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Abstract We present a theory of superconductivity based
on the theoretical prediction that a macroscopic persistent
current is generated by spin-vortices. It explains the origin of
the phase variable θ that is canonical conjugate to the super-
fluid density as a Berry phase arising from the spin-vortex
formation. This superconductivity does not require Cooper-
pairs as charge carriers, thus, is not directly related to the
standard theory based on the BCS one; however, it exhibits
the flux quantization in the unit Φ0 = hc/2|e|, where h is
Planck’s constant, c the speed of light, and e the electron
charge; and the AC Josephson frequency, fJ = 2|e|V /h,
where V is the voltage of the battery connected to the
superconductor–insulator–superconductor junction. In due
course, it is found that the standard derivation of the AC
Josephson frequency misses a term arising from the flow
of particles through the leads connected to the junction. If
this contribution is included, the observed fJ indicates that
the phase θ is a variable conjugate to the number density of
charge e carriers instead of the currently accepted charge
2e carriers. We propose an experiment that discriminates
whether it is e or 2e. If the above claim is verified, it means
that the BCS theory cannot predict whether a particular com-
pound is a superconductor or not since it does not explain the
origin of θ . A connection between the present mechanism
and the BCS mechanism is discussed; the fact that the BCS
theory gives an excellent estimate of Tc is attributed to the
fact that it predicts the temperature at which spin-vortices
become long-lived due to the energy gap formation; since
the stabilization by the electron-pair formation is compatible
with the present mechanism, asymmetries observed in the
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even and odd number of electron systems are preserved. The
most notable difference is that the persistent current gener-
ation is formulated in a strictly particle-number-conserving
manner. Thus, it does not violate the superselection rule for
the total charge.
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1 Introduction

In 1911, the superconducting state of electrons was discov-
ered in pure mercury [1]; electric charge was transferred be-
tween two end points of a sample without a voltage drop.

This superfluid phenomenon of charged particles has
been explained as a consequence of an energy gap formation
by the electron-pair (Cooper-pair) condensation [2]. Since
the superfluidity of 4He is strongly connected to Bose–
Einstein condensation (BEC) [3, 4], superconductivity is of-
ten regarded as the consequence of the BEC of Cooper-pairs,
where Cooper-pairs are regarded as bosons.

The supercurrent is believed to be proportional to the gra-
dient of a phase variable “θ” that is canonical conjugate to
the density of the particles ρ [5]; actually, this phase θ is the
key ingredient that causes many phenomena associated with
superconductivity.

Although θ is crucially important, its origin is not settled,
yet; there are more than one theories for its origin. The most
popular one is the one by P.W. Anderson [6]. He reached his
conclusion through the prediction and observation of a DC
current flow through a weak-linked superconductors without
a voltage difference, and an AC current flow with the non-
zero voltage difference by B.D. Josephson [7, 8]. He argues
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that the gauge symmetry is broken in the BEC system in the
sense that the mean value of the particle field operator ψ̂ has
a macroscopic value;

〈
ψ̂(r, t)

〉 = ρ1/2(r, t)e−iθ(r,t). (1)

In this treatment, θ arises as a consequence of the gauge
symmetry breaking.

The currently accepted theory of superconductivity is the
one based on the BCS theory which provides a way to cal-
culate Tc, and explains many properties associated with an
energy gap formation due to the Cooper-pair condensation.
In this theory, the superconducting wave function is given
as a linear combination of different particle-number states,
thus, the field operator has non-zero mean values in accor-
dance with (1).

The supercurrent is a flow of Cooper-pairs in the BCS
theory; thus, ψ̂ is the field operator for Cooper-pairs. The
carrier charge q of the supercurrent should be q = 2e since
the charge on a Cooper-pair is 2e, where e is the electron
charge. The observed flux quantization unit [9]

Φ0 = hc

2|e| , (2)

where h is Planck’s constant and c the speed of light; and
the AC Josephson frequency [10],

fJ = 2|e|V
h

, (3)

where V is the voltage of the battery connected to the
Josephson (or superconductor–insulator–superconductor
(SIS)) junction are believed to be the manifestation of
q = 2e.

Although the above gauge symmetry breaking origin of
θ is very popular, it is not universally accepted; there is a
serious claim by A.J. Leggett that observed phenomena are
equally explainable without the gauge symmetry breaking
if the BEC occurs [11]. In this view, the gauge symmetry
breaking is just a calculational tool, and care must be taken
for any properties that are calculated with violating the con-
servation of the particle number. It is also worth noting that
Anderson’s view violates the superselection rule for the total
charge [12–14].

Actually, there is a loose end of the fundamental level
in the standard theory of superconductivity; even the exis-
tence of the phase variable θ is granted, there is no convinc-
ing explanation for the thermodynamic stability (or quasi-
stability) of the current proportional to ∇θ [14]; i.e., ∇θ = 0
should be satisfied in the ground state, thus, any current car-
rying state with ∇θ �= 0 should be relaxed to the current-
less state. However, the standard theory does not provide a
convincing explanation for the long-lived ∇θ �= 0; this also

means that we really do not know the true connection be-
tween the BEC and superfluidity. Practically, persistent cur-
rent related phenomena are calculated using the Ginzburg–
Landau phenomenological equation [5] assuming that the
stability of ∇θ is something granted.

Meanwhile, a quite different theory for the persistent cur-
rent generation has been put forward [15–17]. In this theory
the phase θ arises as a Berry phase due to the spin-vortex
formation; loop currents are predicted to be induced as a
Berry phase effect if spin-vortices are present. The stability
of ∇θ �= 0 is explained as the stability of the spin-vortices.
This theory also yields the flux quantization in the unit Φ0

as in the standard superconductivity theory.
In the above persistent current, a multi-valued function χ

appears; it is related to θ as θ = −χ/2, and satisfies

∇2χ = 0; (4)

and the current is given roughly proportional to ∇χ [15].
Actually, such a function was speculated to exist in su-
perconductors by F. London, and called, the “superpoten-
tial” [18]. It is worth noting that the existence of an electric
current proportional to ∇χ invalidates the usual decompo-
sition of electric current into the transverse and longitudinal
components [19]. Since∇χ is a harmonic vector, it satisfies
both the transverse condition ∇ · ∇χ = 0 and the longitudi-
nal condition ∇ × ∇χ = 0, thus, ∇χ will give rise to extra
transverse and longitudinal contributions.

The above-mentioned new development suggests that a
theory of superconductivity may be constructed in a quite
different manner; i.e., the required phase θ in superconduc-
tivity arises without referring to the BEC or the gauge sym-
metry breaking.

