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We present ab initio and k · p calculations of the spin texture on the Fermi surface of tensile-strained HgTe,

which is obtained by stretching the zinc-blende lattice along the (111) axis. Tensile-strained HgTe is a semimetal

with pointlike accidental degeneracies between a mirror symmetry protected twofold degenerate band and two

nondegenerate bands near the Fermi level. The Fermi surface consists of two ellipsoids which contact at the

point where the Fermi level crosses the twofold degenerate band along the (111) axis. However, the spin texture

of occupied states indicates that neither ellipsoid carries a compensating Chern number. Consequently, the spin

texture is locked in the plane perpendicular to the (111) axis, exhibits a nonzero winding number in that plane,

and changes winding number from one end of the Fermi ellipsoids to the other. The change in the winding of the

spin texture suggests the existence of singular points. An ordered alloy of HgTe with ZnTe has the same effect as

stretching the zinc-blende lattice in the (111) direction. We present ab initio calculations of ordered HgxZn1−xTe

that confirm the existence of a spin texture locked in a 2D plane on the Fermi surface with different winding

numbers on either end.

DOI: 10.1103/PhysRevB.87.045202 PACS number(s): 71.18.+y, 71.20.Nr, 71.22.+i

Mercury telluride (HgTe) is a zero-band-gap zinc-blende

semiconductor with an inverted ordering of states at Ŵ,1 where

the band gap and inversion can be controlled by alloying with

CdTe. HgTe and CdTe are both zinc-blende materials, with

the crucial difference that the stronger spin-orbit coupling

of Hg causes the states at Ŵ to invert relative to each other

(Fig. 1). Therefore, HgTe/CdTe quantum wells exhibit the

quantum spin Hall effect.2 The electronic properties of alloys

of HgTe have been studied extensively for many decades.

Recently there has been a surge of interest in so-called

topological (Weyl) semimetals: three-dimensional materials

which exhibit pointlike degeneracies (Weyl points)3 between

bulk conduction and valence bands and exhibit topologically

protected surface modes.4–6 These topological Weyl points are

low-symmetry descendants of a so-called Dirac point, which

is described by a massless four-band Dirac-like Hamiltonian.7

The unique feature of a Dirac semimetal is a Fermi surface

that surrounds discrete Dirac points, around which all bands

disperse linearly in all directions. It turns out that HgTe is

almost a Dirac semimetal: At Ŵ two conduction states are

degenerate with two valence states; all four bands disperse

linearly along the (110) and (100) axes; however, mirror and

time-reversal symmetry guarantee that, along the (111) axis,

two of the four bands must disperse quadratically [Refs. 7

and 8 and Fig. 2(a)].

Figure 2(a) shows another interesting feature of the bands

at Ŵ. In addition to the symmetry-guaranteed fourfold degen-

eracy, there are additional pointlike accidental degeneracies

along the (111) axis between two conduction states and one va-

lence state. The rest of the band structure is completely gapped,

so the Fermi surface is confined to a small region around Ŵ

[Fig. 2(b)]. It is natural to ask what perturbations could turn

HgTe into a Dirac semimetal. Since the quadratic dispersion of

bands near Ŵ is enforced by mirror and time-reversal symme-

try, any perturbation must break either one of these symmetries.

A time-reversal-symmetry-breaking Zeeman field breaks at

least one rotation symmetry of the tetrahedral group, splitting

the fourfold degeneracy at Ŵ so the system either gaps or

develops additional Fermi surface. Breaking mirror symmetry

maintains the fourfold degeneracy at Ŵ, but the Dirac point

develops a nonzero Chern number due to the threefold rotation

symmetry of zinc blende. This inevitably leads to additional

Fermi surface as well. Hence, zinc-blende materials cannot be

Dirac semimetals.7 A third option is to break, for instance,

a fourfold rotation symmetry by straining the lattice. Such a

procedure will split the fourfold degeneracy at Ŵ and will either

gap the band structure completely or else shift the accidental

degeneracy away from Ŵ along the (111) axis.

