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Abstract We explain several anomalous phenomena ob-
served in the pseudogap phase of hole-doped cuprates based
on the recently proposed spin-vortex superconductivity the-
ory. In this theory, doped-holes become almost immobile
small polarons, and spin-vortices are formed with those
small polarons as their centers. A Hartree–Fock field for
conduction electrons that is optimized for the interaction
energy of local moments is derived; it contains a fictitious
magnetic field arising from spin-vortices, and yields cur-
rent carrying states. The obtained currents are loop currents
around spin-vortices, i.e., the spin-vortex-induced loop cur-

rents (SVILCs), and a collection of them produces a macro-
scopic current. The SVILC explains (1) nonzero Kerr rota-
tion in zero-magnetic field after exposed in a strong mag-
netic field; (2) the change of the sign of the Hall coeffi-
cient with temperature change; (3) the suppression of su-
perconductivity in the x = 1/8 static-stripe ordered sam-
ple; and (4) a large anomalous Nernst signal, including its
sign-change with temperature change. We show that the
hourglass-shaped magnetic excitation spectrum is the evi-
dence for the existence of spin-vortices. We further argue
that the “Fermi-arc” in the ARPES is a support for the pres-
ence of localized moments in the bulk; a disconnected arc-
shaped Fermi surface is obtained by assuming an antiferro-
magnetic interaction between the localized moments in the
bulk and itinerant electrons in the surface region.
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1 Introduction

Understanding of the pseudogap phase is believed to be the
key to the elucidation of the mechanism of cuprate super-
conductivity. The polar Kerr-effect measurement has yielded
results that strongly suggest the existence of stable loop
currents in the pseudogap phase [1, 2]. The recent neutron
scattering experiments have reinforced this view by observ-
ing magnetic excitations peaked at the two-dimensional mo-
mentum q = 0, where the two-dimensionality of the mo-
mentum arises from the two-dimensionality of the CuO2

conduction plane in the cuprate [3].
Currently, there are two types of loop currents that are

predicted to exist in the pseudogap phase; one is a cir-
cular current within the CuO4 complex proposed by C.
Varma [4], and the other is the spin-vortex-induced loop

current (SVILC) proposed by one of the present authors
[5–8]. The former does not generate a macroscopic current,
but the latter does. The scenario for superconductivity using
SVILCs explains other phenomena in the pseudogap phase,
thus is possible to provide a unified understanding of a vari-
ety of cuprate-superconductivity related phenomena.

The appearance of SVILCs requires local moments. Neu-
tron scattering experiments provide evidence for the exis-
tence of local moments, where magnetic excitation spectra
that indicate the presence of a short-range antiferromagnetic
order are obtained; the presence of spin-configurations that
cause splitting of the antiferromagnetic peak at low excita-
tion energies are also suggested. The obtained spectrum is
called the “hourglass-shaped magnetic excitation spectrum”
after its dispersion shape, and the origin of it has been an
important issue for the elucidation of the cuprate supercon-
ductivity [9–11].

There are two models that explain the hourglass-shaped
spectrum. One of them is the spin-vortex model; it assumes
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spin configurations with spin-vortices in the antiferromag-
netic background in the CuO2 plane [6, 8, 12]. The other is
the stripe model [13]; it assumes the existence of charged-
stripes and intervening antiferromagnetic-insulator regions
in the CuO2 plane. The spin-vortex model with randomly
distributed spin-vortices yields a circular peak that resem-
bles experimental results in a constant energy slice distribu-
tion, while the stripe model with static charged-stripes yields
a rectangular peak [9, 10]. Thus, the spin-vortex model is
more satisfactory in this respect. Actually, spin configura-
tions of the spin-vortex model contains those of the strip
model as collinear arrangements of spin-vortices, thus as far
as the spin configuration is concerned the two models are
not so different.

A significant difference between the two is in the way
electric current is generated. In the stripe model, charged-
stripe regions become rivers of electric current. On the
other hand, electric current is generated as SVILCs in the
spin-vortex model; thus, it automatically contains the loop-
currents that explain the Kerr-effect measurement results.

For the generation of spin-vortices, both strong corre-
lation among electrons and the strong hole-lattice interac-
tion are necessary; due to the latter, doped-holes become
almost immobile small polarons at low temperatures, thus
the system is in an effectively-half-filled situation (EHFS);
then the strong correlation in this effectively-half-filled situ-
ation gives rise to local moments. Experiments clearly indi-
cate that the hole-doped cuprate is a system with both strong
correlation and strong hole-lattice interaction; the existence
of the former is manifested by the fact that the parent com-
pound is a half-filled antiferromagnetic insulator, and the ex-
istence of the latter is evidenced in the EXAFS experiments,
where Cu-O bonds fluctuations that indicate the small po-
laron formation are observed below the pseudogap tempera-
ture T ∗ [14].

Since the ground state of a half-filled system with strong
correlation is a Mott insulator, one might think that current
flow is impossible in the strongly correlated system in the
EHFS. However, it has been shown that it is actually possi-
ble with the formation of spin-vortices [5–8] by employing
the Slater’s view that regards the antiferromagnetic insulat-
ing state as a band insulator instead of the Mott insulator.
Adopting this alternative view is crucial; it means that we
do not use the approximation that is used in the derivation
of the antiferromagnetic Heisenberg–Hamiltonian from the
Hubbard one in the half-filled situation given by

c
†
j↑c

†
j↑ + c

†
j↓c

†
j↓ = 1, (1)

where c
†
jσ and cjσ are the creation and annihilation opera-

tors for electron at the ith site with spin σ , as a substitute for
the actual condition

〈

c
†
j↑c

†
j↑ + c

†
j↓c

†
j↓

〉

= 1, (2)

where 〈Ô〉 denotes the expectation value of an operator Ô .
The former condition excludes current flow from the begin-
ning, thus may lead to an erroneous conclusion.

If we stick to the condition in (2) and construct the ze-
roth ground state as a Slater determinant of an extended ba-
sis [15], the effectively-half-filled state with current carry-
ing states are obtained. We will call the state constructed by
this way the “effectively half-filled Slater state (EHFSS)”
[5–8]. If we need more accurate states, they are obtained
from the configuration-interaction calculations by treating
the EFHSS as the Hartree–Fock solution. The current in the
EHFSS is a collection of loop-currents; each of them flows
around a spin-vortex with its center at a hole-occupied site.
For such currents to generate a macroscopic one, the number
density of the spin-vortices has to be sufficiently large.