At this point, it is worth noting that the standard theory
of superconductivity is not powerful in predicting whether
a particular compound is a superconductor or not. This is
usually excused by the difficulty in obtaining normal state
properties from which Tc is calculated. However, it has been
argued that the normal state properties that are important in
predicting Tc is not statistically correlated with whether a
particular compound is a superconductor or not [20]. It is
also observed in La1.875Ba0.125CuO4 that although an en-
ergy gap that appears to be due to the Cooper-pair condensa-
tion exists, it fails to be superconducting [21]. The above two
facts may indicate that the origin of θ may be different from
the Cooper-pair condensation, although the temperature for
it corresponds to Tc. It is also noteworthy that evidence for
stable loop currents is observed in the cuprate by the po-
lar Kerr-effect measurement [22, 23] and the recent neutron
scattering experiments [24]; especially, the latter have ob-
served magnetic excitations peaked at q = 0, suggesting the
existence of a current of a harmonic vector.

In the present work, we propose the Berry phase origin
for θ . The most significant difference is that θ is a phase
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variable canonical conjugate to the number density of charge
e (not 2e) carriers. It is also noteworthy that the present
origin does not violate the superselection rule for the total
charge. We expect that the rigidity of θ [25] sets in due to
the energy gap formation by the Cooper-pair condensation
at Tc, thus, the fact that the BCS theory gives an excellent
estimate of Tc is explained. Since the stabilization by the
electron-pair formation is compatible with the present mech-
anism, asymmetries observed in the even and odd number of
electron systems are preserved.

Let us describe the organization of the present work. In
Sect. 2, we first discuss the occurrence of the Josephson ef-
fect in a rather general manner. We put forward a new def-
inition of the superfluid system. Our definition is “the sys-
tem equipped with θ that is canonical conjugate to ρ, and
provides a long-lived current proportional to ∇θ”. We will
demonstrate that the above definition and gauge invariance
requirements gives rise to the Josephson effect.

In the process of re-deriving the AC Josephson frequency,
it is found that the conventional derivation misses a contribu-
tion from the flow-in and -out of particles through the leads
connected to the Josephson junction. If this contribution is
included, the observed AC Josephson frequency indicates
that the charge on the tunneling particle is e, not 2e, or the
phase θ is conjugate to the number density of charge e car-
riers. This finding upsets the standard theory; thus, it should
be verified experimentally. For this purpose, we propose an
experiment that discriminates whether the tunneling charge
across the Josephson junction is in the unit of e or 2e. Note
here that the above statement does not exclude the appar-
ently pairwise tunneling; if experiments are performed in the
condition where the paring stability is significant compared
to other energies such as the thermal energy kBT (kB is the
Boltzmann constant) or the Coulomb energy, asymmetry in
even and odd particle-number states will be observed.

In Sect. 3, we derive the phase θ from a model contains
stable spin-vortices. Actually, θ is given as a Berry phase in-
duced by the spin-vortices. This Berry phase arises from the
twisting of two basis functions, thus, mathematically equiv-
alent to the one first found by Longuet-Higgins et al. in the
context of the dynamical Jahn–Teller effect [34, 35]; the two
basis functions here are, however, the two spin states of an
electron, while they are those of a doubly degenerate E sym-
metry state in the Jahn–Teller case. When an energy gap for
electronic excitations is formed, the stability in ∇θ is real-
ized.

In Sect. 4, we argue that stable spin-vortices are formed in
the effectively half-filled Mott insulator (EHFMI) state, and
a stable ∇θ is achieved [15, 26]. Here, the half-filled insulat-
ing state is approximated by a Slater determinant, thus, the
EHFMI state may be also called “the effectively half-filled
Slater state (EHFSS)” when we emphasize the current gen-
eration aspect. In the EHFSS, the lower band is filled with

extended single-particle states [27]; usually, a filled band
means an insulator, however, thanks to the fictitious mag-
netic field generated by spin-vortices, the EHFSS can be a
current carrying state.

In Sect. 5, the oscillation of the maximum zero-voltage
current with varying an external magnetic field in a circuit
with two identical SIS junctions (the SQUID structure) is
examined. We show that the present theory explains ob-
served oscillation patterns [28]. We also demonstrate that the
“0-SQUID (or edge-junction)” and “π -SQUID (or corner-
junction)” patterns [29] that are usually attributed to the d-
wave symmetry of the order parameter, are shown to arise
from evenness or oddness of the winding number of the
Berry phase.

Lastly in Sect. 6, we will conclude this work by dis-
cussing a possible relation between the present theory and
the BCS theory. The relevance of the present theory to the
cuprate superconductivity is also discussed, where it is sug-
gested that the BCS gap formation mechanism is necessary
for superconductivity in the surface region where the small
polaron formation required for the EHFMI state (or EHFSS)
is not fulfilled.

2 A Definition of Superconductivity

P.W. Anderson has taken that a system with the order param-
eter Ψ defined by

Ψ = 〈
ψ̂(r, t)

〉 = ρ1/2(r, t)e−iθ(r,t), (5)

as the definition of the superfluid system [6], where ρ is the
particle density and θ is a phase variable.

The variables θ and ρ are canonical conjugate; thus, the
following basic equations of motion are obtained;

ρ̇ = 1

�

δH

δθ
, (6)

θ̇ = −1

�

δH

δρ
, (7)

where H is an energy functional that depends on ρ and θ .
In deriving the above equations, Anderson has used the

fact that the BCS state vector is a linear combination of state
vectors for different numbers of Cooper-pairs, and assumed
the phases among them are meaningful, i.e., the superselec-
tion rule for the charge [12] is violated. Since the charge on
a Cooper-pair is 2e, the phase θ is conjugate to the number
density for 2e charge carriers.

Later, A.J. Leggett has obtained the same equations by
considering wave functions for the Bose–Einstein conden-
sate [11, 14]. In his treatment, the Cooper-pair is treated as a
boson; thus, θ is the phase variable conjugate to the number
density for 2e charge carriers as in the Anderson’s treatment.



2000 J Supercond Nov Magn (2011) 24:1997–2011

Fig. 1 A Josephson junction contacted with a battery of a voltage V .
An electric field appears inside the insulator (denoted as “I” in the fig-
ure) since the junction is a capacitor in the zeroth order approximation.
The voltage across the insulator is denoted as W . The tunneling of a
charged particle over the insulator (solid-line arrow) is accompanied
by the flow of charged particles (dotted-line arrows) in and out of the
junction

However, the conservation of the number of particles is pre-
served.

In the following, we go in the other direction; we take
“the existence of the phase variable θ that is canonical con-
jugate to ρ, and that gives rise to a long-lived current de-
pends on ∇θ” as the definition of the superfluid system. We
will derive the AC Josephson frequency starting from (6)
and (7), and gauge invariance.

