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ABSTRACT

Secular evolution is one of the key routes through which galaxies evolve along the Hubble

sequence. Not only does the disc undergo morphological and kinematic changes, but a pre-

existing classical bulge may also be dynamically changed by the secular processes driven

primarily by the bar. We study the influence of a growing bar on the dynamical evolution of

a low-mass classical bulge that might be present in galaxies like the Milky Way. Using self-

consistent high-resolution N-body simulations, we study how an initially isotropic non-rotating

small classical bulge absorbs angular momentum emitted by the bar. The basic mechanism

of this angular momentum exchange is through resonances and a considerable fraction of

the angular momentum is channelled through Lagrange point (−1:1) and inner Lindblad

resonance (ILR) (2:1) orbits. In the phase of rapid dynamical growth, retrograde non-resonant

orbits also absorb significant angular momentum. As a result of this angular momentum gain,

the initially non-rotating classical bulge transforms into a fast rotating, radially anisotropic

and triaxial object, embedded in the similarly fast rotating boxy bulge formed from the disc.

Towards the end of the evolution, the classical bulge develops cylindrical rotation. By that

time, its inner regions host a ‘classical bulge–bar’ whose distinct kinematics could serve as

direct observational evidence for the secular evolution in the galaxy. Implications of these

results are discussed in brief.

Key words: galaxies: bulges – galaxies: evolution – galaxies: kinematics and dynamics –

galaxies: spiral – galaxies: structure.

1 IN T RO D U C T I O N

In the hierarchical structure formation scenario (White & Rees

1978; Fall & Efstathiou 1980), mergers have played a strong role in

forming and shaping galaxies. One of the common product of major

mergers are the classical bulges (Kauffmann, White & Guiderdoni

1993; Baugh, Cole & Frenk 1996; Hopkins et al. 2009), which

are the central building blocks in spiral galaxies. There have been

a couple of other mechanisms suggested for the formation and

growth of classical bulges, e.g. monolithic collapse of primordial

gas clouds (Eggen, Lynden-Bell & Sandage 1962), the coalescence

of giant clumps in gas-rich primordial galaxies (Immeli et al. 2004;

Elmegreen, Bournaud & Elmegreen 2008), multiple minor mergers

(Bournaud, Jog & Combes 2007; Hopkins et al. 2010), accretion of

small companions or satellites (Aguerri, Balcells & Peletier 2001).

Classical bulges formed via these processes seem to have little rota-

tion as compared to the random motion. On the other hand, various

observational measurements have confirmed that classical bulges

in spiral galaxies possess rotation (Kormendy & Illingworth 1982;

Cappellari et al. 2007) about their minor axis and in most cases in

the same sense as the disc rotates. It is also known that classical

⋆E-mail: saha@mpe.mpg.de

bulges rotate faster than elliptical galaxies and that often their rota-

tion velocities are comparable to that of an isotropic oblate rotator

model (Binney 1978). So the origin of the systematic rotational

motion observed in the classical bulges remains unclear.

The photometric and kinematic properties of classical bulges

as well as their origin are quite distinct from those of the other

class of bulges, the boxy/peanut and disc-like bulges. It is well

known that surface brightness profiles in classical bulges follow

a Sérsic law μ(r) ∼ r1/n with Sérsic index n ∼ 4. However, the

Sérsic indices in boxy and disc-like bulges are, in general, low

with n ≤ 2, so their surface brightness profiles follow roughly an

exponential distribution, see Kormendy & Kennicutt (2004) and

Combes (2009) for extensive reviews. The kinematics of bulges are

well illustrated in the v/σ–ǫ plot (Kormendy 1982; Kormendy &

Illingworth 1982), which clearly demonstrates the distinction in the

kinematic properties of ellipticals, classical bulges and boxy bulges

and brings out the fact that in terms of their rotational support,

classical bulges fall in between ellipticals and boxy/disc-like bulges.

Since the boxy and disc-like bulges are thought to have formed from

disc material, the source of their angular momentum is known.

The classical bulges formed early through major mergers and

violent relaxation can subsequently accrete material quiescently, as

a result of which a disc grows inside-out (Mo, Mao & White 1998;

Katz et al. 2003; Springel & Hernquist 2005; Kereš et al. 2009). Gas
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accretion may facilitate the disc to grow sufficiently for the disc self-

gravity to dominate the internal dynamics. Eventually, a bar and/or

spiral arms form in the disc and initiate secular processes in the

galaxy. Indeed, bars are quite common in disc galaxies, about 2/3 of

the disc galaxies host a strong stellar bar in their central region

(Laurikainen et al. 2004; Marinova & Jogee 2007; Menéndez-

Delmestre et al. 2007). Therefore, one might also expect the disc to

become bar-unstable in galaxies with pre-existing classical bulges.

In fact, classical, boxy and disc-like bulges could coexist (Athanas-

soula 2005; Erwin 2008; Gadotti 2009; Nowak et al. 2010) in a

single galaxy, although the observational identification of several

components could be difficult. In the Milky Way, an upper limit on

the mass of a classical bulge (∼8 per cent of the disc mass) has been

set by modelling the kinematics from the Bulge Radial Velocity As-

say (BRAVA) data (Shen et al. 2010). However, there is evidence for

a metallicity gradient above the Galactic plane (Zoccali et al. 2008;

Zoccali 2010), which is taken as an indication for the existence of a

classical bulge in our Galaxy. It is therefore important to understand

the dynamical interaction between pre-existing classical bulges and

bars in barred galaxies.

In this paper, we investigate in considerable detail the interaction

of a bar and a low-mass classical bulge via a high-resolution N-

body simulation of a galaxy consisting of a live disc, bulge and dark

matter halo, and follow the evolution of the dynamical structure and

kinematics of the small classical bulge. We find that its dynamical

evolution is strongly connected to the growth of the bar which forms

spontaneously in the disc. During the secular evolution, the structure

and kinematics of the bulge are altered significantly, developing an

interesting and complex rotation structure; in particular, cylindrical

rotation (which is considered as a typical proxy of boxy bulge)

appears in the inner region of the classical bulge.

This paper is organized as follows. Section 2 summarizes the

basics of bar–bulge interaction. Section 3 outlines the initial galaxy

model and set-up for the N-body simulation. The bar evolution

and boxy bulge formation are described in Section 4. Section 5

describes, in detail, the angular momentum exchange between the

bar and the classical bulge. The evolution of the classical bulge,

its structure and kinematics are presented in Section 6. Discussion

and conclusions are contained in Sections 7 and 8, respectively.

In the text, by bulge, we mean a classical bulge unless mentioned

otherwise.

2 BA R – BU L G E IN T E R AC T I O N

As we have seen (in Section 1), the possible coexistence of a bar

and a classical bulge might be rather common in present-day disc

galaxies, and thus they are bound to interact gravitationally. In fact,

a pre-existing classical bulge in the disc has a strong influence on the

formation and growth of the bar itself. For the swing amplification

to work, one needs to keep alive the feedback loop through which

a set of trailing waves travelling through the centre are transformed

into leading waves. This is possible as long as there are no inner

Lindblad resonances (ILRs). A highly centrally concentrated bulge

can shield the centre by putting an ILR barrier and thus cutting

the feedback loop which in turn could hinder the growth of the bar

(Sellwood & Evans 2001). However, various non-linear processes

are probably active in real galaxies which would destroy the ILR

barrier and eventually lead to the formation of a bar (Widrow, Pym

& Dubinski 2008; Dubinski, Berentzen & Shlosman 2009).

