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Abstract

The Dzyaloshinskii-Moriya interaction in ultrathin ferromagnets can result in nonreciprocal prop-

agation of spin waves. We examine theoretically how spin wave power flow is influenced by this

interaction. We show that the combination of the dipole-dipole and Dzyaloshinskii-Moriya in-

teractions can result in unidirectional caustic beams in the Damon-Eshbach geometry. Morever,

self-generated interface patterns can also be induced from a point-source excitation.
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The Dzyaloshinskii-Moriya interaction (DMI) is a short-range chiral spin-spin interaction

in systems lacking inversion symmetry [1–3]. In ultrathin ferromagnetic metals, this inter-

action can be induced at an interface with a normal metal possessing a strong spin-orbit

coupling [4, 5]. The interfacial form has received significant attention in recent years, where

among the highlights are the creation of skyrmions at room temperature [6–9] and the fast

current-driven motion of chiral domain walls [10, 11]. In terms of dynamic effects the DMI

also introduces a nonreciprocity in spin wave propagation, where ω(k) 6= ω(�k). This effect,

first predicted and observed in epitaxial Fe/W layers [12, 13], has since been observed in

other sputtered systems using Brillouin light scattering [14–18].

However, one feature that has not been significantly investigated is the issue of power

flow. It is immediately clear that this is a requirement from the shifting of the spin wave

dispersion curve introduced by DMI. With DMI and for propagation perpendicular to the

magnetization the dispersion curve is approximately a parabola but with the minimum

shifted away from the origin along the wave vector axis. Because of this dω/dk is nega-

tive in some regions, and this indicates the group velocity is opposite to the phase velocity.

However, this simple analysis is not sufficient to capture all the important features of the

anisotropic power flow created by the DMI. We note that the study of focusing patterns for

bulk [19] and surface phonons [20] in crystals is well known. The corresponding investiga-

tions in thick film magnetic systems have begun only recently with both experimental [21–24]

and theoretical results [25]. The focusing results have already shown remarkable behaviors,

including focusing effects of energy well below the expected diffraction limit and an inter-

esting reflection behavior for energy where the angle of incidence is not equal to the angle of

reflection. In many ways the magnetic system is much more exciting because the external

magnetic field offers the opportunity to tune the dispersion relations and alter the focusing

patterns, something that is not available in phonon focusing.

In this paper we study power flow from a point source in a ferromagnetic film with interfa-

cial DMI. In the ultrathin film limit and without DMI, the power flow is essentially isotropic,

radiating energy approximately equally in all directions. With DMI present however we find

a set of remarkable results. First, we show that a short pulse creates a bulls-eye pattern

with a center that drifts away from the source over time. Second, we find, both analytically

and through micromagnetics, that with DMI one can create caustics, highly focused beams

of energy, at particular frequencies. Finally, we find that a single point source, with DMI
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FIG. 1. (Color online) (a) Geometry of spin wave propagation. A magnetic field, H0, is applied

along y, which tilts the static magnetization by an angle θ away from the uniaxial anisotropy axis

(z). (b) Dispersion relation (ky = 0) for different H0, with D = 1 mJ/m2, based on Eqs. (1) and

(2). HK denotes the anisotropy field.

present, can create an interference pattern. The focusing patterns are highly nonreciprocal,

with the caustic beams appearing only on one side of the film surface. This has important

implications for spintronic devices and applications, such as in magnonics, where the transfer

of angular momentum and energy play a key role.

Many of the features involving the nonreciprocity can be deduced from the spin wave dis-

persion relation [26, 27]. We consider an interfacial DMI, which primarily involves ultrathin

ferromagnets in asymmetric trilayers such as Pt/Co/Al2O3, Pt/Co/Ir, etc. Letm = m0+δm

represent the magnetization and Heff = Heff,0+ δHeff the effective field, where m0 and Heff,0

are the static components and δm and δHeff are the dynamic components. The dispersion

relation is obtained by linearizing the Landau-Lifshitz equation about the equilibrium state,

dm/dt = �γµ0 (m0 ⇥ δHeff + δm⇥Heff,0), where γ is the gyromagnetic constant. The ef-

fective field comprises contributions from the exchange, perpendicular magnetic anisotropy

along the z axis, interfacial DMI, and the Zeeman energy associated with the applied mag-

netic field, H0ŷ. The system geometry is illustrated in Fig. 1(a). For H0 lower than the

anisotropy field, HK = 2K0/µ0Ms, where K0 is the effective uniaxial anisotropy constant,

