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Spin-texture-driven electrical transport in multi-Q
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Unusual magnetic textures can be stabilized in f-electron materials due to the interplay

between competing magnetic interactions, complex Fermi surfaces, and crystalline aniso-

tropy. Here we investigate CeAuSb2, an f-electron incommensurate antiferromagnet hosting

both single-Q and double-Q spin textures as a function of magnetic fields (H) applied along

the c axis. Experimentally, we map out the field-temperature phase diagram via electrical

resistivity and thermal expansion measurements. Supported by calculations of a Kondo

lattice model, we attribute the puzzling magnetoresistance enhancement in the double-Q

phase to the localization of the electronic wave functions caused by the incommensurate

magnetic texture.
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4
f-based materials often exhibit complex magnetic ground
states1–3, which include spin helix4, conical spiral5, and
more exotic spin textures with nontrivial topology, such as

skyrmions6–8. Magnetic textures play a central role in under-
standing material’s properties because of the coupling between
spin, charge, and lattice degrees of freedom. For instance, spin
textures may influence the electronic transport by partially gap-
ping out states near the Fermi level, and incommensurate textures
can cause localization of the electronic wave functions in the
strong coupling regime9–12. Notably, spin textures can also pro-
duce a nonzero Berry curvature and Hall conductivity by
breaking certain symmetries13–16.

Magnetic cerium-based compounds are a particularly relevant
platform to understand the role of spin textures because their
magnetic ground states can be tuned by using modest nonthermal
parameters, such as pressure and magnetic field. One example is
tetragonal CeAuSb2, in which a conventional single-Q (1Q)
magnetic order, as well as a more exotic double-Q (2Q) magnetic
order are stabilized as a function of magnetic fields (H) applied
along the c-axis. In both phases, magnetic moments point along
the c-axis due to the strong Ising spin anisotropy. At zero field,
CeAuSb2 orders antiferromagnetically below TN= 6.3 K in a 1Q
stripe structure with wave vector Q1= (η, η, 1/2)[η= 0.136
(2)]17–21. A 2Q phase emerges in the region between Hc1= 2.8 T
and Hc2= 5.6 T before magnetic moments in CeAuSb2 becomes
fully polarized. A tricritical point of Hc2 has been previously
identified and signals the change in the field-induced transition
from second to first order, as temperature is decreased19.

Notably, the stripe pattern with twofold rotational symmetry in
the ab-plane has been recently shown to be associated with a
nematic state—an electronic state that breaks the rotational
symmetry of the underlying lattice, but not its translational
symmetry22. This nematic state, which sets in just above TN, is
accompanied by a structural transition that is strongly coupled to
the 1Q stripe phase below Hc1 (ref. 22). Whether this nematic state
survives in the 2Q phase remains an open question, and whether
the 2Q structure is checkerboard (C4-symmetric) or woven
(C2-symmetric) remains a matter of contention20,23.

Electrical transport data also pose intriguing questions. The
electrical resistivity of CeAuSb2 increases when the material tran-
sits from the 1Q state to the 2Q state18,19. In the fully polarized
state, the resistivity drops to a value smaller than that in zero field.
A recent explanation for the enhanced resistivity in the 2Q state
relies on quasi-nesting of the itinerant Fermi surface20. None-
theless, the field dependence of the resistivity in CeAuSb2 remains
poorly understood, and whether it is better described by a localized
or itinerant 4f-electron picture remains controversial20,24.

To address these questions, we first map out the H–T phase
diagram of CeAuSb2 by means of high-resolution electrical
resistivity and thermal expansion measurements (Fig. 1a). The
presence of two nearby transitions as a function of temperature
for fields between Hc1 and Hc2 suggests that the coupled
structural–magnetic transition survives in the 2Q phase. Sup-
ported by calculations of a Kondo lattice model, we attribute the
puzzling field dependence of the electrical resistivity (Fig. 1b) in
different magnetic states to the localization of electronic wave
functions due to the spin textures. Importantly, our analysis
reveals that it is not possible to simultaneously nest two pairs of
hot spots by the 2Q state. We therefore propose that the field-
dependent electronic transport of CeAuSb2 acts as a fingerprint of
the different spin textures.

