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We consider the low-energy magnetic excitations of nanographite ribbons with zigzag edges.

The zigzag ribbons possess almost flat bands at the Fermi level which cause a ferrimagnetic spin
polarization localized at the edge sites. The spin wave mode of this magnetic state is investigated
by a random phase approximation of the corresponding Hubbard model. This result is used to
derive an effective Heisenberg model with ladder structure. Although this system has a spin gap
(Haldane type), our analysis shows that the gap is small and the tendency towards ferrimagnetic

correlation at the edges is strong.
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§1. Introduction

Nanographites are nanometer-sized graphite frag-
ments which represent a new class of a mesoscopic sys-
tem intermediate between aromatic molecules and ex-
tended graphite sheets. The characteristic feature of
nanographites is that the edge region is not negligible,
i.e., edge and bulk effects are comparable, and therefore,
the existence of edge might affect the 7 electronic states
which govern the electronic properties near the Fermi
level.1:?) A useful and simple system to investigate the
electronic states of nanographites is provided by ribbon-
shaped graphite. By studying the electronic states of
graphite ribbons based on the tight binding model, we
found that the edge shape - we distinguish between zigzag
and armchair edges - leads to a striking difference for the
states near the Fermi level. In contrast to the electronic
structure of ribbons with armchair edges, the ones with
zigzag edges possess almost flat bands at the Fermi level
associated with electronic states which are localized in
the near vicinity of the edge. This localized state (“edge
state”) corresponds to the non-bonding molecular orbital
(NBMO) as can be understood from the analytic solution
for semi-infinite graphite with a zigzag edge.!)

While a graphite sheet behaves like a zero-gap semi-
conductor with vanishing DOS at the Fermi level, the
flat bands of the zigzag ribbons introduce a sharp peak
in the DOS at the Fermi level. Therefore, an instability
could be induced by electron-phonon and/or electron-
electron interactions. The study of the electron-phonon
interaction based on the SSH model concluded that the
lattice in-plane distortion does not occur in the zigzag
ribbons, because of the non-bonding character of edge
state.¥) On the other hand, the treatment of the Hub-
bard model within the unrestricted Hartree-Fock(HF')
approximation showed that the electron-electron interac-
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tion causes a ferrimagnetic spin polarization at the zigzag
edge even for very weak on-site Coulomb interaction.!)

The ferrimagnetic spin polarization obtained by HF
approximation along the zigzag edges is of course in-
teresting in view of the magnetic properties of nano-
graphites. Nevertheless, the long-range order derived
from this HF calculation is spurious, because no finite-
momentum long-range spin order is expected in an one-
dimensional system with full spin-rotation symmetry.3)
Even we may argue that quasi-long-range order, similar
to the spin-1/2 Heisenberg chain, is not realized in zigzag
ribbons of any finite width for the following reason. The
unit cell of the ribbons contains an even number of sites
and the band is half-filled so that Haldane’s conjecture
applies, i.e. the system should exhibit a spin gap.?) This
is very analogous to the case of the ladder systems with
an even numbers of legs, which display a resonating va-
lence bond (RVB) ground state, i.e., a short range corre-
lated spin liquid state. With increasing width of the rib-
bon, however, the spin gap A; should decrease exponen-
tially due to the diminished overlap between two edges.
In the limiting case of a semi-infinite graphite sheet, the
state should, therefore, possess a gapless spin spectrum
with quasi long range order. From this point of view, it is
reasonable to study the low-lying spin excitations based
on the HF result using the random phase approximation
(RPA), which will give us in any case gapless spin wave
modes. These modes lie below the charge gap induced
by the electron-electron interaction for any width of the
ribbon so that they remain always well-defined. We will
use the RPA result to derive an effective Heisenberg spin
model for the magnetic moments which emerge at the
edges due to the electron-electron interaction.

§2. Spin Wave Mode in Graphite Ribbons

We use the following Hubbard model for the zigzag
ribbons,
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Fig. 1. The frame of zigzag ribbon, where closed(open) circles

denote A(B)-sublattice. The rectangle with dashed line shows
the unit cell.
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where the operator cf, , (i) creates an electron with spin s
on the site ¢ of the unit cell @ and nq 5(7) = cf, ,(4)ca,s (7).
Here (a, ') and (4,7) denote nearest neighbor unit cells
and sites, respectively. The shape of the zigzag rib-
bon is shown in Fig. 1 with the definition of the rib-
bon width N and the unit cell. As a first step, we solve
the unrestricted Hartree-Fock (HF) Hamiltonian, which
is obtained by neglecting the fluctuation term after the

(2.1)

substitution 14 ¢ (1) = (g (1)) + (Ma,s (1) = (Na,s(i))) to
eq. (2.1),
H = —t Z Z CLS(Z.)CQ’,S(]-)

(,a’) (i,5),s

Mo, () + (a,1(i))1a,1(2)) (2.2)
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where (---) denotes the expectation value in the HF
state. The self-consistence conditions are given by

m(i) = —}DazT(i)am(i) - afy (ar )
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where aLs(i) is the Fourier transformed operator of
Clz?s (Z)7

cho6) = % S el (i), (2.4
k

occu.

and the sum Z is restricted for occupied states. The

1
symbol ug s(4;1) denotes the matrix element of the fol-
lowing canonical transformation

=Y uk, (65 1)), (1)
l

in order to diagonalize the HF Hamiltonian with 7,]:3(1)
as the new quasi-particle operators. Since the zigzag rib-
bons have a bipartite-lattice structure, we solve the self-
consistent equations assuming that the basic correlation
is antiferromagnetic (AF).