Once a bar is formed, it takes over the dynamics in the central

region of the disc and starts interacting with the stellar bulge and

dark matter halo through exchange of angular momentum. Based

on the work of Lynden-Bell & Kalnajs (1972), hereafter LBK72, it

has been emphasized by several authors (Tremaine & Weinberg

1984; Weinberg 1985; Hernquist & Weinberg 1992; Debattista

& Sellwood 2000; Athanassoula 2002; Weinberg & Katz 2002;

Sellwood & Debattista 2006; Dubinski et al. 2009) that the reso-

nant interaction plays a significant role in the angular momentum

transfer between the bar and the dark matter halo. It has been sug-

gested by Hernquist & Weinberg (1992), Athanassoula (2003) and

Weinberg & Katz (2007a) that the same underlying mechanism

could as well apply between the bar and the spheroid and, in partic-

ular, Athanassoula & Misiriotis (2002) have studied how the shape

of a bulge would change in response to a growing bar.

Although the dynamical interaction between a growing bar and a

bulge and their subsequent evolution can be best studied via N-body

simulations, an analytic understanding is required to complement

this. Following LBK72, it can be shown that during the bar–bulge

interaction, the time rate of change of the angular momentum of a

classical bulge, whose distribution function (Fb) is described by a

King model, is always positive and can be written as

L̇z,b ∼ �B × |ψlmn|2 × Fb/σ
2
b > 0, (1)

where ψ lmn and �B are the Fourier amplitude and pattern speed of a

non-responsive bar potential and σb is the velocity dispersion of the

bulge stars. So at a given resonance, the angular momentum gained

by the bulge depends on the strength of the bar and is inversely

proportional to the square of bulge velocity dispersion, implying

a hotter bulge will absorb less angular momentum provided other

conditions remain unchanged. However, in real galaxies, the angular

momentum transfer is more difficult to determine, because the time

rate of change of bar’s angular momentum involves the change in

its pattern speed, moment of inertia and in the angular momentum

associated with any internal circulation (Villa-Vargas, Shlosman &

Heller 2009) within the bar. In Section 5, we show the angular

momentum transfer between the bar and the bulge in our simulation

using orbital spectral analysis.

3 G A L A X Y M O D E L A N D N- B O DY

SI MULATI ON

An equilibrium model for a disc galaxy is constructed using the self-

consistent bulge–disc–halo model of Kuijken & Dubinski (1995).

Their prescription provides nearly exact solutions of the collision-

less Boltzmann and Poisson equations which are suitable for study-

ing disc stability related problems. All the components in our model

are live (i.e. the gravitational potential of each component can re-

spond to an external or internal perturbation) and, hence, provide a

realistic representation for the structure and evolution of the galaxy.

Below, we briefly describe each component of the model. For more

details, the reader is referred to Kuijken & Dubinski (1995).

The disc distribution function is constructed using the approx-

imate third integral given by Ez = (v2
z/2) + �(R, z) − �(R, 0),

the energy of the vertical oscillations. This third integral is approx-

imately conserved for orbits near the disc midplane. The radial

density of the disc is approximately exponential with a truncation,

and the square of the radial velocity dispersion follows the same

exponential radial decline with a scalelength same as the disc scale-

length. The vertical structure of the disc is approximately isother-

mal, with the scale height set by the vertical velocity dispersion and

vertical potential gradient. The volume density of the axisymmetric

disc is given by

ρd(R, z) =
Md

8πhzR
2
d

e−R/Rd erfc

(

R − Rout√
2(Rout − Rtrun)

)

fd(z), (2)
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Spin-up of low-mass classical bulges 335

where fd(z) = exp(−0.8676�z(R, z)/�z(R, hz)) with �z(R, z) =
�(R, z) − �(R, 0) governs the vertical structure of the disc, and

erfc is the complementary error function. In the above equation, Md

is the disc mass, Rd is the scalelength and hz is the scale height.

A spherical live classical bulge is constructed from the King

model (King 1966) and the corresponding distribution function (DF)

is given by (Binney & Tremaine 1987)

fb(E) =

⎧

⎪

⎨

⎪

⎩

ρb(2πσ 2
b )−3/2e(�b0−�c)/σ 2

b

×{e−(E−�c)/σ 2
b − 1}, if E < �c,

0, otherwise.

(3)

Here, the bulge is specified by three parameters, namely the cut-off

potential (�c which determines the bulge tidal radius), the central

bulge density (ρb) and the central bulge velocity dispersion (σb).

The gravitational potential at the centre of the bulge is measured by

�b0.

An axisymmetric live dark matter halo is constructed using the

distribution function of a lowered Evans model (Evans 1993) and

is given as

fdm

(

E, L2
z

)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

(AL2
z + B)e−E/σ 2

h + C
]

×(e−E/σ 2
h − 1), if E < 0,

0, otherwise.

(4)

The halo is parametrized by a potential depth (�0), velocity (σh) and

density scales (ρ1), a core radius Rc and the flattening parameter

q. The factors A, B and C are functions of these parameters (see

Kuijken & Dubinski 1995 and references therein). The halo has a

tidal radius specified by E = 0.

The total mass and the outer radii of both the bulge and the halo

are calculated in an iterative procedure. The potential is computed

self-consistently by solving the Poisson equation for the combined

three-component system in an iterative fashion. First, the densi-

ties for the bulge and the halo are obtained from their respective

distribution function and then the disc density is added to it and

the corresponding potential for the combined mass distribution is

used as a starting point for carrying out the next iteration. We use

a maximum of l = 10 in the potential harmonic expansion and

the iteration is continued until the outer radii for the bulge and the

halo are unchanged between successive iterations. The outer radii

of the bulge and the halo correspond to the respective tidal radii.

The masses of the bulge and the halo correspond to the total mass

enclosed within their respective outer radii computed by integrating

the density profiles.

In this paper, we present the analysis of a particular galaxy model

hosting a low-mass classical bulge. For historical reasons, we call

this model RCG004. The circular velocity curve for the model is

presented in Fig 1. The length, mass and velocity units for this model

are given by L = 4.0 kpc, M = 2.33 × 1010 M⊙ and V = 157 km s−1,

respectively. The disc outer radius (Rout) is fixed at about 6.5Rd and

a truncation width ∼0.3Rd is adopted, within which the disc density

smoothly decreases to zero at the outer radius. The disc scalelength

(Rd) is fixed at 4.0 kpc and the scale height is 42 pc, the disc mass

Md = 4.5 × 1010 M⊙. The central value of the radial velocity

dispersion is 78.5 km s−1. The Toomre Q profile is nearly flat in the

radial range 0.5–5 scalelengths while it increases on either side of

the disc. The Q value at the disc half-mass radius is 1.4. The bulge

mass is Mb = 3 × 109 M⊙. In Table 1, we quote the outer radius

for the classical bulge (denoted by Rb) in our galaxy model. The

halo has a flattening of q = 0.8, a core radius of Rc = 0.25 kpc and

a mass of Mh = 1.82 × 1011 M⊙ within about 60 kpc.

Figure 1. The initial circular velocity curve for the model galaxy. The solid

line represents the total circular velocity. The dotted line is for the bulge,

dashed line is for the dark matter halo and dashed–dot–dashed line is for the

disc.

Table 1. Initial parameters for the model galaxy.