Reference 9 predicted that compressive strain along the

(111) axis will gap HgTe into a topological insulator, since

the states at Ŵ are already inverted [Fig. 3(a)]. The inverted

ordering of bands at Ŵ is a direct consequence of spin-orbit

coupling. To understand how it comes about, we compare the

ordering of states in HgTe with and without spin (Fig. 1). At

the Fermi level in spinless HgTe, the valence states span a

p-type representation Ŵ4 of space group 216. Slightly above

Ŵ4 in energy, there exists an s-type band which belongs to

the symmetric representation Ŵ1. When spin-orbit coupling

is introduced, the representation Ŵ4 splits into a p3/2-type

representation Ŵ8 and a p1/2-type representation Ŵ7, whereas

Ŵ1 turns into an s1/2-type representation Ŵ6. Since Hg is a

heavy atom, its contribution to the spin-orbit coupling is strong

enough to push the s1/2-type band Ŵ6 below Ŵ8, resulting in

an inverted band structure. This is in contrast with a normal

ordered zinc-blende semiconductor (e.g., CdTe), where Ŵ6

appears above Ŵ8 in energy. Reference 2 demonstrated that

if Ŵ8 is split and the inversion of Ŵ6 relative to the split band

Ŵ8 is controlled by a “mass” parameter, the insulating phases

that ensue have a nontrivial Z2 index +1 in the inverted

regime, versus a trivial index 0 in the normal regime. The

splitting of Ŵ8 was achieved in a HgTe/CdTe quantum-well

structure, while the tuning of Ŵ6 above or below the split

045202-11098-0121/2013/87(4)/045202(7) ©2013 American Physical Society
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FIG. 1. (Color online) Schematic illustration of band inversion in

HgTe due to strong spin-orbit coupling. Twofold degenerate bands

are drawn as thick lines, whereas nondegenerate bands are drawn as

thin lines. (Left) Without spin, HgTe/CdTe have an s-type conduction

band and a p-type valence band. (Middle) The spin-orbit coupling in

HgTe is strong enough to push the s1/2-type representation Ŵ6 below

the p3/2-type representation Ŵ8. (Right) Normal ordering of states

in CdTe, which has a weaker spin-orbit coupling as compared with

HgTe. The s1/2-type representation Ŵ6 appears above the p3/2-type

representation Ŵ8, as expected from the spinless case.

representation Ŵ8 was controlled by the well thickness, leading

to the first experimental observation of the quantum spin Hall

effect.10

In this paper, we show that whereas compressive strain

along the (111) axis gaps the system entirely [Fig. 3(a)], tensile

strain along the same axis shifts the accidental degeneracies

further along the (111) axis after splitting Ŵ8 [Fig. 3(b)].

Tensile-strained HgTe remains a semimetal where the dis-

persion of bands around the accidental degeneracies is linear

in all directions (Fig. 4). However, there is a caveat. Each

accidental degeneracy involves three states so it is neither a

Dirac point nor a Weyl point. As discussed earlier, this is due to

the presence of mirror symmetry about a plane that contains the

(111) axis. If we could break the mirror symmetry, the twofold

degenerate band in Fig. 2(a) would split and the system will

develop two Weyl points (Fig. 5).

A Weyl point carries a nonzero Chern number (charge)

±1 and cannot be annihilated unless brought in contact with

another Weyl point of opposite charge. In other words, the

spin texture of valence states around a Weyl point has nonzero

divergence; if interpreted as a magnetic field, the spin texture

would correspond to a magnetic monopole with charge ±1.

However, mirror symmetry constrains all points on its mirror

plane to have zero Chern number. Hence, Weyl points cannot

exist on mirror planes, and so the integral of the normal

component of spins on a closed surface that encloses points on

a mirror plane must be zero.

This has important implications for the Fermi surface

of tensile-strained HgTe (Fig. 4). The two Fermi ellipsoids

contact at a point due to mirror symmetry. They can be

separated only if mirror symmetry is broken. Consequently,

their corresponding spin textures will develop a nonzero

divergence. We ask the following: What is the nature of the

spin texture on the ellipsoidal Fermi surface before mirror

symmetry is broken? It turns out that spin texture on both

ellipsoids is locked in a plane perpendicular to the (111)

axis and exhibits a nonzero winding number about that axis.

Furthermore, the winding number changes as one sweeps

across the Fermi ellipsoids from one end to the other and

inevitably exhibits spin singularities on the Fermi surface

where the winding number must change (Fig. 6).

We alloy HgTe with ZnTe by replacing half the Hg atoms

with Zn atoms. The size mismatch between Hg and Zn causes

the lattice to relax so that the Zn and Hg atoms move off

center towards the Te atoms. This has the same effect as

tensile strain along the (111) axis in zinc blende (Fig. 7).