Results
Thermal expansion and electrical resistivity. First, we determine
the H–T phase diagram of CeAuSb2 by thermal expansion and

electrical resistivity measurements. The results are compiled in
Fig. 1a. The overall structure of the phase diagram agrees with
previous results; however, our thermal expansion measurements
reveal an additional phase transition that has been
overlooked19,21,23. Figure 2a shows the temperature dependence
of the thermal expansion, ΔL/L, of CeAuSb2 along [001] at var-
ious magnetic fields applied parallel to the c-axis. The anomalies
in ΔL/L in the vicinity of TN are qualitatively different from the
typical anomaly expected for a single magnetic phase transition.
In fact, two peaks are observed in the linear thermal expansion
coefficient, α= (1/L)(dL/dT), along [001] (Fig. 2b) and [100]
(Supplementary Fig. 1b). Recent X-ray diffraction data point to
the presence of a structural transition nearly coincident with the
zero-field TN, which suggests that the presence of two phase
transitions in thermal expansion is a signature of the coupled
structural–magnetic phase transition22. Therefore, our thermal
expansion measurements reveal that structural and magnetic
transitions remain strongly coupled in 2Q phase, as two phase
transitions are also detectable above Hc1.

Figure 2b shows the temperature dependence of the long-
itudinal linear thermal expansion coefficient when fields of 1 and
5 T are applied along the c-axis. A small amount of uniaxial c-axis
pressure was applied to the sample when mounting it in a
capacitance dilatometer. The estimated stress is 0.07 and 0.02 GPa
for high- and low-strain conditions, respectively. Under high
strain, the amplitude of the largest peak in αc is reduced by 16% at
1 T and 7% at 5 T compared to the low-strain data, whereas the
amplitude of smallest peaks are remarkably suppressed by 66% at

Fig. 1 Phase diagram of CeAuSb2 its unusual magnetoresistance. a

Temperature–magnetic field phase diagram of CeAuSb2. The legend

identifies how transition temperatures and fields are obtained. The solid

squares, circles, and diamonds indicate the higher transition temperature Ts

in three regions. The open squares, circles, and diamonds indicate the lower

transition temperature TN in three regions. The solid triangles indicate the

first critical field Hc1 separating single-q and multi-q phases. The open and

solid stars indicate the lower and higher second critical fields, respectively.

The open up triangles, down triangles, and left triangles indicate TN in three

regions. The sign of the peaks in the derivative are indicated in brackets: N

negative, P positive. Colors represent the local exponent, n ¼ ∂lnΔρ=∂lnT

and Δρ= ρab− ρ0= ATn. The contour map shows the presence of three

distinct regions in the phase diagram; the green, light-blue, and deep-blue

regions denote the single-Q stripe phase (1Q), multi-Q phase (2Q) below ~H,

and multi-Q phase (2Q) above ~H. Dashed vertical line inside 2Q phase

denotes a crossover boundary at ~H. b Electrical resistivity as a function of

applied field along the c-axis. The inset shows an anomaly at the crossover

field ~H. Error bars are smaller than the size of the data points.
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1 T and 89% at 5 T. Though the field-dependent magnetic phases
are different and the sign of the two peaks are reversed between 1
and 5 T, the smaller peaks at higher temperature are always more
sensitive to [001] strain than the largest peaks at lower
temperature. Therefore, these results indicate that in CeAuSb2
(i) the higher transition temperature at Ts is consistent with a
structural transition, as structural transitions are naively expected
to be more sensitive to lattice distortions caused by uniaxial strain
than magnetic transitions, and (ii) the coupled phase transitions
are preserved at high field, namely the zero-field coupled
structural–magnetic transition survives in the 2Q phase. Lastly,
the thermal expansion signatures of the phase transitions in
CeAuSb2 dramatically change not only at Hc1 and Hc2, but also at

4.75 T, suggesting a new field boundary at ~H ¼ 4:75 T (see Fig. 2a
and Supplementary Fig. 1a).

Next, we turn to the field dependence of the electrical transport
in CeAuSb2. Figure 2c shows the temperature dependence of the
in-plane resistivity, ρab, under various magnetic fields applied
along the c-axis. At low fields, a sharp drop at TN1 (black arrows)
marks the magnetic transition temperature to a 1Q stripe phase.
TN1 decreases with increasing field, and above Hc1 a shallower
kink-like anomaly (red arrows) occurs at TN2, which is the
magnetic transition temperature to a 2Q phase. As the field is
further increased, TN2 decreases, and the temperature dependence
of ρab below TN2 remains virtually unchanged to 4.5 T.

