (proportional to e ~N for
some P & 0) with N.

Note that the argument given above for the con-
vergence of (4.11) will also work in certain other
cases in which a condition other than (4.4) is used
to determine the litN in (4.8). The proof of theorem
2 only uses (4.26), and it is clear that even weaker
constraints are possible.

The importance of (vi) for theorem 2 is evident

from considering an Ising model on the lattice in

Fig. 2(d), which does not possess a finite separation
index. When the primitive bonds (corresponding to
the solid lines) have an interaction (2.1) with ho+0,
one can show that the sum in (4.11) converges —but
to the wrong answer.

V. GENERAL HIERARCHICAL LATTICE

1—1

fN(~) & g 8 gN t+8 gfN —l(r—
t=O

(4.24)

In this section we propose a definition of a gen-

eral hierarchical lattice which seems to include the
basic features, apart from symmetry, of the exam-

ples discussed in Sec. II. The important property of
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[SJ
f
(m(m,

where m is independent of j and o,.
(2) For j=0 it is the case that

(5 2)

such lattices from the viewpoint of statistical
mechanics is that the partition function for a set of
classical spins on the lattice sites, with interactions
associated with the edges, can be obtained from an
iterative procedure of summing over spin variables
at selected sites, with each such summation corre-
sponding to a "bounded problem" in the following
sense. When certain spin variables have been
summed over, the result is an effective Hamiltonian
for the remaining spins, and in this effective Hamil-
tonian the next spin to be summed over interacts
with at most n other spins, where n is a fixed bound
which does not change as the summation proceeds.

The definition of a general hierarchical lattice
given below is designed to ensure the property just
mentioned, while at the same time allowing for
multiple-spin interactions and not simply pair in-
teractions. Of course the defnition is a "geometri-
cal" or "graphical" one which makes no mention of
a Hamiltonian or interactions. Its motivation can,
however, be understood by assuming that a term in
the Hamiltonian involving an interaction among
spins at a certain set of sites is associated with an
"edge" identified with this subset of sites.

We shall define a generalized graph (V, S') as a
set of vertices V and a collection of "edges" g', each
edge E in 8' being a subset of V. We shall use the
notation that ~A

~
is the number of elements in a

set A. In an ordinary graph
~

E
~

=2 for every edge.
We define a hierarchical lattice to be a general-

ized graph (V, S') satisfying the following condi-
tions. We assume at the outset that

~
V~ is finite or

countably infinite, and that
~

E
~

is finite for any
edge E. Next we require that for each non-negative
integer j there be a collection of subsets (units) U~J

of V, with a some index, having the following prop-
erties.

(1). Let SJ, the "surface sites" of the unit U~J, be
the smallest subset of UJ with the property that for
every edge E, either

E Cl UJ =P or EC UJ or E A U~ CSJ . (5.1)

We require that the number of surface sites be
bounded:

iU [&m'&oo, (5.3)

independent of a.
(3). For j) 1, U~J can be written as a union of a

finite number m~~ of (not necessarily disjoint) units

U$ ', and

m)~ (m & ao (5A)

independent of j and a. (Note that mj~ may be
equal to 1; it is not necessary that units "grow" as j
increases. )

(4). Given any pair of vertices u and w in V, there
is some j and some a such that both U and w are
contained in U . (Under some circumstances it is
useful to weaken this condition and allow for a
small number of sites at "infinite j" which are not
contained in any U~J.)

With the definition complete, let us see why it
yields the property discussed in the first paragraph
of this section. The summation is carried out in

stages with j=0,1,2, . . .. When j has a particular
value, the sum is carried out over all the sites in
each U~J which are not surface sites (not in S~J) and
which have not been previously summed over. For
a given a this number cannot exceed mm", as the
sites in question must be surface sites of the units of
order j—1 which make up the unit in question, and
from the definition of S is follows that in the ef-
fective Hamiltonian these spins only interact with
one another and with the spins on the sites in S~,
thus with at most m(m" +1) other spins. Condi-
tion 2 ensures that the process of summation can be
started at j =0, and condition 4 that it eventually
includes the spins at all sites [apart from those "at
infinity" in the weakened version of condition (4)].
Note that in the terminology employed here, the
"free sites" introduced in Sec. III are to be regarded
as units, or parts of units, of the next lower order.
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