Since θ is a phase variable, the energy functional should
depend on θ through ∇θ . Then, (6) describes merely the
equation of continuity,

ρ̇ + ∇ · j = 0, (8)

where the current density j is given by

j = 1

�

δH

δ∇θ
. (9)

For the supercurrent dynamics, (7) is the most important
one.

Let us consider an superconductor–insulator–supercon-
ductor (SIS) junction or a Josephson junction. The two su-
perconductors are denoted as SL and SR ; they are contacted
with a battery of a voltage V as is seen in Fig. 1. Note that
the situation depicted in Fig. 1 is a very simplified one; in re-
ality other elements of circuits exist; what is important here
is that an energy difference of |q|V exists between the par-
ticle that enters and another one that exits (q is the charge
on the particle), and an electric field appears in the insulator
to maintain the chemical potential difference between two
superconductors.

For a while, we consider the case in which the voltage of
the battery is zero, and ignore the electromagnetic interac-
tion.

Equations (6) and (7) indicate that ρ and ∇θ are opti-
mized in stationary states. We assume that the ∇θ is opti-
mized in each superconductor; note, however, that this dose
not mean that current does not exist in each of them; a cir-
cular current may exist in each given by (9).

Since θ itself is arbitrary, the optimized θ in SL and SR

are written as

θ(r) + θL (10)

and

θ(r) + θR, (11)

respectively, where θL and θR do not depend on the position.
Let us assume that the weak link is so weak that the op-

timized ∇θ in SL and SR are not affected by it; however,
θR − θL is. In this case, we can treat θR and θL as time-
dependent variables that represent the time-dependence of θ

in SR and SL, respectively. Then, conjugate variables for θR

and θL become the number of particles in SR and SL, NR

and NL, respectively.
From (6) and (7), the equations for NR and θR are ob-

tained as

ṄR = 1

�

∂H

∂θR

, (12)

θ̇R = −1

�

∂H

∂NR

, (13)

and those for NL and θL as

ṄL = 1

�

∂H

∂θL

, (14)

θ̇L = −1

�

∂H

∂NL

. (15)

The quantum mechanical version of them is given by

˙̂
NA = i

�

[
Ĥ , N̂A

]
, (16)

˙̂
θA = i

�

[
Ĥ , θ̂A

]
, (17)

where A is either R or L; Ĥ , N̂A, and θ̂A are operator-
correspondences for H , NA, and θA, respectively.

Since N̂R , and θ̂R (and also N̂L, and θ̂L) are canonical
conjugate operators, the commutation relation of them is
given by

[
N̂A, θ̂B

] = −iδAB, (18)

where A and B are either L or R.
By introducing the following operators:

ĈA = e−iθAN̂
1/2
A (19)

and

Ĉ
†
A = N̂

1/2
A eiθA, (20)
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the commutation relation in (18) becomes

[
ĈA, Ĉ

†
B

] = δAB; (21)

this shows that ĈR and Ĉ
†
R (ĈL and Ĉ

†
L) are the annihilation

and creation operators for particles in SR (SL). Note that
the commutation relations are those for bosons, although the
particles may be fermions; this is allowable since we con-
sider the case NL,NR � 1.

Now, construct the operator for the transfer of particles
between SR and SL; the current between them is calculated
with it. We use

K̂J = tJ Ĉ
†
RĈL + tJ Ĉ

†
LĈR (22)

where tJ is a hopping matrix element between SL and SR .
Let us employ a semiclassical approximation in which

θ̂R , θ̂L, N̂R , N̂L are replaced by their mean values θR , θL,
NR , and NL, respectively. Then, the semiclassical version
of K̂J is given by

KJ = EJ cos(θR − θL), (23)

where

EJ = 2tJ (NRNL)1/2. (24)

Using (12) and (23), the electric current from SL to SR is
calculated as

J = qEJ

�
sin (θR − θL) . (25)

The derivative of the phase difference θR − θL is calcu-
lated using (13) and (15);

θ̇R − θ̇L = −1

�

∂H

∂NR

+ 1

�

∂H

∂NL

. (26)

If the chemical potential difference between SR and SL

is zero, the phase difference is obtained as

θR − θL = C, (27)

where C is a constant. This shows that even if the chemi-
cal potential difference (or voltage drop) is zero, a non-zero
current

J = q

�
EJ sinC (28)

can flow. The phase difference is long-lived by assumption;
therefore, the above J describes a supercurrent.

If the particles are charged, they interact with the elec-
tromagnetic field. Then, the Hamiltonian H contains the
Coulomb term

q

∫
d3r ϕρ, (29)

where q is the charge on the particle and ϕ is the electrostatic
potential.

Then, the basic equations of motion given in (6) and (7)
are modified as

ρ̇ = 1

�

δH̄

δθ
, (30)

θ̇ = −q

�
ϕ − 1

�

δH̄

δρ
, (31)

where the gauge invariant energy functional H̄ is defined as

H̄ = H − q

∫
d3rϕρ. (32)

Equation (31) indicates that the sum

θ̇ + q

�
ϕ (33)

is gauge invariant since δH̄/δρ is gauge invariant. This
means that the spatial counterpart of it,

∇θ − q

�c
A, (34)

is also gauge invariant.
Therefore, the energy functional H̄ should be a func-

tional of the gauge invariant combination ∇θ − q
�c

A, instead
of ∇θ . From this fact, we can obtain the familiar expression
for the electric current density formula,

qj = q

�

δH̄

δ∇θ
= −c

δH̄

δA
. (35)

By taking into account the gauge invariance, (23) and
(25) should be modified as

KJ = EJ cosφ, (36)

and

J = q

�
EJ sinφ, (37)

respectively, where

φ = θR − θL −
∫ R

L

q

�c
A · dr (38)

In the following we consider the case where the magnetic
field is absent; then, we may take A = 0, and (38) becomes

φ = θR − θL. (39)

The system is a closed-circuit with including the leads
and the battery. When calculating the time-derivative of φ,
we need to take into account the tunneling through the in-
sulator part of the junction, and the flow-in and -out of the
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particles through the leads. In order to clarify the inclusion
of the two types of particle transfer processes, we express
the Hamiltonian as

H = HLIR + HLBR + Hr (40)

where HLIR is the term for the particle transfer through the
insulator, and HLBR is that through the leads; Hr expresses
the remaining term.

