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A brief introduction to the spin-weighted spherical harmonics is given, and some applications of these functions in the solution by separa
of variables of various systems of partial differential equations are presented. The examples considered here are the source-free Ma
equations in flat space-time and in the Schwarzschild space-time, the Einstein vacuum field equations linearized about the flat space
and the Dirac equation.
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Se da una breve introduéei a los armnicos eséricos con peso de dsp y se presentan algunas aplicaciones de estas funciones en la
solucibn de varios sistemas de ecuaciones diferenciales parciales. Los ejemplos consideiadoslasjecuaciones de Maxwell sin fuentes

en espacio-tiempo plano y en el espacio-tiempo de Schwarzschild, las ecuaciones de Einstein pafmellaadas alrededor del espacio-
tiempo plano y la ecuagn de Dirac.

Descriptores: Armonicos edfricos; ecuaciones de Maxwell; solanide Schwarzschild; ecuaciones de Einstein linealizadas; écudei
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PACS: 02.30.Gp; 02.30.Jr; 03.50.De; 04.20.-¢; 03.65.Pm

1. Introduction Maxwell equations in flat space-time are solved and in Sec. 4,
a similar integration is presented assuming that the back-

The spin-weighted spherical harmonics and the spin weighjround space-time is that represented by the Schwarzschild
raising and lowering operators were introduced by Newmamnetric. In Sec. 5, the Einstein vacuum field equations lin-
and Penrose [1] in the study of the asymptotic behavior of thearized about the Minkowski metric are solved and in Sec. 6,
gravitational field (see also Refs. 2 and 3). These functionghe Dirac equation in spherical coordinates is solved.
are essentially the "monopole harmonics” that arise in the The results given in Secs. 3 and 5, below, coincide with
solution of the Schirdinger equation for a charged particle in those obtained in Refs. 7, 8, and 12 by means of a differ-
the field of a magnetic monopole [4,5] and can also be exent approach, while the derivation of the expression for the
pressed in terms of the Wignér-functions [6,7], the Jacobi electromagnetic field in the Schwarzschild space-time is pre-
polynomials, the generalized associated Legendre functionsented here for the first time.
and the hypergeometric functions [7]. However, the fact that
the spin weight raising and lowering operatdig;eth”) and
0 (“eth bar”), appear in a natural way when the equation
for nonzero spin fields are written in spherical coordinates iy 1 Spherical harmonics
terms of certain combinations of the field components (those
with a definite spin weight), makes the spin-weighted spherThe Laplacian operator in the three-dimensional Euclidean
ical harmonics particularly useful (see also Refs. 7 to 15). space expressed in terms of the spherical coordinates is given

In the standard treatment of nonscalar fields in spheriby
cal coordinates, a variety of vector, tensor, or spinor fields Vif = }57«2(770) — %LQf, (1)
is employed with widely variable notations and conventions; r r
in some cases these fields are constructed by coupling thghereL? = (—ir x V)? is the square angular momentum op-
ordinary spherical harmonics with eigenfunctions of the cor-€erator in units such thdt = 1. Hence, a function of the form
responding spin operators. By contrast, the spin-weighted (r,0,¢) = r'g(6,¢) (I = 0,1,...) satisfies the Laplace
spherical harmonics provide a straightforward and uniformequation V2 f = 0, provided that
formalism applicable to fields of any spin. 9

In this paper, the spin-weighted spherical harmonics are Lig =10+ 1)g, 2)

defined following Refs. 16 and 17, making use of the repj e 4(4, ¢) is a spherical harmonic of ordér A simple
resentation of vectors by means of two-component spinor§yay of finding the spherical harmonics then follows from

and some illustrative examples of their application in the soyhe fact that any polynomial in th€artesian coordinates
lution by separation of variables of equations for fields of (;, ,, ) — (2! 22, 23) of the form

spin 1/2, 1, and 2 are given. In Sec. 2, the spin-weighte o
spherical harmonics are defined. In Sec. 3, the source-free flz,y,2) =dij. px'a? - z", 3)

S2. Spin-weighted spherical harmonics
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(¢,4,... = 1,2,3), where thed;; ;, are constant (real or where, as in what follows, the capital Latin indicésB, . . .,

complex) coefficients totally symmetric, satisfies the Laplacdake on the values 1 and 2, and these indices (which will

equation if and only if the trace @f; . ;, vanishes, be called spinor indices) are lowered or raised following the
rules

iik..m = 0. @ YA =eap”, A = —ePyp, C)
(Th_roughout this paper there is.summation over 'repeateglheregAB is the Levi-Civita symbol: e1o=1, ey1= — 1,
indices.) In effect, the Laplacian operator is given by511=0=522. Then we have, for instance2—1,, i)' = — 1,
V2 f=0,0:f, whered; = 0/0x"; hence, ifd;; x haslin-  i_, e (On the other hand, the tensor indices
dices, making use of the symmetry..., i,j,... are raised or lowered using the Kronecker delta and