It has been argued that SVILCs are germs of supercurrent
that start to appear in the pseudogap phase [8]. The temper-
ature dependence of the mean-square displacement obtained
from EXAFS measurements indicates that small polarons
start to appear at T ∗, and the number density of them in-
creases with decrease of the temperature [14]. This fact co-
incides with the STM finding that nanosized local-density-
of-state-reduced patches appear below T ∗ [16], and the re-
gion covered by them increases with decrease of the temper-
ature. Further, it is observed that when the whole sample is
covered by them, superconductivity occurs [17]. Since the
number density of SVILCs is expected to be roughly pro-
portional to the number density of small polarons, the above
fact is interpreted that superconductivity occurs when the
number density of SVILCs becomes large enough to cover
the whole sample.

In contrast to the EXAFS and neutron scattering experi-
ments, the small polaron effect is not apparent in the ARPES
results [18]. This fact is explained if small polarons are not
formed in the surface region where a large portion of pho-
toelectrons come from. We will show that by adopting the
above assumption, the Fermi-arc [19] seen in the ARPES
is obtained as a consequence of an antiferromagnetic inter-
action between itinerant electrons in the surface region and
localized moments in the bulk.

This paper is organized as follows. In Sect. 2, we re-
view the mechanism in which the SVILCs appear, suc-
cinctly; we will provide a Hartree–Fock field that contains
a fictitious magnetic field. The Hartree–Fock field contains
U(2) = U(1) ⊗ SU(2) parameters, where the SU(2) part is
optimized by minimizing the interaction energy between the
local moments with prescribed conditions for spin-vortices;
and the U(1) part gives rise to the fictitious magnetic field.
The compelling evidence for the existence of spin-vortices
in the cuprate is the hourglass-shaped magnetic excitation
spectrum; we will obtain it using the spin-Hamiltonian with
the optimized SU(2) parameters. The U(1) part is opti-
mized by minimizing the total energy; the optimization
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is performed under the condition that single-particle wave
functions are single-valued; when spin-vortices are present,
this condition yields a nontrivial fictitious magnetic field,
and SVILCs arise. Further, we also give an explanation for
the suppression of superconductivity in the x = 1/8 static-
stripe-ordered sample by examining its SVILCs. In Sect. 3,
the temperature dependence of the Nernst signal is explained
[20] by the fictitious electric field produced by the time-
dependence of the U(1) phase [7]. It is indicated that super-
conductivity occurs at temperatures where small polarons
become immobile; then the current below Tc is mainly at-
tributed to SVILCs [21]; thus the change of the sign of the
Hall coefficient from positive (by the hole-hopping) to nega-
tive (by the SVILCs) is explained; it also explains the nega-
tive Hall coefficient observed in the magnetic-field-induced
“normal state” [20]. In Sect. 4, we examine the ARPES
spectrum by assuming that small polarons are not formed in
the surface region. We will show that the “Fermi-arc” [19]
and the “kink” [22] arise from the interaction between the
electronic state in the surface region and that in the bulk. In
Sect. 5, we will conclude the present work.

2 Spin-vortices and Spin-vortex-induced Loop

Currents

Throughout the present work, we assume that the electronic
state for conduction electrons in the CuO2 plane in the bulk
of the cuprate is described as that for a system with strong
on-site Coulomb repulsion and strong hole-lattice interac-
tion. In this section, we examine it by taking the CuO2 plane
as a two-dimensional square lattice in the xy plane.

Our starting Hamiltonian for the bulk-layer CuO2 is
given by

Hbulk = −
∑

i,j,σ

tij c
†
iσ cjσ + U

∑

j

c
†
j↑cj↑c

†
j↓cj↓

+ Hhole+lattice, (3)

where the first two terms are those of the Hubbard model;
the large on-site Coulomb repulsion, |tij | ≪ U , is assumed;
the third term describes the interaction between holes and
underlying lattice, and also lattice vibrations.

Due to Hhole+lattice, holes become small polarons at low
temperatures. As a consequence, the hopping probability of
holes becomes very small. We consider the case where the
hopping probability is so small that we may treat the hole-
occupied sites as inaccessible sites for electrons in the zeroth
approximation. In this situation, the number of accessible
sites and that of electrons are equal; we call this situation,
the “effectively half-filled situation (EHFS)”. In the EHFS,
Hbulk is rewritten as

HEHFS = −
∑

i,j∈acc. sites,σ

tij c
†
iσ cjσ

+ U
∑

j∈acc. sites

c
†
j↑cj↑c

†
j↓cj↓. (4)

Local moments appear in the present EHFS due to the
strong correlation condition U ≫ |tij |. Then the ground
state is an antiferromagnetic insulator as in the parent com-
pound of the cuprate; thus, we may also call it the “effec-
tively half-filled Mott insulator (EHFMI)” state [5]. How-
ever, the EHFMI state differs from the parent compound of
the cuprate by an additional assumption; we allow it to have
spin-vortices with holes at their centers.

In the EHFMI, we have

〈

c
†
i↑ci↑ + c

†
i↓ci↓

〉

=
{

1 if i is not occupied by a hole

0 otherwise
, (5)

where 〈Ô〉 means the expectation value of an operator Ô .
The above condition is replaced by a more restrictive con-

dition

c
†
i↑ci↑ + c

†
i↓ci↓ =

{

1 if i is not occupied by a hole

0 otherwise
(6)

in the derivation of the Heisenberg Hamiltonian from the
Hubbard Hamiltonian. Note that the difference of the condi-
tions between (5) and (6) is tremendous; the former allows
current flow, but the latter does not.

Let us introduce new particle operators, aj and bj , so that
we can introduce spin-vortices as a prescribed condition;

(

aj

bj

)

= ei
χj
2

⎛

⎝

ei
ξj
2 cos

θj

2 e−i
ξj
2 sin

θj

2

−ei
ξj
2 sin

θj

2 e−i
ξj
2 cos

θj

2

⎞

⎠

(

cj↑
cj↓

)

. (7)

The above basis transformation matrix is composed of a

U(1) phase factor ei
χj
2 and an SU(2) matrix.