Galaxy Q B/D B/T σb0 Rb

model (km s−1) (kpc)

RCG004 1.40 0.0666 0.01306 65.0 6.08

Note. B/D is the bulge-to-disc mass ratio, B/T is the bulge-to-total (including

dark halo mass) mass ratio, σb0 is the bulge central velocity dispersion, and

finally Rb is the outer radius of the bulge.

We evolve the galaxy model in isolation to examine the evolution

of the bulge shape, morphology and kinematics. The simulation is

performed using the GADGET code (Springel, Yoshida & White 2001)

which uses a variant of the leapfrog method for the time integration.

The forces between the particles are calculated using the Barnes

& Hut (BH) tree with some modification (Springel et al. 2001)

with a tolerance parameter θtol = 0.7. The integration time-step is

∼0.4 Myr and the model is evolved for 2.2 Gyr. For reference, the

orbital time at the disc half-mass radius is ∼296 Myr. A total of 1.0 ×
107 particles are used to simulate the model galaxy. The softening

lengths for the disc, bulge and halo particles are 12, 40 and 36 pc,

respectively. The masses for the disc, bulge and halo particles are

1.2 × 104, 0.3 × 104 and 3.6 × 104 M⊙, respectively. To examine

the effect of unequal softenings, we have re-run the simulation with

new softening parameters as prescribed by McMillan & Dehnen

(2007). We note that with the new softenings, the bar growth is

delayed by ∼90 Myr while the main results remain unchanged.

The total energy is conserved within 0.2 per cent until the end of

the simulation. The total angular momentum is conserved within

3 per cent at 2.2 Gyr for both the runs having different softening

parameters.

4 BA R A N D B OX Y BU L G E

Although it is not clearly understood how bars are formed in real

galaxies, swing amplification (Toomre 1981) plays a significant role

in making an initially axisymmetric, equilibrium model of a disc

galaxy bar unstable (Sellwood 1981). Once formed, N-body bars

are found to be long-lived, dominate the disc dynamics and are

responsible for driving secular evolution processes in the galaxy

(Sellwood & Wilkinson 1993). Fig. 2 depicts the formation and

evolution of the bar from the initially axisymmetric disc. Strong

two-armed spirals are also formed along with the bar and last until

C© 2012 The Authors, MNRAS 421, 333–345
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336 K. Saha, I. Martinez-Valpuesta and O. Gerhard

Figure 2. Surface density maps for the disc particles alone. Top: the density

map at T = 0 Gyr (left) and T = 0.56 Gyr (right), showing the axisymmetric

disc. Bottom: the same at T = 1.1 Gyr (left) and T = 2.1 Gyr (right).

Figure 3. Time evolution of the bar amplitude and the pattern speed (�B).

The red solid line shows the result of a linear regression analysis performed

on the measured pattern speed values from the N-body snapshots.

1.1 Gyr in our simulation. The ring-like structure at T = 0.56 Gyr

is intersecting the spiral arms, indicating that it is probably not real.

Such a ring-like feature arises because of the galaxy model not

being in perfect equilibrium.

In the upper panel of Fig. 3, we show the time evolution of the

bar amplitude measured as the maximum of m = 2 Fourier coeffi-

cient (A2) of the density perturbation normalized to the unperturbed

axisymmetric component (A0). The bar reaches its first peak in am-

plitude at 0.28 Gyr and the second peak at 0.44 Gyr. The m = 1

vertical Fourier mode (|A1,z|) in the r–z plane corotating with the

bar pattern speed shows that the disc is undergoing buckling insta-

bility from ∼0.39 to 0.6 Gyr and strong buckling occurs around

0.6 Gyr.

Based on the nature of the growth curve, bars are classified into

two broad categories, type I and type II. Type I bars are strong, grow

within a few orbital time-scales and nearly saturate in amplitude,

whereas type II bars are weak, the growth time-scale is very long

(typically, a secular evolution time-scale) and show no sign of sat-

uration (Saha, Tseng & Taam 2010). The bar in our model is a type

I bar (e.g. Fig. 3).

The bottom panel of Fig. 3 shows the evolution of the bar pattern

speed. The pattern speed of the bar decreases over time in our sim-

ulation, primarily because of the dynamical friction (Tremaine &

Weinberg 1984; Weinberg 1985) against the dark matter halo. A de-

tailed account of the bar’s pattern speed decrease and its dependence

on various dark matter halo properties, e.g. halo angular momen-

tum, orbital anisotropy and central concentration, can be found in

Debattista & Sellwood (2000). Using a linear regression analysis on

the simulation data, we find the half-life, T1/2 (the time period over

which the bar pattern speed would decay to half its initial value),

of the rotating bar to be ∼3.09 Gyr. This indicates that the rate of

the angular momentum transfer from the bar is rather slow in our

simulation; for an in-depth analysis on the bar slow down, readers

are referred to Weinberg (1985) and Weinberg & Katz (2007a).

As the bar grows stronger, its self-gravity increases and it goes

through the well-known buckling instability (Combes & Sanders

1981; Pfenniger & Norman 1990; Raha et al. 1991; Martinez-

Valpuesta & Shlosman 2004) following which the bar transforms

into a boxy/peanut bulge. In Fig. 4, we present the surface density

(left-hand panels) and velocity field (right-hand panels) for the boxy

bulge seen edge-on; i.e. only disc particles are shown. The cylindri-

cal rotation is evident. The final boxy bulge contains approximately

33 per cent of the disc mass including the inner barred disc com-

ponent. Note that the density drops off sharply along the vertical

direction in the boxy bulge region. In Section 6, we will compare

the structure and kinematics of the boxy bulge in Fig. 4 formed in

our simulation with the classical bulge undergoing the bar-driven

secular evolution.

5 A N G U L A R M O M E N T U M T R A N S F E R

TO T H E C L A S S I C A L BU L G E

We compute the specific angular momentum for each species e.g.

disc, bulge and halo particles in our simulation and re-confirm

the already established fact that the inner regions of the disc lose

angular momentum through the bar. While a significant fraction

of the total angular momentum emitted by the bar is absorbed by

the surrounding dark matter halo, the angular momentum gained

by the bulge is non-negligible. In Fig. 5, we show the angular

momentum transfer amongst the disc, bulge and halo components

in our model. The total angular momentum is conserved within 3

per cent at the end of 2.2 Gyr in our simulation. Initially, both the

bulge and halo have zero net angular momentum, i.e. they start

as non-rotating objects. Note that the rate of gain of the angular

momentum by the classical bulge particles nearly saturates towards

the end of the simulation and closely follows the growth of the bar

(see Fig. 3). Using orbital spectral analysis, we show below that

the gain of the angular momentum by the bulge occurs primarily

through resonances (see also Hernquist & Weinberg 1992).

C© 2012 The Authors, MNRAS 421, 333–345

Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
2
1
/1

/3
3
3
/9

8
9
9
7
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



Spin-up of low-mass classical bulges 337

Figure 4. Edge-on surface density (left) and velocity maps (right) for the disc particles alone at two different epochs during the secular evolution. From top to

bottom, the panels are taken at T = 0.56 and 2.1 Gyr.

Figure 5. Evolution of the specific angular momentum of the bulge (green),

disc (red) and halo (blue) components in our model. Plotted along the y-axis

are the specific angular momentum minus its value at T = 0 normalized by

the disc angular momentum [Ldz(0)] at T = 0.