Γ
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Γ
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FIG. 2. Band structure of HgTe. (a) Energy bands near the Fermi level as a function of momentum along the (111) axis. At Ŵ the four

degenerate states span the irreducible representation Ŵ8 of the group Td . �4,5,6 are irreducible representations of the group C3v . The twofold

degenerate (solid) band labeled �6 disperses quadratically to lowest order, whereas the nondegenerate bands �4 and �5 disperse linearly.

There are threefold accidental degeneracies at k = ±0.004(1,1,1) because the bands �4 and �5 have negative mass, whereas �6 has positive

mass. (b) Band structure of HgTe as a function of crystal momentum across the entire Brillouin zone. The valence and conduction bands are

gapped everywhere except near Ŵ.
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(b)(a)

FIG. 3. (a) Band structure of HgTe under compressive strain along the (111) axis. The fourfold degenerate representation Ŵ8 is split, and

the material becomes a topological insulator (Ref. 9). (b) Band structure of HgTe under tensile strain along the (111) axis. Although Ŵ8 splits

under tensile strain as well, the accidental degeneracy along the (111) axis shifts away from Ŵ and the material remains semimetallic.

Indeed, ab initio calculations indicate that the spin texture on

the Fermi surface of HgxZn1−xTe (x = 0.5) is locked in a two-

dimensional plane and exhibits spin singular points identical

to tensile-strained HgTe (Fig. 8). However, it is likely that

density functional theory (DFT) overestimates11 the amount

of band inversion for x = 0.5 given that HgxCd1−xTe is a

band insulator for x < 0.8.12 Nonetheless, for small-enough

concentrations of Zn, this symmetry-protected spin texture

may indeed by realized physically. It is difficult to span

the full range of intermediate compositions within DFT to

make a prediction of the composition where the inversion

occurs.

In Sec. I, we describe the Fermi surface of tensile-strained

HgTe. In Sec. II, we derive a simple k · p model to understand

band dispersion in tensile-strained HgTe. In Sec. III, we

FIG. 4. Band dispersion in tensile-strained HgTe at the Fermi

level as a function of momentum along the (111) axis. The twofold

degenerate band (drawn as a thick line) is accidentally degenerate

with both the nondegenerate bands (drawn as thin lines) within

a very small energy range. Band dispersion around the accidental

degeneracies is linear to leading order in the (111) direction. (Right)

Schematic illustration of the Fermi surface. The Fermi surface for

various choices of Fermi energy (drawn in dashed lines) near the

accidental degeneracies consists of two ellipsoids which contact at

a point. This indicates that the bands disperse linearly in transverse

directions as well around the accidental degeneracies.

derive the spin texture at the k · p level and provide ab initio

calculations of Hg0.5Zn0.5Te in support of the predictions of

the k · p theory. Finally, we conclude with some brief remarks.

I. FERMI SURFACE

The band structure of HgTe has been of considerable

interest in recent years because HgTe alloyed with CdTe

exhibits a tunable direct band gap from 0 to 1.5 eV at Ŵ.

We focus our attention to the four-dimensional irreducible

representation Ŵ8 at the Fermi level. The point group elements

of the little group at Ŵ belong to Td (the tetrahedral group with

mirror planes). Since the zinc-blende lattice lacks inversion

symmetry, the matrix elements 〈ψi |p̂|ψj 〉, where {|ψi〉} span

Ŵ8, are nonzero. Therefore, the four bands degenerate at Ŵ

can, in principle, disperse linearly in all directions around

Ŵ (Ref. 7). However, along the (111) axis, Ŵ8 splits into a

two-dimensional representation �6 and two one-dimensional

representations �4 and �5 of the little group along that axis.

Since Ŵ is invariant under time-reversal symmetry, �6 is

constrained to be flat, whereas �4 and �5 must disperse with

nonzero slope. Along other directions such as (110) and (100),

Ŵ8 splits into either four singlets or two doublets, and none
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FIG. 5. (a) Energy bands plotted as a function of momentum in

the kz direction in the k · p theory. There is a twofold degenerate

band (thick line) intersecting two nondegenerate bands (thin lines)

analogous to Fig. 4. (b) Mirror- and time-reversal-symmetry-breaking

perturbation proportional to Jz splits the twofold degenerate band

into two nondegenerate bands, giving rise to four Weyl points.

