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We study lattice constructions of gapped fermionic phases of matter. We show that

the construction of fermionic Symmetry Protected Topological orders by Gu and Wen
has a hidden dependence on a discrete spin structure on the Euclidean space-time. The

spin structure is needed to resolve ambiguities which are otherwise present. An identical

ambiguity is shown to arise in the fermionic analog of the string-net construction of
2D topological orders. We argue that the need for a spin structure is a general feature

of lattice models with local fermionic degrees of freedom and is a lattice analog of the

spin-statistics relation.

1. Introduction and Summary

1.1. Bosonic and fermionic gapped phases

In condensed matter physics, topological phases of matter are often defined as

equivalence classes of local gapped bosonic Hamiltonians, usually defined on a lat-

tice, which can be deformed into each other without ever becoming gapless.1,2 The

notion of topological phase can be enriched by imposing additional constraints on

the theories, such as a choice of global symmetry preserved by all the Hamiltoni-

ans. On the other hand, topological quantum field theoriesa can be thought of as

describing the far infrared behavior of gapped bosonic quantum field theories (see,

e.g., Section 4 of Ref. 3 or the monograph4).

There is a close relation between topological phases of matter and topological

quantum field theories, which can be thought of as a map from a topological phase

aThis is a somewhat looser notion of TQFT compared to some formal definitions. For example,

we consider Chern-Simons theory to be a TQFT, even though it has a partition function which

depends on a choice of metric on space-time. In other words, we allow the stress tensor to be
non-zero, but proportional to the identity operator.
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of matter to the TQFT which encodes the low energy continuum limit of the corre-

sponding Hamiltonian. In principle, one may imagine the map being many-to-one:

it is not obvious that two local gapped Hamiltonians which map to the same TQFT

will always be deformable into each other. Still, in practice we do not know of any

observable which can distinguish two phases of matter, but cannot be formulated

in terms of the TQFT data.b

In condensed matter physics, one also encounters the notion of a fermionic topo-

logical phase of matter, defined as an equivalence class of local gapped Hamiltoni-

ans which can involve fermionic degrees of freedom.5,6 Perhaps surprisingly, some

fermionic phases of matter are not expected to admit a purely bosonic realization.

This is expected to be due to the difference in the notion of locality for bosonic

and fermionic systems. Intuitively, if we partition a bosonic system in two parts,

the total Hilbert space factors uniquely in the tensor product of the Hilbert spaces

for the two parts. If we partition a fermionic system, though, the factorization has

an intrinsic ambiguity, as observables in the tensor product of the Hilbert spaces

for the two parts are defined up to a sign in the sector where both factors have odd

fermion number.

1.2. Spin structure dependence

In unitary quantum field theory, fermions are naturally spinors and thus the low

energy physics of a gapped fermionic theory is a spin-TQFT: a topological field

theory defined on manifolds which can be equipped with a spin structure, whose

correlation functions possibly depend on the choice of spin structure. The purpose of

this paper is to explore the relation between fermionic topological phases of matter

and spin-TQFTs. It is not obvious that such a relation should exist, as a lattice

Hamiltonian involving fermionic degrees of freedom is usually written down without

any reference to a spin structure on the manifold which is discretized by the lattice.

One also cannot appeal to the spin-statistics relation, because the lattice destroys

Lorenz and even rotational invariance which are the conditions of the spin-statistics

theorem.c

The first step of our analysis is to look carefully at the fermionic SPT phases

constructed by Gu and Wen in Ref. 7. We find that the prescription used to de-

fine the partition function of such theories runs into an obstruction if applied to

bIt is also conceivable, perhaps, that some topological phase of matter may not give rise to a
TQFT at low energy, i.e., that some anomaly/obstruction may prevent the definition of TQFT

amplitudes on general manifolds in terms of the Hamiltonian data. But in all cases known to

us one circumvent such obstructions by postulating that the TQFT depends on some additional
geometric data, such as metric or framing.
cTaking the continuum limit and then applying the spin-statistics relation does not ameliorate
the problem. The TQFT itself is, of course, Lorentz invariant, but the spin-statistics relation is a

property of Lorenz invariant particle excitations. The continuum limit from the lattice theory to

the low-energy TQFT only concerns the ground states of the system. A priori, massive excitations
above these ground states do not need to transform properly under the Lorentz group.
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space-time manifolds of general topology, unless the second Stiefel–Whitney class

[w2] of the manifolds vanishes, i.e., the manifold admits a spin structure. If the

manifolds admits a spin structure, the obstruction can be eliminated, but the final

answer will depend on the choice of spin structure η. In other words, these fermionic

SPT phases define (invertible) spin-TQFTs.

Next, we look at other known constructions of fermionic phases of matter which

are expected to admit a state-sum-like definition of their partition function: the

construction of fermionic toric code in Ref. 8 and the general fermionic Turaev-Viro

construction in Ref. 9. These references focus on the construction of a fixed-point

Hamiltonian and wave-function for these fermionic phases of matter, rather than a

partition function. It is straightforward, though, to assemble the same ingredients

into a partition sum, borrowing some ideas from the Gu–Wen fermionic SPT phase

construction. Again, we find an obstruction to define the partition sum unless the

space-time manifolds admits a spin structure, in which case one can remove the

obstruction and define a well defined partition function which depends on the choice

of spin structure η. Thus these fermionic phases of matter are associated to spin-

TQFTs.

We can describe the obstruction schematically here, referring the reader to

Secs. 2 and 6 for further details. State-sum models assemble the partition func-

tion from a triangulation of the space-time manifold X: each simplex is associated

to some tensor in the tensor product of vector spaces associated to the faces and

the legs of these tensors are contracted together as the simplices are glued along the

corresponding faces of the triangulation. In a fermionic model, the vector spaces

may be Grassmann-odd and Koszul signs occur when re-organizing and contracting

the factors of the tensor products.

These Koszul signs, arising from the anti-commutation of fermionic variables,

are of course a key element of the problem. The non-local nature of these signs is

precisely what should allow these fermionic phases of matter to be distinct from any

bosonic phase. In order for the partition sum to be invariant under local changes

in the triangulation of the manifold, one needs to cancel the change in the Koszul

signs against the change in the local data attached to the simplices. The obstruction

arises precisely when this cancellation is not possible.

We can express the obstruction neatly by encoding the fermion number of the

vector spaces attached to faces in a Z2-valued (d − 1)-cochain βd−1. The cochain

βd−1 is actually a cocycle, as the total fermion number of the tensors attached

to simplices is even. It is useful to decompose the partition sum into a sum of

terms Z[X,βd−1], which contain the parts of the state sum due to states of fermion

number βd−1.

We can encode a general change of triangulation of X into a triangulation

of the (d + 1)-dimensional manifold X × [0, 1]. Intuitively, we are gluing a se-

quence of (d + 1)-dimensional simplices on top of our initial triangulation to get

the final triangulation. We find that the triangulation invariance of the partition

function is obstructed by some irreducible sign mismatch, which can be written
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schematically as

(−1)
∫
X×[0,1]

w2∪βd−1 . (1)

Here w2 is a 2-cocycle with values in Z2 representing the second Stiefel–Whitney

class of X×[0, 1] and βd−1 is a lift to X×[0, 1] of the cocycle βd−1. If the cohomology

class of [w2] is non-trivial and the theory involves choices of fermion numbers βd−1

which are non-trivial in cohomology, this sign mismatch cannot be absorbed by

a redefinition of the local part of the partition function. This prevents us from

constructing a well-defined partition sum and ruins the state-sum construction.

If we restrict X to be a spin manifold then w2(X) is exact and we can write

w2 = δη for some 1-cochain η, which represents a choice of spin structure. This

allows us to thus cancel the obstruction (1) by the variation of a local term,

(−1)
∫
X
η∪βd−1 , (2)

so that the improved state sum,

Z[X, η] =
∑
βd−1

Z[X,βd−1](−1)
∫
X
η∪βd−1 , (3)

is fully invariant under changes of triangulations and defines a good theory. This

theory is a spin-TQFT: it can only be defined on a spin manifold and depends on

a choice of spin structure.

In Secs. 3 and 4 we will look in further detail at the properties of the Koszul

signs which occur in the state sum. The definition the partition function requires

specific choices of how to order the factors in the tensor product associated to each

simplex, and the two factors in the contraction of vector spaces at each face. Given

some ordering choices Π, the permutations of the vector spaces involved in the state

sum will produce some overall Koszul sign σΠ(X,βd−1), which depends only on the

triangulation, on Π and on βd−1.

The choice of order Π can be given independently of the other data in the state

sum. The combined sign,

zΠ[X, η, βd−1] = σΠ(X,βd−1)(−1)
∫
X
η∪βd−1 , (4)

appears to be a very useful object, which captures the intrinsically fermionic part of

the full partition function. From now on we will drop the subscript Π. Our formulae

will refer to the specific choice of order used in the Gu–Wen definition of fermionic

SPT phases.7 We will comment briefly on other choices of order in Sec. 3.

We can think about z[X, η, βd−1] as defining an effective action for a (d−1)-form

Z2 gauge field with a very specific anomaly, or a very simple invertible spin-TQFT

Kd equipped with an anomalous (d− 2)-form Z2 global symmetry.

Under changes of triangulation, z[X, η, βd−1] changes by another interesting

cocycle, the Steenrod square of βd−1:

(−1)
∫
X×[0,1]

Sq2[βd−1] ≡ (−1)
∫
X×[0,1]

βd−1∪d−3βd−1 . (5)
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We refer to Appendix B for the explicit definition of the higher cup products ∪a.

Their basic property is

A ∪a B +B ∪a A = δ(A ∪a+1 B) + δA ∪a+1 B +A ∪a+1 δB , (6)

with ∪0 ≡ ∪.

Under gauge transformations, we find the precise form of the ’t Hooft anomaly,

z[X, η, βd−1 + δλd−2] = z[X, η, βd−1](−1)
∫
X
β∪d−3λ+λ∪d−3β+λ∪d−3δλ+λ∪d−4λ . (7)

Although z[X, η, βd−1] does not appear to admit a d-dimensional bosonic de-

scription, we also find that it is a quadratic refinement of a bosonic pairing:

z[X, η, βd−1 + β′d−1] = z[X, η, βd−1]z[X, η, β′d−1](−1)
∫
X
βd−1∪d−2β

′
d−1 . (8)

Finally, if X is a boundary of a compact oriented (d+ 1)-manifold Y and d > 2, we

find an explicit WZW-like expression for z[X, η, βd−1]:

z[X, η, βd−1] = (−1)
∫
X
η∪βb−1+

∫
Y
Sq2[βd−1]+w2∪βd−1 . (9)

Here we use the fact that for d > 2 the cocycle βd−1 can be extended to Y . The

action is independent of the choice of Y or of the way βd−1 is extended from X too

Y because the expression Sq2[βd−1] +w2 ∪βd−1 is exact for closed oriented Y. This

formula is particularly useful for d = 3, since any closed oriented 3-manifold X is a

boundary of a compact oriented 4-manifold Y .

With a bit of extra work, we can rewrite the partition function Z[X, η] of our

spin-TQFT as the partition function of a (d− 1)-form Z2 gauge theory,

Z[X, η] =
∑
βd−1

Z̃[X,βd−1]z[X, η, βd−1] , (10)

where the gauge fields are coupled to two sets of degrees of freedom: a standard

bosonic TQFT equipped with a (d − 2)-form Z2 global symmetry and partition

function Z̃[X,βd−1], and the spin-TQFT Kd. The bosonic theory associated to

Z̃[X,βd−1] must have a ’t Hooft anomaly which cancels the ’t Hooft anomaly of

Kd, controlled by Sq2[βd−1].