The simulation presented here shows an increase in the bulge

rotation velocity (Section 6.2), and a corresponding increase in the

bulge angular momentum. The transfer of the angular momentum

from the bar to the bulge depends strongly on the pattern speed

which sets the resonance locations. Note that if the resonances are

sparsely populated because of the lack of particles in the simula-

tion, the angular momentum transfer will be inefficient (Weinberg

1985; Weinberg & Katz 2007b). In our case, we have a total of

107 particles, with 106 particles in the classical bulge. Therefore,

we can test whether angular momentum transfer through resonant

interaction is the mechanism for the angular momentum gain of

the classical bulge. Here, we quantify its effect by using an orbital

spectral analysis method described in Martinez-Valpuesta, Shlos-

man & Heller (2006) based on that presented in Binney & Spergel

(1982). In previous works, this method was applied to halo resonant

orbits (Athanassoula 2003; Martinez-Valpuesta et al. 2006; Dubin-

ski et al. 2009) to understand the bar–halo interaction. We apply it

to the classical bulge particles to find out how many of them are

trapped in resonances and what is the corresponding gain of angular

momentum. The potential is extracted from the N-body simulation

at different snapshots using the grid code provided by Sellwood &

Valluri (1997) and then frozen to compute the orbits. We randomly

select 100 000 (10 per cent) particles out of 1 million in the bulge

and compute their corresponding orbits. We calculate the azimuthal

and radial epicyclic frequencies � and κ , respectively, for each of

the orbits by Fourier analysis.

We present the results of this orbital spectral analysis in Fig. 6

at five different epochs. In the top panels, we present the classi-

fication of classical bulge particles by their frequency ratio η =
(� − �B)/κ . The bar has an irregular evolution and this can be

seen in the time sequence of the top panel in Fig. 6. Initially, the

bulge particles are distributed half corotating with the disc and half

counter-rotating. Therefore, when we study the orbital distribution

in the very early stage of the bar growth at T = 0.17 Gyr, an almost

symmetric distribution still exists. When the bar is already formed,

just after reaching the maximum, at T = 0.39 Gyr, many particles

have been trapped around the 2:1 resonance. Taking a careful look at

these orbits, we have checked that they are of x1-type. There is also

a considerable group of particles with η ∈ (−0.4, 0.0); a look at the

orbits allows us to identify them as mainly stochastic trajectories. In

the lower panels, we show the angular momentum gain by the par-

ticles at each η during the growth and evolution of the bar. There is

a considerable gain of the angular momentum by three main groups

in our diagram (Fig. 6, second bottom panel). The main gain of the

angular momentum comes from those particles at resonance with

η = −1, corresponding to particles orbiting around the Lagrangian

points. Since these particles are at negative frequency, this means

that they are counter-rotating with the bar. Another gaining group

corresponds to the particles with η ∈ (−0.4, 0.0), the stochastic

group. By gaining angular momentum, their (counter) rotation de-

creases. Amongst the low-order resonances, the important gaining

group is around the ILR (η = 0.5). We can conclude that at this

stage of evolution, which is very rapid, the main transfer of angular

momentum occurs through resonant and stochastic orbits.

During the period of evolution between T = 0.56 and 0.39 Gyr,

the bar goes through the buckling event; therefore, there is still some

trapping of particles around the 2:1 resonance. Although there is not

much gain or loss of angular momentum, some angular momenta are

gained through the η = −1 resonance during this period. Note that

in the upper row of panels, the number of bulge particles trapped at

C© 2012 The Authors, MNRAS 421, 333–345
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338 K. Saha, I. Martinez-Valpuesta and O. Gerhard

Figure 6. Top panels: the distribution of particles with frequency (� − �b)/κ at five different times throughout the evolution of the bulge. Lower panels:

the gain of the angular momentum of the selected particles with respect to the previous time, as indicated on the top of the panel. The vertical dotted lines

indicate the most important resonances, −1:1, 2:1, 3:1 and 4:1. Note that from 1.1 to 2.1 Gyr, particles trapped at around (� − �b)/κ = 0.5 gain less angular

momentum than earlier.

the bar’s ILR (2:1) is increasing. In the fourth panel, at T = 1.1 Gyr,

we have 36 per cent of particles trapped around the 2:1 resonance.

At this time, the main gain of angular momentum comes from

resonances at the ILR (η = 0.5) and at η = −1, −2. The particles at

the outer Lindblad resonance (OLR; η = −0.5) and those with η ∈
(−0.4, 0.0) lose angular momentum. At T = 2.1 Gyr, the classical

bulge is still gaining angular momentum through resonances at ILR

and η = −1 corresponding to the Lagrange points. Note that some

of the angular momentum gain also comes from the OLR. Although

the number of particles trapped at the ILR gradually increases over

time, their angular momentum gain does not follow accordingly. By

comparing the last two panels (upper and lower), it is evident that

the particles trapped at the ILR now hardly gain angular momentum.

It is plausible that the inner bar-like structure in the classical bulge

(see Section 6.3) gives away angular momentum to the outer parts

of the bulge and perhaps to the disc and the halo.

The gain of angular momentum by the bulge can thus be explained

by resonances during the slow secular evolution of the bar, and by

resonances together with stochastic orbits in the dynamical stage.

During the dynamical phase, T = 0.56–0.17 Gyr, the net gain of

angular momentum (computed by adding up the averaged angular

momentum of each orbit) is three times larger than that gained

in the relatively quiet secular phase (T = 2.1–0.56 Gyr). While

approximately 70 per cent of the net angular momentum gain comes

from the resonances, stochastic orbits contribute to ∼30 per cent of

the net angular momentum gained during the dynamical phase.

Previous studies of the angular momentum transfer to the live

dark matter halo (e.g. Athanassoula 2003; Martinez-Valpuesta et al.

2006; Dubinski et al. 2009) have found important contribution from

corotation, OLR and higher order resonances. In contrast, in the

case of a small classical bulge as studied here, the OLR and coro-

tation have not played any significant role in the gain of angular

momentum as shown above. This is most probably due to the fact

that the size of the bulge in our simulation is much smaller than

the typical size of the dark matter halo; the bulge half-mass radius

(Rb
1/2 = 0.21Rd and 0.225Rd at T = 1.1 and 2.1 Gyr, respectively) is

shorter than the bar size (Rbar = 0.987Rd and 1.02Rd at those times)

in our simulation. The bar size is measured from the phase angle of

the bar (Athanassoula & Misiriotis 2002). The phase angle of the

bar (i.e. the m = 2 Fourier component of the disc surface density)

remains approximately constant up to a certain radius and starts

varying beyond that. We measure the length of the bar as the radius

at which the phase angle of the bar starts deviating from the constant

value. We also note that the corotation resonance (Rcr = 0.994, 1.12

and 1.30Rd at T = 0.56, 1.1 and 2.1 Gyr, respectively) of the bar is

clearly outside the radius confining most of the bulge particles. The

ratio of Rcr/Rbar lies between 1–1.4 at times mentioned in Fig. 6.

As shown in Fig. 6, more and more particles in the classical bulge

are trapped at the bar’s ILR as time progresses. During the slow

secular evolution, we can affirm that the mechanism acting in our

system is the transfer of angular momentum through resonances.

On the other hand, during the rapid dynamical evolution, resonant

as well as stochastic orbits played an important role in transferring

a significant fraction of the net angular momentum to the classical

bulge. This angular momentum transfer and the subsequent change

of the orbital structure of the classical bulge are indeed responsible

for the transformation of the classical bulge as described below.