Previously we found that this HF Hamiltonian shows
clear differences in the magnetic structure compared with
the graphite sheet.!) Since the latter is a zero gap semi-
conductor, where the DOS at the Fermi level is zero, the
antiferromagnetic HF solution emerges only when U/t
is larger than U, ~ 2t, that is consistent with the fact
that graphite with a very weak Coulomb repulsion has
no spontaneous magnetism. The graphite ribbons with
zigzag edge, however, display a magnetic ground state,
for any value U/t > 0. For U/t < 2, magnetic moments
appear essentially only at the edge sites while in the cen-
ter of the ribbon no magnetism can be found. Note that
this behavior is consistent with the exact statement by
Lieb for the half-filled Hubbard model.)

Let us now turn to the collective mode associated with
this peculiar magnetic structure of zigzag ribbons. We
start with the following transverse dynamical suscepti-
bility,”

Xt (@w) =i / Ate“ (S (i:1), 5=, (; ),

where S (i;t) is the Heisenberg representation of
Sra) = Xy ak+q1‘(z)akl(7’) Using the canonical
transformation eq. (2.5), the dynamical susceptibility
x?;r ~(g,w) for the mean field solution can be expressed
in the Lehmann representation,

(2.5)

(2.6)

occ. unocc.
X W) =330 304
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where E and E are sums restricted to occupied

m l
and unoccupied states, respectively. In order to take into

w — ex(m) — ex(l)

Ui g (8 Drr (6 m)ujp (75 m)ug (5;1)
w+ex(m) — ex(l) ’

2.7)

account the bipartite structure of the AF correlation,
it is convenient to distinguish between “uniform” and
“staggered” spins,
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Fig. 2. Spin wave modes for various ribbon widths of N =
2,3,--+,9 when U/t = 0.1 (a), 1.0 (b) and 10.0 (c). The in-

sets in (a) and (b) show the corresponding charge excitations. It
should be noted that in (a) the spin wave dispersions are shown
only up to 7/2 to show the width dependence clearly.
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where s(7) is +1 (—1) if the site ¢ belongs to the A (B)-
sublattice. The spin operators are given by

2.8
G (2.8)
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Fig. 3. The definition of effective Heisenberg interactions of the
ladder model fitted for the spin modes of zigzag ribbons.
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Fig. 4. (a) Site dependence of effective Heisenberg interactions
—Ju when N = 3,5. (b) Ribbon width dependence of effective
Heisenberg interactions Jj and Jj for interedge.
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It is natural to introduce the following transformation
for the dynamical susceptibility,

)ss’ca,s’(i)‘ (29)

X?]+ uu X?J+—, X?f us _ s(j)x?;‘_’ (2 10)
X = (i, xS = s(i)s()xg

From this, we obtain the equations for the response to
the oscillating fields, hju(q, w) (uniform) and h+ (¢, w)
(staggered), and the corresponding mean fields,”

Zxo’“‘ 0,0) (W, (q.w) + 1(5},0))

+ Z XOus (

zuq

w) +I(S}..)) , (2.11)
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7

The spectrum of the spin wave modes corresponds to the
poles of the susceptibilities obtained from these equa-
tions.

The spin wave dispersions are shown in Fig. 2 for
U/t = 0.1, 1.0 and 10, and various ribbon widths. Be-
cause the Hubbard gap is very small when U/t = 0.1, the
spin wave dispersion of U/t = 0.1 is shown only up to
g = 7/2 to show the width dependence and the behavior
around ¢ = 0 clearly. Obviously, the spin wave spec-
trum is sensitive to both the interaction U and the width
N. For all widths and all finite U the spin wave spec-
trum has a basic linear dispersion around ¢ = 0 (and 2m)
because the correlation is essentially antiferromagnetic.
However, a strong quadratic dispersion is superposed due
to the ferromagnetic character of the large moments ap-
pearing at each edge, as we can see clearly in Fig. 2(a)
(U = 0.1t). This superposition completely disappear
for U = 10t(>U,) in Fig. 2(c), where all sites generate
a magnetic moment with well-developed Néel structure.
In this case the dispersion very weakly depends on the
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width N and is entirely that of an AF system. The case
of U =t can be considered as intermediate, because for
small N it is more similar to the small-U situation while
for large N the low-energy spectrum resembles that of
U = 10¢. It is important to notice that the low-energy
spectrum for all U > 0 lies below the continuum of the
quasiparticle excitations described by the HF calculation
(see insets in Figs. 2(a) and 2(b)). Therefore these spin
waves represent well-defined undamped modes.