In order to make contact with concepts which are more familiar in condensed

matter physics, it is useful to replace the notion of a TQFT with an anomalous

global symmetry with the notion of a gapped boundary condition for a (d + 1)-

dimensional SPT phase, protected by a (d − 2)-form Z2 global symmetry, with

partition function

(−1)
∫
Y
Sq2[βd−1] . (11)

Then Z̃[X,βd−1] defines a bosonic gapped boundary condition for the (d + 1)-

dimensional SPT phase, while z[X, η, βd−1] defines a fermionic gapped boundary

condition. The original spin TQFT can be recovered by gauging the (d − 2)-form

Z2 global symmetry on a slab, with one of these boundary conditions at either end.

In Sec. 7 we will argue that this construction has a close relation to the notion

of fermionic anyon condensation. The generators of a non-anomalous (d− 2)-form
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global symmetry G are loop observables which can be thought as worldlines of

bosonic quasi-particles which fuse accordingly to the group law of G. Gauging the

(d−2)-form symmetry is equivalent to proliferating these quasi-particles in correla-

tion functions and should correspond to the standard notion of anyon condensation,

at least in three space-time dimensions.

We will argue that the generators of a (d − 2)-form Z2 global symmetry with

the ’t Hooft anomaly described above, instead, behave as fermionic quasi-particles.

The challenge to define a fermionic analogue of the standard anyon condensation is

mapped into the problem of gauging such anomalous symmetry. The kernel spin-

TQFT Kd offers a solution to the problem: given some TQFT with fermionic quasi-

particles we want to condense, we can tensor it with Kd to cancel the anomaly and

gauge the (d − 2)-form Z2 global symmetry. Essentially, the kernel spin-TQFT

Kd uses the spin structure information to provide some extra signs which make

the “fermionic” anyon condensation meaningful. This approach to fermionic anyon

condensation appears to be closely related to work in progress by K. Walker.25

State-sum constructions of spin-TQFTs in two dimensions have been recently

discussed by other authors.26,27 It would be interesting to establish the precise

connection between all these constructions.

Finally, using the notion of fermionic anyon condensation we sketch a rough

argument demonstrating how one could potentially “simulate” a generic fermionic

lattice Hamiltonian in 2 + 1 dimensions given a copy of K3 and a sufficiently rich

bosonic system. This argument supports the idea that Kd may fully capture the

non-local properties of a generic fermionic system.

1.3. Conclusions and future directions

Although we have demonstrated the link between fermionic phases of matter and

spin-TQFTs only in a restricted set of examples, we believe that the relation will

hold in greater generality. There are two natural ways one may try to extend our

results

• It should be possible to adapt our analysis to the general mathematical frame-

work of extended topological field theory. The analogue of a fermionic phase of

matter should be an extended topological field theory such that the vector spaces

attached to (d− 1)-dimensional manifolds have Grassmann grading and the ten-

sor products are twisted by the Koszul sign rule. The same sign combinatorics as

in the state sum model should lead to an obstruction proportional to [w2]. Thus

we expect one could prove a theorem relating “fermionic” extended topological

theories and extended spin-TQFTs.

• It should be possible to give a purely Hamiltonian version of our analysis. The

fermionic SPT phase Kd associated to the z[X, η, βd−1] partition function should

give us a recipe to build a one-dimensional Hilbert space from a given cocycle

βd−1, which could be described as a choice of sign on local patches of the space

manifold. Hopefully, this recipe will capture the same sign ambiguities as one
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encounters in the construction of a general fermionic Hilbert space as a ten-

sor product of local fermionic Hilbert spaces associated to local patches of the

space manifold. Ideally, this would show in full generality, without reference to

TQFTs, that any fermionic phase of matter can be obtained by combining the

fermionic SPT phase Kd with some appropriate bosonic degrees of freedom and

that fermionic phases of matter should generally require the existence of a spin

structure on space.

2. Fermionic SPT Phases and the Gu–Wen Grassmann Integral

2.1. The Gu–Wen construction

The standard discrete action for a bosonic SPT phase protected by some symmetry

group G is built from a U(1)-valued d-cocycle νbd(g0, . . . , gd) on BG, i.e., a function

of (d+ 1) G-valued variables, invariant under the action of G on itself,

νbd(gg0, . . . , ggd) = νbd(g0, . . . , gd) , (12)

and closed under the action of an appropriate differential δ.

Concretely, given a triangulation of a d-dimensional manifold X with a flat G

connection, one evaluates the action as a product over all d-dimensional simplices

of ν±d evaluated on a local trivialization of the connection. The G-symmetry of the

cocycle makes the answer independent of the local trivialization and the cocycle

condition δνbd = 1 insures invariance under changes of triangulation. Essentially,

the ratio between the actions for two triangulations which differ by an elementary

move equals the action for the boundary of a (d + 1)-simplex, which by definition

is the same as δνbd. More generally, two triangulations can be related by a sequence

of moves which can be visualized as a triangulation of a cobordism X × [0, 1] from

the manifold X to itself.

The Gu–Wen construction of a discrete partition function for fermionic SPT

phases7 involves two basic pieces of input: a U(1)-valued d- cochain ν(g0, . . . , gd)

on BG and a Z2-valued (d− 1)-cocycle nd−1(g0, . . . , gd−1), such that

δνd = (−1)Sq
2[nd−1] . (13)

In other words, νd satisfies the cocycle condition up to signs, which are determined

from nd−2 through the Steenrod square operation.

The Gu–Wen partition function can be decomposed into the product of three

terms, which are not separately invariant under changes of triangulation. The first

term, which we could denote as Zν , or Zν [T ] if we want to indicate the specific

choice of triangulation T of the space-time manifold X, is simply the product over

all d-dimensional simplices of ν±1
d , just as for a bosonic SPT phase. Because νd is

not a cocycle, the sign of this term will jump under re-triangulation by the Steenrod

square of nd−1 integrated over the cobordism from X to itself:

Zν [T ] = Zν [T ′] exp iπ

∫
X×[0,1]

Sq2[nd−1] . (14)
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The second term, which we could denote as Zθ or Zθ[T ], contains the “fermionic”

degrees of freedom. It is a sign, defined by a Grassmann integral whose structure is

determined by nd−1. Schematically, one associate a pair of Grassmann odd variables

to the two sides of each (d−1)-simplex such that nd−1 is 1. The integrand is built as

a product over d-simplices of the Grassmann variables associated to that simplex.

We do not expect to be able to write Zθ as a standard bosonic action, i.e., the

integral of the pull-back of some class on BG to the manifold: if we could do that,

we would have reduced the system to a bosonic SPT phase. The Grassmann integral

Zθ only depends on the group variables through the image βd−1 of the cochain nd−1

computed on the faces of the triangulation, which is a standard Z2 cocycle. We will

see later in Sec. 6.2 that the Grassmann integral Zθ coincides with the function

σΠ(X,βd−1) described in the introduction.

The third term, which we could denote as Zm or Zm[T ], is somewhat problem-

atic: it is written in terms of a function md−2(g0, . . . , gd−2) which is not G invariant,

but satisfies δmd−2 = nd−1. The expression for Zm involves a product of (−1)md−2

evaluated over a certain subset S of (d−2)-simplices in T defined in Ref. 7 by some

local rule:

Zm[T ] =
∏
s∈S

(−1)md−2(s) . (15)

We review the precise definition of S for d = 2, 3, 4 in Sec. 2.2.

The product is invariant under re-definitions of md−2, but the lack of G-

invariance of md−2 makes it problematic to define the model on a manifold with

a non-trivial G-bundle. The wavefunctions built from this model have some md−2

dependence which is stripped off by hand by the authors of Ref. 7 in a non-canonical

way, opening the possibility for subtle sign changes and ambiguities in the corre-

sponding TQFT. Indeed, we will argue here that removing the md−2 dependence

introduces naturally a dependence on a choice of spin structure on the manifold, so

that the Gu–Wen fermionic SPT phases are a class of invertible spin-TQFTs.

In order to remove the spurious md−2 dependence, we can imagine replacing the

collection S of (d− 2)-simplices used in Zm with a collection of (d− 1) simplices E

such that ∂E = S, so that the product over S of (−1)md−2 in Zm can be reorganized

to a product ZEn over E of (−1)nd−1 :

ZEn [T ] =
∏
e∈E

(−1)nd−1(e) . (16)

Clearly, this will be only possible if S is exact, and then the result will depend on

the choice of E: any two different choices of E differ by a cycle, which will have

in general a non-zero pairing with nd−1, and thus will give inequivalent partition

functions. For a solid torus, this integration by parts should mimic the way the

authors of Ref. 7 strip off the md−2 dependence of wavefunctions.

At this stage, we have shown that we can construct an improved, well-defined

partition function if the homology class of S vanishes, and that the improved
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partition function depends on a choice of trivialization E of S. Although the defini-

tion of S depends on the choice of triangulation, invariance of the partition function

under changes of triangulation suggests that the homology class of S should cap-

ture some intrinsic triangulation-independent property of the underlying space-time

manifold X.

We propose that the homology class of S captures precisely the second Stiefel–

Whitney class [w2], which vanishes on spin manifolds. We also propose that S itself

provides a canonical chain representative for w2, so that the choice of E actually

encodes a choice of a spin structure on the manifold.

The proposal implies that the partition function can only be defined on a spin

manifold, and depends on a choice of spin structure. The combination of signs ZθZ
E
n

will coincide with the function z[X, η, βd−1] defined in the introduction. Conversely,

if the cohomology class of w2 is non-trivial, the partition sum will have an un-

avoidable dependence on re-definitions of md−2 which map to a non-trivial (d− 2)

cohomology class on the manifold.

We can offer two strong checks of our proposal: a general consistency check we

describe momentarily, and a direct calculation for a special class of triangulations,

which are obtained by refining a generic triangulation by a barycentric subdivision.

These triangulations are endowed with a canonical representative chain for w2,

which turns out to coincide with S for d = 2, 3, 4.

The first consistency check follows from the observation that a change of Zm
under a change of triangulation is a linear expression

∑
s∈V md−2[s], a sum of m

evaluated on some collection V of (d− 2)-simplices of the cobordism Y = X× [0, 1]

from X to itself. The change of Zm should only depend on nd−1, as it is cancelled by

the change in Zν and Zθ. It should thus be possible to write it as a linear expression∑
s∈W nd−1[s], a sum of nd−1 evaluated on some collection W of (d− 1) simplices

of Y such that ∂W = V .

The linear function defined by W must be such that the sum,∑
s∈W

nd−1[s] +

∫
Y

Sq2[nd−1] , (17)

of the variations of Zm and Zν can be cancelled by the variation of Zθ.

There is a natural candidate for such a linear function: the integral of w2∪nd−1

over Y , where w2 is some specific cochain which represents the second Stiefel–

Whitney class. A neat property of w2 is that Sq2[x] + w2 ∪ x is exact for any

(d − 1)-cocycle x and thus can be integrated by parts and plausibly cancelled by

the variation of Zθ. If we write nd−1 = δmd−2 and thus w2 ∪nd−1 = δ(w2 ∪md−2),

we find that S must be a representative for w2 on X.

We can give a direct proof that S is a representative for w2 for a special class

of triangulations BT , which are a barycentric subdivision of some rougher triangu-

lation T . Each d-dimensional simplex s of T is subdivided in (d + 1)! simplices sσ
whose vertices are the barycenters of subsets of the vertices of s. More precisely,

given a permutation σ of the vertices of s, the i-th vertex of sσ is the barycenter

1645044-9

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
6.