Above 4.5 T, however, the signature of the magnetic transition,
indicated by blue arrows at TN3, changes qualitatively. Previous
reports have missed this crossover field likely because its

signatures occur in a very narrow field region. Above ~H ≈ 4.75
T, ρab increases on cooling through TN3, which indicates the
opening of a gap. As TN3 is suppressed toward zero temperature

with field, the magnitude of the jump increases. Finally, there is
no evidence for a phase transition above Hc2= 5.6 T.

Figure 2d–f shows the derivative of the electrical resistivity,
dρ/dT, as a function of temperature at 0, 3.5, and 5.5 T. A large
positive peak in dρ/dT is observed at TN1, whereas a small positive
peak is observed at TN2 and 3.5 T. At 5.5 T, however, a sharp
negative peak is observed at TN3, indicating that the behavior of

dρ/dT crosses over at ~H. Even though a detectable upturn is

observed at ~H in the magnetoresistance of CeAuSb2 at low

temperature (inset of Fig. 1b), the absence of an anomaly at ~H in
the Hall resistivity25 and magnetostriction, which is a thermo-

dynamic probe, suggests the presence of a crossover at ~H rather
than a phase transition (see Supplementary Note 1). The contour
map of the local exponent n of ρab shows a change in magnetic

scattering below TN in the vicinity of ~H (Fig. 1a), in agreement

with a crossover field boundary at ~H in the 2Q phase. Previous
reports have been overlooked the crossover behavior in 2Q phase

due to a narrow field range between ~H and Hc2 (~0.7 T). In fact,
the color map of the exponent n in ref. 22 does not display the

signature of crossover in ρ(T) above ~H because of the lack of the
data in the vicinity of Hc2. Nonetheless, the tricritical point of Hc2

has been previously located near ~H and 4 K, which strongly

suggests that ~H coincides with the tricritical point of Hc2. As a

result, ~H not only represents a crossover as a function of magnetic
fields at fixed temperature, but it also marks a change in the
nature of the magnetic phase transition as a function of

temperature at fixed fields. For fixed fields below ~H, the
antiferromagnetic phase transition at TN is of the second order,
whereas the transition becomes first order at TN (i.e., hysteretic)

when H > ~H (ref. 19). We note that the tricritical point of Hc2 does

Fig. 2 Field evolution of phase transitions and ordering wave vector in CeAuSb2. a Temperature dependence of the thermal expansion of CeAuSb2 along

[001] at various magnetic fields applied along the c-axis. Labels in bold indicate Hc1, ~H, and Hc2. b Temperature dependence of the linear thermal expansion

coefficient along [001] with 1 and 5 T applied along the c-axis. The estimated pressure is 0.07 and 0.02 GPa for high-(dashed line) and low-(solid line)

strain measurements, respectively. Solid arrows indicate peak positions: blue and magenta arrows for the Ts and TN, respectively. Dashed arrows indicate

points of minor peaks under low and high strains. c Temperature dependence of the in-plane electrical resistivity, ρab, of CeAuSb2 for applied magnetic

fields along c-axis. Data at different fields are shifted for clarity. Arrows indicate antiferromagnetic transition temperatures: black, red, and blue arrows for

the TN1, TN2, and TN3, respectively. d–f Temperature derivative of ρab under applied fields as a function of temperature at 5.5 T (d), 3.5 T (e), and 0 T (f).

g Magnetic ordering wave vector η[r, l, u. ] for Q1= (η, η, 1/2) in CeAuSb2 as a function of magnetic field applied along the c-axis at 100mK. Data from

ref. 20 were obtained by neutron diffraction measurement. Dashed lines at Hc1, ~H, and Hc2 separate three distinct regions. Error bars are smaller than the

size of the data points.
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not change under pressure22. Importantly, the wave vector

component η decreases as a function of field when H > ~H as
shown in Fig. 2g (ref. 20). As discussed below, the upturn of

resistivity for H > ~H stems from the intertwined effects of a
varying ordering wave vector and the electronic localization of
wave functions.