Corresponding to (5), we may choose the new particle
operators aj and bj for the j th site to satisfy,

〈

a
†
j aj + b

†
jbj

〉

=

⎧

⎪

⎨

⎪

⎩

1; 〈a†
j aj 〉 ≫ 〈b†

jbj 〉
if j is not occupied by a hole

0 otherwise

. (8)

An important point is that the condition 〈a†
j aj 〉 ≫ 〈b†

jbj 〉 is
added.

Due to the additional condition, the zeroth ground state
is given by

|0〉 =
∏

i∈acc. sites

a
†
i |vac〉. (9)

Let us calculate the local moments with |0〉; we have

Sx(j) = 1

2
〈0|c†

j↑cj↓ + c
†
j↓cj↑|0〉 = 1

2
cos ξj sin θj ,
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Sy(j) = i

2
〈0| − c

†
j↑cj↓ + c

†
j↓cj↑|0〉 = 1

2
sin ξj sin θj , (10)

Sz(j) = 1

2
〈0|c†

j↑cj↑ − c
†
j↓cj↓|0〉 = 1

2
cos θj .

This indicates that ξj and θj are identified as the azimuth
and polar angles of the local moment at the j th site.

We optimize the U(2) parameters ξ and θ whose val-
ues at the j th site are given by ξj = ξ(rj ) and θj = θ(rj ),
respectively, so that the interaction energy of the local mo-
ments is minimized with prescribed winding numbers for
spin-vortices, where the winding number around the ith site
is defined as

wi[ξ ] = 1

2π

∮

Ci

∇ξ · dr (11)

where Ci is a closed path with its center at the ith site that
includes only the vortex at the ith site. Nonzero wi means
that ξ(r) is a multivalued function of the coordinate r, and a
spin-vortex exists with its center at i.

In the cuprate problem, the localized moments are essen-
tially lying in the CuO2 plane; thus, we just put θj = π/2
for all sites in this work to make the problem simpler. With
this simplification, (7) becomes

(

aj

bj

)

= ei
χj
2

√
2

⎛

⎝

ei
ξj
2 e−i

ξj
2

−ei
ξj
2 e−i

ξj
2

⎞

⎠

(

cj↑
cj↓

)

. (12)

Using the above new particle operators, the hopping term
in HEHFS is written as

Kacc = −
∑

k,j∈acc. sites

tkj e
i
2

∫ k
j ∇χ ·dr

×
[

cos
ξk − ξj

2

(

a
†
kaj + b

†
kbj

)

− i sin
ξk − ξj

2

(

a
†
kbj + b

†
kaj

)

]

.

A remarkable point is that transfer integrals acquire phase

factors, e
i
2

∫ k
j ∇χ ·dr, that would be introduced by the Peierls

substitution if a magnetic field with the vector potential

Afic = �

2q
∇χ, (13)

is applied, where q denotes the charge on the charge car-
rier. If Afic is not trivial, it gives rise to a fictitious magnetic

field [5].
Now, let us construct an optimal Hartree–Fock field for

the Hamiltonian for the following EHFMI state:

HEHFMI = Kacc + U
∑

j∈acc. sites

a
†
j ajb

†
jbj . (14)

For the optimization of the parameter ξ , we need to cal-
culate the interaction energy between local moments. For
that purpose, we use the spin-Hamiltonian derived by taking
the on-site Coulomb interaction term as the zeroth Hamil-
tonian and Kacc as a perturbation; we also employ the ap-
proximation in which the condition in (8) is replaced by the
following:

a
†
i ai + b

†
i bi =

{

1 if i is not occupied by a hole

0 otherwise
. (15)

The above condition is actually equivalent to the one in (6).
The resulting spin-Hamiltonian is [12, 23]

Hspin = 1

U

∑

k,j∈acc. sites

t2
jk sin2 ξj − ξk

2

×
(

S̃−
k S̃−

j + S̃+
k S̃+

j − 2S̃Z
k S̃Z

j − 1

2

)

+ 1

U

∑

k,j∈acc. sites

t2
jk cos2 ξj − ξk

2

×
(

S̃−
k S̃+

j + S̃+
k S̃−

j + 2S̃Z
k S̃Z

j − 1

2

)

, (16)

where spin operators, S̃+
j , S̃−

j , and S̃Z
j are defined as

S̃+
j = b

†
jaj , (17)

S̃−
j = a

†
j bj , (18)

S̃Z
j = 1

2

(

b
†
jbj − a

†
j aj

)

; (19)

and the commutation relations for them are

[

S̃Z
j , S̃±

j

]

= ±S̃±
j , (20)

[

S̃+
j , S̃−

j

]

= 2S̃Z
j . (21)

We optimize ξ through the minimization of

〈0|Hspin|0〉 = − 1

U

∑

k,j

t2
jk sin2 ξj − ξk

2
, (22)

subject to the prescribed winding numbers for ξ that give
rise to spin-vortices.

Spin vortices are introduced as follows: First, we give the
initial phase for ξj as

ξ init
j = π(jx + jy) +

∑

M

W(j,M) −
∑

A

W(j,A), (23)

where j = (jx, jy) is the two-dimensional coordinate of the
j th site. The first term in the r.h.s. describes the antiferro-
magnetic spin configuration which does not contribute to the
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winding number; the second and third terms are those for

spin vortices with winding number +1 (called, “meron”),

and −1 (called, “antimeron”) [24], respectively, where the

function W(j,M) is given by

W(j,M) = tan−1 jx − Mx

jy − My

, (24)

where M = (Mx,My) and A = (Ax,Ay), respectively, indi-

cate two-dimensional coordinates for the center of a meron

and the center of an antimeron.

Let us calculate spin-wave excitations. In order to cal-

culate spin-wave excitations, we employ the semiclassical

equations of motion method; the linearlized equations of

motion are obtained as

−i
˙̃
S+

k =
[

Hspin, S̃
+
k

]

≈ 2

U

∑

j

t2
kj sin2 ξj − ξk

2

(

S̃−
j + S̃+

k

)

− 2

U

∑

j

t2
kj cos2 ξj − ξk

2

(

−S̃+
j + S̃+

k

)

, (25)

where the linearization is achieved by the following replace-

ment:

S̃Z
j ≈ −1

2
. (26)

The spin-wave excited states are expressed as

|f 〉 = 1√
2

∑

j

([

CX
j (f ) − iCY

j (f )
]

S̃+
j

+
[

CX
j (f ) + iCY

j (f )
]

S̃−
j

)

|0′〉, (27)

where |0′〉 is the true ground state of the spin Hamilto-

nian [23].