Using (40), (26) is written as

φ̇ = θ̇R − θ̇L

= 1

�

(
∂HLIR

∂NL

− ∂HLIR

∂NR

+ ∂HLBR

∂NL

− ∂HLBR

∂NR

)
; (41)

this clearly indicates that φ̇ is a sum of two contributions.
Before examining each contribution we would like to

point out that the chemical potential difference between two
superconductors must be the same irrespective of the path it
is calculated. Therefore, the following relation is satisfied:

∂HLIR

∂NL

− ∂HLIR

∂NR

= ∂HLBR

∂NL

− ∂HLBR

∂NR

. (42)

Let us examine the first contribution in (41). Since the
junction is a capacitor in the zeroth approximation, an elec-
tric field E = −∇ϕ exists in the insulator. With this electric
field E, it is calculated as

1

�

(
∂HLIR

∂NL

− ∂HLIR

∂NR

)
= q

�
(ϕL − ϕR)

=
∫ R

L

qE · dr = −q

�
W, (43)

where ϕL and ϕR denotes electrostatic potential of SL and
SR , respectively; the integration path connects SL and SR

via the insulator; W is the voltage across the junction. This
contribution is interpreted that it arises form the energy gain
of a particle with charge q when it is accelerated in the elec-
tric field E during the particle transfer process from SLto SR

(it is indicated by the solid-line arrow in Fig. 1). Note that
the tunneling through the insulator is a potential barrier tun-
neling, thus, the energy gain is only by the acceleration in
the electric field.

The second contribution in (41) arises from the work
done by the battery; it gives rise to the chemical potential
difference between SL and SR , which is given by −qV ;
thus, we have

1

�

(
∂HLBR

∂NL

− ∂HLBR

∂NR

)
= 1

�
(μL − μR) = −q

�
V, (44)

where μL and μR denotes gauge invariant chemical poten-
tials of SL and SR , respectively. The second process is indi-
cated in Fig. 1 by the dotted-line arrows. Note that the bat-
tery can be replaced by some other devices; the important

Fig. 2 Energy diagram for the charged particle tunneling through the
SIS junction in Fig. 1. It is assumed that q < 0. μL = ∂H̄/∂NL and
μR = ∂H̄/∂NR are gauge invariant chemical potentials in SL and SR ,
respectively. An electric field is generated in the insulator to maintain
the chemical potential difference μL − μR = |q|V . A charge transfer
process from the left lead to the right lead is depicted; a charged particle
with the energy μL enters SL and moves to the weak link made by
an insulator I . It tunnels through the insulator; thereby, it gains the
energy |q|V from the acceleration by the electric field in I . By the
deexcitation of the energy 2|q|V , it reaches the level with energy μR

in SR . Then, it moves toward the right lead, and finally exits from the
junction. Application of a radiation field with �ω = 2|q|V will help the
deexcitation process

point here is that there is the energy difference of μL and
μR between the particle enters, and that exits.

In the quasi-stationary situation given in (42), Kirch-
hoff’s voltage law is satisfied;

W = V. (45)

Over all, the time-derivative of φ is calculated as

φ̇ = −q

�
(V + W) = −2qV

�
. (46)

To make the above arguments clearer, let us examine the
energetics of the charged particle tunneling. In Fig. 2, the en-
ergy diagram for the Josephson junction is depicted. When
the tunneling from SL to SR through the insulator occurs,
the tunneling particle is accelerated by the electric field in-
side the insulator, and gains the energy |q|V . Another en-
ergy gain occurs when a particle enters and another exits
from the junction, which is given by μL − μR = |q|V . The
total energy gain is, thus, 2|q|V , which has to be discarded
somehow. Applying an electromagnetic field helps this pro-
cess and doing so will yield the so-called, ‘Shapiro-step’ in
the I–V plot [10].

From (46), the frequency of the AC current is obtained as

fJ = 2|q|V
h

. (47)

The experimentally observed frequency is 2|e|V/h [10];
therefore, the charge on the particle whose number density
is canonical conjugate to θ is given by

q = e. (48)
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Fig. 3 Set up for the experiment that discriminates whether the charge
on the tunneling particle through the Josephson junction is in the unit
e or 2e. A normal metal quantum dot N is connected to the Josephson
junction SIS. The charging state of N is controlled by the gate capaci-
tance Cg that is connected to the voltage U

This result is surprising since the AC Josephson effect is be-
lieved to be due to the Cooper-pair tunneling in the standard
theory, thus, the phase θ is a phase variable that is canonical
conjugate to the number density of the Cooper-pairs; in this
case q should be 2e. If we examine existing derivations so
far, it is noticed that the Josephson junction is considered in
an open-circuit condition; and the second contribution given
in (44) is absent. We believe that the closed-circuit treatment
adopted here is relevant to the real experimental situation
since the current is measured in one of the leads, not in the
junction. It is sensible to include the charge flow between the
leads and the junction, thus, the second contribution given in
(44) should be included.

The above result upsets the standard theory. Note, how-
ever, that it does not mean that pairwise tunnelings do not
occur; actually, if the pairing stability is significant, pair-
wise transfer of particles will be energetically favored. What
the present result indicates is that θ is a conjugate variable
to the number density of the charge e particles; thus, the
present understanding on the persistent current generation
that attributes it to the Cooper-pair flow is not correct. Note
also that this statement does not contradict the stabilization
by the electron-pair formation and observed asymmetries in
the even and odd number of electron systems in some exper-
iments.

For the experimental verification of the present result, we
propose an experiment that will discriminate whether the
unit of the charge on the tunneling particle is either e or 2e.
It utilizes a circuit composed of an SIS junction, a normal
metal quantum dot, and a gate capacitance connected to the
voltage U that controls the charging state of the quantum dot
(Fig. 3). The quantum dot and the control-gate are so made
that the difference of e or 2e-charge change by varying the
applied voltage U is detectable. It is also necessary that the
two superconductors are not in the size where the asymme-
try in even and odd number states is significant. A similar
device is constructed and operated for the case where the
quantum dot is a superconductor; there, the charging in the
unit of 2e is observed due to the stability by the Cooper-pair
formation [32, 33].

If the charge on the tunneling particle is in the unit q and
the Cooper-paring stability is absent, the charge change unit
will be q even if q = e. By measuring this unit, it will be
possible to discriminate whether q is e or 2e.

3 Appearance of θ from Spin-vortices

In this section, we will show that the phase variable θ

discussed in the previous section naturally arises from a
Berry phase induced by spin-vortices. Actually, its origin is
the sign-change caused by the twisting of two basis func-
tions (i.e., the up-spin and down-spin states of an electron)
along a loop; this kind of Berry phase was first found by
H.C. Longuet-Higgins [34, 35], thus, for definiteness, we
may call it the Longuet-Higgins phase.

Let us consider the Hamiltonian given by

Ĥ = −
∑

k,j,σ

tkj e
iq
�c

∫ k
j A·dr

c
†
kσ cjσ

+
∑

j,σ

qϕj c
†
jσ cjσ + Ĥint (49)

where j denotes the j th site of a crystal lattice and σ de-
notes the electron spin-coordinate. The first term in (49) is
the electron hopping Hamiltonian, and Ĥint is the interaction
Hamiltonian.