Spin Hamiltonian. After determining the experimental H–T
phase diagram of CeAuSb2, we now provide a theoretical model
to understand it. In CeAuSb2, Ce3+ ions carry a magnetic
moment and interact with the conduction electrons, which in
turn mediate interaction between cerium moments. Therefore, a
sensible starting point to describe the magnetic properties of
CeAuSb2 is the Ruderman–Kittel–Kasuya–Yosida (RKKY) inter-
action. In the paramagnetic phase, the system has C4 rotation
symmetry, and the appearance of a 1Qmagnetic state implies that
the Fermi surface is quasi-nested with nesting wave vectors Q1

and Q2, which are related by C4 rotation. To second order in the
local exchange coupling between the conduction electrons and
localized moments, the Hamiltonian of the system reads

�∑Q
~JðQÞSQ � SQ, in which we have assumed an isotropic

exchange coupling (~J) among spins. Here SQ is the Fourier

component of the localized moment. The functional form of ~JðQÞ
depends on the Fermi surface and in principle can be obtained
from density functional calculations. The ground state magnetic

texture implies that ~JðQÞ is maximized at Q1 and Q2. From
experiments, a strong easy-axis anisotropy is also known to exist,
which forces the spins to point along the c axis. In the presence of
an external magnetic field, the system Hamiltonian can thus be
written as:

H ¼ �∑
Q

~JðQÞSQ � SQ � A∑
i
S2i;z �∑

i
H � Si: ð1Þ

In triangular lattices, H is known to support triple-Q spin
textures (e.g., skyrmion lattice)26–29; however, in tetragonal
crystals such as CeAuSb2, 2Q order is not favored by H because
the harmonic Q3=Q1+Q2 is not an optimal wave vector and
costs energy. As an example, our Monte Carlo simulation of a

particular form of ~JðQÞ within the frustrated J1–J2 or J1–J3 model
on a square lattice shows a 1Q spiral phase followed by a fully
polarized state in field29.

In cerium-based compounds, the exchange interaction between
4f and conduction electrons is often substantial. In the strong
coupling regime, the system becomes nonmagnetic due to Kondo
singlet formation. In the weak coupling regime, the system
becomes magnetic and the dominant exchange coupling is the
conventional RKKY interaction. Importantly, even in this weak
coupling regime, higher-order spin exchange interactions beyond
the conventional RKKY interaction can be important30. By
expanding the spin–charge coupling to quartic order, a four-spin
interaction term emerges, which was demonstrated to favor
multiple-Q magnetic ordering31.

The existence of the 2Q order in CeAuSb2 thus requires higher-
order coupling, and the spin Hamiltonian is written as:

H ¼ 2∑
ν

�~JSQ
ν

� S�Q
ν

þ ~KðSQ
ν

� S�Q
ν

Þ2
h i

� A∑
i
S2i;z �∑

i
H � Si:

ð2Þ

In this model, ~JðQÞ is assumed to peak sharply at Qv, and
therefore only the exchange coupling at Qv is taken into account.

Because the biquadratic interaction K ¼ N ~K (N is the system
size) is always positive, the four-spin term favors multiple-Q
ordering by distributing the static spin structure factor weight
equally on the symmetry related Qv. In CeAuSb2, spins along the

c-axis are simply antiferromagnetically coupled. Therefore, we
will restrict to the two dimensional limit in the following
discussions.

Figure 3 shows the numerical results of (a) the uniform
magnetization M ¼ ð1=NÞ∑iS

z
i and (b) the Qη-component

magnetization MQη
¼ ð1=NÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j∑iS
z
i e

iQη �ri j2
p

as a function of an

external field. The field-dependent real-space spin configurations
are shown in Fig. 3c–e, and their corresponding spin structure
factors are shown in Fig. 3f–h. The optimal spin configuration at
zero field is a 1Q collinear state whose spin configuration and
spin structure factor are shown in Fig. 3c, f. Three magnetization
jumps are identified by increasing field in Fig. 3a. The first jump
at H ~ 0.46 represents a crossover from the up-up-up-down-
down-down configuration in Fig. 3c to the up-up-up-up-down-
down configuration in Fig. 3d, g, which results from the

approximation of a sharply peaked ~JðQÞ. This jump disappears

for a smooth function of ~JðQÞ, in agreement with experiments.
The other two jumps in magnetization represent phase transitions
from the 1Q collinear to the 2Q bubble state and from the 2Q
bubble to the fully field polarized (FP) state, which are caused by
the interplay between the multiple-spin interaction (K) and the
easy-axis single-ion anisotropy (A). The spin configuration of the
2Q state is characterized by the collinear bubble structure without
an xy spin component, as shown in Figs. 3e, h. The equivalent
four peaks in the spin structure in Fig. 3h also indicate the
formation a square bubble crystal. Note that the 2Q bubble state
vanishes by taking K= 0 or A= 0.