(c) Rotation- and mirror-symmetry-breaking perturbation propor-

tional to τzσx gaps the system entirely.
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FIG. 6. (Color online) Spin texture on the Fermi surface of tensile-strained HgTe as predicted by the k · p theory of Eq. (1). (Top left) Band

dispersion in the k · p theory as a function of momentum along the (111) axis. The Fermi level EF (dashed line) is set to be 2 eV in the units

of Eq. (1). (Bottom left) The Fermi surface for EF = 2 eV at the k · p level consists of two spherical shells which touch at the point kz = −1.

(Top right) The spin texture of valence states on the blue Fermi spherical shell as a function of momentum in the kx,ky plane. Each circle

corresponds to a constant kz (indicated by dashed yellow lines cutting through the Fermi surface on the left). (Bottom right) The spin texture

of valence states on the red Fermi spherical shell as a function of momentum in the kx,ky plane. The spins are locked in the kx,ky plane for

both Fermi shells. The winding number of spins on each Fermi shell changes as one moves from one end along kz to the other. There are three

points indicated in yellow where the spin texture vanishes. The spin winding number flips from ±2 to ∓1 at these spin singular points.

of the bands are constrained to be flat to linear order in k

(Refs. 7 and 8). This is why the four-band model describing

states {|Ŵ8,3/2〉,|Ŵ8,−3/2〉,|Ŵ6,1/2〉,|Ŵ6,−1/2〉} in Ref. 2

was written as a Dirac Hamiltonian in two dimensions.

It turns out that the bands belonging to �4 and �5 have

negative mass [Fig. 2(b)]. Therefore, to O(k2) and above, the

bands labeled �4 and �5 must bend back below the Fermi level

and cross �6 somewhere along the (111) axis. High-resolution

ab initio calculations confirm that these degeneracies indeed

occur very close to Ŵ at ±0.004(1,1,1) [Fig. 2(a)]. Since

this occurs so close to Ŵ, the Fermi surface of HgTe is only

effectively pointlike.

Under tensile strain along the (111) axis, the representation

Ŵ8 splits, because the tetrahedral group Td reduces to the

trigonal group C3v = {1,x,x2,y,xy,x2y}. Here x corresponds

to threefold rotation symmetry about the (111) axis while

{y,xy,x2y} represent the three mirror planes that contain the

(111) axis and are rotated by 2π/3 with respect to each other.

Since tensile strain preserves the little group along the line

from Ŵ to L, the representation �6 does not split. Therefore,

the accidental degeneracies between �4/�5 and �6 only shift

further away from Ŵ, and HgTe remains a semimetal.

Figure 4 shows the band structure along the (111) direction

for 8% tensile strain in HgTe. The set of momenta correspond-

ing to a fixed energy form two ellipsoidal surfaces that contact

at a point. This implies that the bands �4, �5, and �6 disperse

linearly in all directions around the accidental degeneracies.

Therefore, under tensile strain the Fermi surface of HgTe grows

from a point to a set of four ellipsoids in two sets of Kramers

paired momenta in the Brillouin zone. The two ellipsoids on

one side of Ŵ are connected to each other at the point k along

the (111) axis where the Fermi level crosses the band �6.

We note that 8% tensile strain corresponds to 4% strain in

plane, which is relatively large. This effect ensues as soon as

a perturbation breaking the fourfold symmetry of zinc blende

turns on; there is no critical value of strain below which the

unusual spin texture of the Fermi surface would disappear.

While 8% tensile strain, which corresponds to 4% strain in

plane, is quite high, the ellipsoidal Fermi surfaces ought to

be observable at reduced strains; at 2% tensile strain the

energy difference between the threefold degeneracies is still

18 meV, down from 25 meV. Even so, very high strains may be

achievable through epitaxial growth of HgTe on an appropriate

substrate.13
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FIG. 7. (Color online) (a) Band structure of Hg0.5Zn0.5Te is the same as tensile-strained HgTe [Fig. 3(b)], except the shape and size of

the Fermi surface and the Fermi velocities in the two materials. (b) Band dispersion at the Fermi level near the accidental degeneracies along

the (111) axis. There is a twofold degenerate band (thick line) intersecting two nondegenerate bands (thin lines), essentially identical to

tensile-strained HgTe (Fig. 4).