31
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

A
L

IF
O

R
N

IA
 I

N
ST

IT
U

T
E

 O
F 

T
E

C
H

N
O

L
O

G
Y

 (
C

A
L

T
E

C
H

) 
on

 1
0/

27
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



October 14, 2016 15:11 IJMPA S0217751X16450445 page 10

1st Reading

D. Gaiotto & A. Kapustin

of the vertices σ(0), · · · , σ(i). Thus the vertices of sσ have a natural order, starting

from a vertex of s and ending with the barycenter of s.

In the Gu–Wen construction, the triangulation is endowed with a branching

structure, i.e., an orientation of the edges with no closed loops, which in turn

provides a order to the vertices of simplices: the vertex with all outgoing edges is

number “0”, the vertex with a single incoming edge is number “1”, etcetera.

If we have a barycentric triangulation, we can simply order the 1-simplices from

the barycenter of fewer vertices to the barycenter of more vertices. That gives a

useful canonical choice of branching structure on BT , which induces the same order

of the vertices of simplices as the natural one of the barycentric subdivision. This

branching structure has the useful property that each vertex of BT has the same

position in the order of vertices in all simplices which include that vertex: vertices

of T are always at position “0” in the order, midpoint of segments in T are always

at position “1”, etcetera.

The barycentric subdivision BT has an important property: the set of all (d−2)-

simplices provides a chain which is a canonical representative for w2. The collection

S of (d−2) simplices used in Ref. 7 to define Zm is described as the sum over all (d−
2)-simplices, plus a correction term given explicitly in dimensions d = 2, 3, 4. We will

now show by direct inspection that the extra correction term vanishes for a barycen-

tric triangulation BT, so that S is precisely the canonical representative for w2!

2.2. Barycentric subdivisions in d = 2, 3, 4

For a general triangulation, the branching structure gives an order to the vertices

of each triangle: the n-th vertex has n incoming edges. The ordering of the vertices

0

0 01

1 1

2

+

+
+

-

-
-

Fig. 1. The barycentric subdivision of a triangle.
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0

1 2

0

12

+ -

Fig. 2. The two possible orientations of a triangle and ordering of vertices induced by a branching

structure on a 2d triangulation.

also gives an orientation of each simplex. This orientation may or not agree with

the canonical counterclockwise orientation of the simplex. If it does, we have a “+”

simplex, if not we have a “−” simplex. See Fig. 2.

In 2d, the partition function involves a factor of (−1)m0(gv) for each vertex v,

and an extra factor of (−1)m0(gv) for each “−” triangle which has v as the vertex

number 1.

If we pick our triangulation to be a barycentric subdivision BT , then each “1”

vertex belongs to two “−” triangles, and we can disregard the second contribution.

Thus Zm[BT ] is the product over all vertices v of BT of (−1)m0(gv): This is simply

the pairing of m1 with the canonical 0-chain representative S for w2.

Every 2d manifold admits a spin structure, so that w2 is always exact. If we

pick some 1-chain E on BT such that ∂E = S, we can replace Zm[BT ] with the

improved ZEn [BT ]. We interpret the choice of E as a choice of spin structure on the

discretized surface.

In 2d we can actually sketch a proof that S is a chain representative for w2 even

for a generic triangulation T . In 2d, we can build representatives for w2 by taking

a vector field and picking the points where the vector field vanishes, counting how

many times the vector field winds around the origin in a neighbourhood of each

point, modulo 2. That is the same as 1 plus the number of times the vector field is

tangent in the counterclockwise direction to a small circle around the point. If we

pick the vector field V in Fig. A4, each vertex will contribute 1 plus the number of

times the vertex appears at position “1” in a “−” triangle. That representative for

w2 coincides with S.

In 3d, the chain S of edges which appear in Zm consists of all edges of the

triangulation, together with the (02) edge for all “+” tetrahedra and the (13) edge

for all “−” tetrahedra.

For a barycentric triangulation BT , the (02) edges join vertices of T and

barycenters of triangles in T . They are shared by two “+” triangles. The (13)

edges join midpoints of edges in T and the barycenters of tetrahedra in T . They
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are shared by two “−” triangles. Thus the extra contributions to S cancel out, and

S coincides with the sum of all edges, i.e., canonical chain representative for w2.

In 4d, the chain S consists of all triangles in the triangulation, together with the

(013), (134), (123) triangles for a “+” 4-simplex, (024) for a “−” 4-simplex. In order

to show these edges are shared by an even number of tetrahedra of the corresponding

orientation, we can observe that they are fixed points of two reflections.

For example, a (013) triangle has vertices which are barycenters of the first, the

first 2 and all vertices in a sequence of 4 (v1, v2, v3, v4). As it belongs to a face, it

is shared by two tetrahedra in T. As is invariant under exchange of v3 and v4, it is

fixed by a second reflection.

Similarly, a (134) triangle has vertices which are barycenters of the first 2, 4, 5

vertices of a sequence of 5 vertices. It is invariant under exchanging the first pair,

or the second pair. A (123) triangle has vertices which are barycenters of the first 2,

3, 4 vertices of a sequence of 4 vertices. It belongs to a face and is invariant under

exchange of the first pair of vertices. Finally, a (024) triangle has vertices which are

barycenters of the first 1, 3, 5 vertices of a sequence of 5 vertices. It is invariant

under exchange of the second and third vertices, and the fourth and fifth.

Thus all extra contributions to S cancel out, and S is given by the sum of all

triangles, i.e., canonical chain representative for w2.

In order to mimic in general dimension d the 2d analysis for a general trian-

gulation T , we would need to build a w2 representative in terms of d − 1 vec-

tor fields on X. The representative would be concentrated at the locus where

the vector fields fail to be linearly dependent, weighed by the number of times

the vanishing linear combination of the vector fields winds around the other non-

vanishing linear combinations in a neighbourhood of the locus. We expect it should

be possible to define some canonical set of d− 1 vector fields in each simplex, lin-

early dependent at (d − 2)-simplices, which demonstrate the S is a representative

for w2.

3. The Gu–Wen Grassmann Integral as a Quadratic Refinement

3.1. Quadratic property of the Gu–Wen Grassmann integral

Next, we will look at Zθ. We aim to show that the combination

ZEn [BT ]Zθ[BT ] ≡ z[X, η, βd−1] (18)

is a quadratic function of the Z2 cocycle βd−1, which refines the pairing on the

space of Z2 (d− 1)-dimensional cocycles defined by the higher cup product ∪d−2.

The Grassmann integral only depends on the image βd−1(e) of the cochain

nd−1 on the co-dimension one faces e of the triangulation. Thus we can consider

some generic (d − 1)-cochain βd−1, assigning a Z2 element to each edge of the

triangulation, and specialize it to the image of nd−1 later on. For notational clarity,

we will usually omit the subscript (d− 1) from β.
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0

1 2

0

12

+ -

Fig. 3. Left: to each edge e such that β(e) = 1 we assign a θe Grassmann variable (black dot) and

a θ̄e Grassmann variable (white dot). Each such edge contributes dθedθ̄e to the measure. Middle

and right: as β is a cochain, each triangle is associated to two Grassmann variables, which are
ordered in the integrand according to the grey arrows.

In the following formulae we will often refer to a cochain Ap evaluated the

simplex defined by vertices a0, · · · ap simply as Ap(a0 · · · ap). We will also de-

note the Grassmann variables associated to an edge with vertices a and b as

θab, θ̄ab.

We will start with a 2d example, and then proceed to higher dimensions. If

β(e) = 1 for an edge e, we assign to the edge Grassmann variables θe and θ̄e: θe is

associated to the side where the canonical orientation of the face agrees with the

orientation of the edge, θ̄ on the side it disagrees.

To each triangle t we associate an even monomial u(t), the product of the Grass-

mann variables attached to its edges, if present, in the order 12, 01, 02 according

to the ordering of the vertices for a “+” triangle, opposite for a “−” triangle.

Thus a “+” triangle has monomial

θ
β(12)
12 θ

β(01)
01 θ̄

β(02)
02 (19)

and a “−” triangle has

θ
β(02)
02 θ̄

β(01)
01 θ̄

β(12)
12 . (20)

We are interested in the sign

σ(β) =

∫ ∏
e|β(e)=1

dθedθ̄e
∏
t

u(t) . (21)

We will show directly from the definition that

σ(β + β′) = σ(β)σ(β′)(−1)
∫
X
β∪β′ , (22)

i.e., σ(β) is a quadratic function which refines the intersection pairing on 1-cocycles.

We can combine the two Grassmann integrals in σ(β)σ(β′) as

σ(β)σ(β′) =

∫ ∏
e|β(e)=1

dθedθ̄e
∏

e|β′(e)=1

dθ′edθ̄
′
e

∏
t

u(t)[β, θ, θ̄]u(t)[β′, θ′, θ̄′] . (23)
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There is a subset of “spurious” Grassmann variables which is associated to edges for

which β(e) = β′(e) = 1. If we can systematically integrate them out, the remaining

Grassmann variables will be associated to edges for which β(e) + β′(e) = 1 and

coincide with the Grassmann variables in the formula for σ(β + β′).

Our strategy is to permute the variables until we form pairs θeθ
′
e and θ̄eθ̄

′
e of

spurious variables. These pairs are Grassmann even, and can be brought out of

the integrand and eliminated against the dθedθ̄edθ
′
edθ̄
′
e measure to give an overall∏

e(−1)β(e)β′(e) sign.

The permutation of variables which brings the spurious pairs together is very

simple: we interleave the variables in the product u(t)[β, θ, θ̄]u(t)[β′, θ′, θ̄′]: for a

“+” triangle we have[
θ
β(12)
12 θ

β(01)
01 θ̄

β(02)
02

] [
(θ′12)β

′(12)(θ′01)β
′(01)(θ̄′02)β

′(02)
]

= (−1)β(01)β′(12)+β(02)β′(12)+β(02)β′(01)

·
[
θ
β(12)
12 (θ′12)β

′(12)
] [
θ
β(01)
01 (θ′01)β

′(01)
] [
θ̄
β(02)
02 (θ̄′02)β

′(02)
]
, (24)

and for a “−” triangle we have[
θ
β(02)
02 θ̄

β(01)
01 θ̄

β(12)
12

] [
(θ′02)β

′(02)(θ̄′01)β
′(01)(θ̄′12)β

′(12)
]

= (−1)β(01)β′(02)+β(12)β′(02)+β(12)β′(01)

·
[
θ
β(02)
02 (θ′02)β

′(02)
] [
θ̄
β(01)
01 (θ̄′01)β

′(01)
] [
θ̄
β(12)
12 (θ̄′12)β

′(12)
]
. (25)

Thus we have grouped together pairs of spurious variables, if present, and left the

non-spurious variables in the correct order to be identified with u(t)[β + β′, · · · ].
It is useful to re-distribute the overall

∏
e(−1)β(e)β′(e) sign, by associating each

factor of (−1)β(e)β′(e) with the triangle to the right of the oriented edge e. Thus

each “+” triangle, which only sits to the right of its 02 edge, is associated to an

overall factor

(−1)β(01)β′(12)+β(02)β′(12)+β(02)β′(01)+β(02)β′(02) = (−1)β(01)β′(12) (26)

and to each “−” triangle, which only sits to the right of its 01 and 12 edges, is

associated to an overall factor

(−1)β(01)β′(02)+β(12)β′(02)+β(12)β′(01)+β(01)β′(01)+β(12)β′(12) = (−1)β(01)β′(12) .