By including temperature, we obtain a magnetic phase diagram
consistent with experiments. It is important to note that the
antiferromagnetic transition at zero magnetic field is second
order, whereas the transition at Hc2 at T= 0 is strongly first
order19. At finite temperatures, we therefore generically expect
a tricritical point of Hc2 at which the nature of the phase
transition at TN changes from second to first order, as reported
previously19.

Theory: transport. In this section, we show that the resistivity
enhancement in the 2Q phase can be fully modeled theoretically.
Our model is based on two elements: (1) relatively strong cou-
pling between localized moments and conduction electrons, and
(2) incommensurate spin texture with respect to the atomic
lattice.

The presence of an incommensurate magnetic texture is
known to result in band folding. More specifically, an ordering
wave vector Q= (p/q, 0, 0), wherein q and p are coprime
integers, causes band folding q times, resulting in a smaller
Brillouin zone. To illustrate the band folding mechanism,
the inset of Fig. 4 displays the simplest example of a
commensurate wave vector that folds the bands once (i.e.,
q= 2). The presence of exchange coupling may open a gap at
the Brillouin zone boundary causing an increase in resistivity
known as the superzone mechanism32–34.
Incommensurate magnetic textures may have more profound

effects on the electronic transport. Rigorously speaking, the band
structure picture is no longer a good description of the electronic
state because of the lack of translational invariance. The
incommensurate potential induced by the magnetic texture to a
certain extent works as random disorder, but with a weaker effect.
Importantly, random disorder causes Anderson localization when
the disorder potential is strong enough9,11,12. In the Anderson
localized phase, in which the electronic wave functions are
strongly localized in space, the system behaves as an insulator
even though there exists a finite electronic density of states (DOS)
at the Fermi energy. An intertwined insight into this problem
comes from the realization that the incommensurate potential
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can also cause electronic localization. This type of electronic
localization was demonstrated in the Kondo lattice model hosting
an incommensurate magnetic texture12, and can be understood in
terms of the band folding picture. Any incommensurate wave
vector can be approximated by a rational number Q ≈ p/q with p,
q→∞. The folded bands can be extremely flat in the folded
Brillouin zone when levels repel each other due to the local
exchange coupling. The flat band limit therefore corresponds to
the electronic localization.

More specifically, we consider the following Kondo lattice
Hamiltonian to model the electronic transport in CeAuSb2:

H0 ¼� t1 ∑
NN

c
y
i cj � t3 ∑

NNN
c
y
i cj � μ∑

i
c
y
i ci

� J∑
i
c
y
i;ασα;β � Sici;β;

ð3Þ

where NN and NNN denote nearest-neighbor and next-nearest-
neighbor hopping, and J is the coupling between the conduction
electron and spin texture. We choose the hopping strength t3=
−0.5t1 and chemical potential μ= 0.98t1, such that the Fermi
surface is quasi-nested. The corresponding electronic filling per

spin is 0.638, which is fixed in the calculations. Equation (2) can
be obtained from Eq. (3) by integrating out conduction electron
degrees of freedom and expanding the exchange interaction to
quartic order in J (ref. 31). We choose experimentally measured
incommensurate Q= 0.136(2) and neglect the variation of Q
under magnetic field. We fix the spin configurations in the
calculations, and we take Si ¼ ½0; 0; cosðQ1 � riÞ� for the 1Q phase,
Si ¼ ½0; 0; cosðQ1 � riÞ þ cosðQ2 � riÞ�=2 for the 2Q phase, and
Si= [0, 0, 1] for the FP state.