V2(dy; e - 2F) = 0O (dyj. gtz - a) thereforeg.g, v = v;.) In this manner, instead of represent-
o e . ing a vector by means of an array of the fofm, v2, v*), we
= ) J s ...
Om (ldmjs. 272" -~ 27) will have a symmetric matri>< z“ 212
= l(l - 1)dmms.‘.k$s o xk- 7 i 21' > H
If v'e; and w'e; are two arbitrary vectors, then their
Thus, assuming that Eq. (4) holds, scalar product is given by
flz,y,2) = dij,,,kxj’xj coxh = rldij_”kNi’Nj - -N’“7 viw; = *UABwAB~ (10)

whereN® = 2 /r, is a solution of the Laplace equation and Owing to the rules (9), we have

g iNi ... NF
dij. kN'NT--- N ©) Padt = 10"+ 20® = —h1 + ot
is a spherical harmonic of order (see also Ref. 18). 20l AL 11
Among other things, Eq. (5) shows that, under the inversion Vior =9 Voa; (1)
(2,9, 2) = (==, —y, —2), a spherical harmonic of ordeis  thereforevABw 5 = vapwAB andgAp4 = 0.
multiplied by a factor(—1)", which means that the parity of | et \!, 2 be two auxiliary complex variables; the double
a spherical harmonic of ordéis equal to(—1)". sumuag A is explicitly given by
Despite the simplicity of the condition (4), expression (5)
is not particularly useful for finding the explicit form of the ), ,AANE = 411 (A1)? + 2015 A" A% + 09 (A2)?
spherical harmonics. However, by expressing the compo- - Lo Lo
nentsN'? in terms of spinors, one obtains a useful representa- = (A2 [ort (AT /A%)2 + 2012(A1/A?) + 2]
tion for the standard spherical harmonigs,.
(A2 on (/X2 =10 ) (W/A2) = 1),
wherer, andr;, are the roots of the polynomial

Let V be a three-dimensional real vector space with a pose;22+2v;22+v42. Hence,
itive definite interior product, and Idte;, e, e3} be an or-

2.2. Spinors and spin weight

thonormal basis of’. As we shall show, it is convenient to VAN NE = v (A = A (A = A?). (12)
introduce another set of three vectors labelled by two indices
that take two values onlg.g.1 and 2, The values of, andr; are [see Eq. (7)]
1 . 1 2 _ 4
enn = —=(e; +iey), €12 = €1 = ——=ezg, _ T2t V(2012)* — dvivy
\/i \/§ Tab 2011
1 .
€9y = ﬁ(_el +iey). (6) _ v £ /(v1)% + (v2)% + (v3)?
V1 + i’UQ
These vectors form a basis of (the complexificationlof)n vcosf 4+ v
fact, defining = s
vsinfe
1 1 .
v11 = —=(v1 +ive), V1 = Vg1 = ——=103, wherew, 0, and¢ are the norm and the polar and azimuth
V2 V2 angles ofv’e;. Thus
1 .
Y22 = ﬁ(_vl +ivz) ™ _ipcosfE1  cos? 10 —sin®lo+1
Tab=¢© in 0 - ° 2sin 16 cos 10 ’
[cf. Egs. (6)], where the; are the components with respect s S 3 2
to {e1, e, e3} of an arbitrary vector, one finds that ie.
_ . 1 » 1
v'e; = —vi1e + 2v1ze1 — ven = —v*Peqp, (8) ra =e"'“ cot 59’ rp = —e”'* tan 59’
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and therefore, from (12) One can convince oneself of the validity of the last equality
1. ) 1 noting that the two expressions coincide for each combina-
vap\INE = 7" e sin (A — e~ cot 50 %) tion of values of the spinor indices and R, taking into ac-
count the definition of the Levi-Civita symbel:z. Hence,
x (Al + e~ tan }9 A2) for any matrix with unit determinanf//4 ),

A
U”cUar = ccr,

. 1 1 : 1
V2ve'? sin 59 cos 50()\1 —e % cot 59 A?)