(27)

Thus the reorganization of the Grassmann integral σ(β)σ(β′) into the Grass-

mann integral σ(β + β′) produces a sign of (−1)β(e01)β′(e12) for each triangle. This

is nothing else but the cup product of β and β′! Thus we have the desired quadratic

property,

σ(β + β′) = σ(β)σ(β′)(−1)
∫
X
β∪β′ . (28)
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We can readily extend the above argument to Zθ in any dimension d. For general

d, the Grassmann integral involves again pairs of variables associated to the two

sides of each oriented (d− 1)-simplex e such that β(e) = 1.

The integrand is a product of monomials u[s] made out of all Grassmann vari-

ables associated to each d-simplex s. The order of the variables in the monomial is

determined by a specific rule. We will describe the rule later, for now we only need

to know that it gives a canonical order to the faces of each simplex.

If we denote as σ(β) again the result of the Grassmann integral, the same

interleaving operation as in the 2d case gives us immediately a proof that σ(β) is

quadratic:

σ(β + β′) = σ(β)σ(β′)
∏
s

ε[s, β, β′] , (29)

with

ε[s, β, β′] = (−1)
∑e>e′
e,e′∈s β(e)β′(e′)+

∑e>0
e∈s β(e)β(e′)

, (30)

with e > e′ in the order determined by u[s] and e > 0 if u[s, β] includes a θ̄e
variable. We aim to identify the d-cochain in the exponent with the higher cup

product β ∪d−2 β
′.

The order of faces induced by u[t] for a + simplex places first the faces which

omit the even vertices (first the one omitting 0, then the one omitting 2, etc.),

which are labelled by θe variables, and then the faces which omit the odd ver-

tices (first the one omitting 1, then the one omitting 3, etc.), which are labelled

by θ̄e variables. The order for a − simplex is the opposite (and the role of θe
and θ̄e).

We will now compute ε[s, β, β′] in d = 3 and d = 4 for this choice of order and

verify it is given by the standard higher cup products β∪1β
′ and β∪2β

′ respectively.

A similar analysis in higher dimension should be straightforward.

Notice that if we were to pick a different choice of order Π for the factors in the

measure, σΠ(β) would differ from the standard σ(β) by a local linear term, which

does not affect the quadratic refinement property. If we pick a different choice of

order Π for the factors in u[t], σΠ(β) will differ from the standard σ(β) by a local

quadratic term, some (β, β) pairing defined by a sum over simplices of the product

of fermion numbers of the variables which have been permuted in u[t] to get to the

new order. That would change the quadratic refinement from β ∪d−2 β
′ to some

other

β∪̃d−2β
′ = β ∪d−2 β

′ + (β, β′) + (β′, β) . (31)

This is just a different choice of definition for the higher cup product: the basic

relation in equation 6 remains valid with the re-definition

β∪̃d−3β
′ = β ∪d−2 β

′ + δ(β, β′) + (δβ, β′) + (βδβ′) (32)

and all other products unchanged.
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3.2. Quadratic refinement in 3d

At a + simplex, we have an order of faces (123), (013), (023), (012) and thus the

signs computed from the quadratic pairing,

β(012)β′(123) + β(012)β′(013) + β(012)β′(023) + β(023)β′(123)

+β(023)β′(013) + β(013)β′(123) + β(023)β′(023) + β(012)β′(012)

= β(023)β′(012) + β(013)β′(123) . (33)

At a − simplex, we have an order of faces (012), (023), (013), (123), and thus the

signs computed from the quadratic pairing,

β(123)β′(012) + β(123)β′(023) + β(123)β′(013) + β(013)β′(012)

+β(013)β′(023) + β(023)β′(012) + β(013)β′(013) + β(123)β′(123)

= β(023)β′(012) + β(013)β′(123) . (34)

Again, the dependence on the type of triangle drops out. We have a d-cochain

(β, β′)3 given by the pairing β(023)β′(012) + β(013)β′(123). This is precisely the

definition of β ∪1 β
′. Thus we claim that in 3d we have

σ(β + β′) = σ(β)σ(β′)(−1)
∫
X
β∪1β

′
. (35)

3.3. Quadratic refinement in 4d

At a + simplex, we have an order of faces (1234), (0134), (0123),(0234), (0124) and

thus the signs computed from the quadratic pairing,

β(0124) [β′(1234) + β(0134) + β(0123) + β(0234)]

+β(0234) [β′(1234) + β′(0134) + β′(0123)] + β(0123) [β′(1234) + β′(0134)]

+β(0134)β′(1234) + β(0124)β′(0124) + β(0234)β′(0234)

= β(0234)β′(0124) + β(0123)β′(1234) + β(0123)β′(0134)

+β(0134)β′(1234) . (36)

At a − simplex, we find the same. Thus have a d-cochain

(β, β′)4 = β(0234)β′(0124) + β(0123)β′(1234)

+β(0123)β′(0134) + β(0134)β′(1234) , (37)

which is the standard expression for β ∪2 β
′.

4. The ’t Hooft Anomaly

4.1. Gauge variation of the Gu–Wen Grassmann integral

Next, we can look at the variation of the Grassmann integral under exact changes in

the cocycle βd−1. The calculation is greatly simplified by the quadratic refinement

1645044-16
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property.

σ(β + δλ) = σ(β)σ(δλ)(−1)
∫
X
β∪d−2δλ = σ(β)σ(δλ)(−1)

∫
X
β∪d−3λ+λ∪d−3β , (38)

where we used the basic property of the higher cup product, i.e., Eq. (6): the

violation of the Leibniz rule for ∪a equals the symmetrization of ∪a−1.

We can specialize the quadratic refinement property to

σ(δλ+ δλ′) = σ(δλ)σ(δλ′)(−1)
∫
X
λ∪d−3δλ

′+λ′∪d−3δλ+λ∪d−4λ
′+λ′∪d−4λ , (39)

which can be solved up to a linear ambiguity:

σ(δλ) = (−1)
∑
s∈S̃ λ(s)+

∫
X
λ∪d−3δλ+λ∪d−4λ , (40)

In order to fix the ambiguity, it is useful to compute directly σ(δλ) for the

simplest possible case, where λ is non-zero only on a single (d − 2)-simplex, so

that δλ equals 1 on all the (d − 1)-simplices whose boundary include the selected

(d − 2)-simplex. Thus if we go around the (d − 2)-simplex, we will encounter a

sequence of Grassmann variables ϑi, with measure factors ±dϑ2idϑ2i+1 from the

(d−1)-simplices and u(t) factors ±ϑ2i+2ϑ2i+1 from the d-simplices inserted around

the (d− 2)-simplex.

If all the signs above were +, the overall Grassmann integral would give a factor

of −1. In general, the signs in the measure factors are determined by the orientation

of the (d − 1)-simplices and the signs in the integrand factors u[t] are determined

by the relative order of the two (d− 1)-simplices Grassmann variables in u[t].

Consider for simplicity a barycentric subdivision. We have several types of (d−2)

simplices, which can be labellet by two integers from 0 to d: they are simplices

whose vertices do not include the barycenters of a vertices or of b vertices. They

are associated to an alternating sequence of (d − 1) simplices which omit either

barycenters of a vertices or of b vertices. As these simplices are also of alternating

type + or −, it is easy to see that we can pick a direction around the (d − 2)-

simplex such that the integrand factors will have all + signs. Working through a

few examples, it is easy to convince oneself that the signs in the measure factors

multiply to 1. Thus if λs is non-zero only on a single (d − 2)-simplex s in BT , we

can write

σ(δλs) = −1 . (41)

As the quadratic part of equation (40) vanishes for λs, we find that S̃ for a

barycentric subdivision BT coincides again with the canonical representative for w2.

We expect S̃ to essentially coincide with S and the canonical chain representative

for w2 for a general triangulation as well. In other words, we expect that

z[X, η, δλs] = 1 . (42)

Thus we can write

σ(δλ) = (−1)
∫
X
λ∪d−3δλ+λ∪d−4λ+w2∪λ , (43)
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and thus:

σ(β + δλ) = σ(β)(−1)
∫
X
β∪d−3λ+λ∪d−3β+λ∪d−3δλ+λ∪d−4λ+w2∪λ . (44)

We can also write the ’t Hooft anomaly of z[X, η, βd−1] under gauge transfor-

mations of βd−1:

z[X, η, βd−1 + δλd−2] = z[X, η, βd−1](−1)
∫
X
β∪d−3λ+λ∪d−3β+λ∪d−3δλ+λ∪d−4λ .

(45)

4.2. A WZW-like expression for a quadratic refinement

For d ≥ 3 one can construct a WZW-like expression for the quadratic function of

the cocycle β as follows. Let us assume that X is a boundary of some compact

oriented (d+ 1)-manifold Y . This is automatic if d ≤ 3, since the oriented bordism

group ΩSOd (pt) vanishes for d = 2, 3,14 but in general it is a nontrivial constraint on

X. If we are given a (d− 1)-cocycle β ∈ Zd−1(X,Z2) on X, one can always choose

Y so that β extends to a (d − 1)-cocycle on Y . To see this, we regard β as map

β : X→K(Z2, d − 1) where K(Z2, d − 1) is an Eilenberg-MacLane space; then the

statement we need is that the reduced oriented bordism group Ω̃SOd (K(Z2, d− 1))

vanishes. This follows from the Atiyah-Hirzebruch spectral sequence for (unreduced)

bordism and the vanishing of the reduced homology of K(Z2, d− 1) in degree less

than d − 1. Moreover, if d ≥ 3, the reduced oriented d-dimensional bordism of a

product of several copies of K(Z2, d− 1) also vanishes, for the same reason.d This

implies that one can choose Y to be independent of β. Such a Y is not unique, of

course.

Consider now the following WZW-like expression:

σ̃(β) = (−1)
∫
Y
β∪d−3β+w2∪β . (46)

It is independent of the actual choice of Y , as β ∪d−3 β + w2 ∪ β is known to be

exact if β is a cocycle.

This expression is a quadratic refinement of ∪d−2. Indeed, if β and β′ are (d−1)-

cocycles on X, we get

σ̃(β + β′) = σ̃(β)σ̃(β′)(−1)
∫
X
β∪d−2β

′
. (47)

It also transforms in the same way as σ under 1-form Z2 gauge symmetry:

σ̃(δλ) = (−1)
∫
Y
δλ∪d−3δλ+w2∪δλ

= (−1)
∫
Y
λ∪d−4δλ+δλ∪d−4λ+

∫
X
λ∪d−3δλ+w2∪λ

= (−1)
∫
X
λ∪d−3δλ+λ∪d−4λ+w2∪λ. (48)

dThis fails for d = 2, because of the Tor terms in the Künneth formula. In fact, it is easy to
give an example of a closed oriented 2-manifold X and a pair of classes α1, α2 ∈ H1(X,Z2) such

that there is no compact oriented 3-manifold Y such that X = ∂Y and both α1, α2 arise from

restriction of cohomology classes on Y . For example, one can take X to be a 2-torus, with α1 and
α2 being the generators of H1(X,Z2).
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This means that σ and σ̃ can only differ by a linear and gauge-invariant function

of β.

Thus for d ≥ 3 for all practical purposes we can write

z[X, η, βd−1] = (−1)
∫
X
η∪βd−1+

∫
Y
βd−1∪d−3βd−1+w2∪βd−1 . (49)

5. Fermionic SPT Phases and Spin Cobordism

It was proposed in Ref. 11 that fermionic Short Range Entangled phases in d space-

time dimensions with symmetry G and vanishing thermal Hall conductivity are clas-

sified by the Pontryagin dual of the torsion part of ΩSpind (BG). Here BG ' K(G, 1)

is the classifying space of G. Some checks of this were performed in Ref. 12. We can

now compare with the Gu–Wen supercohomology proposal in low dimensions.