The degree of localization of electronic wave functions can be
characterized by the inverse participation ratio (IPR) defined as

In ¼ ∑ri
jψnðriÞj

4ð∑ri
jψnðriÞj

2Þ�2
, where ψn(ri) is the nth eigen-

function of H0. Because the IPR magnitude is a measure of the
spread of the electronic wave function in space, higher IPR means
a more localized state and hence smaller electrical conductivity. In
is finite for a localized state but vanishes as 1/Ld for an extended
state. Here L is the linear system size and d is the spatial
dimension. The results of In and the profiles of the wave functions
are displayed in Fig. 4. In the 1Q phase, the wave function
along the Q direction is localized for large J, but remains extended

Fig. 3 Magnetization and spin configurations of CeAuSb2. H dependences of the magnetization for a uniform component, and b Q1 (squares) and Q2

(circles) components at ~J ¼ 1, K= 0.4, and A= 0.7. The vertical dashed lines show the phase boundaries. c–e The real-space spin configurations in c the

1Q collinear state at H= 0, d the 1Q collinear state at H= 0.6, and e the 2Q bubble state at H= 0.8. The contour shows the z-component of the spin

moment. f–h The square root of the spin structure factor. The solid squares represent the Brillouin zone.
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in the direction transverse to Q because of translational
invariance. For the 2Q phase, the wave function is very localized
at large J and becomes more localized than the 1Q counterpart
for J > 3.7t1.

Next, we calculate the electronic conductance under the
influence of the magnetic texture. We focus only on the effect
of the wave function localization by neglecting the scattering of
electrons by impurities, magnetic fluctuations, and the off-
diagonal conductivity caused by magnetic field. In fact, there is no
sudden change in the off-diagonal resistivity when the spin
texture changes from 1Q to 2Q in CeAuSb2 (ref. 25). As a result,
the conductance depends on the DOS at the Fermi energy and the
degree of the localization of the electronic wave function. The
DOS for both 1Q and 2Q states, displayed in the inset of Fig. 5,
indicates that the 2Q DOS is actually larger than the 1Q DOS for
most Js, particularly for large J.

To compare our simulations to experiments, in which multiple
domains of spin texture with different Q orientations coexist, we
take the average of the longitudinal conductance over a random
distribution of different Q domains (see Supplementary Note 3).
Note that the dependence of the conductance remains qualita-
tively the same, if we assume that Q orientations are locked to the
four equivalent crystal directions.

The conductance as a function J at T= 0 for three different
spin textures is shown in Fig. 5. Overall, the conductance
decreases with J due to electronic localization in the 1Q and 2Q
phases. The decrease in the FP state is caused by the shift of the
electronic spectrum due to the coupling to the FP spin
arrangement, which results in the reduction of DOS at Fermi
energy. Interestingly, in the region J > 3.2t1, the conductance of
the FP state is highest, followed by 1Q and 2Q states. This result is
fully consistent with experimental observations in CeAuSb2,
namely, the resistivity in 2Q state is the largest and the resistivity
in FP state is smallest (see Fig. 1b). Therefore, our theory model
supports the notion that the incommensurate magnetic state is
responsible for the increased resistivity in 2Q state. Though it is
challenging to estimate J/t1 without the experimental data or a
microscopic model that can account for the strength of J in
CeAuSb2, our experimental and theoretical results suggest that
CeAuSb2 exhibits a large exchange coupling parameter between f
and conduction electrons within the magnetically ordered regime.

Discussion
Enlightened by our model calculations, we are now positioned to
understand the behavior of the electrical resistivity in CeAuSb2.
There are two competing effects at play: (1) the suppression of
magnetic fluctuations when magnetic moments order below TN,
which reduces the resistivity, and (2) the enhancement of the
degree of localization of 4f electronic wave function, which
increases resistivity. The temperature- and field-dependent
experiments in CeAuSb2 indicate that the former factor is
dominant in the 2Q phase above Hc1.

As recognized in ref. 20, spin textures might modify the resis-
tivity by gapping out states near the Fermi level when the
ordering wave vector corresponds to a nesting vector of the Fermi
surface, i.e., the 1Q state would nest a pair of hot spots in the
Fermi surface, whereas the 2Q state would nest two pairs. We
note that this mechanism does not require the ordering wave
vector to be incommensurate, and it also does not depend on
whether the magnetic texture is of itinerant or localized origin.