Then the equation of motion in (25) leads to

d

dt
〈0′| − iS̃+

k |f 〉e−iωf t

= 2

U

∑

j

t2
kj 〈0′| sin2 ξj − ξk

2

(

S̃−
j + S̃+

k

)

+ cos2 ξj − ξk

2

(

S̃+
j − S̃+

k

)

|f 〉e−iωf t . (28)

From the above, two sets of eigenvalue equations for

CX
j (f ) and CY

j (f ) are obtained; if we connect the X com-

ponent to a nearby Y , and the Y to a nearby X component,

we obtain

(Mode I)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

iωf CX
k (f ) = 2

U

∑

j t2
kj cos(ξj − ξk)

× (CY
j (f ) − CY

k (f ))

iωf CY
k (f ) = − 2

U

∑

j t2
kj (C

X
j (f )

− cos(ξj − ξk)C
X
k (f ))

;

if we connect the X component to a nearby X, and the Y to
a nearby Y component, we obtain another set,

(Mode II)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ωf CX
k (f ) = − 2

U

∑

j t2
kj (C

X
j (f )

− cos(ξj − ξk)C
X
k (f ))

ωf CY
k (f ) = − 2

U

∑

j t2
kj cos(ξj − ξk)

× (CY
j (f ) − CY

k (f ))

.

The magnetic excitation spectra are plotted using the
structure factor given by

S(k,ω) =
∑

f

∣

∣S̃+
f (k)

∣

∣

2
δ(ω − ωf ), (29)

where ωf is the energy for the spin-wave excited state |f 〉,
S̃+

f (k) is the Fourier transform of 〈f |S̃+
j |0′〉 given by

S̃+
f (k) = 1√

Ns

∑

j

〈f |S̃+
j |0′〉e−k·rj . (30)

In Fig. 1, examples of calculated results are depicted.
They contain both contributions from Mode I and Mode
II excitations. The nearest-neighbor transfer integral is de-
noted as t , and take as the unit of energy. The obtained spin-
wave excitation structure factor exhibits the hourglass shape
with a pronounced resonance peak at (h, k) = (1/2,1/2).
The Mode II excitations account for the dispersion below
the resonance peak, and the Mode I excitations do for the
rest. In the second row, results for the optimized ξ obtained
from ξ init in the first row are depicted. Actually, some of
spin-vortices in the initial configuration disappear in the op-
timized configuration. Due to this reduction of spin-vortices,
the splitting of peaks around (1/2,1/2) at low energies
is decreased. The initial spin configurations given by ξ init

are usually unstable in the sense that some of the spin-
vortices disappear during optimization. We have argued that
the hourglass-shaped magnetic excitation spectrum [9–11]
is a strong support for the existence of spin-vortices in the
previous work [12]. The spin-wave spectrum in Fig. 1 re-
confirms that argument.

In Fig. 2, we have depicted cases for spin configurations
with a stripe-order and extra holes. A stripe spin configu-
ration is stable in optimization. A square structure of four
spin-vortices depicted in spin configurations in the second



2258 J Supercond Nov Magn (2011) 24:2253–2267

Fig. 1 Plots of spin
configurations for the
spin-vortex model and the
spin-wave excitation structure
factor S(k,ω). Calculations are
done in the two-dimensional
square lattice with 25 × 25 sites.
48 holes are randomly
distributed; M and A indicates a
meron (winding number +1
spin-vortex) and an antimeron
(winding number −1
spin-vortex), respectively. The
result for S(k,ω)is symmetrized
around (h, k) = (1/2,1/2) to
have the C4 symmetry, and
broaded with Gaussian
functions. (a) and (b) results for
ξ init; (c) and (d) results for the
optimized ξ from ξ init

and third rows is also stable. Calculated magnetic excitation
spectra show a resonance peak and peak-splitting around
(1/2,1/2) at low energies in agreement with experiments
[9–11]. The spin configurations that contain a stripe-order
reproduce the clear splitting of the (1/2,1/2) peak at low
energies; it suggests that stripe-order exist in the cuprate to-
gether with other spin-vortex distributions.

Now we consider the optimization of χj in (12). In order
to optimize χ, we need to include the itineracy of electrons
since its effect appears in the hopping term Kacc.

We employ the following mean field Hamiltonian:

HEHFSS = Kacc + U
∑

j∈acc. sites

(〈

a
†
j aj

〉

b
†
jbj +

〈

b
†
jbj

〉

a
†
j aj

−
〈

a
†
j aj

〉〈

b
†
jbj

〉)

. (31)

The ground state is obtained as a Slater determinant for
a filled lower band that is separated from an empty upper
band by an energy gap of about U . We call the Slater deter-
minant ground state the “effectively half-filled Slater state
(EHFSS).” If the spin configuration is that of the antiferro-

magnet, the Slater determinant state is given by a currentless
|0〉 state.

When spin-vortices exist, the phase χ is a multivalued
function; therefore, care must be taken in calculations. We
minimize the total energy obtained by the mean field so-
lution under the condition that the transformation matrix
in (12) is single-valued with respect to the phase shift ξj →
ξj +2π since ξj and ξj +2π are physically equivalent. This
means that the phase χj should compensate the sign-change

of e± i
2 ξj brought about by the phase shift ξj → ξj + 2π .

The above single-valuedness condition is satisfied by
adopting the following constraint:

wi[ξ ] + wi[χ] = even number, (32)

where wi[χ] is the winding number for χ defined by

wi[χ] = 1

2π

∮

Ci

∇χ · dr. (33)

This means that, for example, if a spin-vortex with wi[ξ ] =
1 exists, wi[χ] has to be an odd integer.
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Fig. 2 The same as in Fig. 1
but for different spin
configurations. First row: a
stripe configuration for
x = 1/12. Second row: the same
stripe order with 8 additional
holes. Third row: the same stripe
order with 12 additional holes

The total energy depends on ∇χ ; the way to optimize it

is described in [8]. The nontrivial Afic generates a current

[5–7], which we call the “spin-vortex-induced loop currents

(SVILCs).”

In addition to the magnetic excitations that arise from

the local moments, excitations associated with the free-

dom in choosing χ exist. The states with a different set of

wi[χ] generate a different collection of loop currents as seen

in Fig. 3. Thus, by choosing wi[χ] within the restriction

in (32), a variety of current patterns can be generated [5–7].