Let us begin with d = 3. In this dimension there are no nontrivial fermionic

SRE phases in the absence of symmetry, so in the presence of symmetry there is no

distinction between SRE and SPT phases. From the mathematical viewpoint, one

has ΩSpin3 (pt) = 0, and thus ΩSpin3 (BG) coincides with the reduced bordism group

Ω̃Spin3 (BG). The partition function of the model corrected by the spin-structure

dependent term is

Z(X,A, η) = exp

(
2πi

∫
X

A∗ν3

)
z(X, η,A∗β2) , (50)

where ν3 ∈ C3(BG,R/Z), β2 ∈ Z2(BG,Z2), and A is a gauge field on X regarded

as a map A : X→BG. The cochains µ3 and β2 satisfy

δν3 =
1

2
β2 ∪ β2 . (51)

It is easy to see that this expression defines an element of the Pontryagin dual of

ΩSpin3 (BG). Indeed, it is clear that Z(A, η) is multiplicative under disjoint union.

Now, suppose there exists a compact spin 4-manifold Y with boundary (X, η) such

that A extends to a map AY : Y→BG. Then

exp(2πi

∫
X

A∗ν3) = (−1)
∫
Y
A∗Y β2∪A∗Y β2 . (52)

On the other hand, the WZW-like expression for z(X, η, β2) becomes

(−1)
∫
X
η∪A∗β2+

∫
Y
w2∪A∗Y β2+

∫
Y
A∗Y β2∪A∗Y β2 , (53)

which is clearly the same as Eq. (52). Since Z(X,A, η) becomes 1 when evaluated

on trivial bordism classes, it defines a homomorphism from ΩSpin3 (BG) to U(1).

Not all spin cobordism classes can be so obtained. For example, for G = Z2 it is

known that ΩSpin3 (BZ2) ' Z8,12 while the Gu–Wen construction only gives phases

labeled by Z4. From the physics side, it is also known that 3d fermionic SPT phases

with Z2 symmetry are classified by Z8.13

For d > 3 there may exist nontrivial fermionic SRE phases even in the absence of

any symmetry. According to Ref. 11, they exist whenever ΩSpind (pt) has torsion. If
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we want to focus on fermionic SPT phases, we can restrict to d-manifolds X which

define a trivial class in ΩSpind (pt). Then the same argument shows that if A extends

to a compact spin (d+1)-manifold Y such that ∂Y = X, then the partition function

of the Gu–Wen model is 1. Therefore, each Gu–Wen supercohomology class defines

a homomorphism from the reduced bordism group Ω̃Spind (BG) to U(1). Again, in

general we do not expect that all such homomorphisms can be obtained from the

Gu–Wen construction.

In d = 2 the arguments are a bit different, since there is no WZW-like ex-

pression for z(X, η, β1). The proposal of Ref. 11 is that fermionic SPT phases are

classified by the Pontryagin dual of the reduced bordism group Ω̃Spin2 (BG). There

are also fermionic SRE phases in the absence of any symmetry which are classi-

fied by the dual of ΩSpin2 (pt) = Z2. The Gu–Wen construction describes only the

former. To describe the correspondence, recall that a spin structure on an oriented

2-manifold can be identified with a quadratic refinement of the intersection form on

H1(X,Z2) ' H1(X,Z2).15,16 This quadratic refinement is nothing but z(X, η, β1),

see Appendix A for a detailed discussion. Moreover, it follows from the results of

Ref. 15 that the value of z(X, η, β1) depends only on the bordism class of (X, η, β1)

in ΩSpin2 (BZ2). Thus the Gu–Wen construction defines a map from H1(BG,Z2)

to spin cobordism of BG. This map is not a homomorphism, because z(X, η, β1)

is not linear but quadratic in β1. But we should remember that every element

ν2 ∈ H2(BG,R/Z) also gives us an element in the spin cobordism of BG. Thus

Gu–Wen SPT phases are described by pairs (ν2, β1) ∈ H2(BG,R/Z)×H1(BG,Z2).

The group structure is a nontrivial extension of H1(BG,Z2) by H2(BG,R/Z):

(ν2, β1) + (ν′2, β
′
1) = (ν2 + ν′2 +

1

2
β1 ∪ β′1, β1 + β′1) . (54)

It follows from the Atiyah-Hirzebruch spectral sequence that this extension is iso-

morphic to the dual of the reduced bordism Ω̃Spin2 (BG), in agreement with the

proposal of Ref. 11.

The nontrivial d = 2 fermionic SRE phase without any symmetry is realized by

the Kitaev spin chain. The corresponding spin-TQFT has the Arf invariant as its

partition function (the unique bordism invariant of spin structures in d = 2). We

recall that the Arf invariant of (X, η) is essentially the average of the z(X, η, β1) over

all β1 ∈ H1(X,Z2).16 This spin-TQFT can also be constructed using the Gu–Wen

Grassmann integral, see Sec. 6.

6. Constructing Spin-TQFTs in Low Dimensions

6.1. State-sum constructions of 2d spin-TQFTs

An oriented 2d TQFT can be defined axiomatically as a functor from a geometric

category Cob2 to the category of vector spaces. The category Cob2 has closed 1-

manifolds as objects and oriented bordisms between them as morphisms. It is well

known that there is a 1-1 correspondence between oriented 2d TQFTs and commu-

tative Frobenius algebras. The commutative Frobenius algebra corresponding to a
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given 2d TQFT encodes 2-point and 3-point functions on a sphere, and the rest of

the correlators can be reconstructed from it.

An alternative approach to constructing 2d TQFTs is provided by state-sum

models.17,18 This approach is more natural from the statistical mechanics viewpoint

and gives a manifestly local recipe for computing the TQFT partition function and

correlators for a triangulated closed oriented d-manifold X. One starts with a not

necessarily commutative semi-simple Frobenius algebra A and defines the partition

function as follows. Fix a basis ei, i ∈ I, in A and denote by Cijk the structure

constants of A in this basis. Let

gij = ClikC
k
jl.

The matrix gij is non-degenerate if A is semi-simple. Let gij be its inverse. It is

easy to see that

Cijk = gilC
l
jk

is cyclically symmetric. A coloring of a 2-simplex f of X is an assignment of an

element of I to each boundary 1-simplex of f . A coloring of a triangulation is a

coloring of each 2-simplex. If each 2-simplex is colored, each 1-simplex has two col-

ors. The partition function of a triangulated manifold X is a sum over all colorings

of the triangulation, with the weight of each coloring defined as product of weights

of 1-simplices and 2-simplices. The weight of a 1-simplex colored by i, j ∈ I is gij .

The weight of a 2-simplex whose three edges are colored by i, j, k is Cijk. Here we

use the cycling ordering of the edges arising from the orientation of X. It is easy

to show that the partition function thus defined is independent of the choice of a

triangulation.17,18

The state-sum construction is somewhat redundant, as the partition function

and the correlators depend only on the center Z(A), which is a semi-simple com-

mutative Frobenius algebra. The algebra A can be interpreted as the algebra of

boundary operators for a particular boundary condition for the TQFT based on

Z(A). On the other hand, the state-sum construction is very explicit and can be

easily extended to manifolds with boundaries.

Note that the state-sum construction always gives rise to a semi-simple Z(A) and

therefore does not produce the most general oriented 2d TQFT. For applications

to condensed matter physics, this is not a serious drawback, since unitary TQFTs

are automatically semi-simple.

It is easy to modify the state-sum construction to produce 2d spin-TQFTs. One

starts with a Z2-graded semi-simple algebra A. Let ei, i ∈ I, be its basis. Each basis

vector is assumed to have a well-defined grading β(i) ∈ Z2. As in the bosonic case,

we color each edge of each 2-simplex with an element of I, so that each 1-simplex

is colored with a pair of elements of I. The weights assigned to 1-simplices and

2-simplices will be proportional to gij and Cijk. Since the algebra A is Z2-graded,

the matrix gij vanishes if β(i) 6= β(j). Thus we may assume that if a 1-simplex is

colored by i, j, then β(i) = β(j). Thus each allowed coloring defines a Z2-valued
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1-cochain β. Since Cijk vanishes unless β(i) + β(j) + β(k) = 0, this 1-cochain is a

cocycle.

In order to account for the Grassmann nature of elements of A, we correct the

naive sum over the colour of edges by including an overall sign. This is the sign

which arises from identifying Cijk with an element of A∗ ⊗ A∗ ⊗ A∗ and gij with

an element of A ⊗ A: we pick some order of the factors in each individual weight

and then re-order them to bring together the pairs of A and A∗ spaces we want to

contract.

The combinatorics of the Koszul signs is the same as in the Gu–Wen construc-

tion. The Grassmann variables θe, θ̄e act as placeholders for the Grassmann-odd

generators of A∗ in the weights of 2-simplices and the dθe, dθ̄e as placeholders for

the Grassmann-odd generators of A in the weights of 1-simplices. The contraction

between generators of A and A∗ is mimicked by the Grassmann integration. The

result is just σ(β).

Thus the naive weight of each allowed coloring will be the product of gij over

1-simplices, Cijk over 2-simplices and σ(β). We can rewrite the sum over colorings

as a sum over colorings producing a particular 1-cocycle β followed by a sum over

β. Let us denote by Z[β] the result of the first summation. The discussion in Sec. 2

implies that Z[β] is independent of the triangulation up to a sign. To make it

completely independent, we need to choose a trivialization η of w2 and multiply

Z[β] by a correction factor

(−1)
∫
X
η∪β ,

i.e., we take the correct weight to be the product of gij over 1-simplices, Cijk
over 2-simplices and z(X, η, β). Then the partition function depends on the spin

structure η on X, but not on a particular triangulation. Notice that in 2d z(X, η, β)

coincides with the well-known quadratic refinement (−1)qη(β) of the intersection

form, evaluated on β (see Appendix A).

The simplest example of a 2d spin-TQFT is obtained if we take A to be the

Clifford algebra Cl(1). It is generated by 1 and an odd variable η satisfying η2 = 1.

The 2 × 2 matrix gij , i ∈ Z2, is given by gij = 2δij , while Cijk is equal to either

2 or 0 depending on whether the sum of the indices is 0 or 1 modulo 2. In this

case the coloring is completely determined by the 1-cochain β, and the weight is

simply z(X, η, β) = (−1)qη(β). More precisely, if we denote by E and F the number

of 1-simplices and 2-simplices respectively, the partition function reduces to

2F−E
∑
β

(−1)qη(β) = 21−g(X)Arf(X, η),

where g(X) is the genus of X, and Arf(X, η) ∈ {±1} is the Arf invariant of the

spin structure η:15,16,23

Arf(X, η) = 2−g(X)
∑

[β]∈H1(X,Z2)

(−1)qη(β).
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The partition function of the state-sum is not ±1, but it differs from it by an ex-

ponential of an integral of a local counter-term (the Euler density), and thus can

be made ±1 by a local redefinition. After such a redefinition, we get an invertible

2d spin-TQFT which describes the basic fermionic SRE phase in two space-time

dimensions (the Majorana spin chain). This spin-TQFT has also been briefly dis-

cussed in Ref. 22.

6.2. State-sum construction of 3d spin-TQFTs

In 3d, the state-sum construction of bosonic TQFTs is known as the Turaev-Viro

construction.19,20 Again, it does not produce the most general oriented 3d TQFTe,

but it has the advantage that it can be easily extended to manifolds with boundaries.