6 E VO L U T I O N O F T H E C L A S S I C A L BU L G E –

S T RU C T U R E A N D K I N E M AT I C S

From Sections 2 to 5, we learnt that a classical bulge can absorb

a non-negligible fraction of the total angular momentum emitted

by the bar through resonant interaction. The angular momentum

gained by the bulge (being a smaller mass object than the dark

matter halo) has a profound effect on its structure, kinematics and

dynamics. The result of the bar–bulge interaction in our simulation

is the transformation of an initially non-rotating low-mass classical

C© 2012 The Authors, MNRAS 421, 333–345
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Spin-up of low-mass classical bulges 339

Figure 7. Edge-on surface density and velocity maps for the bulge particles alone at four different epochs during the secular evolution. From top to bottom,

images are taken at T = 0, 0.56, 1.1 and 2.1 Gyr. The left-hand panels show the surface densities and the right-hand panels show the velocity fields. Initially

the bulge is non-rotating and flattened by the disc potential. Similar maps for the boxy bulge are shown in Fig. 4.

bulge into a highly rotating triaxial one. Below we describe, in

considerable detail, various diagnostics which show that this is

indeed true.

6.1 Surface brightness

In the left-hand panels of Fig. 7, we show the surface density maps

for the classical bulge (viewed edge-on) at four different epochs

during the evolution. The classical bulge is shown edge-on (i =
90◦) such that the major axis is along the X-axis and the minor

axis is along the Z-axis. Initially, the bulge is isotropic and flattened

by the strong gravity of the disc potential. At later phases of the

evolution, the inner regions of the bulge become rounder and the

outer parts become disky.

In order to understand the structure of the classical bulge more

quantitatively, we have also performed an isophotal analysis using

the IRAF ellipse task on a set of edge-on images of the bulge including

those presented in Fig. 7, and compute the fourth-order Fourier

cosine coefficient a4/a normalized to the semimajor axis a at which

the ellipse was fit. Fig. 8 shows the normalized a4 profiles at three

different epochs in the simulation. The values of a4/a determine the

degree of boxiness or diskiness (Nieto & Bender 1989), with a4/a <

0 denoting a boxy isophote, a4/a > 0 a disky isophote, and a4/a ∼ 0

means elliptical or round isophote. The inner region (X/Rd ≤ 0.2)

of the classical bulge becomes mildly boxy at T = 0.56 Gyr and

the boxiness increases at 1.1 Gyr, as can be seen from Figs 7 and

8. On the other hand, at T = 2.1 Gyr, a4/a > 0 in the outer parts of

Figure 8. Normalized radial profile for the a4 coefficient for the classical

bulge alone at three different times.

the bulge indicating disky isophotes. Recall that the disc has a boxy

bulge formed as a result of the bar buckling instability as shown

in Fig. 4. In order to compare properties of the classical bulge and

the boxy bulge, we have measured the a4/a parameter of the boxy

bulge in a similar fashion as outlined above. It is found that at T =
1.1 Gyr, a4/a of the boxy bulge is negative inside X/Rd < 1.0

and its maximum value is about twice that of the classical bulge.
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340 K. Saha, I. Martinez-Valpuesta and O. Gerhard

From the minor-axis density profiles calculated separately for the

classical bulge and the boxy bulge region, we find that initially

the classical bulge extends further above the disc midplane and its

central surface density is 2.4 times lower than that of the disc. As

the disc goes through the buckling instability, the particles settle

into the three-dimensional (3D) boxy bulge. We find that at T = 1.1

Gyr, the boxy bulge is more concentrated towards the disc midplane

(z = 0) and its midplane surface density is ∼3 times higher than

that of the classical bulge. At this time, the density of the classical

bulge above z = 0.17Rd is higher than that of the boxy bulge, and

the classical bulge extends further. However, at T = 2.1 Gyr, the

boxy bulge dominates over the classical bulge for z ≤ 0.39Rd, and

above this height their density profiles are comparable.

6.2 Rotational properties

The influx of angular momentum to the initially non-rotating bulge

enforces the bulge particles to have a net rotational motion. In Fig. 9,

we show the radial profiles of the rotational velocity normalized to

the average velocity dispersion in the central region (R ≤ Rb
1/2)

of the classical bulge at different epochs during the evolution. The

rotational velocity profiles remain nearly unchanged at later stages

of the evolution when the rate of the angular momentum gain by

the bulge also nearly saturates, as can be seen from Figs 5 and 6.

To illustrate the evolution further, we present four velocity maps

of the classical bulge on the right-hand panels of Fig. 7. During

the initial phases of the secular evolution, the angular momentum

gained by the bulge particles is primarily converted into streaming

motion and the classical bulge starts rotating around the z-axis, with

gradients in the streaming velocity both along the radial and vertical

directions. Note that in the barred potential, the classical bulge is

no longer axisymmetric and its inner regions become moderately

boxy (see Sections 6.1 and 6.3). This could be a signature of a thick

bar formed inside the classical bulge (see Section 6.3). Indeed, as

time progresses, mild signatures of cylindrical rotation emerge in

the inner regions of the bulge and gradually become prominent (see

Fig. 7).

To have a clearer picture of the velocity structure, we show paral-

lel minor-axis (Fig. 10) and major-axis (Fig. 11) velocity profiles of

the classical bulge at two different epochs T = 0.56 (upper panels)

Figure 9. Radial variation of the bulge rotational velocity normalized to

the average velocity dispersion in the central region, for five snapshots from

T = 0 to 2.1 Gyr. The long tick mark on the x-axis denotes the initial value

of Rb (see Table 1).

Figure 10. Parallel minor-axis velocity profiles of the bulge at T = 0.56

Gyr (upper panel) and T = 2.1 Gyr (lower panel). The upper panel shows

no clear signature of cylindrical rotation. However, at later stages of the

evolution, cylindrical rotation develops in the inner region of the bulge, as

indicated by the parallel shapes of the velocity profiles in the lower panel.

and T = 2.1 Gyr (bottom panels). The minor-axis velocity profiles

are drawn at two different radii (X/Rd = 0.31 and 0.71) on either

side of the bulge centre. At T = 0.56 Gyr, the minor-axis rota-

tion velocity decreases along the vertical direction (dVb/dz < 0),

indicating clearly a non-cylindrical rotation throughout the bulge

(see the upper panel of Fig. 10). Note that the velocity profiles in

the outer parts are asymmetric, which is probably influenced by

the ongoing buckling instability of the bar. The major-axis profiles

are taken at four different slits (the slit positions are indicated in

Fig. 11) parallel to the major axis of the classical bulge. The major-

axis velocity profiles in the upper panel of Fig. 11 also indicate

non-cylindrical rotation throughout the classical bulge.

At later times, the inner regions of the classical bulge have de-

veloped cylindrical rotation. However, the gradient of this cylin-

drical rotation in the classical bulge is shallower than that in the

boxy bulge. The minor-axis velocity profiles in the bottom panel

of Fig. 10 show clear indication for that in the inner regions. The

same is evident from the bottom panel of Fig. 11. The major-axis

velocity profiles at T = 2.1 Gyr clearly demonstrate that the inner

regions (X/Rd < 0.4) of the classical bulge rotate cylindrically

while the outer regions beyond about twice the half-mass radius

(2 × Rb
1/2 ∼ 0.45Rd) still maintain differential rotation both along

the radial and vertical directions (dVb/dz < 0). So in the later stages

of the secular evolution, the initially non-rotating classical bulge has

developed a mixed rotational state, with the inner region rotating

cylindrically while the outer region rotates differentially in z.
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Spin-up of low-mass classical bulges 341

Figure 11. Major-axis velocity profiles of the bulge at T = 0.56 Gyr (upper

panel) and T = 2.1 Gyr (lower panel). The upper panel shows no clear

signature of cylindrical rotation. However, at later stages of the evolution,

cylindrical rotation develops in the inner region of the bulge. The long tick

mark on the x-axis denotes the initial value of Rb (see Table 1).