L 1., and Egs. (17) and (9) give
x (A" +e 1¢tan§9/\ )

- . . . V' ABY 45 = ecrepsvCPuES = vCPyop
= V2u(e'??sin 59 A —e719/2 cos 59 A% _ _
(which amounts tow*v'; = v'v; [see Eq. (10)]). It can
% (ei¢>/2 o8 19 Al e i9/2gip 19 A2). be showr_1 that _the determinant of the induced transformation
2 2 v? — o't is positive.
Now, letting Equations (6) and (7) can be written in the form
ot e 1%/2cos lh 1 . 1 .
( 0? > - < el/2 gin %20 > ' (13) esB = EUZAB e; and VAR = EUZABW
. . 18
we can writee'®/2sin 20 A1 — e71%/2cos L0 A2 = oM. with (18)
Defining the conjugate or mate of* by
~ _ 1 0 i 0
04 =04, (14) (014B) = ( 0 —1 )7 (024B) = ( (1) ; )»
we have 0 —1
o _ —e~i®/2gipn %0 (15) (0348) = ( -1 0 ) ’ (19)
oc ) el?/2 cos 30 ’
) ) Then, from Eq. (10) we can see that
and, thereforeg'¢/2 cos 20 A1 + e=9/2sin 20 A2 = 5P,
Hence, 04807 g = —267 (20)
vABAN NP = V20040 05\E, '
which implies that and therefore
vaB = V200(40p), (16) e = —ioiAB esp and v = —LoiABvAB. (21)

V2 V2

In the case of a unit vectoy?, from Egs. (16) and (21)
it follows that N* = —o* 4 506", Hence, going back to ex-
pression (5) for spherical harmonics, we find that any spheri-
cal harmonic of ordet can also be expressed in the form

where the parentheses denote symmetrization on the indices
enclosed¢.g, o 40p) = %(oAEB +0p04)]. Inthe case of a
complex vectow, we can writtw g = a4 p), Wheresa
is not proportional to the mate afy.

If (UA) is a 2 x 2 matrix belonging to SU(2),
and o’A=U% 0", then the mate ob* transforms in the
same mannery’A=U“50%, inducing the transformation  ;  nripnd... Nk

VAB_77A _11B . CD : if...k
AP =U*cU”pv™~" on the spinor components of a vec-
tor [see Eq. (16)], which corresponds to a rotation about the . ‘
origin. This conclusion follows from the fact that the trans- = (—1)'dij. .k 0" 4500”0/ cpo
formationv48 — /4B js linear and the norm of a vector is . A~B _C~D BF
preserved under this transformation: = (=V2)dapop..prot%07" - 0%

l

C k E~F

aD“‘O' EFO 0O

V' ABY gp = UAcUP puCPUsRUBsv ™. (17)  with

But, according to the rules (9), 1

l
daBcp..EF = (\/5) olapdicp - ofprdy k (22)
UAcUar = U'cUir + U?cUsg
= UlcU?Rr - U?cU' g [cf. Egs. (18)]. Sincer; 4p=0;54 [See Egs. (19)], the coeffi-
cientsd agop... satisfy
= UlcU?r - U'rU?c

= (UL U? — UL U ecr. dapcp..EF =dpAcD..EF = dABDC..EF = dABCD..FE
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and, as a consequence of the symmetry &f ,,  from Eq. (14) it follows that* has spin weight-1/2 and
daep..er = depap.. gr. Furthermore, a difference of Eq. (23) shows that an ordinary spherical harmonic has spin

the formdagep.. Er — dacBp.. . EF IS given by weight equal to zero. By definition, a spin-weighted spherical
harmonic of ordey and spin weight will be an expression
daBcp..EF—dAcBD...EF of the form
=(d —d €
( Al12D...EF A21D,..EF) BC SPJ _ dABCDEF OAOB "'OC /O\D/O\E"'/O\F7 (24)
=da®rp. . Erepe j+s j—s
and, using Egs. (22), (11), (20), and (4), where the coefficients 4 5. are totally symmetric in their

2j indices § = 07%71,...). According to the definition
given above, the function (24) has spin weighSincej + s
andj — s must be integral numberg,and s must both be

integers or half-integers and

1/2; R
22d s k. EF
i R _j k
=0"4"0"Rrp 0" EF dij. .k

1 . ) ) ,
i R R i k
—§(U7A o’gp + 07470 Rp) - 0" EF dij. i

| |s| < 3. (25)
_ (st R_G i R_j b des
=_(0’a0 o'po o ij... . - . .