The key result revealed by our analysis is that it is not possible
to simultaneously nest two pairs of hot spots by the 2Q state. To
exemplify this issue, let us consider four Fermi surface sheets ϵ
(k1), ϵ(k2), ϵ(k1+Q1), and ϵ(k2+Q2), where k1 and k2 are
related by C4 rotation, and ϵ(k1) and ϵ(k1+Q1) are quasi-nested
by the vector Q1. For a 1Q collinear magnetic state with ordering
wave vector Q1, the magnetic texture gaps out states in the Fermi
sheets at ϵ(k1) and ϵ(k1+Q1), and deforms the Fermi sheet
at ϵ(k2) and ϵ(k2+Q2). For the 2Q state with Q1 and Q2

ordering wave vectors, the electronic states at ϵ(k1), ϵ(k1+Q1),
and ϵ(k1+Q2) are mutually connected. However, this does not
allow fully gapped states at ϵ(k1) and ϵ(k1+Q1) as in the case of
1Q magnetic texture. Instead, the presence of 2Q only deforms
the Fermi surface. We therefore reach the important conclusion
that the electronic DOS within the 2Q phase is not necessarily
smaller than that in the 1Q phase. This is demonstrated explicitly
using the model in Eq. (3), in which the DOS for the 2Q phase is
indeed comparable to that in the 1Q phase, as shown in Fig. 5. As
a consequence, the enhanced resistivity in the 2Q phase is
naturally explained by the enhanced localization of wave func-
tions due to the incommensurate structure.

Fig. 4 Inverse participation ratio of CeAuSb2. Inverse participation ratio

(IPR) averaged over all the eigenvalues at 1Q (circles) and 2Q (squares)

states. Error bars are smaller than the size of the data points. Inset

illustrates the band folding and gap opening at the Brillouin zone boundary

in the presence of a commensurate spin texture.

Fig. 5 Conductance vs J in different magnetic states and density of states

of CeAuSb2. J/t1 dependence of the conductance for the 1Q (circles), 2Q

(squares), and field polarized (FP) (triangles) states. Here, the conductance

is averaged over domains with different Q orientations. Inset shows the

density of state at the Fermi energy for the 1Q (circles) and 2Q (squares)

states. Error bars are smaller than the size of the data points.
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Further, an increase in the temperature-dependent resistivity at
TN is observed in experiments above H > ~H. We note that the
magnetic transition at TN becomes first order, magnetic fluctua-
tions are not critical, and the ordering wave vector Q decreases
continuously with applied magnetic fields. Importantly, a
change in Q simultaneously affects the degree of localization of
wave functions, the spin-dependent disorder potential, and
band folding (e.g., the superzone mechanism), particularly when
Q < 2kF, wherein 2kF is the Fermi momentum35. These inter-
twined factors therefore result in the observed upturn in ρ(T) on
cooling through TN.

Finally, we turn to the discussion of the symmetry of the 2Q
phase in CeAuSb2. A neutron diffraction report showed that the
2Q magnetic order at high fields has two possible magnetic
structures, i.e., checkered pattern with fourfold symmetry or
woven pattern with twofold symmetry20. From their analysis, the
authors conclude that the woven order might be favored because
the field dependence of the maximum Ce3+ moment in this
structure is consistent with the nature of the magnetization plateau
of MQ1þQ2

in the 2Q phase. From uniaxial strain measurements23,
however, it was proposed that the 2Q magnetic order most likely
preserves the symmetry between the (100) and (010) directions,
suggesting that the 2Q order is close to a checkerboard structure.