The starting point of the Turaev-Viro construction is a spherical fusion category

A. It can be thought of as a categorification of a finite-dimensional semi-simple

algebra A. A fusion category is a semi-simple rigid monoidal category with a finite

number of simple objects. Let I be the set of simple objects. The partition function

is a sum over colorings of 1-simplices of the triangulation with elements of I. If we

denote such a coloring by φ, we can write

Z =
∑
φ

w[φ]Zφ . (55)

The weights w[φ] are a product over 1-simplces of an appropriate function of

their color, times a product over all 0-simplices of an appropriate A-dependent

constant.

Each individual term Zφ in the partition function can be thought of as the

evaluation of a tensor network: each face with edges of color i,j,k is associated to a

pair of vector spaces Vijk, V ∗ijk, each one associated to a side of the face, and each

tetrahedron t to chosen element F [φ[t]] in the tensor product of the four vector

spaces associated to its faces. The tensors are contracted together at the common

faces. The partition function will be invariant under changes of triangulations if

the F [φ[t]] tensors satisfy some basic axioms, such as the pentagon axiom, which

guarantees invariance under a 2− 3 move.

The same construction applied to a manifold with a boundary produces wave-

functions, which can be reproduced as ground states of a Hamiltonian built from

the same data.10

The fermionic version of this construction is given in the literature in the “Hamil-

tonian” form, without a description of the corresponding partition function. In this

section we will attempt to assemble the ingredients of the fermionic construction

into a partition function.

The starting point is a spherical super-fusion category A. As far as we know,

this notion was first mentioned in Ref. 9 and appeared more recently in Ref. 25

eFor example, Chern-Simons TQFTs for simple Lie groups do not arise from the Turaev-Viro
construction.
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in the context of fermion condensation (see below). We will now describe what

this means in a somewhat informal way, relegating the details to Appendix C.

A super-fusion category has a finite number of simple objects Vi, i ∈ I repre-

senting independent quasi-particle excitations. There are no nonzero morphisms

between Vi and Vj if i 6= j, while the space of morphisms from Vi to Vi is a Z2-

graded division algebra (i.e., every nonzero element has an inverse). Unlike in the

bosonic case, there are two possibilities for such a division algebra: C or a Clif-

ford algebra with one generator Cl(1). Following Ref. 9 we will call the former

kind of simple object a bosonic simple object, and the latter kind of object a Ma-

jorana simple object. Since Cl(1) ⊗ Cl(1) ' Cl(2), the identity object is always

bosonic.

This can be explained in a different way. One can tensor any object of A with

a Z2-graded vector space. Tensoring with a bosonic vector space of dimension N is

equivalent to taking N copies of the quasi-particle. Tensoring with C0|1 (a fermionic

vector space of dimension 1) has the physical meaning of attaching a fermion to

the quasi-particle. The latter operation maps an object to an isomorphic one, but

the obvious isomorphism is odd (fermionic). There may or may not be an even

isomorphism as well. Now, suppose Vi is a simple object. If Vi is even-isomorphic

to C0|1 ⊗ Vi, then Hom(Vi, Vi) ' Cl(1), i.e., Vi is Majorana. On the other hand, if

Vi is not even-isomorphic to C0|1 ⊗ Vi, then Hom(Vi, Vi) ' C, i.e., Vi is bosonic.

As usual, one can fuse quasi-particles, and the fusion rules are described by the

way tensor products of simple objects decompose into sums of simple objects:

Vi ⊗ Vj ' ⊕k∈IHk
ij ⊗ Vk . (56)

Here the “coefficients” Hk
ij are finite-dimensional Z2-graded vector spaces. If some

of the simple objects are Majorana, there is a subtlety: the absolute grading on some

of Hk
ij is not well-defined. For simplicity, we will assume that all simple objects are

bosonic, so that all Hk
ij have a well-defined grading.

The fusion of quasi-particles is associative, in the sense that for any i, j, k ∈ I
there is an even isomorphism,

a(i, j, k) : (Vi ⊗ Vj)⊗ Vk→Vi ⊗ (Vj ⊗ Vk) .

Expanding both sides in terms of simple objects, we deduce that a(i, j, k) is deter-

mined by an even linear map of Z2-graded vector spaces,

F

[
i j l

k m n

]
: H l

ij ⊗Hm
lk→Hm

in ⊗Hn
jk .

This map is known as a 6j symbol. The collection of all 6j symbols satisfy an asso-

ciativity constraint which ensures that the two ways of constructing an isomorphism

from (((Vi⊗Vj)⊗Vk)⊗Vl) to (Vi⊗ (Vj⊗ (Vk⊗Vl))) are the same. To write down a

concrete form for it, we need to choose a basis eαkij , α
k
ij ∈ Jkij , in each space Hk

ij . Let

ε(αkij) be the fermionic parity of the vector eαkij . Then the associativity constraint
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(a.k.a. the fermionic pentagon equation) reads:∑
t∈I

F

[
i j m

k n t

]αβ
ηφ

F

[
i t n

l p s

]φχ
κγ

F

[
j k t

l s q

]ηκ
δφ

= (−1)ε(α
m
ij )ε(δ

q
kl)F

[
m k n

l p q

]βχ
δε

F

[
i j m

q p s

]αε
φγ

. (57)

Note the sign on the r.h.s. It reflects the fact that composition of morphisms in the

symmetric tensor category of Z2-graded vector spaces is defined using the Koszul

sign rule.

A spherical structure on a super-fusion category assigns to every object V its

dual V ∗, so that V ∗∗ ' V and that for every two objects U, V we have isomorphisms,

Hom(U, V ) ' Hom(U ⊗ V ∗, 1) ' Hom(V ∗ ⊗ U, 1)

' Hom(1, U∗ ⊗ V ) ' Hom(1, V ⊗ U∗) . (58)

Let us denote by Vī the dual of a simple object Vi. The spherical structure ensures

that the spaces Hijk = H k̄
ij are cyclically symmetric and that the space Hk̄j̄ī is dual

to Hijk for all i, j, k ∈ I.

In the fermionic Turaev-Viro construction one considers colorings of 1-simplices

of an oriented triangulated 3-manifoldX with objects Vi. We can choose a branching

structure on the triangulation, so that the vertices of each 3-simplex and each 2-

simplex have an order. To each 2-simplex one can attach a Z2-graded vector spaces

Hijk and its dual, depending on the orientation. Next we would like to attach a 6j

symbol, which is an element of a tensor product of four Z2-graded vector spaces, to

a 3-simplex, and form the partition function by contracting these tensors along their

shared 2-simplices. But there are two problems with this. First, the 6j symbol itself

is an element of the tensor product with a particular ordering of Z2-graded factors

Hk
ij and their duals. Changing this order may change the sign of some components

of the 6j symbol, but there is no natural order on the faces of a 3-simplex. Second,

the contraction of two odd elements of dual Z2-graded vector spaces changes sign

if one exchanges their order, but for a given 2-simplex in an oriented triangulation

there is no preferred order of two 3-simplices sharing it, unless the 2-simplex itself is

given an orientation. Such an orientation is induced by a branching structure, but

this means that the partition function might depend on the branching structure.

These choices are analogous to the choices made in the construction of fermionic

SPT phases: the order of the factors in the tensor product defining 6j symbols is

analogous to the order of the Grassmann variables in u[t] and the choice of order

of the two sides of a 2-simplex is analogous to the choice of dθdθ̄ or dθ̄dθ in the

fermionic measure. One can make the analogy completely precise in the following

way. First, we choose a basis

eαijk , αijk ∈ Jijk ,

in every space Hijk.The weight of a particular coloring can be computed by sum-

ming over the variables αijk attached to every 2-simplex whose edges are colored
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by i, j, k. If we assume as before that the basis vectors have definite parity, each

choice of α variables gives a Z2-valued 2-cochain. Further, since 6j symbols are even

maps, this 2-cochain becomes a 2-cocycle β2 when restricted to configurations of α

variables for which all 6j symbols are nonzero. If we perform the summation over

such variables first by fixing β2, and then summing over all choices of β2, then the

Koszul sign is simply σΠ(β2), where Π denotes the ordering choices made in the

definition of the partition function.

Thus the tensor network amplitude restricted to some fermionic parity sector

β2 can be decomposed as

Zφ(β) = Zbφ(β2)σΠ(β2) , (59)

where Zbφ is a “bosonized” amplitude computed without keeping track of Koszul

signs in manipulating the vector spaces in the tensors, but rather pretends that all

vector spaces are bosonic.

There is also a close analogy between the sign factor (−1)ε(αijm)ε(δklq) in the

fermionic pentagon equation and the twisted cocycle condition satisfied by the 3-

cochain ν3 used in the construction of 3d fermionic SPT phases. Indeed, we can

write the twisting factor asf

(−1)ε(αijm)ε(δklq) ≡ (−1)β2(012)β2(234) = (−1)[β2∪β2](01234) . (60)

This is precisely the cup square of β2 evaluated on the 4-simplex associated to the

2-3 move.g Notice that the fermionic pentagon relation involves a sum of terms with

different fermionic parity in the internal faces, but the sign factor only involves the

fermionic parity of the external faces.

The fermionic pentagon relation is written in terms of the components of the

tensors, and thus does not include any Koszul signs. The sign factor describes a

change in the sign of the bosonic weight under a 2-3 move. If we put the Koszul

signs back in, the change of σΠ(β2) under a 2-3 move will almost cancel the sign

coming from the pentagon equation: it will trade the cup square of β2 with the

usual linear term
∫
w2β2 controlled by the canonical representative for w2. Again,

this linear term will provide an obstruction to assembling a well-defined partition

function, unless the underlying manifold admits a spin structure.

It should be now clear how to assemble a well-defined spin-structure-dependent

partition sum:

Z[η] =
∑
β2

∑
φ

w[φ]Zbφ[β2]z[X, η, β2] , (61)

f In order to write this formula, we have assigned a specific order 01234 to the vertices of 4-simplex,
associated respectively to edges imnp, ijs, kjmq,knl, lpqs. This order is the one associated with

the branching structure induced by the orientation of edges in the definition of the 6j symbols,
such that a factor of Hk

ij is associated to a positively oriented face, with edges i and j positively

oriented and k negatively oriented, and (Hk
ij)∗ is associated to a negatively oriented face, with

edges i and j negatively oriented and k positively oriented
gWe would like to thank Zhengcheng Gu for pointing it out.
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where we decomposed the partition sum over eigenspaces of β̂2, denoted the

“bosonized” partition sum in each sector as Zbφ[β2] and combined the Koszul

signs and the spin-structure-dependent correction into z[X, η, β2]. The change of

z[X, η, β2] under 2-3 moves will cancel against the sign factor in the pentagon rela-

tion, giving a well-defined object.

Notice that Z[η] is almost written as the partition function of a Z2 gauge theory

with a 2-form gauge field β2, except that Zbφ[β2] is not well-defined on its own, as

the 2−3 move involves a summation over both bosonic and fermionic vector spaces

when gluing the tetrahedra. Inspection of the 2 − 3 move, though shows that the

cocycle condition for β2 almost fixes the Grassmann parity on internal faces, up

to a binary choice, corresponding to a shift of β2 by the coboundary of a cochain

concentrated on the “t” edge of the tetrahedra on the 3 side of the 2− 3 move.h

That means that we can define a sensible bosonic partition function by summing

only over β2 which differ by an exact cocycle,

Z̃b[β2] =
∑
λ1

∑
φ

2−#(edges)w[φ]Zbφ[β2 + δλ1](−1)
∫
X
β2∪λ1+λ1∪β2+λ1∪δλ1 , (62)

and re-write the fermionic partition function as

Z[η] =
∑
β2

Z̃b[β2]z[X, η, β2] . (63)

Thus the fermionic Turaev-Viro theories can be obtained by gauging the diag-

onal 1-form Z2 global symmetry of a product of appropriate bosonic theories and

the spin-TFT K3 defined by the partition function z[X, η, β2].