2( A O RD D0’ Ra) pE gk An alternative characterization of the spin-weighted
1 sk g spherical harmonics, analogous to Eg. (2), can be given mak-
=39 O'RS€AD ' 0 BF Gij..k ing use of the operatofsandd defined by [1]

ij k
=—0Ycap 0" grdij. i

1
on = — <89—|—_8 —scot0> 7
=—cap - 0"prdi =0, sing*

which means thaigcp.. gr is totally symmetric under all — _sin®0 (89 + '15¢> (nsin=*0),
transpositions of its indices. Hence, any spherical harmonic sin 6
of order! has the form _ i
on = —< 9—‘_8¢+sc0t0>77
dap..cpp..poto? 0% gPo" ... 5" (23) sinf

i

sin 0

t t —sin” %60 <89 —
with dapep.. gr being totally symmetric in it®! indices.
For example, any spherical harmonic of order 2 has the fornyhere s is the spin weight ofy. Then one finds that, for

~ A=1,2,
AOB6COD ;

8¢> (nsin®6),  (26)

dapcpo
= d11110'0'6'0" + d1112(2010'6'6 + 20'0%6'5") do =0, o4 =o0", Bot=-0", Tor=0, (27)

1 1~2~2 1 212 2 2~1~1 _
+d1122(0°070°0" +4070°0°0" + 0%00°0") and thatd andd are linear and satisfy the Leibniz rule. A

+ d1222(2070%0%0° + 2020%0'0%) + 2222070260 straightforward computation shows that
= diin ie_md’ sin? @ — dy112 € ?sinf cos @ 39 Pj= —[jG+1)—s(s+1)] P,
1 : = .
+ di122 5(3 cos? —1) + dy222 e'? sin @ cos O 00,P; = —[j(j+1)—s(s—1)]sP;. (28)
+ doazo 1e¥?sin” 0 Furthermorepdf = —L*f = 00f, if f is a function with
spin weight equal to zero and applyifigor 0 to a spin-
— dui /27”3/2 Y — dui /Sjy2 B weighted spherical harmonic of the form (24), one obtains
15~ 15~ another spin-weighted spherical harmonic with spin weight

e St o s+ 1ors— 1, respectively. That i) andd raise and lower,
+ di1221/ 5 Y20 — di2224/ R Ya1 + dagozy/ 1 Y0, respectively, the spin weight in one unit.

_ The symbol,Y;,, will denote a spin-weighted spherical
wherediii1, diti2, dii22, dize2, anddsazs, are arbitrary  harmonic with spin weighs, order;j, with a dependence on
complex numbers and we have made use of the standard def-of the forme!™¢ such that

inition of the spherical harmonicds,,, .

A quantity n is said to have spin weight if, under 2m
the transformatiom” — e'X/204, it transforms intoe!*Xy // |sYjm|? sin 0dfd¢ = 1.
(hence, the components* have spin weight 1/2). Then, 50
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The phase of these functions can be chosen in such a wane obtains [see Egs. (26)]
that [1,7,17]
V2

fﬁ&o(rQFo) +

(0F_, —3F,1). (34)

1
asy}m, - [](]+1)—3(5+1)]1/29+1ij7 VF: \/57’

0 ¥gm = LG +1) = ss =" =1¥im: (29 gimilarly, one finds that
with ¢Y;,,=Y;,,. From Egs. (13), (15), and (24) one finds

! : . . i
that, as in the case of the ordinary spherical harmonics, V xF =

(8F_1 + 8F+1) €,

m=—j,—j+1,...,5. v2r

An important fact is that for a fixed value of the spin i = .

. . . . . - (rF_ Fi
weight, the set of the spin-weighted spherical harmonics + V2 [0r(rF1) + 0F0] (e + iey)
{sY;m } is complete (as well as orthonormal) in the sense that i
any function with spin weight can be written as a series in + fT [0r(rFy1) — 0Fp] (eg — iey). (35)
sYim [1,7]. "

The source-free Maxwell equations in a vacuum (in cgs
3. Solution of the source-free Maxwell equa- units) can be written as
tions .
V-F =0, V x F = -0,F, (36)
By construction N; = —o0;480405 are the Cartesian com- c

ponents of a unit radial vector, which is one of the vectors O(NhereF — E + iB. Expressed in terms of the spin-weighted
the orthonormal basie,, ey, e4}, induced by the spherical components ofF, these equations read [see Egs. (34)
coordinategr, 0, ¢). It turns out thakey ande, are the real and (35)]

and imaginary parts of the vector with Cartesian components
0480405, i.e. 2 0 _

—;&(r .F()) + 5F71 - 6F+1 = O,

AB

(e,); = —0:*Pos0p, (eg+iey); = ;*Posop. (30)