K0 = Ku � µ0NzM
2
s /2, and Ms is the saturation magnetization, m0 is tilted away from the

film normal by an angle θ = sin−1 (h), where h ⌘ H0/HK  1. Here, Nz = 1 represents the

demagnetization coefficient of an infinite thin film and Ku is the strength of the interface-

driven perpendicular magnetic anisotropy. The dispersion relation for this configuration is
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given by

ω =
p

[ωK + ωex(k)] [ωK (1� h2) + ωex(k)]�
2γD

Ms

hkx, (1)

where ωK ⌘ γµ0HK , ωex(k) ⌘ 2γAk2/Ms, and k ⌘ kkk. A is the exchange and D is the

DMI constant. For H0 � HK , m0 is along ŷ and θ = π/2. This leads to

ω =
p

[ω0 + ωex(k)] [ω0 � ωK + ωex(k)]�
2γD

Ms

kx, (2)

where ω0 ⌘ γµ0H0.

Examples of ω(k) are shown in Fig. 1 for several H0. Under zero field, we observe a sym-

metric curve about kx = 0, which indicates reciprocal propagation. Propagation is always

reciprocal along y in this geometry. As H0 is increased and m0 tilts toward the film plane,

the dispersion relation is displaced along the kx axis, which indicates nonreciprocal propa-

gation. This displacement is largest when H0 � HK , as described by the linear kx terms in

Eqs. 1 and 2. Indeed, it is this Damon-Eshbach geometry that has allowed the DMI strength

to be probed in recent experiments [14–18]. In Fig. 1, we used parameters representative

of ultrathin ferromagnetic films with perpendicular magnetic anisotropy, namely A = 15

pJ/m, Ms = 1 MA/m, Ku = 1 MJ/m3, and D = 1 mJ/m2.

An interesting consequence of the shifted dispersion relation is shown in Fig. 2, where

we present results of micromagnetics simulations of the transient magnetic response to a

pulsed field. We used the MuMax3 code [28] and considered a 40 µm ⇥ 40 µm ⇥ 1 nm film

that was discretized using 4096⇥ 4096⇥ 1 finite difference cells. (The smallest wavelength

considered is ⇠ 250 nm, a value much larger than the cell size of ⇠ 9.8 nm.) We considered

µ0H0 = 0.8 T (' 1.05HK) and computed m(t) in response to a 5 GHz sinusoidal field

excitation of 50 mT in amplitude along x̂ that was applied for one period (0.2 ns). The

response comprises a ripple structure that represents spin waves radiating outward from the

excitation source. For D 6= 0 the ripple center drifts along �x̂ as its size grows [Fig. 2(a)].

In Fig. 2(b), the ripple displacement is shown as a function of time for different D. The

drift velocity of the ripple depends on D, where the lines indicate the expected displacement

given by vdrift = ∂ωdrift/∂kx = ωdrift/kx = �2γD/Ms, which represents the component of

ω(k) for which the phase and group velocities are identical. The DMI therefore conduces an

underlying drift in the spin wave flow, which can be interpreted as a Doppler shift induced

by an intrinsic spin current [29].
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FIG. 2. (Color online) DMI-induced drift of a spin wave ripple. (a) Time evolution of the ripple 2,

4, and 8 ns after a sinusoidal field pulse at the image center (D = 1 mJ/m2). The image dimensions

are 10 µm ⇥ 10 µm. ∆x denotes the displacement of the ripple center. (b) Ripple displacement

as a function of time for three D values. Symbols represent simulation data while solid lines are

based on Eq. (2).