6.3 The classical bulge–bar

In order to achieve a deeper understanding of the complex non-

linear dynamical interplay of the bar and the bulge, we investigate

the 3D structure of the classical bulge using spherical harmonics

analysis. In particular, we are looking for non-axisymmetric modes

in the classical bulge, which could have been influential for pro-

ducing some of the complex structure and kinematics as discussed

in Sections 6.1 and 6.2. The outcome of the bar–bulge interaction

is not only the transfer of angular momentum between the two and

changes in kinematics thereby, but a structural transformation of the

classical bulge, a prediction of which is probably beyond the scope

of the analytic/semi-analytic theories (Lynden-Bell & Kalnajs 1972;

Tremaine & Weinberg 1984) briefly outlined in Section 2. From our

analysis, it becomes clear that the interaction of a bar and a small

classical bulge is more vigorous than that between the bar and the

massive dark halo as discussed in Section 2. The primary reason

being the smaller mass and size of the bulge compared to the dark

matter halo.

To analyse the structural components developed in the small

classical bulge after the evolution, we expand the full 3D bulge

density distribution (ρ) in terms of spherical harmonics:

ρ(r, θ, φ) =
∞

∑

l=0

l
∑

m=−l

ρlm(r)Ym
l (θ, φ), (5)

where r, θ and φ are the usual spherical coordinates, and Ym
l are

the spherical harmonics. ρ lm denotes the radial density function. We

Figure 12. The strength of the classical bulge–bar (l = 2, m = 2 mode) and

its pattern speed evolution.

bin the bulge particles into spherical shells and compute Blm as a

function of the bin radius (rk) as follows:

Blm(rk) = Nlm

∑

j

mbP
m
l (cos θj )eimφj , (6)

where Nlm = [(2l + 1)/2π] × (l − m)!/(l + m)!, mb is the mass of

each bulge particle, P m
l are the associated Legendre polynomials.

The function Blm is directly related to the mass of each bin and

thereby to ρ lm via the bin radius (rk). Then, using the above formula

(equation 6), we can derive the radial variation of the amplitude of

a particular l, m mode in the bulge as Slm(rk) =
√

ℜBlm
2 + ℑBlm

2.

The corresponding phase angle φj can be used to derive the pattern

speed of the l, m mode.

In Fig. 12, we show the time evolution of the amplitude of the l =
2, m = 2 mode. The classical bulge–bar (hereafter denoted as ClBb)

is weaker than the disc bar (see Fig. 3 for the bar amplitude and

pattern speed) but rotates nearly in phase with it. By analysing the

radial variation of the phase angles, we conclude that the physical

size of the ClBb is much smaller compared to the disc bar. Initially,

the ClBb and disc bar are not in phase, the ClBb seems to be lagging

behind the disc bar by about 2◦–4◦ in angle. But soon, they start

rotating in-phase with each other. After about 1 Gyr, the pattern

speed of the ClBb is also nearly the same as that of the disc bar (see

Fig. 12). A convenient way of viewing the dynamics of the ClBb is to

think of it initially as a driven oscillation phenomenon where the disc

bar acts as a driver and the bar-like structure in the classical bulge

is its forced response. Later bulge particles are trapped by the 2:1

resonance; i.e. both components populate the orbits in their jointly

rotating potential. It has been shown in previous simulations e.g. by

Holley-Bockelmann, Weinberg & Katz (2005), Colı́n, Valenzuela

& Klypin (2006) and Athanassoula (2007) that a bar-like structure

also forms in the inner regions of the dark matter halo as a result of

its interaction with the bar in the disc. These studies have shown that

C© 2012 The Authors, MNRAS 421, 333–345
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342 K. Saha, I. Martinez-Valpuesta and O. Gerhard

such a bar in the halo is rather weak and nearly corotates with the bar

in the disc. It turns out that some of the characteristics of the ClBb

are quite similar to those of the halo bar. However, with the classical

bulge being much less massive than the halo, the dynamical impact

of the bar-like structure is much more pronounced in the classical

bulge, as we have already demonstrated above. Besides the transfer

of energy and angular momentum between the disc bar and the

classical bulge, the stars in the classical bulge are also being heated

during the evolution and hence the inner bulge region becomes

moderately thicker and rounder (see Fig. 7). We have checked that

the slow variation in the ellipticity of the classical bulge is consistent

with the variation in the kinetic energy tensor in accordance with

the tensor virial theorem. A more detailed picture of the dynamics

of the bulge hosting a bar and its observational properties will be

presented in a future paper.

6.4 Triaxiality and anisotropy

From the misalignment of the photometric major axis of the disc

and the bulge and the isophotal twists, it is inferred that many of the

bulges in spiral galaxies are indeed triaxial (Stark 1977; Gerhard,

Vietri & Kent 1989; Bertola, Vietri & Zeilinger 1991; Ann 1995;

Méndez-Abreu et al. 2010). Here, we show the evolution of the

triaxiality and velocity anisotropy in the low-mass classical bulge

in our simulation. The global parameter for the bulge triaxiality Tb

can be computed using the following relation (Franx, Illingworth &

de Zeeuw 1991; Jesseit, Naab & Burkert 2005):

Tb =
1 − (b/a)2

1 − (c/a)2
, (7)

where a, b and c are the semi-axes defining the shape of the classical

bulge (see Section 6.5 for the measurement of the axis ratios). a =
b > c denotes an oblate configuration, i.e. Tb = 0, and b = c < a is

a prolate figure corresponding to Tb = 1. Here, a �= b �= c defines

a triaxial configuration with peak values reaching Tb = 0.5. In

Fig. 13, we show the evolution of the shape of the classical bulge.

Initially, the bulge is oblate (Tb ∼ 0; see Fig. 13); thereafter, it

evolves as a result of the angular momentum gain and change in the

orbital structure. During the period of 0.17–0.56 Gyr (roughly the

dynamical phase), a considerable fraction of angular momentum is

Figure 13. Time evolution of the shape of the classical bulge. Initially, the

bulge is flattened by the strong disc potential and hence oblate. At later

phases of the secular evolution, it becomes triaxial. The solid diagonal line

denotes a prolate configuration. The red open circles are the measured values

of the axis ratios at T = 0, 0.25, 0.393, 0.56, 1.1, 1.52, 1.77 and 2.1 Gyr.

b/a = 0.99 and 0.877 at T = 0 and 2.1 Gyr, respectively.

gained at resonances η = −1 corresponding to the Lagrange point

orbits and η = 0.5 (ILR) (see Fig. 6). This angular momentum gain

causes the bulge particles to move outwards and thereby produce

a disky structure (see Fig. 7) in the outer parts of the bulge. In

this period, essentially only b/a changes while c/a remains nearly

constant.