7. Fermionic Anyon Condensation

7.1. Self-fermions and anomalous 1-form Z2 global symmetry

In this section we would like to argue that in 2 + 1 dimensions, a bosonic TQFT

equipped with a 1-form Z2 global symmetry with the same ’t Hooft anomaly as K3

is the same as a TQFT which has in the spectrum of quasi-particles a self-fermion

ε which fuses with itself to the identity.

Our first observation is that a TQFT which has in the spectrum of quasi-

particles a self-boson b which fuses with itself to the identity is automatically

equipped with a non-anomalous 1-form Z2 global symmetry, whose generators are

simply b worldlines. The operation of gauging the 1-form symmetry is the same as

the operation of anyon condensation applied to b.

hNotice that because of that, the correction
∫
X η∪β may add an extra relative sign between terms

of a 2− 3 move, essentially controlled by the cup product between w2 and a cochain concentrated
on the “t” edge of the 4-symplex. That relative sign does not to affect the 2 − 3 move with the

standard branching structure, where the “t” edge has vertices (13) and does not contribute to a

cup product. We expect that relative sign to be present in the pentagon relation for other choices
of branching structure.
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If we are given any two TQFTs with self-fermions ε and ε′ respectively which

fuse with itself to the identity, the product of the two theories has a self-boson εε′.

This shows that if we take f and f ′ worldlines to be generators of 1-form Z2 global

symmetries, the two Z2 global symmetries will have the same Z2-valued ’t Hooft

anomaly.

That means we only need to compute the ’t Hooft anomaly for some represen-

tative TQFT with a self fermion ε which fuses with itself to the identity. All other

TQFTs with such a quasi-particle will have the same ’t Hooft anomaly.

A simple choice of such a TQFT is the toric code, aka Z2 gauge theory. We can

describe it by the discrete partition function,

(−1)
∫
X
a1∪δb1 , (64)

with a1 and b1 being discrete cochains.

The e,m and ε quasi-particles correspond to Wilson loops for a1, b1 and a1 + b1
respectively. The former two quasi-particles are generators of two non-anomalous

1-form Z2 symmetries.i For example, we can couple the theory to a Z2 2-cocycle βe2
as

(−1)
∫
X
a1∪δb1+a1∪βe2 . (65)

The action is invariant under gauge transformations βe2 + δλe1, accompanied by

b1 → b1 + λe1. Similarly, we can couple the theory to a Z2 2-cocycle βm2 as

(−1)
∫
X
a1∪δb1+βm2 ∪b1 . (66)

The action is invariant under gauge transformations βm2 + δλm1 , accompanied by

a1 → a1 + λm1 .

On the other hand, the 1-form Z2 symmetry associated to ε is encoded in the

action,

(−1)
∫
X
a1∪δb1+a1∪β2+β2∪b1 . (67)

Under gauge transformations β2 + δλ1, accompanied by b1 → b1 + λ1 and a1 →
a1 + λ1, the action varies by

(−1)
∫
X
λ1∪δλ1+λ1∪β2+β2∪λ1 . (68)

This is precisely the anomalous variation for K3! This verifies our claim.

7.2. Examples of fermionic anyon condensation

We will come back to the toric code momentarily. Before that, we should give

a simple examples of bosonic and fermionic theories related by fermionic anyon

condensation.

Consider first a U(1)4k Chern-Simons theory. The Wilson loop of charge 2k fuses

with itself to the identity. If k is even it is a self-boson b, while if k is odd it is a

self-fermion ε. For even k, condensing b leads to a U(1)k CS theory. We expect the

iThe two symmetries have a mixed anomaly.

1645044-28

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
6.

31
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

A
L

IF
O

R
N

IA
 I

N
ST

IT
U

T
E

 O
F 

T
E

C
H

N
O

L
O

G
Y

 (
C

A
L

T
E

C
H

) 
on

 1
0/

27
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



October 14, 2016 15:11 IJMPA S0217751X16450445 page 29

1st Reading

Spin TQFTs and fermionic phases of matter

same to occur for odd k, but then the resulting U(1)k CS theory is a spin-TQFT.

This is consistent with the fact that this is a fermionic anyon condensation.

It is interesting to observe that the toric code has a Z2 global symmetry which

exchange the e and m particles. This symmetry is rather hard to make explicit in

a concrete description of the model. For example, the action we wrote above is not

invariant under a Z2 symmetry transformation exchanging a1 and b1:

(−1)
∫
X
a1∪δb1+b1∪δa1 = (−1)

∫
X
δa1∪1δb1 . (69)

Assuming that the Z2 global symmetry is not broken by the fermionic conden-

sation of ε, the resulting spin-TQFT should still enjoy the Z2 global symmetry.

Indeed, there are good reasons to believe this is a fermionic SPT phase, the root

fermionic SPT phase which is not captured by the super group cohomology classifi-

cation. For example, we can consider the Hilbert space of the fermionic theory on a

general Riemann surface (equipped with spin structure). Sectors with a non-trivial

2-form gauge field flux are described by a Riemann surface with a single ε insertion,

which do not contribute ground states. It is quite reasonable to assume that the 2g

ground states with no β2 background flux connection will be projected down to 2g

one-dimensional Hilbert spaces labelled by the choice of spin structure.

A Z2-invariant boundary condition for the toric code has gapless modes: a non-

chiral 2d Ising model coupled to the toric code in such a way that e ends on the

spin operator σ(z, z̄), m on the dual spin operator µ(z, z̄) and ε ends on chiral or

anti-chiral fermion operators ψ(z) and ψ̄(z̄), while the energy operator ε(z, z̄) can

exist without a quasi-particle world line ending on it. The Z2 global symmetry is

Kramer-Wannier duality.

After condensing the ε quasi-particle, the chiral or anti-chiral fermion operators

ψ(z) and ψ̄(z̄) in the boundary theory will be able to be inserted in correlation

functions without a quasi-particle world line ending on it, Thus the boundary theory

reduces to a theory of free Majorana fermions, one chiral and the other anti-chiral,

with the Z2 global symmetry acting only on one of the two fermions. This is an the

expected feature of the root fermionic SPT phase with Z2 global symmetry.

Another interesting example is the fermionic spin-TQFT “s-Ising” associated to

the Ising 3d TQFT. The Ising TQFT has three quasi-particles: 1, σ and ε. In the

presence of a boundary, these quasi-particles end on the corresponding operators

of a chiral Ising model. We expect that upon condensing the ε quasi-particle, the

corresponding chiral operator on the boundary, which is a free fermion operator,

will be free to appear by itself. Thus the boundary theory should consist of a single

chiral Majorana fermion, which can indeed be well-defined on a manifold equipped

with a spin structure.

It is also interesting to look at the Hilbert space of s-Ising on Riemann surfaces

of various genus, equipped with a spin structure. On a torus, the Ising TQFT has

three states. Upon gauging the 1-form symmetry, we expect them to be projected to

three one-dimensional Hilbert spaces labelled by the three even spin structures on

the torus. As they have no β2 flux on the Riemann surface, they should have even
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fermion number. Upon gauging the 1-form symmetry we also gain twisted sectors

with a non-zero flux of β2 on the Riemann surface and odd fermion number, i.e., a

single insertion of ε. On the torus, that gives an extra state (labelled by a loop of

σ with an ε insertion), which we expect to give a one-dimensional Hilbert spaces

labelled by the single odd spin structure on the torus, of odd fermion number.

On a genus 2 Riemann surface the Ising TQFT has 10 untwisted sectors, which

should map to 10 one-dimensional Hilbert spaces labelled by the 10 even spin

structures on the torus. We can also find 6 states for the Ising TQFT on a genus

two surface with an extra ε insertion, which should map to 6 one-dimensional Hilbert

spaces labelled by the 6 odd spin structures on the torus.

In general, we expect the s-Ising spin-TQFT to have one-dimensional spaces of

ground states for every choice of spin structure on a Riemann surface, with even

fermion number if the spin structure is even and odd if the spin structure is odd. In

other words, If we compactly the s-Ising TQFT on a circle with Ramond boundary

conditions, we should be left with a 2d theory which computes the Arf invariant of

Riemann surfaces.

It is somewhat surprising to observe that the s-Ising spin-TQFT has one-

dimensional spaces of ground states, and yet supports chiral edge modes and would

likely not be considered a fermionic SPT phase. Indeed, the standard classification

of fermionic SPT phases in 2 + 1 dimensions with fermion number symmetry only

predicts no non-trivial theories.

7.3. Bosonization in 2 + 1 dimensions

The operation of fermionic condensation on the toric code is somewhat intrigu-

ing from the perspective of defining a notion of bosonization in 2 + 1 dimensions.

Suppose that we were given a version of the toric code lattice Hamiltonian with

the property that creating fermionic quasi-particle excitations could be created at

much lower energy cost than the e and m quasi-particles. The Hilbert space of the

low-energy theory will be the even part of a fermionic Fock space, but the interac-

tions will not be completely local: fermion bilinear operators would still have to be

represented by open string operators, corresponding to an ε worldline connecting

the two fermionic creation/destruction operators.

Suppose also that we could tensor that system with K3 and gauge the diagonal

1-form Z2 symmetry. Then the ε worldline string operators, dressed by the self-

fermion quasiparticles of K3, would become invisible in the gauged theory. This

would liberate the endpoints of the open worldline string operators, which would

behave as fermionic creation or destruction operators. The Hilbert space of the

gauged low-energy theory should become a fermionic Fock space, which one could

use to simulate some general fermionic Hamiltonian in a local way.

It would be interesting to make this recipe more precise. Ideally, one should find

a lattice Hamiltonian description of the toric code which both allows the fermion

quasiparticles to proliferate and which can be coupled appropriately to a β2 cocycle.

1645044-30

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
6.

31
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

A
L

IF
O

R
N

IA
 I

N
ST

IT
U

T
E

 O
F 

T
E

C
H

N
O

L
O

G
Y

 (
C

A
L

T
E

C
H

) 
on

 1
0/

27
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



October 14, 2016 15:11 IJMPA S0217751X16450445 page 31

1st Reading

Spin TQFTs and fermionic phases of matter

Acknowledgments

We thank Z. Gu and D. Freed for helpful discussions and J. Morgan for educating

one of us (AK) about spin structures and cobordism. The research of DG was

supported by the Perimeter Institute for Theoretical Physics. Research at Perimeter

Institute is supported by the Government of Canada through Industry Canada and

by the Province of Ontario through the Ministry of Economic Development and

Innovation. The work of AK was supported in part by the DOE grant DE-FG02-

92ER40701 and by the Simons Foundation. Opinions and conclusions expressed

here are those of the authors and do not necessarily reflect the views of funding

agencies.

Appendix A. The Gu–Wen Grassmann Integral in 2d as a

Quadratic Refinement

Notice that we can depict β as a collection of closed, disjointed paths Ca in the

dual graph to the triangulation, sequences of edges eai with β(eai ) = 1 sharing a

common triangle ta
i± 1

2

with the previous and next edges in the path. We can order

the monomials in sequences along each path, and factorize the Grassmann integral

as

σ(β) =
∏
a

[∫ ∏
i

dθeai dθ̄eai

∏
i

u(tai− 1
2
)

]
, (A.1)

where we ordered the integrand in one direction and the measure in the opposite

direction. We assumed that ε[t, β] is 1 unless a triangle is crossed by some path Ca.