We now discuss how this drift leads to focusing and caustics. The far-field radiation

pattern of waves excited by a point source can be predicted from the slowness surface, i.e.,

a constant frequency curve in k�space. The radiation or focusing pattern can then be

determined from the power flow, directed along the normal to the slowness surface, with an

amplitude that is inversely proportional to the square root of the curvature of the slowness

surface [25]. Caustics appear at points along the slowness surface at which its curvature

goes to zero, resulting in a divergence in the power flow. To understand how caustics appear

for spin waves in the ultrathin film, we return to the dispersion relation in Eq. 2. This is

shown in Fig. 3(a), where each contour represents a slowness surface. While the contours are

shifted from the origin in k-space for D 6= 0, the curvature is finite and positive everywhere

since the contours remain largely circular by virtue of the exchange term, ωex / Ak2. We

now consider the influence of the dipole-dipole interaction, which in the ultrathin film limit

can be approximated by a local interaction in the following way [30],

ω(k) =
q

ω||(k)ω⊥(k)�
2γD

Ms

kx, (3)

where ω||(k) = ω0 + ωex(k) + γµ0Msdk
2
x/2k, ω⊥(k) = ω0 + ωex(k) � ωK � γµ0Msdk/2, and
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FIG. 3. (Color online) Frequency contours of Eq. (3) with µ0H0 = 0.8 T. D = 1 mJ/m2 for

(a) d = 0 nm, (b) d = 1 nm, and (c) d = 2 nm. (d) D = 0.5 mJ/m2 and d = 2 nm. The

lowest frequency contour is indicated (in GHz) and each successive contour represents a frequency

difference of 0.2 GHz.

d is the film thickness. In Figs. 3(b)-(d), we illustrate how the slowness surfaces change

as the film thickness is increased and the dipolar interaction becomes more important. We

can observe that a “dent” along the �kx axis appears for low frequencies, which is quite

pronounced in Fig. 3(c). Moreover, a smaller value of the DMI (D = 0.5 mJ/m2) for a

2-nm-thick film results in the appearance of a second slowness surface enclosed within the

first [5.6 GHz contours, Fig. 3(d)]; we will revisit this point later. Importantly, the presence

of the dent indicates that the curvature of the slowness surface changes sign, which means

that caustics are created.

Focusing patterns for D = 1.0 mJ/m2 and d = 2 nm are shown in Fig. 4. We consider

five different frequencies with distinct slowness surfaces [Fig. 4(a)]. The group velocity is

indicated along each slowness surface. The expected focusing patterns are shown in Fig. 4(b),

computed from the the curvature of the slowness surface in Fig. 4(a). For ω/2π = 4.2 GHz,

a caustic can be seen for propagation along �x, which results from the flattening on the left

part of the slowness surface. As the frequency is increased to 5 and 6 GHz, a dent develops

in the slowness surface, leading to two caustics propagating outward in the �x direction.
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FIG. 4. (Color online) Spin wave focusing for D = 1 mJ/m2 and d = 2 nm. (a) Slowness surfaces

for different frequencies determined from Eq. (3). vg denotes the group velocity vector. (b)

Predicted focusing patterns based on (a). (c) Simulated focusing patterns due to a sinusoidal point

source excitation at different frequencies. Each image represents an area of 20 µm ⇥ 20 µm with

the point source at the center.

The dent leads to the curvature vanishing at two points along the slowness surface, resulting

in the two focused beams predicted. As the frequency is further increased, the dent vanishes

and a single caustic is recovered at 6.5 GHz. For higher frequencies, the exchange terms

become dominant and the slowness surfaces recover a more elliptical shape, resulting in

weaker focusing effects as seen for 7.0 GHz.