1 = 2
. . . . . ——(0F_1 4+ 0Fy;) = —04Fy,
An arbitrary vector fieldF in the three-dimensional Eu- r c

clidean space can be written in the form 1 — 1
—;[8T<7"F,1) + 6FQ] = Eathl,

F:Frer+Fgeg+F¢e¢ 1 1
. *[ar(’)"F+1) - 5F0] = *8tF+1. (37)
or, equivalently, T c

1 . : . .
F— V3Fe, — L P (e +iey) Looking for separable solutions of this set of equations of

V2 the form
+%F+1(eg —iey), (31) Fo=gs(t,7) sYim(6,9), s=0,41, (38)
with making use of Egs. (29,) one obtains
Fo= _% F..  Fu= i%(Fg LiF,).  (32) 7%5.7“(70290) T T T +a1) =0,
According to Egs. (18) and (30) we also have G +1) 2
(91 — 9-1) = =090,
Fy = Fapo™o®, ) " f
F.1 = Fypo®o®, (33) —;[&(rg,l) —VJ(G+1)go] = Eatgfla
Fo1 = Fagt'”. S10:(r91) = VG F Dol = kg, (39

These last expressions show titathas spin weight equal to ] ) ]
s (s = 0,1,—1). The functionsF, will be referred to as the These equations can be combined to obtain a second-order

spin-weighted components Bf equation folgg, g1, org_1. In order to find expressions equiv-
Making use of the standard expression for the divergenc@!ent to those given in Refs. 7, 8, 19, and 20 we apply the
of a vector field, operatoro; to both sides of the second equation (39),
V.F = ~0,(%F,) + ——y(Fysin) + ——0,F 2 02(rgo) = /3G + 1) 2au(
T2 AU +rsin9 o (Fy sin rsind oL'¢s 2% rg0) = \/j(j + c 1 (9-1 — g1)
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and then, making use of the last two equations (39),
2
—Cjaf(Tgo)
J+1 —
= %[—&ﬂ(mq) +2vj(G +1) go — 9,(rg1)]
L 1 —
= 2+ D2 = 0.1V Dr(g-1 + 1))
s 9o 2.5, 5
=2 1)— — -0; .
3+ 1) = 07 (r"go)
Letting
Y=-— \/§T90 )/jm
VA VA
one finds thaj satisfies the scalar wave equation,
VX = (1/¢%)9¢x =0

[see Egs. (1) and (2)], and from Egs. (29), (38), and (39),

1 1
Fiy o= — 0, + 0, ) oy,
i \/ir(ct )rx
1
Fy = — 30y, 40
0 \/§r X (40)
1 1 —
Fq{=—- —-0; — 0, | rOyx.
' \/§T<Ct )TX

One can verify that these are the spin-weighted components

of the vector field

F:—icat(rxVx)—Vx (r x V). (41)

The labelsj andm contained in the separable solution
obtained above have a direct physical meaning; they deter- V2
mine the eigenvalues of the operators representing the square
total angular momentum and thecomponent of the total an-
gular momentum of the field, respectively [8,7]. By virtue of
the completeness of the spin-weighted spherical harmonics
and of the linearity of the Maxwell equations and of the ex-

G.F. TORRES DEL CASTILLO

As is well-known, the Maxwell equations for the source-
free electromagnetic field on a possibly curved space-time
can be written as

8af[5'y + a’yfa,ﬁ + aﬁf’ya =0,

3a(V19lf*?) =0, (42)

1

vl
where f*% denotes the electromagnetic field tensor,
0,=0/0z, thex™ are space-time coordinatgss det(g.3),
with g, 3 being the components of the metric tensor in the co-
ordinate system®, f.s=ga~9ssf7° and the Greek lower
case indices run from 0 to 3 (see for example Ref. 26).
The Schwarzschild metric, which corresponds to the exterior
gravitational field of a spherically symmetric matter distribu-
tion, is usually written in the form

2GM dr?
2 _ (4 2 1,2
ds® = (1 c2r )C dt 2GM
1= 2
c3r
+72(d6? + sin? d¢?),

in terms of coordinate&:’, z!, 22, 23) = (ct, 7,0, ¢), where
M is a constant; hence