They are intact as long as the spin-vortices induce them are

intact. They are close in energy, thus it is expected that the

system will show a very sensitive response to an external

magnetic field. Since the freedom in choosing χ gives rise
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Fig. 3 The static stripe spin configuration for the x = 1/8 sample and
its current in the spin-vortex model. A 17 × 17 lattice with the closed
boundary condition is employed. (a) The spin-configuration. (b) The
magnetic excitation spectrum for the spin configuration in (a). (c)–(h)
Results obtained by employing various winding numbers for χ with

the spin configuration in (a); the left figure depicts (cosχ, sinχ) and
the right one the resulting electric current density (note that q < 0).
“m” and “a” indicate that the winding numbers wi [χ ] around them are
wi = +1 and wi = −1, respectively
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to the freedom in current patterns, we may say that the low
energy charge-degree-of-freedom is described by the correc-
tive coordinate χ . This interpretation reminds us of a sug-
gestion that the spin-charge separation is happening in the
cuprate [25].

The recent polar Kerr-effect measurement in YBa2

Cu3O6+x (YBCO) strongly suggests that stable loop cur-
rents exist in the pseudogap phase [1, 2]. Actually, there are
two kinds of experiments in it. In the first kind, the sample
was first cooled to 4.2 K in a +4 T field; then the field was
turned off at 4.2 K; and the measurements were done while
warming the sample; a finite Kerr signal was observed up
to around T ∗. This experimental observation can be inter-
preted that the SVILCs are created at 4.2 K and persist up
to the pseudogap temperature T ∗. According to the EXAFS
experiment [14], the pseudogap temperature is regarded as
temperature where small polarons are formed; thus, spin-
vortices with small polarons as their cores become stable
below this temperature. The fact that the sign of the signal
was reversed if the applied field direction is in accordance
with the loop current origin of the effect.

In the second kind, the sample was “trained” in a 4 T field
at room temperature, first; then the field was turned off, and
the sample was cooled in a small field (+60 Oe or −60 Oe)
to 4.2 K; lastly, the measurements were done in a zero field
warm-up. The results showed that the memory of the trained
field at room temperature persists, and the effect of the small
field was only limited at temperatures below Tc; this sug-
gests that even at room temperature, spin-vortices exist al-
though small polarons are not fully-developed. The applied
strong magnetic field will create diamagnetic loop currents
as eddy currents, then spin-vortices may be created at the
same time; these spin-vortex+loop-current complexes will
be stable enough to survive to be observed in the later mea-
surement. Below the temperature Tc, the effect of currents
created by the ±60 Oe field was observed; we will come
back to this small field effect later.

The static-stripe order is observed in LBCO at x = 1/8
[26]; the stability of this configuration probably comes from
the structural reason. A remarkable point is that the super-
conductivity is significantly suppressed in this sample. If the
supercurrent arises from SVILCs, ordered-stripe configura-
tion will yield a net zero current since each loop current
contributes to an equal amount of current in one and its op-
posite directions along (not in) the stripe. This situation is
depicted in Fig. 3; when only “m”s or “a”s are arranged in
each as in Figs. 3(e) and (g), noticeable currents flow oc-
cur between the lines. However, current in one direction is
canceled by another in the other direction, thus the total cur-
rent vanishes. When one of the winding number in a line is
reversed as see in Figs. 3(d), (f), and (g), a circulating cur-
rent arises around it; however, it is localized, thus will not
contribute to a macroscopic current.

3 Nernst Signal from the Flow of the Loop Currents

In the previous section, we assume that holes are immo-
bile. In this section, we consider the case where holes move
slowly by an applied temperature gradient with keeping
spin-vortices and loop-currents around them. This slow mo-
tion of holes produces a flow of loop currents, and give rise
to a time-dependence in Afic.

The time-dependence of Afic generates a fictitious elec-

tric field [6]

Efic = −1

c

∂

∂t
Afic = − �

2q
∇χ̇ (34)

in the same manner as a time-dependence of the real vector
potential produces an electric field.

It has been pointed out that this Efic explains an enhanced
Nernst signal eN observed in the pseudogap phase of the
cuprate [6, 27–29], where eN is defined as

eN = Ey

−∂xT
. (35)

In Fig. 4, the experimental setup is depicted; the magnetic
field is applied in the z-direction, the temperature gradient
is in the x-direction with ∂xT < 0, and the induced electric
field is in the y-direction; Ey , arises as an electric field that
compensates the y component of the fictitious electric field
Efic, which is generated by the accumulation of charges on
surfaces normal to the y-direction.

The current direction of each loop-current is either para-
magnetic or diamagnetic to an applied magnetic field (see
Fig. 5). In our previous work, we have considered the case
where all loop currents are diamagnetic [6] with winding
number +1. In that case, the Nernst signal is obtained as

ed
N = hvnd

−2e∂xT
, (36)

Fig. 4 Experimental set-up for the Nernst effect measurement

Fig. 5 Paramagnetic-loop-current jp and diamagnetic one jd. The for-
mer is considered as a magnetic moment in the direction of the applied
magnetic field, and the latter is that in the opposite direction
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where v is the average velocity of spin-vortex flow, h is
Planck’s constant, and nd is the surface density of the dia-
magnetic loop currents.

Since the magnetic field energy of the current density j in
a magnetic field is given by

Um = 1

2c

∫

d3r

∫

d3r ′j(r′) · A(r), (37)

where A is the vector potential for the total (external + loop-
current-induced) magnetic field, diamagnetic loop currents
are energetically favorable; thus, the above treatment is jus-
tifiable.

However, when the number density of loop currents is
small we need to include the contribution from paramag-
netic loop currents (jp in Fig. 5) as well; this is because that
when the number density of loop currents is small, they are
basically isolated magnetic moments produced by Afic; in
this situation, the energy of magnetic moments in an exter-
nal magnetic field is given by

Up = −
∑

i

mi · Bi (38)

where mi is the magnetic moment that corresponds to the
loop current centered at the ith site. In contrast to Um, this
contribution favors paramagnetic-loop-currents.

If we estimate the paramagnetic-loop-current contribu-
tion in a similar manner as for the diamagnetic contribution
by assuming their winding numbers are all −1, it is given by

e
p
N = hvnp

2e∂xT
, (39)

where np is the surface density of the paramagnetic loop
currents.