The electromagnetic interaction is introduced by the
scalar potential ϕ, and the vector potential A, where the
latter is included by the Peierls substitution,

tkj → tkj exp

(
iq

�c

∫ k

j

A · dr
)

. (50)

When spin-vortices are present the following electron op-
erators aj and bj are convenient since the spin-vortices are
included as a prescribed condition as will be seen later. They
are related to the original electron annihilation operators cj↑
and cj↓ as

(
aj

bj

)

= ei
χj
2√
2

⎛

⎝ ei
ξj
2 e−i

ξj
2

−ei
ξj
2 e−i

ξj
2

⎞

⎠
(

cj↑
cj↓

)

. (51)

In the following, we consider the situation where stable
spin-vortices exist; actually, the phase ξj is regarded es-
sentially as the spin direction in the x–y plane at the j th
site [26]. The important point in (51) is that it contains a
factor exp(iχj /2); the reason for its existence is explained
below.

Let us introduce the winding number of ξ around the site
i defined as

wi[ξ ] = 1

2π

∮

Ci

∇ξ · dr (52)
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where Ci is a closed path with its center at the ith site. Non-
zero wi means that ξ is a multi-valued function.

Now we consider the shift of ξ along a loop that encircles
the ith site with assuming that wi[ξ ] = +1. After the excur-
sion, the value of ξ will be shifted to ξ + 2π . Then, factors
exp(±iξj /2) in (51) change sign by this phase shift. This
is the Longuet-Higgins sign-change due to the twisting of
the basis functions. In order to make the transformation ma-
trix single-valued, a phase factor exp(iχj /2) must be added;
it is so chosen that it compensates for the sign-change of
exp(±iξj /2) [15–17].

The above compensating requirement is satisfied if the
sum of two winding numbers

wi[ξ ] + wi[χ] (53)

is even, where wi[χ] is the winding number for χ defined
by

wi[χ] = 1

2π

∮

Ci

∇χ · dr. (54)

Actually, an optimal χ exists for prescribed winding num-
bers for χ . We will discuss a way to optimize χ later.

For the gauge transformation

A → A + ∇f, (55)

electron operators are modified as

cjσ → exp

(
−i

q

�c
fj

)
cjσ , (56)

which, according to (51), means that χ transforms as

χj → χj − 2q

�c
fj . (57)

Therefore, the two combinations

−χ̇ + 2q

�
ϕ (58)

and

∇χ + 2q

�c
A (59)

are gauge invariant.
Comparing (33)–(34) and (58)–(59), the following rela-

tion is suggested:

θ = −χ

2
; (60)

as will be seen later, this identification turns out to be affir-
mative.

Using the new creation and annihilation operators, the
hopping term in the Hamiltonian equation (49) is now writ-
ten as

K̂ = −
∑

k,j

tkj e
i
∫ k
j (

q
�c

A+ ∇χ
2 )·dr

[
cos

ξk − ξj

2

(
a

†
kaj + b

†
kbj

)

− i sin
ξk − ξj

2

(
a

†
kbj + b

†
kaj

)]
. (61)

The phase factor e
i
∫ k
j (

q
�c

A+ ∇χ
2 )·dr in K̂ indicates that

when ξ exhibits non-zero winding numbers, ∇χ gives rise
to a non-trivial fictitious magnetic field given by

Afic = �c

2q
∇χ (62)

according to the Peierls substitution.
It has been shown that Afic induces loop currents around

spin-vortices; and the current density j is generated by a col-
lection of such loop currents [15–17].

Let us derive equations of motion for χ by employing
the time-dependent variational principle using the following
Lagrangian [30]:

L = 〈Ψ |
(

i�
∂

∂t
− Ĥ

)
|Ψ 〉. (63)

The state vector |Ψ 〉 is expressed as

|Ψ 〉 =
∑

α

fα|α〉 (64)

where α = (na1, . . . , naNs , nb1, . . . , nbNs ) denotes an occu-
pation pattern of electrons; Ns is the number of sites, naj

and nbj are eigenvalues of the number operators a
†
j aj and

b
†
j bj at the j th site, respectively. The state vector |α〉 is then

constructed as

|α〉 =
∏

j∈Sα
a

a
†
j

∏

k∈Sα
b

b
†
k |vac〉, (65)

where Sα
a and Sα

b denote sets of sites where naj and nbj

are 1, respectively.
Noting that according to (51), the time-dependences of

a
†
j and b

†
j arise from the time-dependence of χj ; they are

calculated as

ȧ
†
j = −i

χ̇j

2
a

†
j = −i

χ̇j

2
a

†
j aj a

†
j , (66)

ḃ
†
j = −i

χ̇j

2
b

†
j = −i

χ̇j

2
b

†
j bj b

†
j . (67)

Then, the Lagrangian is obtained as

L = i�
∑

α

f ∗
α ḟα +

∑

j

�

2
χ̇j ρj −

∑

α,β

f ∗
α fβ〈α|Ĥ |β〉, (68)
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where ρj is the number of particles at the j th site given by

ρj = 〈Ψ |a†
j aj + b

†
j bj |Ψ 〉. (69)

From the above Lagrangian, the Hamiltonian is obtained
as

H =
∑

α,β

f ∗
α fβ〈α|Ĥ |β〉. (70)

Equations of motion for fα are obtained as

i�ḟα =
∑

β

〈α|Ĥ |β〉fβ; (71)

this indicates that the time-dependence of fα describes elec-
tronic excitations. In the following, we assume that low en-
ergy electronic excitations are eliminated by the effect of
Ĥint. Then, dynamical variables in the low energy physics
are ρ and χ , only.

Let us consider the ground state energy Hg for a given
∇ξ , ∇χ , A, and ϕ. The Hohenberg–Kohn theorem tells that
it is a functional of the density ρ [31], thus, we may express
it as

Hg = H̄g

[
ρ,∇χ + 2q

�c
A,∇ξ

]
+

∑

j

qϕjρj . (72)

∇χ and ∇ξ have to be also optimized with constrains of the
winding numbers of χ and ξ . We will take Hg as a func-
tional of χ and ρ for a given electromagnetic field.