(9ur) = diag(—h(r),h(r)~*, 72 r*sin?6),
_ 2GM

cr

h(r) = 1 (43)

and./|g| = r?sin 6.
Making use of Eg. (43) and the definitions

1

Fy = (f°' +ir?sin@ f23),
Foooy T {f02+isin9f31
+1 7 5

. f12
+i <sin9f03 + 1h>} . (49)

pressions (40) or (41), any solution of the Maxwell equations

can be represented in the form (41), wherés a (possibly
complex) solution of the scalar wave equation.

a straightforward computation shows that the Maxwell equa-
tions (42) are equivalent to

2 _
. . —29.(r*Fy) - OF 0F_, =0,
4. Electromagnetic perturbations of the FOr(rFo) 108
. . 5 B
Schwarzschild solution %&Fo BB+ OF_) = 0.
In this section, we directly integrate the source-free Maxwell r

equations assuming that the background space-time is the
Schwarzschild solution, neglecting the effect of the energy-
momentum of the electromagnetic field on the space-time

EatF+1 - 8T(th+1) + 6F0

I
o

r

ZOF_1 + 0,(rhF_1) + 3Fy = 0. (45)
C

curvature. The result obtained here by elementary means is
equivalent to that obtained using other approaches €ésgg, Then, looking for separable solutions of Egs. (45) of the form
Refs. 21 to 25) which are applicable to more general back-

grounds é.g.the algebraically special vacuum space-times). Fs = g5(t,7) sYim(6,9), s=0,=%1, (46)
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applying Egs. (29) again one obtains

~20.6%0) + VIGF D (91 +91) = 0,
%3:&90 ~ Vi +1)h(g1 —g-1) = 0,
2@91 = 0p(rhg1) + V3G +1) g0 = 0,

“0ig-1+0,(rhg_1) =i+ D go = 0. (47)

(Note that these equations reduce to Egs. (39) whenl.)
These equations can be combined to obtageeond order
partial differential equation fog, g1, or g_,. For instance,

131

As in the previous example, the linearity of Eqgs. (42), (49),
and (50) and the completeness of the spin-weighted spheri-
cal harmonics imply that the general solution to the Maxwell
equations on the Schwarzschild space-time is given by
Eqgs. (50), withy being a solution of Eq. (49).

5. Solution of the linearized Einstein vacuum
field equations

The Einstein vacuum field equations linearized about the
Minkowski metric can be obtained assuming that the space-
time metric, g3, differs slightly from the flat Minkowski

starting from the second equation of Egs. (47), making us&etric(n.3) = diag(—1,1,1,1),
then of the third, fourth and first equation in (47), one finds

that
1
gatz (rg0)

Vit Dh1,
2 c !

91— 9-1)

i(j+1)h —
= % [5r(7“h91 +rhg-1) —2v/j§(j + 1)90}

=h [i@,.(h&.(ﬂgo)) —Jj+ l)go} ) (48)

r

Clearly this last equation can be reduced to an ordinary differ-

ential equation assuming, for example, thaj=f(r) e *t,
w? 1d d L f
—C*Qf =h [rdr (th(Tf)) —Ji+ 1)7@} -

A simple solution of Eq. (48)

is given by

GaB = Nap + haﬁ' (51)

To the first order inh, g and its derivatives, the curvature is
given by

1
Kapys = 5(0a0shsy — OaOyhes

+6/3(97ha5 — 8[336ha7)7 (52)

which possesses the symmetries of the full curvature tensor,

go=(const.)r—2, with j=0 andFx; =0 [see Eq. (17)]. When The linearized Einstein equations are then given by
the constant is real, the resulting field is the one present in

the Reissner—Nord€tm solution.
Now letting
\/57"90 ijm
i +1)
for j # 0, one finds that Eq. (48) is equivalent to

)

1 1 1~

which reduces to the scalar wave equation when1. Com-
bining the first two equations in Eq. (47), one obtains

1 1 1
— [0 £ ot

g+1 —
J@+1) Lr

hence

1 1
Fiy = ——— (50140, ) rdx,
+1 Jar (hcat +0 > rox
1 —
—— 00y,
\/57‘ X
1 1

Fq=— — 0 — Dy.
1 Jar (hc&g 8T> roy

Fy = (50)