For each path Ca, denote as cai the sequence of Grassmann variables encountered

along the path. We have∫ ∏
i

dca2i+1dc
a
2i

∏
i

ca2i+1c2i+2 = −1 , (A.2)

where `a is the length of Ca.

The integration variables in
∏
i dθeai dθ̄eai are encountered almost in the order∏

i dc
a
2i+1dc

a
2i, up to permutations of two variables associated to the same edge. Sim-

ilarly, the integration variables are encountered in the product
∏
i u(ta

i− 1
2

) almost

in the same order as
∏
i c
a
2i+1c2i+2, up to permutations of two variables associated

to the same triangle.

Thus the overall sign of the integral can be computed by multiplying a sign for

each edge and each triangle along Ca:

σ(β) =
∏
a

[
−
∏
i

ε1[eai ]
∏
i

ε2[tai− 1
2
]

]
, (A.3)

where the edge sign ε1 is 1 if the edge orientation points to the right of Ca, −1 if it

points to the left of Ca, while the triangle sign ε2 is 1 if both edges of the triangle

crossed by Ca point to the right of Ca, −1 if both point to the left, while if they
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Fig. A1. A collection of edges ei with β(ei) = 1, organized into a path in the dual graph to the
triangulation. The Grassmann variables are encountered along the path in an order which differs

by simple local permutations from the order they appear with in the measure and integrand of

the Grassmann integral.

point in opposite directions the sign is 1 if Ca is turning left at the triangle, −1 if

turning right.

It is useful to combine the sign associated with crossing an edge to the sign

associated to transversing the subsequent triangle. The resulting sign is almost

always +1, except when we cross a 01 edge and turn towards a 12 edge. See Figs. A2

and A3.

0

1 2

0

12

+ -

Fig. A2. As a path C proceeds along the triangulation, it accumulates a sign when crossing each
edge, and a sign when passing through each triangle, depending on if the Grassmann variables it

encounters are set in canonical order in the integral, or not. In this figure we indicate the directions

along which a path receives a + sign. The opposite directions produce a − sign.
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0

1 2

0

12

+ -

Fig. A3. As a path C proceeds along the triangulation from just before crossing an edge to just

before crossing the next, it accumulates a sign as indicated in this figure: +1 in alms all cases,
except the ones indicated by a dashed line.

0

1 2

0

12

+ -

Fig. A4. A useful reference vector field V inside a triangle equipped with branching structure.

There is a simple interpretation of such sign. Consider a certain canonical vector

field V inside each triangle, nonzero away from the vertices and continuous across

the edges, which flows out of the vertex 0 and into the vertex 2, turning around

near the vertex 1. This can be thought of as a continuation inside the triangle of

the branching structure directions, as in Fig. A4.

Given a smooth, non-self-intersecting path C in the triangulation, which does

not pass through the vertices, we can measure how many times the vector field V

restricted to C winds around compared to the tangent vector of C. We can measure

such winding number w(V,C), modulo 2, by counting how many times the vector

field V becomes tangent to the path C. Inspection of the sign rule of A3, shows

that the overall sign accumulated by C is (−1)w(V,C)+1.

Thus we conclude that

σ(β) =
∏
a

(−1)w(V,Ca)+1 , (A.4)

if β is represented by the collection of non-intersecting paths Ca.

The sign σ(β) does depend on the choice of cochain β in a given cohomology

class: if we sweep some path C across a vertex v of the triangulation, the winding

1645044-33

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
6.

31
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

A
L

IF
O

R
N

IA
 I

N
ST

IT
U

T
E

 O
F 

T
E

C
H

N
O

L
O

G
Y

 (
C

A
L

T
E

C
H

) 
on

 1
0/

27
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



October 14, 2016 15:11 IJMPA S0217751X16450445 page 34

1st Reading

D. Gaiotto & A. Kapustin

number w(V,C) will generically jump. It is natural to expect, and it should be easy

to show, that the jump modulo 2 will be the same as the contribution of that vertex

v to the set S of vertices which contribute to Zm, i.e., 1 plus the number of times

v is the vertex 1 of a “−” triangle.

Indeed, that would insure that

σ(β + δλ) = σ(β)
∏
v∈S

(−1)λ(v) , (A.5)

so that the variation of Zθ = σ(n) cancels against the variation of Zm under m1 →
m1 + λ.

This fact is clearly true if the triangulation is a barycentric subdivision BT : the

0 vertices are sources, the 1 vertices simple saddles and the 2 vertices are sinks. All

these configurations are associated to a jump of the winding number by one unit.

The combination,

(−1)qE(β) = σ(β)
∏
e∈E

(−1)β(e) , (A.6)

is a known expression for the quadratic refinement of the intersection form on Z2

1-cocycles on a surface.23 Besides transforming in the obvious way under changes

of spin structure E, it satisfies

qE(β + β′) = qE(β) + qE(β′) +

∫
β ∪ β′ . (A.7)

Thus

ZEn [BT ]Zθ[BT ] = (−1)qE(n1) . (A.8)

If we have a generic triangulation, we can still try to assemble a smooth vector

field V and look at the zeroes of V , with appropriate multiplicity, as a representative

chain S for w2. In general, we expect solutions of ∂E = S to still describe a choice of

spin structure on the discretized surface. One may interprete measuring the winding

numbers w(V,C) modulo 2, corrected by the pairing with E, as a way to build a

spin bundle on the triangulated surface.

Appendix B. Higher Cup Products

As described in the introduction, higher cup products satisfy the recursive property

A ∪a B +B ∪a A = δ(A ∪a+1 B) + δA ∪a+1 B +A ∪a+1 δB , (B.1)

with ∪0 ≡ ∪.

There is a rather explicit canonical formula for the higher cup products:24

[Ap ∪a Bq](0, · · · , p+ q)

=
∑

i0<···<ia

A(0, · · · i0, i1, · · · i2, i3, · · · )B(i0, · · · , i1, i2, · · · , i3, i4, · · · ) , (B.2)
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where the sequences of arguments of Ap and Bq must agree with the degree p, q of

Ap and Bq.

For example, we recover the standard cup product:

[Ap ∪Bq](0, · · · , p+ q) = A(0, · · · p)B(p, · · · , p+ q) . (B.3)

The next cup products are

[Ap ∪1 Bq](0, · · · , p+ q − 1)

=
∑
i0

A(0, · · · i0, i0 + q, p+ q − 1)B(i0, · · · , i0 + q) (B.4)

[Ap ∪2 Bq](0, · · · , p+ q − 2)

=
∑
i0<i1

A(0, · · · i0, i1, · · · p+ i1 − i0 − 1)

·B(i0, · · · , i1, p+ i1 − i0 − 1, · · · , p+ q − 2) . (B.5)

and so on.

Appendix C. Super-Fusion Categories

A category C enriched over Vectk (the category of finite-dimensional vector spaces

over a field k) is a category whose morphism sets Hom(A,B) are vector spaces

over k, and the composition of morphisms is bilinear. It can be thought of as a

generalization of the notion of an algebra over a field (“algebra with many objects”).

Similarly, a category C enriched over sVectk (the category of Z2-graded vector spaces

over a field k) is a category whose morphism sets Hom(A,B) are Z2-graded vector

spaces over k, and the composition of morphisms is bilinear and is compatible with

the grading. Such a catregory C can be thought of a generalization of the notion

of a Z2-graded algebra over a field. In what follows we will suppress k (in physical

applications one typically has k = C).

An important difference between ordinary algebras and Z2-graded algebras is the

way the tensor product of algebras is defined. For ordinary algebras, the product of

algebras C and D is an algebra whose underlying set is C⊗D and the multiplication

is defined by

(c⊗ d) · (c′ ⊗ d′) = cc′ ⊗ dd′, c, c′ ∈ C, d, d′ ∈ D .

On the other hand, for Z2-graded algebras one defines the multiplication by

(c⊗ d) · (c′ ⊗ d′) = (−1)ε(c
′)ε(d)(c · c′)⊗ (d · d′), c, c′ ∈ C, d, d′ ∈ D ,

where ε(a) ∈ Z2 is the fermionic parity of a ∈ C. This is the Koszul sign rule.

This has an analog for categories: the Cartesian product of categories over sVect is

defined differently from the Cartesian product of categories over Vect. In the former
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case, if C,C ′, C ′′ and D,D′, D′′ are objects of C and D respectively, the composition

of morphisms in C × D is defined as follows:

(α⊗ β) · (γ ⊗ δ) = (−1)ε(γ)ε(β)(α · γ)⊗ (β · δ),
α ∈ HomC(C

′, C ′′), γ ∈ HomC(C,C
′),

β ∈ HomD(D′, D′′), δ ∈ HomD(D,D′) . (C.1)

while in the latter case the sign factor on the r.h.s. is absent.j

This in turn has consequences for how a tensor product on a category is defined.

Both in the ordinary and the Z2-graded case, a tensor product on C is a functor

m from C × C to C, m : (X,Y ) 7→ X ⊗ Y , ∀X,Y ∈ Ob(C), together with an

associator. The associator is a natural isomorphism between two functors from

C × C × C to C built from m. The first one is m(m(−,−),−) and the second one

is m(−,m(−,−)). The associator must satisfy the pentagon equation. Since the

definition of the Cartesian product depends on whether we consider categories over

Vect or sVect, so does the definition of the tensor structure.

Let us specialize to the case of (multi)-fusion categories. Multi-fusion categories

are rigid (and in particular semi-simple) monoidal categories (categories with a

tensor product and a unit object) over Vect or sVect which have finitely many

isomorphism classes of simple objects. To emphasize the difference between the

two cases, we will refer to multi-fusion categories over sVect as super-multi-fusion

categories, while multi-fusion categories over Vect will be simply called multi-fusion

categories. While multi-fusion categories are module categories over Vect, super-

multi-fusion categories are module categories over sVect.

Let C be a super-multi-fusion category. For every object X ∈ Ob(C) we have

a Z2-graded algebra HomC(X,X). If X is simple, this algebra must be a division

algebra, therefore it is isomorphic either to C or Cl(1). In the former case we will

say that X is a bosonic simple object, while in the latter case we will say that X is

a Majorana simple object.

A super-fusion category is a super-multi-fusion category whose unit object 1 is

simple. Since 1⊗1 ' 1, this implies that Hom(1,1) = C, i.e., 1 is a bosonic object.

Since a super-fusion category is rigid, for every object V we have a dual object

V ∗, and even morphisms evL : V ∗ ⊗ V→1, coevL : 1→V ⊗ V ∗, evR : V ⊗ V ∗→1

and coevR : 1→V ∗ ⊗ V satisfying the usual identities. One can show21 that V ∗∗ is

isomorphic to V . A pivotal structure on a super-fusion category is a choice of such

isomorphisms for all V in a way compatible with the tensor product. Given a pivotal

structure, one can define the left and right dimensions of V by composing coevL
and evR or coevR and evL. The left and right dimensions are complex numbers. If

the left and right dimensions are equal for all V , one says that the pivotal structure

is spherical. A spherical super-fusion category is a super-fusion category equipped

with a spherical pivotal structure.

jMore generally, one can consider categories enriched over a symmetric tensor category. The defi-
nition of Cartesian product for such categories depends on the symmetric tensor category.
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