Using Hg , the effective Lagrangian for the low energy
dynamics is obtained as

Leff =
∑

j

�

2
χ̇j ρj − H̄g −

∑

j

qϕjρj ,

=
∫

d3r
�

2
χ̇ρ − H̄g − q

∫
d3rϕρ. (73)

The momentum conjugate to χ is calculated as

pχ = δLeff

δχ̇
= �

2
ρ, (74)

thus, ρ and − 1
2χ are conjugate variables in accordance with

the previous suggestion.
Finally, the equations of motion that correspond to (30)

and (31) are obtained;

ρ̇ = −2

�

δH̄g

δχ
(75)

and

χ̇ − 2q

�
ϕ = 2

�

δH̄g

δρ
. (76)

Let us consider the Josephson junction problem; for the
Josephson junction case, the Hamiltonian is decomposed as

ĤJosephson = K̂Link + ĤRest, (77)

where the hopping term through the weak link K̂Link is given
by

K̂Link = −
∑

k∈SL,j∈SR

Tkj exp

(
i

∫ k

j

q

�c
A · dr

+ i
χk + χL − χj − χR

2

)

×
[

cos
ξk − ξj

2

(
a

†
kaj + b

†
kbj

)

− i sin
ξk − ξj

2
(a

†
kbj + b

†
kaj )

]
+ h.c.;

Tkj is the hopping parameter across the insulator, χL and
χR correspond to −2θL and −2θR in (10) and (11), respec-
tively, and represent parts of χ that are indeterminate by the
optimization of ∇χ in each superconductor. ĤRest simply
describes the rest of the Hamiltonian.

Using K̂Link, the electric current through the weak link is
expressed as

J =
∑

k∈SL,j∈SR

Jkj sin

(
χR + χj − χL − χk

2

−
∫ k

j

q

�c
A · dr − αkj

)
, (78)

where

Jkj = 2qTkjAkj

�
; (79)

Akj and αkj are the amplitude and phase of the following
expectation value:

Akj e
iαkj =

〈
cos

ξk − ξj

2

(
a

†
kaj + b

†
kbj

)

− i sin
ξk − ξj

2

(
a

†
kbj + b

†
kaj

)〉
. (80)

We may use αkj and Akj that are calculated for the
χj − χk = 0 and A = 0 case for other values for χR − χL

and A. Under this approximation, the electric current in (78)
becomes a functional of χR − χL for a given A. The time-
dependences of χR and χL are obtained from (13) and (15)
substituting Hg to H , and χ to −2θ . If k, j -dependences are
neglected, the current in (78) reduces to that in (37).
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4 The Appearance of Stable ∇χ States

Now we discuss Ĥint that will give rise to the required stabil-
ity in ∇χ . We consider a two-dimensional conduction plane
and take the following interacting Hamiltonian,

Ĥint = U
∑

j

a
†
j aj b

†
j bj + Ĥ ′ (81)

and impose the following conditions that lead the system to
be in the effectively half-filled Mott insulator (EHFMI) state
[15, 26]: (1) the parameter U satisfies the strong correlation
condition, U � |tjk|; (2) doped carriers in the half-filled
parent compound are assumed to become small polarons
with very small mobility (this is assumed to be achieved
by the carrier-lattice interaction contained in Ĥ ′); (3) spin-
vortices are formed with doped carriers at their centers (the
interaction that stabilizes spin-vortices are assumed to be
contained in Ĥ ′).

In order to obtain the electronic states for the EHFMI
state, we neglect the small polaron hopping, and employ the
following reduced Hamiltonian;

ĤEHFMI = K̂ + U
∑

j∈acc. sites

a
†
j aj b

†
j bj , (82)

where only accessible sites are included (or small polaron
occupied sites are excluded) in K̂ and the Coulomb term.

In the following we consider situations where the mag-
netic field effect is negligible, thus, A = 0 can be used in K̂ .

We employ the following mean field Hamiltonian to ob-
tain an approximate ground state:

H̄EHFMI = K̂ + U
∑

j∈acc. sites

(〈
a

†
j aj

〉
b

†
j bj + 〈

b
†
j bj

〉
a

†
j aj

)
. (83)

In the effectively half-filled situation, the obtained ground
state is a Slater determinant of single-particle wave func-
tions for a filled lower band. In this respect we will call
this EHFMI state as the effectively half-filled Slater state
(EHFSS). The mean field calculation also yields single-
particle wave functions for an empty band which exists
above the lower band with an energy gap of about U . One
might think that the ground state is a band insulator. How-
ever, it is not; it can be a current carrying state if spin-
vortices exist thanks to the fictitious magnetic (Afic in (62))
induced by them.

In the EHFMI state, we have the following situation;

〈
a

†
j aj + b

†
j bj

〉 = 1, (84)

where j denotes the accessible sites. Since the Slater deter-
minant for the filled band can be also described by a local-
ized basis, the on-site Coulomb energy is small; thus, we

can obtain current carrying states with small Coulomb en-
ergy. The current is intact as long as the spin-vortices are in-
tact. Since the spin-vortices are expected to be stable, these
current carrying states will be also stable.

First, we consider the optimization of ξ appears in (51).
Actually, for a given ξ and χ , low energy spin-wave excita-
tions from the ground state are possible; thus, we will opti-
mize ξ using a spin Hamiltonian.

Let us construct the spin Hamiltonian for the EHFMI. For
that purpose, we adopt the condition

a
†
j aj + b

†
j bj = 1 (85)

as a substitute of (84) since this makes calculations much
easier.

Taking the on-site Coulomb interaction term as the zeroth
Hamiltonian and K̂ as a perturbation, the spin Hamiltonian
is obtained as [26]

Ĥspin = 1

U

∑

k,j

t2
jk sin2 ξj − ξk

2

(
S̃−

k S̃−
j + S̃+

k S̃+
j

− 2S̃Z
k S̃Z

j − 1

2

)
+ 1

U

∑

k,j

t2
jk cos2 ξj − ξk

2

×
(

S̃−
k S̃+

j + S̃+
k S̃−

j + 2S̃Z
k S̃Z

j − 1

2

)
, (86)

where spin operators, S̃+
j , S̃−

j , and S̃Z
j are defined as

S̃+
j = b

†
j aj , (87)

S̃−
j = a

†
j bj , (88)

S̃Z
j = 1

2

(
b

†
j bj − a

†
j aj

)
. (89)

In the optimization, we simply use the zeroth order
ground state given by

|0〉 =
∏

i∈acc. sites

a
†
i |vac〉, (90)

where |vac〉 is the vacuum state.
Then, we optimize ∇ξ by minimizing the following en-

ergy

〈0|Ĥspin|0〉 = − 1

U

∑

k,j

t2
jk sin2 ξj − ξk

2
(91)

with prescribed winding numbers around small polaron oc-
cupied sites.

Next, we optimize ∇χ . In order to obtain the optimized
∇χ , we use the mean field Hamiltonian in (83). In this
case, the ground state is described by a Slater determinant,
thus,we treat the EHFMI state as the EHFSS.
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In the optimizing process, careful treatment of the multi-
valued phase factor

exp

(
i

2

∫ k

j

∇χ · dr
)

(92)

is necessary. If we simply employ the basis {a†
j |vac〉,

b
†
j |vac〉}j∈acc. sites, a digital computer will treat the above

phase factor as single-valued functions; then, the Berry
phase effect disappears. In order to overcome this prob-
lem, we prepare the basis with required multi-valuedness in
the following manner. This is a tight-binding model variant
of the method employed to deal with the Longuet-Higgins
sign-change in molecular problems [36–38].