Kaﬁ'yé = _Kﬁ(x'y(S = —RNapéy = K’yéaﬁa
Kozﬂ’yé + Kaz;[j"y + Ka'yéﬂ =0 (53)
and
80(Kﬂ’\/66 + aﬁK’yaﬁe + a’yKaﬂée =0. (54)
Ko =0, (55)

where K, = K7,,3, with the indices being lowered or
raised by means of.s and its inverse®?. From Eq. (54)
(contracting with;)?®), one obtains
" Kapye = 0. (56)
The symmetries (53) and the field equations (55) reduce
to ten the number of algebraically independent components

of the curvature,z-s, Wwhich can be represented by the ten-
sor fields (for example Ref. 27)

1
Eij = KOinv Bij = _75ilmKlmOj-

> (57)

Owing to Egs. (53) and (55);; andB;; are symmetric and
their traces are equal to zero. The differential conditions (54)
and (56) are equivalent to

GZF” = 0,

€ijk0j Flom = éatFimv (58)
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As shown in Sec. 2.2, the spinor equivalent of a symmetfirst equations in (58) are equivalent to
ric tensor with vanishing trace is totally symmetric. Thus,

the spinor equivalent of;;, Fapcp, is totally symmet- }5}12 — %&(r?’F,l) _ 161?0 =0,
ric and has five algebraically (complex) components, which r r r
can be represented by the five spin-weighted components 1sp L 25 (rFy) — Isp =0 (60)
[cf. Egs. (33)] ro * ’
1 Lor, - 20 (r3Fy 1) l5p 0
- — —0x(r - = = 0,
Fi s = FABCDOAOBOCOD = §(F99 - F¢¢ + 21F9¢), r 0 r3 i r 2
A B _C~D 1 : . . . . . l
Fi1 = Fapcpo©o~o 0”7 = _§(Fr9 +iFrg), while the second set of equations in (58) is equivalent to
N 1 1 - 1
Fy = FABCDOAOB/OCOD = §Fm~, (59) 7;[5F_1 + 8T(TF_2)} = Eé)tF_Q,
A~BA~C~D 1 : 1 =1 4
F,1 = FABCDO o 0 0 = i(Fre - 1Fr¢>); —;[6F_2 + 287-(7“F_1) + 35F0} = EatF_l,
~A~BA~C~D 1 . 1 - 2
F_o = Fypcpo©o0~ 0~ 0" = §(F99 — F¢¢ — 21F9¢), —;(8F,1 + 5F+1) = EatFm (61)
where Fypg, Fpge, ...denote the components 6f; with re- 71[8112 — 20, (rFy1) + 30k = éatFH,
spect to the orthonormal badie,, ey, e, }. In order to make r ¢
use of the spin-weighted spherical harmonics to_solvg the set C[BF — 0, (rFyo)] = ~0,F ..
of equations (58), we must express these equations in spher- r

ical coordinates (replacing the partial derivatives appearingnen for a separable solution of the form
in Egs. (58) by covariant derivatives) and then combine them

in such a way that only quantities with a well-defined spin Fy = gs(t,7) sYim (0, 9), s=0,41,+2, (62)
weight appear [see Eq. (44)]. Alternatively, we can express

Egs. (58) in terms of three-dimensional spinors, which di-making use of Egs. (29), one finds that Egs. (60) and (61)
rectly yields the desired equations [7]. The result is that theeduce to a set of differential equations for the

— 2 — — 2
Vilj+1) =292 — 77237-(7‘39—1) +vJi(G+1)go =0, VilG+1D)(g-1+ 1) — 7287-(7“390) =0,
- 2 — 1 __ 1
J(G+1)go — 725%(7“391) + Vi +1) =292 =0, —;[&(rgfz) Vil +1)=2g1]— 0192 =0,
1 — — 4
*;[\/J(J +1) =292 +20.(rg-1) —3vj(j + 1)go] — Eatg—l =0,

Vil +1 2 1 _ _ 4
—M(g—l —q1) — Eatgo =0, —;[—\/J(J +1) =292 —20,(rg1) +3vj(j + 1)g0] — Eatgl =0,

r

VG T 201 0,(rg2)] — 09 = 0. (63)