Alternatively, strain can be introduced chemically. Alloying

HgTe with ZnTe introduces a size mismatch between Hg

and Zn, causing both Zn and Hg atoms to move off center

toward a Te atom; if all the Zn atoms move in the same

direction, the symmetry breaking is the same as that created

by tensile strain. A similar effect has also been reported in

CdxZn1−xTe (Ref. 14), which shows rhombohedral distortions

and Zn off centering for a wide range of Zn concentration.

Figure 7 shows the band structure of ordered Hg0.5Zn0.5Te,

which is qualitatively the same as that of strained HgTe. The

difference lies in the shape and size of the Fermi surface

and the Fermi velocities in the two materials. As a caveat,

it is important to note that DFT overestimates the magnitude

of band inversion;11 HgxCd1−xTe for x < 0.8 is a band

insulator,12 and Hg0.5Zn0.5Te is likely to be gapped in actu-

ality. However, calculations for Hg0.75Zn0.25Te suggest that

significant symmetry-breaking distortion persists for lower

Zn concentration, consistent with the observations of similar

behavior in CdxZn1−xTe (Ref. 14). Therefore, if some ordered

compound HgxZn1−xTe exists with x such that distortion due

to Zn substitution sufficiently splits the degeneracy at the Fermi

level while still allowing band inversion, then it would possess

an experimentally observable ellipsoidal Fermi surface. We

assert that a time-reversal- and mirror-symmetry-breaking

Zeeman field would split the degenerate band �6 and turn

HgxZn1−xTe into a Weyl semimetal. This is confirmed by

our k · p theory in Sec. II. A Weyl semimetal obtained by

a Zeeman perturbation to HgxZn1−xTe will have interesting

phenomenological consequences such as Fermi-arc surface

states5 and pressure-induced anomalous Hall effect.6

While some experimental studies have been performed

on Hg1−xZnxTe, it is difficult to draw any direct conclusions

without more detailed structural characterization of

the samples.15,16 We performed a phonon analysis of

k
y

k
x

+1

-2
-2

-2 -2
-2

-2

-2

(a) (b)

FIG. 8. (Color online) Spin texture on the Fermi surface of Hg0.5Zn0.5Te at the ab initio DFT level. (a) Spins on a Fermi surface ellipsoid

of Hg0.5Zn0.5Te are locked in the plane perpendicular to the (111) axis. The spin winding number around the (111) axis changes from +1 to

−2 from the left end of the ellipsoid to the right end. (b) Spin texture in the two-dimensional plane transverse to the (111) direction. Each

concentric loop of spins corresponds to a fixed value of momentum along the (111) axis. The spin winding number around the (111) axis

changes from the inner circles to the outer circles on the Fermi ellipsoid. Since spins are locked on the transverse plane, their winding number

changes as they vanish at three rotation-symmetry-related singular points (drawn as white circles outlined in black). (Left) A higher-resolution

image showing the change in the spin winding number from +1 to −2 as we move from the inner radii to the outer radii on the right. For visual

clarity, the magnitude of all vectors is normalized in (a), while in (b) the size of each vector equals the square root of its magnitude.
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tensile-strained HgTe and Hg0.5Zn0.5Te and found no

structural instability.

II. K · P THEORY

We model the low-energy physics of the states that span the

representations �4, �5, and �6 along the (111) axis in terms

of a four-band k · p theory around the accidental degeneracies.

The states which belong to �6 are |p,± 3
2
〉, whereas the

ones belonging to �4 and �5 are |p,± 1
2
〉. The symmetry group

is C3v = {1,x,x2,y,xy,x2y} with the group multiplication

rules x3 = y2 = 1,yx = x2y in addition to time-reversal sym-

metry. Here x represents a threefold rotation symmetry while

y represents a mirror symmetry. The accidental degeneracies

occur at points k0 �= 0 along the line from Ŵ to L, which

are not time-reversal symmetric. So the time-reversal operator

� maps the k · p Hamiltonian around k0 to its time-reversed

partner around −k0.

We choose an angular momentum basis for the k · p theory.