We first solve the fictitious problem, i.e., we consider a
system with spin-vortices but with χ = 0; here, we utilize
particle operators

ãj = e−i 1
2 χj aj , (93)

b̃j = e−i 1
2 χj bj , (94)

instead of aj and bj as a basis.
In the calculation of the Hamiltonian matrix elements,

the phase difference ξk − ξj in the Hamiltonian should be
chosen in the range

−π < ξk − ξj ≤ π. (95)

After the diagonalization of the above-constructed Hamil-
tonian matrix, the following single-particle states are ob-
tained:

|α̃〉 =
∑

j

(
Aα

j ã
†
j + Bα

j b̃
†
j

)|vac〉, (96)

where Aα
j and Bα

j are numerical values obtained from the di-
agonalization. In this way we obtain, 2Ne linearly indepen-
dent |α̃〉, where Ne is the number of electrons; we include
the nonlocal effect arising from the Berry phase in these ex-
tended states.

Next we prepare 2Ne basis functions that satisfies the re-
quired boundary condition from {|α̃〉}2Ne

1 as

|α〉 =
∑

j

(
Aα

j a
†
j + Bα

j b
†
j

)|vac〉. (97)

The Hamiltonian matrix that includes the Berry phase ef-
fect is constructed using {|α〉}2Ne

1 as a basis. Note that, in
the calculation of the matrix elements, the phase difference
χk − χj should be chosen in the range

−π < χk − χj ≤ π. (98)

By numerically diagonalizing the Hamiltonian matrix
constructed with the basis {|α〉}2Ne

1 , single-particle state vec-
tors

|I 〉 =
∑

α

Cα
I |α〉 (99)

are obtained. The ground state is obtained as a Slater deter-
minant of the lowest Ne energy functions from {|I 〉}2Ne

1 . Fi-
nally, ∇χ is optimized by minimizing the energy calculated
with the above-obtained Slater determinant.

Strictly speaking, the optimization of ξ , that of χ , and the
construction of the Slater-determinant ground state from the
mean field solution have to be self-consistently performed;
however, the sequential optimization described above is sim-
ple and will be adequate for many purposes.

By changing the winding numbers for χ , states with dif-
ferent current flow patterns are obtained [15–17]. They are
not so much different in energy, thus, when an external mag-
netic field is applied, the ground state will be chosen from
them in a very flexible manner.

When an external magnetic field is applied, an approx-
imate ground state may be obtained by simply optimizing
∇χ in the presence of A. The optimal state will be a state
with a minimal current carrying state; thus, the system will
try to exclude the magnetic field by minimizing the current
flow inside the bulk; such an exclusion of a magnetic field is
nothing but the Meissner effect [17].

The condition for the optimal χ will be given by

∫ k

j

(
q

�c
A + ∇χ

2

)
· dr = const. (100)

in deep inside a specimen, which will be obtained by zero-
current in the bulk from the hopping term in (61).

The above condition indicates that if the specimen is a
ring-shaped, the quantization of magnetic flux is realized;
by taking a closed path that encircles the hole of the ring,
the above condition yields
∮

loop

(
q

�c
A + ∇χ

2

)
· dr = 0. (101)

This is rewritten as
∮

loop
A · dr = −�c

2q

∮

loop
dχ. (102)

Since χ is a function of period 2π , this will give the flux
quantization in the unit Φ0 with q = e.

5 Macroscopic Quantum Interference

The oscillation of the maximum zero-voltage current with
varying an external magnetic field is observed in a circuit
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Fig. 4 Sketch of a SQUID
structure and plot of the
maximum current through the
SQUID structure, J e

max, vs the
magnetic flux through the ring,
Φring. Φjunc is chosen to be
Φjunc = 0.1Φring

with two SIS junctions (the SQUID structure) shown in
Fig. 4. This oscillation is a macroscopic quantum interfer-
ence phenomenon brought about by the phase θ . In the stan-
dard theory, this phenomenon is explained using θ that is
conjugate to the number density of 2e charge carriers. In
this section, however, we explain it using the θ that is conju-
gate to the number density of e charge carriers discussed in
previous sections. The key ingredient is the winding number
of χ .

Let us calculate the current through a SQUID structure in
Fig. 4. The SQUID structure is made of the two SIS junc-
tions that are assumed to be identical. The total current is a
sum of currents through the two junctions. If the magnetic
flux through each junction area is neglected, the total current
is calculated as

J = J0 sinφc + J0 sin

(
φc − πΦring

Φ0
+ wringπ

)
, (103)

where Φring is the flux through the ring region given by

Φring =
∮

Cring

A · dr, (104)

and wring is the winding number of χ along Cring given by

wring = 1

2π

∮

Cring

∇χ · dr. (105)

The current in (103) exhibits an interference effect; the
phase difference for the interference is composed of two
contributions: one is the contribution from the Aharonov–
Bohm phase from the magnetic filed penetrating through the
ring given by

−π
Φring

Φ0
; (106)

the other is the contribution from the winding number of χ

given by

wringπ. (107)

In the standard 2e charge case, the former is given by
−2πΦring/Φ0, and the latter is a multiple of 2π which can
be taken away because it is a period of the sine function.

The maximum current depends on whether wring is even
or odd. If wring is even, it is calculated as

J even
max (Φjunc,Φring)

= J even
max (0,0)

∣∣∣∣∣

sin(
πΦjunc

2Φ0
)

πΦjunc
2Φ0

∣∣∣∣∣

∣∣∣∣ cos

(
πΦring

2Φ0

)∣∣∣∣,

and if it is odd, it is given by

J odd
max(Φjunc,Φring)

= J even
max (0,0)

∣∣∣∣∣

sin(
πΦjunc

2Φ0
)

πΦjunc
2Φ0

∣∣∣∣∣

∣∣∣∣ sin

(
πΦring

2Φ0

)∣∣∣∣,

where the effect of the flux through each junction region
Φjunc is included.

If we take into account the change of wring, the maximum
current J e

max is the largest of J even
max and J odd

max defined by

J e
max = Max

{
J even

max , J odd
max

}
. (108)

In Fig. 4, a plot of J e
max as a function of Φring is depicted.

It exhibits a profile similar to the one observed in experi-
ments [28], showing peaks separated by Φ0.