Then the Nernst signal is the sum of the two contributions
given by

eN = hv(nd − np)

2e|∂xT | . (40)

The Nernst effect measurements have observed that a
negative Nernst signal starts to appear at around T ∗; and
the negative signal turns to the positive one as the tempera-
ture is decreased [20]. The expression in (40) indicates that
this sign change is explained if a crossover from np > nd

to np < nd occurs as the temperature is decreased. In the
following, we consider this crossover in an ad hoc manner.

For simplicity, we assume that all holes become centers
of loop currents; thus, we have

ns = np + nd. (41)

A very simplified parameterization for the paramagnetic
contribution in (38) may be given by

Up ≈ −A1(np − nd), (42)

where A1 is a positive parameter linearly depends on the ap-
plied magnetic field; this term describes an energy gain for
paramagnetic-loop-currents and loss for diamagnetic ones.

When the number density of loop currents becomes large,
the current density becomes large; then magnetic energy Um

that contains a term of quadratic dependence with respect
to the current density becomes dominant. This will mean
that when the current density becomes sufficiently large,
diamagnetic-loop-currents will be dominant; we include this
effect by adding an energy loss term for paramagnetic-loop-
currents.

Overall, we come up with the following function for
np and nd that are used to describe the above-mentioned
crossover; i.e., np and nd are obtained by minimizing,

Em = −A1(np − nd) + A2n
2
p, (43)

where the second term with a positive parameter A2 de-
scribes the energy loss for the paramagnetic-loop-current
generation.

The minimization condition for Em with respect to nd

yields

nd =
{

0 if ns < A1/A2

ns − A1/A2 if ns ≥ A1/A2
. (44)

In our previous work [6], the temperature dependence of
the Nernst signal ed

N is obtained as

ed
N = c3T

−1e−0.5Wp/kBT /
(

1 + c2T e−Wp/kBT
)

. (45)

In order to include np contribution, we need to a temper-
ature dependence of ns; we express it as

ns = c4/
(

1 + c2T e−Wp/kBT
)

, (46)

where c4 is a fitting parameter. This temperature dependence
is obtained by assuming that ns has the same temperature
dependence as the magnetization −M at low temperatures
since at low temperature almost all loop currents are ex-
pected to be diamagnetic, thus ns ≈ nd should hold. In our
previous work [6], −M is given as

−M = c1/
(

1 + c2T e−Wp/kBT
)

; (47)

thus, the condition ns ≈ nd ∝ M leads to the ns given
in (46).

The final form of the temperature dependence of the
Nernst signal is given by

eN =
{

−c3e
−0.5Wp/kBT (c4T )−1ns if ns < A1/A2

c3e
−0.5Wp/kBT (c4T )−1(ns − 2A1

A2
) if ns ≥ A1/A2

(48)

with ns given in (46).
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Fig. 6 Temperature dependence of the Nernst signal: Experimental
data for Bi2Sr2CaCu2O8+δ obtained by Wang et al. [28] are presented
by “+.” Parameters c2 = 10 K, c3 = 5200K, and Wp/kB = 300 K are
used for all lines. The fit without including paramagnetic loop currents
is given by blue short dashed-line [6]. The fit with including both dia-
magnetic and paramagnetic loop currents is given by green dashed–
line (c4 = 0.045, A1/A2 = 0.0004); the purple dotted-line is a pre-
dicted result if the magnitude of the applied filed is tripled (c4 = 0.045,
A1/A2 = 0.0012)

In Fig. 6, the temperature dependence of eN is depicted. It
shows qualitatively similar behaviors as the recent Nernst ef-
fect experiment [20]. The zero signal temperature, at which
eN is equal to zero, is shifted to a lower temperature if the
magnitude of the applied magnetic field is increased in ac-
cordance with the experimental results [20]. Although the
argument here is very rough, it qualitatively explain the sign-
change of eN.

4 ARPES Spectrum

The experimental results obtained by ARPES and STS indi-
cate the existence of very mobile holes. These results can-
not be explained by the EHFMI state caused by the small
polaron formation. Since ARPES and STS results contain
a large surface electronic state contribution, the difference
of the electronic state in the surface region from that in the
bulk may be the reason for this discrepancy; it is plausible
that small polarons are not formed in the surface region due
to poorer screening of the charge and/or less chemical-bond
formation compared to the bulk.

In order to explain the ARPES results in the cuprate, we
employ a two-layer model in which the first layer mimics
the near surface CuO2 plane and the second layer that in
the bulk. In the surface-layer, the small polaron formation
effect is eliminated. We employ a Hubbard model including
the first and second nearest neighbor hoppings (the transfer
integral for the second and first nearest neighbor hoppings
are t ′2 and t ′1, respectively) with a Coulomb parameter U ′.

Hsurf = −
∑

i,j,σ

tijc
†
iσ cjσ + U ′ ∑

j

c
†
j↑cj↑c

†
j↓cj↓. (49)

In the bulk-layer, we employ the Hamiltonian HEHFSS

in (31) with including the second nearest neighbor hopping
(the transfer integral for the second and first nearest neigh-
bor hoppings are t2 and t1, respectively). Those two lay-
ers are connected by transfer matrix elements between sites
in the first layer to corresponding sites in the second layer
(transfer integral is t3).

Hbulk−surf =
∑

i∈surf, j∈bulk, σ

tij
(

c
†
iσ cjσ + c

†
jσ ciσ

)

. (50)

The electronic state in the surface-layer is treated by a
mean-filed theory [5]. Since the parent compound is a three-
dimensional antiferromagnet, it may be reasonable to as-
sume that the antiferromagnetic interaction exists between
electrons in the surface and those in the bulk. This interac-
tion is included by choosing the phase ξ surf

j in the surface

region so that it transcribes the phase ξbulk
j in the bulk as

ξ surf
j = ξbulk

j + π. (51)

Now we show that electrons moving in an antiferromag-
netic background gives rise to the “Fermi arc” structure. In
order to make the discussion clear, we first consider a single-
layer, Hsurf only problem.