Beyond ∼0.56 Gyr, the ClBb forms in the bulge, causing substan-

tial changes in the bulge structure. As mentioned in Section 6.3, the

ClBb heats (Saha et al. 2010) the bulge stars mainly in the central

region and makes it thicker. We think that this heating due to ClBb

is primarily responsible for subsequent changes in c/a. During the

period from 1.5 to 2.1 Gyr, b/a changes more than c/a. At T =
2.1 Gyr, the small classical bulge is triaxial with Tb = 0.48. This

suggests that, more generally, fast rotating and triaxial bulges could

have developed through the interaction of a strong bar and a small

classical bulge in galaxies with low B/D ratio. A more comprehen-

sive analysis focusing on the role of the most important parameters

such as the bulge mass and size will be presented in a future paper.

As shown in Section 3, the initial velocity distribution in the

classical bulge in our simulation is isotropic, represented by a King

model. As a result of the angular momentum influx and the read-

justment of the orbits, the velocity structure changes during the

evolution. We measure the deviation from isotropy in the veloc-

ity distribution by the anisotropy parameters defined as βrz = 1 −
(σ z/σ r)

2 and βrϕ = 1 − (σ ϕ /σ r)
2, where σ r, σ φ and σ z are the

velocity dispersions in the radial, azimuthal and vertical directions.

Then βrz > 0 denotes radial anisotropy and βrϕ < 0 means tan-

gential anisotropy. In Fig. 14, we show the profiles of the radial

anisotropy at four different epochs calculated from all the parti-

cles in the classical bulge. We see that the classical bulge already

becomes radially anisotropic at T = 0.56 Gyr. To understand the

source of radial anisotropy, we have studied orbits in the classical

bulge as clarified in Fig. 6. Fig. 15 shows radial variation of σ 2
z /σ 2

r

and σ 2
φ/σ 2

r computed from bulge particles that are trapped at ILR

(η = 0.5) and from a group of resonant and non-resonant particles in

the frequency range −2.0 ≤ η ≤ −0.1 separately. The particles that

are at ILR resonance (2:1) follow x1-type orbits and they produce

the radial anisotropy in the inner region of the classical bulge which

host the ClBb. However, in the outer region, definite contributions

to the radial anisotropy come from the bulge particles in the fre-

quency range −2.0 ≤ η ≤ −0.1. The particles that are at resonance

with the bar, e.g. at η = −2, −1, follow regular orbits while the

non-resonant particles are in stochastic orbits.

Figure 14. Radial variation of the anisotropy parameter βrz for the clas-

sical bulge. Beyond about 0.56 Gyr, the anisotropy profiles remain nearly

unchanged.

C© 2012 The Authors, MNRAS 421, 333–345

Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
2
1
/1

/3
3
3
/9

8
9
9
7
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



Spin-up of low-mass classical bulges 343

Figure 15. Radial variation of velocity dispersion ratios computed from

bulge particles trapped at ILR (η = 0.5) and from a group of resonant

and non-resonant particles in the frequency range −2.0 ≤ η ≤ −0.1 in the

classical bulge. Orbits of these particles were computed at 1.1 Gyr.

6.5 The Vm/σ–ǫ relation

To quantify the degree of ordered motion in bulges and ellipticals

and illuminate the difference between the two types of stellar sys-

tems, the Vm/σ–ǫ diagram relating the ratio of rotational to random

motions and the observed ellipticity (ǫ) was introduced (Illingworth

1977). It was shown that bulges are, in general, fast rotators com-

pared to bright elliptical galaxies (Kormendy & Illingworth 1982;

Davies et al. 1983; Cappellari et al. 2007; Morelli et al. 2008).

Here, we focus on the relation between the shape and kinematics

of the simulated low-mass classical bulge that has been subject to

the secular evolution driven by a strong bar. We show explicitly the

evolutionary track of this particular classical bulge in the Vm/σ–ǫ

diagram below (Fig. 16).

In observations, it is rather difficult to have an accurate measure-

ment of the bulge rotation velocity due to possible disc contamina-

tion. On the other hand, in simulations, it is rather straightforward

Figure 16. The Vm/σ–ǫ relation for the small classical bulge alone. Initially,

the bulge is non-rotating but then it acquires angular momentum emitted by

the bar and evolves into a fast rotating triaxial bulge. Each open circle

represents an epoch in the simulation beginning at T = 0 (the bottom-most

point). Subsequent circles are drawn at 0.25, 0.393, 0.56, 1.1, 1.52, 1.77 and

2.1 Gyr. The pink solid line is the reference isotropic rotator model.

to compute the velocity profile for the classical bulge alone because

it is possible to filter out the disc and halo components of the model

galaxy. We determine Vm as the maximum of the azimuthally av-

eraged rotational velocity of the bulge particles measured in the

equatorial plane of the bulge, and σ is the mean velocity dispersion

in the central region (calculated at r ∼ 0.5 × R1/2) of the bulge.

For the bulge ellipticity, we use c/a for the edge-on view. Mea-

suring the ellipticity for a bulge is slightly tricky because there can

be a strong radial variation in the ellipticity profile ǫ(r). Triaxiality

could add another degree of complexity to such a measurement.

Below, we describe how the bulge ellipticities are measured.

In order to determine the intrinsic ellipticity, we first compute

the moment-of-inertia tensor of the 3D mass distribution of the

classical bulge and diagonalize it to obtain the principal moments

and three orthogonal eigenvectors. The principal moments of inertia

determine the intrinsic axis ratios of the inertia ellipsoid and the

eigenvectors determine the orientation of the ellipsoid with respect

to the coordinate space. Using the eigenvalues and eigenvectors,

we determine the two axis ratios namely b/a and c/a, where a >

b > c are the three semi-axes of the inertia ellipsoid. We have done

this at the bulge half-mass radius containing 50 per cent of the

total bulge particles and at the radius containing about 90 per cent

of the total bulge particles. The ellipticity measurements for the

classical bulge are nearly the same in both cases. In the following,

we use the ellipticity at radii enclosing ∼90 per cent of the total

bulge particles and use the definition of the ellipticity of the bulge

as ǫ = 1 − c/a when viewed edge-on. We have also performed

isophote analysis using the ellipse-fitting routine from IRAF on a

set of suitably rotated and inclined edge-on images (Fig. 7) of the

classical bulge at different epochs during the evolution. We find a

good agreement between the two different types of measurements

of the bulge ellipticity.

In Fig. 16, we show the Vm/σ and ǫ values for the small classi-

cal bulge during the secular evolution. Each point in this diagram

corresponds to a particular epoch during its evolution and when con-

nected together they form its evolutionary track. This shows that the

small classical bulge rotates significantly faster in the later stages of

the evolution compared to the oblate isotropic rotator model, which

can be approximated by (Binney 1978; Kormendy 1982)

Vm/σ ∼=
√

ǫ

1 − ǫ
. (8)

The interpretation of Fig. 16 is complicated by the fact that the clas-

sical bulge is not an isolated stellar system, but interacts dynamically

with the bar within a disc galaxy. The entire period of evolution of

the classical bulge can be broadly divided into two parts: one be-

fore the formation of the ClBb (∼0.56 Gyr) and the second after its

formation. Before the formation of the ClBb, the bulge stars in the

outer region gain a significant fraction of the angular momentum

emitted by the bar and move mainly outwards in radius. As a result

of this, the values of Vm/σ increase until ∼0.56 Gyr, while the axis

ratio c/a remains unchanged. In the second half of the evolution,

the bulge stars are heated due to the ClBb by a factor of ∼1.5 in

velocity dispersion and this makes the inner region rounder. Thus,

the c/a ratio increases, making the ellipticity decrease considerably.