This behavior was reproduced in micromagnetics simulations, where the spin wave power

flow from a point source excitation was computed. Using the geometry in Fig. 2, we com-

puted the response to a continuous sinusoidal point source field excitation at the center

of the simulation grid. In Fig. 4(c), the spin wave power is presented for five excitation

frequencies, which is computed by averaging the z component of the dynamic magnetiza-

tion, hδmz(r, t)
2i, over two periods after 150 periods of the field excitation. The excitation

frequencies used in the simulations were chosen to match as closely as possible the focus-

ing patterns predicted from the dispersion relation [Fig. 4(b)]. While the agreement in the

frequencies is only semi-quantitative, the simulations reproduce well the different focusing

patterns predicted, namely the orientation and trends in the different caustics as the exci-
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FIG. 5. (Color online) Interference patterns for D = 0.5 mJ/m2 and d = 2 nm. (a) Slowness

surfaces based on from Eq. (3). vg denotes the group velocity vector. (b) k as a function of the

vg orientation for the slowness surfaces in (a). The shaded regions denote propagation directions

for which several k are possible. In the top inset, propagation directions along which interference

is expected are indicated, where the numbers of allowed k are shown. (c) Simulated interference

patterns due to a point source excitation at different frequencies. Each image represents an area

of 5 µm ⇥ 5 µm with the point source located at the center. The frequencies are chosen to match

the interference patterns expected from (b).

tation frequency is increased. The discrepancy is likely due to the local approximation used

for the dipolar interaction in Eq. 3. Nevertheless, there is a good agreement between the

theory and simulation.

Another remarkable feature of Eq. (3) is the possibility of generating interference patterns

from a single point source. Some evidence of interference can already by seen in Fig. 4(c) for

4.7 and 5.2 GHz in the region bounded by the two focused beams. To see how interference

arises, consider the case of D = 0.5 mJ/m2 and d = 2 nm [Fig. 3(d)] for which the dent in

the slowness surface evolves into two distinct surfaces between 5.7 and 5.8 GHz, as shown in

Fig. 5(a). Consider the response at 5.7 GHz, which results in a C-shaped slowness surface.
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If we examine how the group velocity vector, vg, evolves around this surface, we notice

that certain orientations of vg appear at multiple points along this surface, which indicates

that propagation along these directions involve partial waves with different k. To see this,

we plot in Fig. 5(b) k as a function of the angle of vg with respect to the kx axis (in

the film plane), vg,φ, for the two excitation frequencies considered. For 5.7 GHz, three k

are allowed over a range of propagation angles, while only a single k is allowed elsewhere

[top inset of Fig. 5(b)], which suggests three-wave interference should occur for propagation

near the �x direction, while no interference is expected along +x. This was verified with

micromagnetics at a similar frequency of 5.56 GHz, where interference is mostly localized

to the x < 0 region. On this basis, the existence of two slowness surfaces for 5.8 GHz

[Fig. 5(a)] should result in interference for all propagation directions; we find that four-wave

interference is expected within a narrow range of propagation angles about the �x direction,

while two-wave interference for all other directions [Fig. 5(b)]. This was also confirmed in

simulation at 5.66 GHz, where two different interference patterns with the expected angular

dependence can be seen.

Our results suggest that similar effects can appear in thicker films with spin-polarized cur-

rents. Since the DMI induces an overall drift in the spin wave flow (Fig. 2), analogous effects

should arise with other mechanisms that induce a drift, such as spin transfer torques [31].

In this case, a spin current drift velocity of u = JP~γ/(2eMs) is generated, where J is the

current density and P is the spin polarization. We have verified this using micromagnetics,

where identical results to Fig. 4(c) were obtained with D = 0 but instead with a uniform

current density of J = 6.08 TA/m2 (P = 1) along x̂, which results in the same drift velocity

as the DMI-induced value of vdrift = 352.2 m/s with D = 1 mJ/m2. Note that such focusing

effects are not confined to thin films with perpendicular magnetic anisotropy but should also

appear in planar systems provided an underlying spin-wave drift is present.

Magnetostatic nonreciprocity, used in microwave circulators and isolators [32], generally

requires 1-50 µm-thick films. In contrast the nonreciprocity seen here is found in nm-thick

films. The ability to control caustics and interference patterns in thin films might also find

use in microwave devices such as demultiplexers [33], band pass filters, and isolators. The

caustic beams could also be useful for magnon-based computation and memory [34–36], and

for exploring magnetic analogs of wave phenomena seen in other physical systems such as

electron optics [37] and phonons [38].
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