We employ a mean filed approximation to (49) given by

H̄surf = Ksurf +
∑

j

(

ǫa
j a

†
j aj + ǫb

j b
†
jbj

)

(52)

where Ksurf is the hopping energy term in the surface region;
parameters ǫa

j and ǫb
j are defined as

ǫa
j = U ′〈b†

jbj

〉

, (53)

ǫb
j = U ′〈a†

j aj

〉

. (54)

An analytic solution is obtained for an uniform case
where 〈b†

jbj 〉 and 〈a†
j aj 〉 are constant through the lattice;

ǫa
j = ǫa = U ′nb, (55)

ǫb
j = ǫb = U ′na . (56)

The antiferromagnetic background is taken into account
by setting ξj = π(jx + jy). Then the single-particle energies
are calculated as

ǫ±
k = 0.5

(

ǫa + ǫb − 8t ′2 coskx cosky

)

± 0.5
√

(ǫb − ǫa)2 + 16t ′21 (coskx + cosky)2,

and the creation operator for the ǫ−
k -band is given by
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d
†
k =

−4t ′1(coskx + cosky)a
†
k + [ǫb − ǫa −

√

(ǫb − ǫa)2 + 16t ′21 (coskx + cosky)2]b†
k

√

[ǫb − ǫa +
√

(ǫb − ǫa)2 + 16t ′21 (cos kx + cosky)2]2 + 16t ′21 (coskx + cosky)2

,

where

a
†
k = 1√

Ns

∑

j

a
†
j e

ik·rj , (57)

b
†
k = 1√

Ns

∑

j

b
†
j e

ik·rj , (58)

with Ns being the number of sites.

In the mean field solution, the ground state with N elec-
trons and energy EN

0 is given by

∣

∣�N
0

〉

=
∏

ǫ−
k

≤0

d
†
k|vac〉, (59)

where the origin of the energy is taken at the Fermi level.
Then the occupation number densities na and nb in (55)

and (56) are calculated as

na =
∑

ǫ−
k

≤0

1

Ns

16t ′21 (coskx + cosky)

[ǫb − ǫa −
√

(ǫb − ǫa)2 + 16t ′21 (coskx + cosky)2]2 + 16t ′21 (coskx + cosky)2
,

and

nb =
∑

ǫ−
k

≤0

1

Ns

[ǫb − ǫa −
√

(ǫb − ǫa)2 + 16t ′21 (coskx + cosky)2]2

[ǫb − ǫa −
√

(ǫb − ǫa)2 + 16t ′21 (coskx + cosky)2]2 + 16t ′21 (coskx + cosky)2
,

respectively, where ǫb − ǫa has to be determined in a self-consistent manner using the following equation:

ǫb − ǫa =
∑

ǫ−
k

≤0

U

Ns

16t ′21 (coskx + cosky) − [ǫb − ǫa −
√

(ǫb − ǫa)2 + 16t ′21 (coskx + cosky)2]2

[ǫb − ǫa −
√

(ǫb − ǫa)2 + 16t ′21 (coskx + cosky)2]2 + 16t ′21 (coskx + cosky)2
.

In the sudden approximation with neglecting the matrix

element effects, the ARPES intensity is proportional to

I (k,ω) =
∑

s,σ

∣

∣

〈

�N−1
s

∣

∣ckσ

∣

∣�N
0

〉∣

∣

2

× δ
(

�ω − EN−1
s − Ekin + EN

0

)

, (60)

where

ckσ = 1√
Ns

∑

j

cjσ e−ik·rj , (61)

Ekin is a kinetic energy of the emitted electron, and |�N−1
s 〉

is a state with N − 1 electrons with energy EN−1
s .

Customarily, the ARPES intensity is compared with the

single-particle spectral function

A(k,ω) =
∑

s

∣

∣

〈

�N−1
s

∣

∣dk

∣

∣�N
0

〉∣

∣

2

× δ
(

�ω − EN−1
s + EN

0

)

, (62)

= δ
(

�ω − ǫ−
k

)

. (63)

However, in the present case, the observed intensity is not

directly connected to the single-particle spectral function,

but with a factor Rk;

I (k,ω) = Rkδ
(

�ω − Ekin − ǫ−
k

)

, (64)

where Rk is given by
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Rk =
∣

∣〈vac|ck↑d
†
k+Q|vac〉

∣

∣

2 +
∣

∣〈vac|ck↓d
†
k|vac〉

∣

∣

2

=
[ǫb − ǫa −

√

(ǫb − ǫa)2 + 16t ′21 (coskx + cosky)2 − 4t ′1(cos kx + cosky)]2

[ǫb − ǫa −
√

(ǫb − ǫa)2 + 16t ′21 (coskx + cosky)2]2 + 16t ′21 (coskx + cosky)2
.

Actually, Rk gives rise to an intensity transfer in the k-

space. In the limit |ǫa − ǫb| → 0, it is a step function;

lim
|ǫa−ǫb|→0

Rk =
{

0 for coskx + cosky < 0

2 for coskx + cosky > 0
. (65)

In general, a small |ǫa − ǫb| value (which occurs for small

U ′ value) produces a large intensity transfer.

In Fig. 7, ǫ−
k and Rk around the Fermi energy are de-

picted for U ′ = 8t ′1 and U ′ = 4t ′1 cases. The Fermi surface is

a Fermi pocket centered around (π/2,π/2). Rk causes the

intensity transfer from the right of the (π,0)-(0,π) line to

the left, thus the intensity in the right of (π,0)-(0,π) line is

reduced. In the U ′ = 8t ′1 case, the intensity transfer is small.

When U ′ is reduced to 4t ′1, the transferred intensity is in-

creased, and the simulated result shows a “Fermi arc” that

resembles the experimental result. We will use this U ′ in the

following calculations.

Let us come back to the two-layer model with the Hamil-
tonian

H = Hbulk + Hsurf + Hbulk−surf. (66)

In Fig. 8, the results from the two-layer model are de-
picted. The Fermi arc is observed from the photoemission
intensity from the bulk-layer. The Fermi surface is actually a
hole-pocket; however, due to the intensity transfer explained
above, the half of the pocket centered around (π/2,π/2)

disappears.
The oscillation of the Hall resistance that indicates an

existence of single Fermi pocket of the size that is equal
to a combined two Fermi arcs is observed [30]. The subse-
quent measurement observed that the Hall coefficient is neg-
ative [31]. The Fermi pocket around (π/2,π/2) is hole-like,
thus it was concluded the oscillation was due to a different
Fermi pocket.