The corresponding maximum current from the 2e charge
carrier theory is given by

J 2e
max(Φjunc,Φring)

= J 2e
max(0,0)

∣∣∣∣∣

sin(
πΦjunc

Φ0
)

πΦjunc
Φ0

∣∣∣∣∣

∣∣∣∣ cos

(
πΦring

Φ0

)∣∣∣∣.

A noticeable difference is that while J 2e
max is zero at

Φring

Φ0
= 1

2
+ n, (109)
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Fig. 5 a Plot of J even
max as a

function of Φring. It shows a
“0-SQUID (or edge-junction)”
pattern. b Plot of J odd

max as a
function of Φring it shows a
“π -SQUID (or
corner-junction)” pattern.
Φjunc = 0.5Φring

where n is an integer, it is not zero for J e
max. This absence of

the zero current points may be used to discriminate the spin-
vortex superconductivity from the standard one. Actually,
the absence was observed in the experiment, but the reason
for it has been attributed to a background current from vari-
ous effects.

As shown in Fig. 5, if even wring and odd wring cases
are separately realized, the so-called “0-SQUID (or edge-
junction)” pattern and the “π -SQUID (or corner-junction)”
pattern are obtained, respectively [29]. The appearance of
these patterns are currently attributed to the d-wave symme-
try of the order parameter. However, we have shown that it
can be explained due to the separated appearance of the even
and odd wring cases using the present theory.

6 Concluding Remarks

We have presented a theory of superconductivity based on
the persistent current generation by a Berry phase due to the
spin-vortex formation. It attributes the phase θ to the Berry
phase arising from the stable (or quasi-stable) spin-vortex
formation. We have found that the observed AC Josephson
frequency actually indicates that the charge on the tunneling
particle is in the unit e, not 2e if the junction is treated as a
part of a closed-circuit with including the contribution from
flow-in and -out of particles from the leads. Since the exper-
iment is done in such a closed-circuit situation, it is sensible
to include the flow-in and -out. For the verification of our
claim, we have proposed an experiment that discriminates
whether the carrier charge unit is e or 2e.

If our claim turns out to be correct, the Berry phase ori-
gin of the phase θ is the only one left that explains the
observed flux quantization unit Φ0 and the AC Josephson
frequency fJ with q = e. This also indicates that the BCS
theory is incomplete as to the origin of supercurrent, thus,
cannot predict whether a particular compound is supercon-
ductor or not. It is well-known that the BCS theory gives
an excellent estimate of Tc and properties associated with
the energy gap formation at Tc. Therefore, there must be a

strong relation between the Cooper-pair condensation and
the onset of the superconducting state. There are also plenty
of experiments that indicate asymmetries in the even and
odd number of electron systems, which can be attributed to
the electron-pairing stabilization.

The reason for the fact that the BCS theory gives an ex-
cellent estimate of Tc may be the following: As is argued in
Sect. 3, in order that the system is in the superconducting
state, low energy electronic excitations that destabilize ∇θ

must be absent. The BCS theory provides the mechanism
in which this absence occurs by the energy gap formation.
Our theory assumes that the system is in the EHFMI state,
where localized polarons are formed as stabilizing centers of
spin-vortices. In general, the localization occurs more easily
in the bulk than in the surface region since the shielding of
charge and chemical bond formation are easier in the bulk
than in the surface region. Then, electronic excitations in
the surface region will be the last low energy excitations to
be eliminated for the stability of ∇θ . If this elimination is
brought about by the energy gap formation by the Cooper-
pair condensation, the BCS theory will give an excellent es-
timate of Tc.

It is also worth noting that a statistical analysis reveals
that the occurrence of superconductivity is strongly corre-
lated to the fact that carriers are holes [20]. Since holes are
known to become small polarons more frequently than elec-
trons, the above-mentioned situation seems to fit the statisti-
cal analysis.

The above explanation is, however, not applicable for
superconductors in general since all of them are not cate-
gorized as strongly correlated systems. For materials with
weak correlations, some other mechanism is necessary for
the spin-vortex formation. One possible mechanism is that
the energy gap formation by the Cooper-pair condensation
induces a band reconstruction that creates a situation with
U � |tij | in the relevant band. It is also possible that impu-
rities or defects become stabilizing centers of spin-vortices,
and the Cooper-pairing-gap provides the final stabilization
for the induced loop currents. In this respect, it is worth
noting that recent optical spectroscopy in Pb observed the
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emergence of peaks in the superconducting state; they seem
to originate from phonon-assisted processes, and are not ex-
plainable within the standard BCS approach [39].

Let us consider superconductivity in cuprates. In the
cuprate superconductors, experiments that measure elec-
tronic states in the surface region such as ARPES and STS
see rather itinerant electrons; however, experiments probe
the bulk see localized-carrier effects. Neutron scattering ex-
periments observe spin-wave excitations that appear to arise
from local moments [40–42]. Actually, the observed spin-
wave excitations are well-explained by assuming that the
system is in the EHFMI state [26]. Furthermore, the EXAFS
detects bond-length fluctuations that are correlated with the
occurrence of superconductivity [43]; and this fluctuation is
explained by the small polaron formation [44]. Thus, the
above-mentioned situation, “the EHFMI state in the bulk,
and the BCS-type gap formation in the surface region”,
seems to be relevant to the cuprates.

We have a view that spin-vortex-induced loop currents
exist below the pseudogap temperature T ∗ and become su-
percurrent below the superconducting transition tempera-
ture Tc. This view naturally explains the change of the sign
of the Hall coefficient from positive to negative as the tem-
perature is lowered [45]; the positive sign indicates that the
dominant charge carriers are doped-holes, and the negative
that they are electrons in the loop currents.

An experiment shows that the BCS-type gap forma-
tion does not necessary lead the system to a superconduct-
ing state. It is seen in La1−xBaxCuO4, superconductivity
is anomalously suppressed at x = 1/8 [21]. Although the
pairing-gap exists at this doping level as in the near-by dop-
ing levels, somehow the system fails to be superconducting.
Actually, this anomaly may be explained in the spin-vortex
superconductivity theory; if spin-vortices line up to form a
stripe order, the loop currents that flow along the both sides
of the stripe cancel to be zero since they are opposite in the
direction and same in the magnitude.

The present work suggests the reason why the stan-
dard theory of superconductivity does not have a predicting
power for the occurrence of superconductivity in a particular
compound; it may be due to the fact that its attribution of the
origin of the phase θ is wrong. A new theory of supercon-
ductivity may emerge by identifying θ as the Berry phase (or
the Longuet-Higgins phase) from spin-vortices. It contains
the BCS pairing mechanism as a part for the mechanism that
stabilize θ . It does not violate the superselection rule for the
total charge, and, thus, enable us to calculate persistent cur-
rent related phenomena in an atomistic way without recourse
to the Ginzburg–Landau phenomenological equation.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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