Now let us turn to the case of U = 0.1t where only the
outermost moments at the edges are well-developed and
can be considered as localized spin degrees of freedom on
a lattice with two leg ladder structure. We can derive the
effective Heisenberg model for these spins by analyzing
the RPA spin wave spectrum.

H=>"7J;S:S;,

1.3

(2.13)

where J;; is the effective spin-spin interaction not re-
stricted to nearest neighbors as shown in Fig. 3. By
means of the Holstein-Primakoff transformation, the spin
wave spectrum derived from the ordered state with paral-
lel alignments of the spin along the edges and antiparallel
between the edges is given by

' 2
wy = (—4ZJ,,,sm2,,,q+2ZJ,;*J5> —(2
p ©

where J, and J, L denote intra- and interedge interactions,
respectively. Here p is equal to the distance between
two spins, |¢ — j|. We use the least square fit method
in order to determine J, and Jj from the RPA spectra
(v =1,...,10). Figures 4(a) and 4(b) show that J, de-
creases fast with distance along the ribbon (]J,| oc p=%,
an=3 = 3.2, an=9g = 2.2), but weakly with N. On the
other hand, Jj and Ji drop sharply with increasing N,
where the results for N > 5 are limited by the numeri-
cal accuracy. One important result in this context is the
fact that the interedge interaction is almost two orders of
magnitude smaller even in the case of N = 3. This sug-
gests that the magnetic states of both edges are almost
independent. Consequently, the ferromagnetic correla-
tion of the large moments should lead to an enhancement
of the paramagnetic signal in the uniform susceptibility.

The spin system is eq. (2.9) has a spin gap for finite
Jy and Ji. The small value of Jj suggests a rather small
value of the spin gap, As ~ J§.>) The accurate values are
difficult to estimate, however, even with exact diagonal-
ization due to severe finite size effects for weakly coupled
spin chains.

§3. Conclusions

We have analyzed the spin wave modes arising from
the ferrimagnetic state in nanographite ribbons. The
spin wave spectrum shows a linear dispersion for small
q reflecting the basically antiferromagnetic correlation.
However, a strong quadratic component occurs in ad-
dition to this linear dispersion as a consequence of the

2
J], cos 2uq — Jé) (2.14)

o

ferromagnetic alignment of the basically localized spins
at the edge. The HF approximation which is the ba-
sis of our spin wave analysis overestimates usually the
tendency towards to magnetic order. Nevertheless, the
basic magnetic correlations are given correctly. From
this point of view, the spin wave discussion allows us to
analyze the stiffness of the magnetic state. If we con-
centrate on the dominant magnetic moments appearing
in the HF approximation and interpret them as local-
ized spins (edge spins), then we may describe the ba-
sic magnetic properties by an effective Heisenberg model
of these spins on a lattice with ladder structure. This
model incorporates the features mentioned in the intro-
duction, i.e. we encounter here in a real (Haldane type)
spin gap system. However, our analysis shows also that
this spin gap must be rather small. Therefore, the spin
wave discussion shows that the strong tendency towards
a ferrimagnetic state is real and should have strong in-
fluence on the magnetic properties of this type system.
This is particularly interesting from point of view of re-
cent experimental developments in related nanographite
structures where we believe that edge states as described
here are highly relevant.

Some graphite-related materials consisting of nano-
graphites, e.g., activated carbon fibers (ACF), amor-
phous carbons, carbon blacks, defective carbon nan-
otubes etc., show actually anomalous behaviors in the
magnetic susceptibility. While bulk graphite has a large
diamagnetic and anisotropic susceptibility, a certain type
of ACF with a huge specific surface area (SSA) up to
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3000 m? /g (believed to consist of an assembly of minute
graphite fragments with a dimension of 20 A x 20 A) ex-
hibits an isotropic paramagnetic response at room tem-
perature and a strong Curie-like behavior in low temper-
ature.®) This kind of anomalous behavior of the suscep-
tibility is also observed in many amorphous carbons and
defective carpet-rolled carbon nanotubes.?)

The sample production of graphite-related materials
has still insufficient influence on size and edge shapes,
which makes it difficult to identify of the origin of mag-
netic properties. There are some recent experimental
attempts, however, to synthesize nanographite systems
and controlling the size and edge shapes. One is “graphi-
tization” of diamond powder with grain sizes 40-50 A
by annealing in argon atmosphere. Another method to
produce nanographites is epitaxial growth on substrates
with step edges.!® Depending on the morphology of step
edges, e.g., terrace structure of a vicinal surface, ribbons
with well-defined edge properties may be grown. Other
types of nanographites with well-defined edges might be
obtained by lithographic techniques or by STM. There-
fore we expect that in near future the magnetic proper-
ties of edge states will be observable so that their influ-
ence can be tested in a controlled way.
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