These equations can now be combined to obtain a seconueighted components df;; are given by

order decoupled equation for one of the functigns For 1 /1 2
instance, one finds that Fyy = ~53 <6t +8T) r200,
T C
Lo 2 Lo, 3 S L (1 =
Cjat (r7g0) = ;ar (7°90) — 3(3 + 1)go, (64) F, = 5.3 E&g + 0, | roody,
1
which is equivalent to the condition that Fy = —ﬁiﬁéééx, (65)
) 1 /1 _
Y= 2r°go Yim F_, = 92 (cat - 5r> r000Y,
G+DIGG+1) =2
Fo--——(lo-0 2 250
be a solution of the scalar wave equation. Making use again 2= Toa (T o) OO

of Egs. (63), (64), and (29), one can show that all the spinl-
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As in the case of the electromagnetic field treated in The system of equations (70) allows separable solutions
Secs. 3and 4, the labeglsandm determine the eigenvalues of of the form
the square total angular momentum and of tk@omponent
of the total angular momentum of the field (62). Expres- Ut

fi (7“) i%}/jm(ea ¢) e_iEt/h7

i ivalent to th tai in Ref. 20. —i
sions (65) are equivalent to those obtained in Ref. 20 vy = gi(?“)iéyjm(@@)e Et/h (71)
6. The Dirac equation (G = 1/2., 3/2,...), whereE_ is a constant. Substituting.
Egs. (71) into Egs. (70), making use of Egs. (29), one obtains
The Dirac equation is given by the system obrdinary differential equations
ihdy) = —ilicor - Vib + M2, (66) 1d iy Ly  iMc, iE
rdr(rgi) (‘7+2) + h /- hcff’
where1) is a four-component column and tHex 4 matri- : :
. . 1d . 1l.g- iMc iE
cesa; and 3 satisfy the conditionsv;o; + ajo; = 651, —;E(TQJF) +(j+ 5)7 + 7]& = %ﬂr,
;B + Ba; = 0, 32 = I (see for example Refs. 28 to 30). . X
These conditions are satisfied with li(rff) G+ l)f;r _ lMCgf _E
rdr 27 r h he? ™’
a-—<0 Ui) ﬁ—(l 0) 14d 1. f.  iMe iE
T\ 0 ) N0 -1 )’ = Py — . (72
X ) i | |- . N rdT(Tf+)+(J+2)T no 9t hedt (72)
where thes; are the usual Pauli matrices. Expressingn If we now let
(3
the formy = , Whereu andv are two-component
v A= fo+f, B=fi—f,
columns, Eg. (66) amounts to
C = +9_, D= -g_,
ihdyu = —iheo - Vo + Mc?u, gt g+
Egs. (72) take the form
ihow = —ihco - Vu — Mc?v. (67) as. (72) )
1d o1 i
These equations are invariant under spatial rotations if one as- ;@(TA) -+ 5)7 = *%(E + Mc*)D,
sumes that, andv are two-component spinors that transform 14 1D ;
by means of SU(2) matrices under rotations. ——(D)+(j+=)— = ——(E—Mc*)A, (73)
By analogy with Egs. (33) and (59), a two-component rdr 2°r he
Spinor, together with
ul li — (i 1 g — _i — 2
uz<u2)’ rdT(TC) (]+2)r N hc(E Mc)B,
H N 1d . 1.B i )
as the spin-weighted components ——(rB)+(j+2)— = ——(E+ Mc)C. (74)
M N rdr 2°r he
Uy =UAO, U— =UAO, (68) Equations (73) imply thatl satisfies the differential equation
which have spin weight 1/2 and1/2, respectively. As can d2A  2dA G-Hi+1
be readily verified, the analog of Eq. (31) is —S -+ K- 2 221 A=0,
y ' 9 g.(31) dr2  rdr r
U=t —u-o, 69 wherek = VEZ = M?2c*/he. Hence,A must be propor-
whereo anda are the two-component spinors defined by Egsfional to a spherical Bessel function,
13) and (15). A straightforward computation yields [7,9 .
(13) ( )1 g 1 p y [7.,9] Ar) = ajj_%(k’/‘), (75)
o - Vu=——[0:(ru-) +0uy]o— —[0n(ruy) — Bu_]o; wherea is a constant; and, making use of Eq. (73) and the
. recurrence relations for the spherical Bessel functions, one
therefore, Egs. (67) are equivalent to obtains
1 1 1= iMc
Z - - _z - E — Mc?
G- =y Orlron) = 0y = DUr) = —ia\| g7z Jre ), (76)
1 1 1 iMc . .
Eatu+ = ;&(rm) - ;61;, — U In a similar way, one finds that
1 1 1. iMc . ., [E—Mc?
E(’“)tv, = —;(“)T(ru,) - ;5u+ + — U B(r) =bj; 1 (kr), C(r)=1ib mjj_%(kﬁ“),
1 1 1 iM i i i
SOy = 0 (ruy) — —du_ + 1 Cv+. (70) whereb is a constant. Further details can be found in Refs. 7
c r r h and 9.
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