At zero field, a structural transition connected with 1Q mag-
netic order was recently discovered22. The H–T phase diagram
and strain dependence of these coupled transitions suggest that
the structural transition occurs above TN and is coupled to the
stripe magnetic order below Hc1. Here we observe that this cou-
pling survives within the 2Q phase above Hc1, which indicates
that a structural transition above TN is still present and that the
C4 symmetry may be broken at the structural transition. Our
results are therefore consistent with a woven structure or a
deformed checkerboard. The effect of the structural transition can
be modeled by using spatially anisotropic exchange coupling in
the spin Hamiltonian (Eq. (2)), and it is expected to yield a dis-
torted 2Q spin texture, e.g., by elongating the spin texture in
Fig. 3e in the vertical direction, akin to the woven structure.
Nevertheless, high-resolution spectroscopic measurements are
required to unambiguously determine the magnetic structure of
the 2Q phase. Here, we focus on c-axis strain because the struc-
tural and magnetic transitions exhibit opposite signs in thermal
expansion along this direction. This enables the deconvolution of
the phase transitions, in contrast to in-plane thermal expansion.
In addition, to obtain meaningful information about in-plane
nematicity, the applied in-plane strain must be sufficient to det-
win the crystals, as shown for the case of K-doped BaFe2As2
(ref. 36). Importantly, in the case of iron-based superconductors,
crystals under [100] strain remain well twinned, which makes
[110] strain necessary for detwinning them. We expect that [110]
strain may be also required in the case of CeAuSb2 because its
magnetic order spontaneously lifts the (110)/(1�10) degeneracy37.
Our results will stimulate further measurements to investigate the
nature of nematicity in both 1Q and 2Q phase, e.g., nematic
susceptibility with in-plane [110] strain, similar to previous
reports on iron-based superconductors38.

Going beyond the electrical transport signatures investigated in
the present work for CeAuSb2, incommensurate multiple-Q spin
textures are generally expected to significantly affect emergent
quantum states. An incommensurate multiple-Q state breaks
translation invariance, and it realizes a scenario similar to that of
quasicrystals, in which a standard band structure theory based on
crystal momentum is no longer applicable. Novel phenomena
that do not have a counterpart in translationally invariant systems
can thus appear39,40. Furthermore, the localization of electronic
wave functions caused by incommensurate spin textures in the

strong coupling regime can significantly enhance the Coulomb
interaction or attractive interaction between electrons, which
could lead to pronounced effects on many-body quantum states.

Here, we investigate CeAuSb2, an f-electron incommensurate
antiferromagnet, via electrical transport and thermal expansion
measurements under applied fields along the c-axis. Our
field–temperature phase diagram shows that the coupled
structural–magnetic transition in the low-field 1Q phase survives
in the high-field 2Q. We also identify a crossover magnetic field,
~H ¼ 4:75 T, above which the electrical resistivity increases upon
cooling through the antiferromagnetic transition temperature.
Our theoretical model demonstrates the electrical resistivity
behavior of CeAuSb2 in 1Q, 2Q, and fully polarized states. Sup-
ported by calculations of a Kondo lattice model, we attribute
the resistivity enhancement in the 2Q phase to localization of
the electronic wave functions caused by the incommensurate
magnetic textures.

Methods
Crystal synthesis and experiments in magnetic fields. Single crystals of
CeAuSb2 were synthesized by a standard self-flux technique described in ref. 19

with Au excess to eliminate deficiency in the Au site. The orientation of the
polished sample was verified by X-ray and Laue diffraction at room temperature.
The thermal expansion and magnetostriction were measured using a capacitance
cell dilatometer, as described by Schmiedeshoff et al.41. This design uses a CuBe
spring to hold secure the sample. The spring constant was estimated using finite
element analysis, which was used to calculate the uniaxial pressure applied to
sample during measurement. A standard four-probe technique was employed to
measure the in-plane electrical resistivity of CeAuSb2, using a Model 372 AC
Resistance Bridge. Two different cryostats were used to control temperature and
magnetic field: a 4He cryostat for measurement of temperature dependence of
resistivity from 10 to 1.8 K and for applied magnetic fields along c-axis, and a 3He
cryostat for measurement of magnetoresistance at 0.3 K as a function of magnetic
field applied along the c-axis to 7 T.

Monte Carlo simulation and quantum transport calculation. We perform Monte
Carlo simulations for systems with N= 96 × 96 spins by using standard approaches
based on the Metropolis algorithm at target low temperatures. We numerically
anneal the system to reach the ground state. The details of the simulation are
discussed in Supplementary Note 2. To simulate quantum transport of the system,
we consider a two-terminal setup. The details of the calculation are discussed in
Supplementary Note 3.

Data availability
The data that support the findings of this study are available from the corresponding

author upon request.

Code availability
Monte Carlo simulations were performed with a custom code using the standard

Metropolis algorithm. All codes used for the analysis presented in this study are available

from the corresponding author upon request.
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