Since we are dealing with four half-integer spin states, we

require a double valued representation of C3v , such that x and

y take the form of matrices R̂ and M̂ belonging to SU(4)

that satisfy R̂3 = M̂2 = −1. These operators satisfy the group

multiplication rules and are consistent with the interpretation

of the operators M̂,R̂M̂,R̂2M̂ as mirror symmetries (all of

which square to −1) for particles with half-integer spin.

Orienting the kz direction along the (111) axis, the threefold

rotation operator is diagonal and can be written as R̂ =
exp(iĴz2π/3), where Ĵz is the angular momentum operator.

The mirror operator in this basis takes the form M̂ = iτy ⊗ σx .

�τ and �σ denote Pauli matrices. Tensor products of Pauli

matrices can be used as basis vectors for 4 × 4 Hermitian

matrices. Neither �τ nor �σ individually corresponds to a real

or pseudospin degree of freedom. In what follows, we write

τi ⊗ σj as τiσj , where the tensor product is implied. In

the absence of inversion symmetry P , the local antiunitary

operatorP� is not a symmetry.P� is a local operator because

both P and � send k to −k. In the angular momentum basis,

it can be written as P� = iτxσyK , where K is the complex

conjugation operator.

A Hamiltonian linear in k which respects these symmetries

is

Ĥ (k) = kxτx + kyτy + kzτzσz + κ, (1)

where

κ =

⎛

⎜

⎜

⎝

0 0 0 −i

0 1 0 0

0 0 1 0

i 0 0 0

⎞

⎟

⎟

⎠

is chosen to break the local antiunitary symmetry P�. With

this choice of κ , time reversal symmetry is preserved while

inversion is broken if we require that �Ĥ (k)�−1 = τxkx +
τyky + τzσzkz + κT is the effective k · p Hamiltonian around

the time-reversed location of the accidental degeneracies. Such

a constraint is allowed because the k · p theory is localized

around a Brillouin zone momentum k0 �= 0 along the (111)

axis.

Figure 5 shows the energy spectrum of the Hamiltonian in

Eq. (1) along the kz axis. The degenerate band �6 splits to give

four Weyl points under a mirror- and time-reversal-symmetry-

breaking Zeeman term proportional to σz or Jz where Jz is the

angular momentum operator of p3/2 states. Figure 5(b) shows

the splitting of �6 to give four Weyl points due to a perturbation

proportional to Jz. A rotation- and mirror-symmetry-breaking

perturbation such as τzσx gaps the system entirely [Fig. 5(c)].

It is possible to split �6 into two parallel bands as in

Fig. 5(b) by a mirror-preserving term τyσx , which breaks

time-reversal and rotation symmetry. This, however, does not

lead to Weyl points; even though the degeneracies involve

two states, the bands develop a quadratic dispersion in one

direction. Mirror symmetry about a plane constrains all points

k on the plane to have zero Chern number. This is explained

as follows: The Chern number of a certain point k in the

Brillouin zone is given by an integer n = 1/(2πi)
∮

S
Tr �F · n̂,

where �Fij = ∇k × 〈ψi |∇k|ψj 〉 is the Berry curvature, n̂ is a

unit vector normal to the surface S that contains k, and the

trace includes only valence states |ψi〉,i = 1, . . . ,N . A mirror

symmetry about a plane that contains k reverses the orientation

of the surface S while the integrand is the same for opposing

points on S. Hence, the Chern number of all points on a mirror

plane must be zero. Therefore, as long as mirror symmetry is

present, tensile-strained HgTe cannot host Weyl points along

the (111) axis.

III. SPIN TEXTURE

Since the dispersion of bands around the accidental degen-

eracies in Figs. 4 and 5(a) is linear in k, it is natural to ask if

the accidental degeneracies have an associated Chern number.

However, since the (111) axis belongs to a mirror plane, the

Chern number of all points on that axis should be zero. In

other words, the surface integral of the normal component of

the spin texture over a closed surface enclosing the accidental

degeneracies will be zero. The ellipsoidal Fermi surface in

Hg0.5Zn0.5Te also encloses the accidental degeneracies, as

shown in Fig. 4. At the k · p level, this corresponds to two

spheres in k space parametrized as S1 : E2 = k2
x + k2

y + (1 −

kz)
2 and S2 : (E − 1)2 = k2

x + k2
y + k2

z , where E is the Fermi

energy. The average spin field is given by 〈ψi |Ŝ|ψi〉, where |ψi〉
is a valence state on one of the Fermi ellipsoids parametrized

by E and Ŝ is the spin operator for the p3/2 states. In the k · p

theory, this evaluates to

〈Ŝ〉i = αi(E,kz)[sin(θ )î + cos(θ )ĵ]