In the present theory, the above experimental results can
be interpreted as follows: at temperatures above Tc, both
SVILCs in the bulk and mobile holes in the surface region

Fig. 7 Plots for the single-layer
model. Contour plots of the
single-particle energy ǫ−

k , and
simulated ARPES intensity
around the Fermi energy are
depicted. Left: single-particle
energy dispersions; the Fermi
energy is taken as the origin
(ǫ−

k = 0). Right: Simulated
ARPES intensities around the
Fermi energy obtained by
extracting a region around the
Fermi energy from Rk with an
energy window ǫ−

k ≤ |0.05t ′1|;
contour plot is obtained using
20×20 mesh points. The
intensity plots are broadened by
Gaussian functions. The unit of
energy is t ′1. The parameters are
x = 0.10, t ′2 = −0.02t ′1; and
U ′ = 8t ′1 for the first row, and
U ′ = 4t ′1 for the second row
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Fig. 8 Plots for the results from the two-layer model. (a) The spin con-
figuration in the bulk layer; 60 holes are in a 25×25 lattice. (b) Fermi
surface for the surface-layer; the energy range is from 0.376 to 0.467,
where the latter is the Fermi energy. (c) The ARPES spectrum along

(0,0)–(π/2,π/2) directions; the intensity of spectrum from the bulk-
layer is reduced by half, arbitrarily. The intensity plots are broadened
by Gaussian functions. Parameters are t1 = t ′1 = 1, t2 = t ′2 = −0.2,
t3 = 0.001, U = 8, U ′ = 4

will contribute to electric current. When the temperature is
close to Tc, the former dominates; thus, the Hall coefficient
is negative. The electrons in the Fermi surface are those in
the surface region; they produce a Fermi pocket and explains
both the observed Hall resistance oscillation and Fermi-arc
structure.

The kink of the dispersion is also noticed in Fig. 8; it
arises from the interaction between the electronic state in
the surface and that in the bulk. Actually, the kink position
corresponds to the crossing energy of the bulk and surface
dispersions. It has been observed that isotope effect is neg-
ligible for the kink energy. The present interpretation dose
not require phonons, thus agrees with it [18].

5 Concluding Remarks

In order to explain the anomalous phenomena observed in
the pseudogap phase, we have employed a new type of
Hartree–Fock fields that is suitable for systems with lo-
cal moments from itinerant electrons. For the parent com-
pound of the cuprate, it coincides with the band insulator
description for the half-filled antiferromagnetic insulator by
Slater [15]. It contains three position-dependent parameters
to be optimized (ξ , θ , and χ in (7)). The two of them de-
scribe the SU(2) part of the basis transformation matrix, and
should be optimized by minimizing the interaction energy
between local moments.

For the electric current generation, the U(1) phase χ is
the most important one. It has to be optimized under the
condition given in (32). This dependence of the U(1) phase
on the SU(2) part gives rise to an “electromagnetic field”
whose vector potential is given in (13).

The appearance of the fictitious electromagnetic field is
due to the way we solve the problem; namely, we solve it by

constructing a Hartree–Fock field with the collective coor-
dinates θ , ξ , and χ . If we could solve the problem directly
without relying on the Hartree–Fock field, the fictitious elec-
tromagnetic field would not appear. The situation here is
similar to the appearance of a fictitious magnetic field in
the dynamical Jahn–Teller problem [32–34]; if we solve the
problem by employing the Born–Oppenheimer approxima-
tion, we need to include the fictitious magnetic field; how-
ever, such a field is not necessary if it is solved directly with
including the electron and nuclear degrees of freedom all
together.

The merit of introducing the above Hartree–Fock field is
obvious; it simplifies to solve the problem and gives a clear
physical picture. In the present construction of the Hartree–
Fock field, a part of states in highly-degenerate (or nearly-
degenerate) states are extracted by specifying winding num-
bers wi[ξ ] and wi[χ]; by doing this we can grasp the fact
that the existence of spin-vortices leads to the generation of
loop currents. Improved solutions will be obtained by us-
ing Hartree–Fock solutions as the zeroth approximation and
performing configuration-interaction calculations; however,
qualitative features of the low energy physics will not be
significantly altered.

The ARPES exhibits two gaps in the Fermi surface [35].
The small energy gap is believed to be due to the Cooper-
pair condensation. According to the present work, the large
energy gap is formed when the “band-holding” occurs in the
electronic state in the surface region due to the antiferro-
magnetic interaction with local moments in the bulk. This
“band-holding” is not a true band-holding, but still causes
a similar effect. This “band-holding” is also responsible for
the appearance of the Fermi arc due to the k-space intensity
transfer.

The existence of the Fermi-arc means the existence of a
spin-texture in the surface region that is transcribed from the
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bulk. This also means that electrons in the surface region are
under the influence of the fictitious magnetic field induced
by the transcribed spin-vortices. When the energy gap by the
Cooper-pair condensation is established in the surface re-
gion, loop currents induced by the transcribed spin-vortices
will be stabilized. Then SVILCs appear in the surface re-
gion, and they explain the small field effect observed in the
second kind Kerr-effect experiment, in which the small field
(± 60 Oe field) imposed during cooling gives rise to a con-
tribution at temperatures below Tc in addition to the 4 T field
contribution [1, 2].

The magnetic field effects below Tc in the Kerr-effect
experiment and the Nernst experiment can be attributed to
the Meissner effect of superconducting states; they are ex-
plained due to diamagnetic current generated by a collec-
tion of SVILCs in the present work. This correspondence
leads to an identification that a macroscopic current gener-
ated by SVILCs below Tc is actually a supercurrent of super-
conducting state in accordance with the recently proposed
spin-vortex superconductivity theory [8].

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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Y., Steffens, P., Zhao, X., Bourges, P., et al.: Nature 468, 283
(2010)

4. Varma, C.: Nature 468, 184 (2010)
5. Koizumi, H.: J. Phys. Soc. Jpn. 77, 034712 (2008)
6. Koizumi, H.: J. Phys. Chem. A 113, 3997 (2009)
7. Koizumi, H.: J. Phys. A, Math. Theor. 43, 354009 (2010)
8. Koizumi, H.: J. Supercond. Nov. Magn. (2011). doi:10.1007/

s10948-011-1159-8
9. Hayden, S.M., Mook, H.A., Dai, P., Perring, T.G., Doğan, F.: Na-
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