The near saturation in Vm/σ towards the end of the simulation is

connected with the fact that the rate of the angular momentum gain

by the bulge nearly saturates at these epochs (see Figs 5 and 6). A

more detailed analysis on how the spinning up of the classical bulge

depends on the various parameters of the bulge (bulge-to-disc mass

ratio, size of the bulge and its central velocity dispersion) and the

C© 2012 The Authors, MNRAS 421, 333–345

Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
2
1
/1

/3
3
3
/9

8
9
9
7
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



344 K. Saha, I. Martinez-Valpuesta and O. Gerhard

disc (Toomre Q, bar strength and bar size) will be presented in a

future paper.

7 D ISCUSSION

The primary goal of this paper has been to describe a generic mech-

anism, the transfer of the angular momentum from a bar to an

embedded classical bulge. We have shown that this mechanism is

important for understanding the rotational motion of low-mass clas-

sical bulges in the central regions of barred galaxies. The growth rate

and the strength of the bar are important factors for this mechanism

to work efficiently. One very interesting outcome of this process

is the cylindrical rotation in the small classical bulge in the model

studied here. Some possible observational implications and other

issues are addressed below.

7.1 Structural impact on the bulge

During the secular evolution, a flat bar transforms into a boxy bulge.

While the bar grows, buckles and evolves, a fraction of the angular

momentum emitted by the bar is absorbed mainly in the outer parts

of the embedded classical bulge in the galaxy. As a result, streaming

motions are induced in the classical bulge (Fig. 9), and the orbital

structure changes, causing velocity anisotropies. After about half a

Gyr, the ClBb forms in the inner regions of the bulge. The ClBb

introduces a pattern rotation in the classical bulge which transforms

into a rotating triaxial object. A comparison of Figs 3 and 12 shows

that beyond ∼0.8 Gyr the ClBb essentially corotates with the boxy

bulge formed out of the disc bar. Towards the end of the evolution,

the model galaxy has a composite bulge: a superposition of the boxy

bulge and a rotating triaxial classical bulge. At late times, the inner

regions of the classical bulge become rounder, as it is evident from

the surface density maps (Fig. 7) for the classical bulge particles

alone. We note that the stars in the classical bulge are heated by a

factor of ∼1.5 in velocity dispersion within 2 Gyr. The ClBb may

be responsible for heating the bulge stars in a similar fashion as the

bar heats the disc stars (Saha et al. 2010).

7.2 Boxy bulge and net cylindrical rotation

It is widely accepted that cylindrical rotation is a characteristic

feature of the kinematics of a boxy bulge formed out of the disc

material, via the vertical buckling instability of the bar. Thus, the

presence of cylindrical rotation in the central regions of a galaxy

may lead one to infer the presence of a boxy bulge that originated

from the disc, without any need for a classical bulge in this galaxy.

The work presented in this paper adds a new aspect to this simple

picture. The cylindrical rotation could also include the stars of the

classical bulge whose rotational properties have been modified by

the interaction with the bar. One would measure the net cylindrical

rotation of the stars in the combined boxy bulge and the classical

bulge. In the absence of strong photometric evidence, other infor-

mation such as from stellar populations and metallicity gradients

would be needed to determine the presence of a small classical

bulge.

Although the pure kinematic modelling of the BRAVA data (Shen

et al. 2010) suggests only an upper limit on the mass of a classical

bulge in the Milky Way, the measurements of the metallicity gradi-

ent above the Galactic plane (Zoccali et al. 2008) may indicate the

presence of a classical bulge. The upper limit on the total mass of

the bulge (boxy bulge + classical bulge) in our model, including

the remaining disc component in the boxy bulge region, is ∼1.46 ×

1010 M⊙. Of this, 0.29 × 1010 M⊙ is in the classical bulge and

∼1.17 × 1010 M⊙ is in the boxy bulge and the central disc. Since

the classical bulge extends further above the Galactic plane than the

boxy bulge, the metallicity composition of the composite system

would change with height. We plan to investigate this further and

use our model to look for signatures of the classical bulge from the

metallicity distribution in order to compare with observations of the

Milky Way.

7.3 Observing secular evolution through a classical bulge

Previous studies mainly based on N-body simulations have focused

on the bar–halo interaction (Athanassoula 2002; Weinberg & Katz

2007a; Dubinski et al. 2009; Villa-Vargas et al. 2009) and shown

that a significant amount of the angular momentum emitted by the

bar is absorbed in the dark matter halo. The angular momentum

gained by the halo changes the internal structure of the dark matter

halo. Some authors have utilized this mechanism of angular momen-

tum exchange to resolve the cusp–core issue (El-Zant, Shlosman &

Hoffman 2001; Weinberg & Katz 2002; Sellwood 2008) in galax-

ies while others have focused on the halo–bar (Holley-Bockelmann

et al. 2005; Colı́n et al. 2006; Athanassoula 2007). However, direct

observational evidence for the halo–bar, and hence direct observa-

tional verification of the ongoing secular evolution and angular mo-

mentum transfer, cannot be obtained unless dark matter is detected.

Unlike the dark matter, it is possible to observe Galactic bulge stars

in detail, both the kinematics and stellar population parameters. It

is thus possible to verify observationally the bar–bulge interaction

and the resulting dynamical properties of the ClBb. Observational

evidence for the ClBb could be a direct confirmation of the angular

momentum transfer and secular evolution in the galaxy.

8 C O N C L U S I O N S

The secular processes driven by the bar not only restructure the

disc but also the other components in the galaxy. Since the classical

bulge is less massive here compared with the surrounding dark

matter halo, the angular momentum gained by the classical bulge

has a more significant effect on its evolution. This work has shown

in considerable detail that the unavoidable gravitational interaction

between these two components can have profound implications for

the structure of a low-mass classical bulge, as highlighted below.

(1) We have established that the main mechanism of angular

momentum transport operating between the bar and the classical

bulge is through resonances. The bulge particles gain angular mo-

mentum emitted by the bar through the bar’s ILR (η = 0.5), and

other resonances with η = −1, −2 and also through non-resonant

orbits with η ∈ (−0.4, 0.0) during the dynamical phase when bar

growth is rapid. Approximately 3/4 of the net angular momentum

is gained by the classical bulge during the dynamical phase where

stochastic orbits contribute ∼30 per cent.

(2) The angular momentum gained by the initially non-rotating

classical bulge sets the bulge particles in rotational motion. The

radial gradient in the rotational motion in the classical bulge is

lower than in the boxy bulge. As time progresses, the rotational

velocity increases and nearly saturates at about 1 Gyr. At around

this time, the inner regions of the classical bulge develop cylindrical

rotation while the outer parts are still in differential rotation.

(3) As a result of the angular momentum transfer, some of the

bulge orbits are trapped by the rotating bar potential, a ClBb forms

which essentially corotates with the bar, and the classical bulge
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transforms into a triaxial, anisotropic object where trapped orbits

contribute to the radial anisotropy.

(4) Towards the end of the secular evolution, the model galaxy

has a composite bulge which is a superposition of the boxy bulge

formed out of the disc material and the rotating triaxial, low-mass

classical bulge. The stars in the composite bulge rotate cylindrically.

From an observational perspective, one would need other tracers

such as metallicity gradient, stellar population parameters along

with the kinematics to reliably determine the presence of such a

low-mass classical bulge embedded in the boxy bulge.
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