+ βi(E,kz)[sin(2θ )î − cos(2θ )ĵ], (2)

where the subscript i = 1,2 identifies one of the Fermi

ellipsoids Si and θ is the azimuthal angle in the kxky plane

that parametrizes the ellipsoids. The coefficients αi,βi are

α1(E,kz) = −

√

4(E + 1 − kz)

3(E − 1 + kz)
, β1(E,kz) = −

α1(E,kz)
2

2
,

α2(E,kz) =

√

4(E − 1 − kz)

3(E − 1 + kz)
, β2(E,kz) =

α2(E,kz)
2

2
.
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The three mirror planes of the group C3v , all of which

contain the kz axis, lock the spin expectation values in the kxky

plane. Figure 6 shows how the spin texture evolves as a func-

tion of kz around the Fermi ellipsoids. For fixed E , kz ranges

between 1 − |E | and 1 + |E | on S1 and between −|1 − E | and

|1 − E | on S2. When kz is close to 1 − E on either ellipsoid, the

term with the coefficient βi dominates and the spin winding

number is −2, whereas when kz is close to E + 1 on S1 or E − 1

on S2 the term with the coefficient αi dominates, and the spin

winding number is +1. Therefore, the spin winding number

must change abruptly from one end of the Fermi ellipsoids to

the other, since the spins cannot develop a component in the

kz direction due to mirror symmetry. Hence, there must exist

singular points on the Fermi ellipsoids where the spin expec-

tation values vanish. Figure 6 shows the points on the Fermi

ellipsoids where the spin expectation value goes to zero. There

are three such singular points which are related to each other by

threefold symmetry, and their exact location can be calculated

in the k · p theory. Note that although the αi diverge in the

limit kz → 1 − E , the points where kz = 1 − E correspond

to the degenerate band �6, and since α1,β1 and α2,β2 have

opposite signs, the total spin 〈Ŝ〉1 + 〈Ŝ〉2 = 0 for states in �6.

We have carried out ab initio calculations to confirm that

tensile-strained HgTe and Hg0.5Zn0.5Te exhibit identical spin

texture at the Fermi surface. Figure 8 illustrates the spin

texture on the Fermi surface of Hg0.5Zn0.5Te. The spins are

locked in a two-dimensional plane perpendicular to the (111)

axis, and their winding number changes from one end of the

Fermi ellipsoid to the other. Furthermore, the abrupt change

in the winding number is accommodated by the vanishing of

the spin expectation value at three rotation-symmetry-related

points on the Fermi ellipsoid. Density functional theory

calculations were performed in the QUANTUM ESPRESSO suite

using the Perdew-Burke-Ernzerhof-type generalized gradient

approximation (GGA).17 All calculations used an 8 × 8 × 8

Monkhorst-Pack k-point mesh with a plane-wave cutoff

of 50 Ry. The pseudopotentials representing the atoms in

these simulations were generated by the OPIUM package; the

pseudopotentials were norm-conserving and optimized and

included the full relativistic correction.18,19

We have shown that HgTe tensile strained in the (111) axis

is semimetallic and exhibits a Fermi surface consisting of two

ellipsoids that contact at a point. Due to mirror and threefold

symmetry of the zinc-blende lattice, the spin texture on the

Fermi ellipsoids is locked in a two-dimensional plane and

vanishes at special singular points. We have derived a k · p

theory to understand this phenomenon at a qualitative level.

We propose that this symmetry-protected spin texture can be

observed in Hg1−xZnxTe for values of x small enough to allow

band inversion while sufficiently breaking symmetry.

Note added. We recently became aware that the authors

of Ref. 20 studied the effects of biaxial strain (referred to as

“strain” in that paper) along the (111) axis in HgTe. They found

that the fourfold degeneracy at Ŵ was lifted and no accidental

degeneracies resulted for either positive or negative strain.

Therefore, biaxial strain (compressive or tensile) is similar

to compressive uniaxial strain in terms of its effect on band

structure. In contrast, we find that uniaxial tensile strain not

only maintains the accidental degeneracies already present in

HgTe but shifts them further away from Ŵ.
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