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A brief introduction to the spin-weighted spherical harmonics is given, and some applications of these functions in the solution by separation
of variables of various systems of partial differential equations are presented. The examples considered here are the source-free Maxwell
equations in flat space-time and in the Schwarzschild space-time, the Einstein vacuum field equations linearized about the flat space-time
and the Dirac equation.
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1. Introduction

The spin-weighted spherical harmonics and the spin weight
raising and lowering operators were introduced by Newman
and Penrose [1] in the study of the asymptotic behavior of the
gravitational field (see also Refs. 2 and 3). These functions
are essentially the “monopole harmonics” that arise in the
solution of the Schr̈odinger equation for a charged particle in
the field of a magnetic monopole [4,5] and can also be ex-
pressed in terms of the WignerD-functions [6,7], the Jacobi
polynomials, the generalized associated Legendre functions
and the hypergeometric functions [7]. However, the fact that
the spin weight raising and lowering operators,ð (“eth”) and
ð (“eth bar”), appear in a natural way when the equations
for nonzero spin fields are written in spherical coordinates in
terms of certain combinations of the field components (those
with a definite spin weight), makes the spin-weighted spher-
ical harmonics particularly useful (see also Refs. 7 to 15).

In the standard treatment of nonscalar fields in spheri-
cal coordinates, a variety of vector, tensor, or spinor fields
is employed with widely variable notations and conventions;
in some cases these fields are constructed by coupling the
ordinary spherical harmonics with eigenfunctions of the cor-
responding spin operators. By contrast, the spin-weighted
spherical harmonics provide a straightforward and uniform
formalism applicable to fields of any spin.

In this paper, the spin-weighted spherical harmonics are
defined following Refs. 16 and 17, making use of the rep-
resentation of vectors by means of two-component spinors,
and some illustrative examples of their application in the so-
lution by separation of variables of equations for fields of
spin 1/2, 1, and 2 are given. In Sec. 2, the spin-weighted
spherical harmonics are defined. In Sec. 3, the source-free

Maxwell equations in flat space-time are solved and in Sec. 4,
a similar integration is presented assuming that the back-
ground space-time is that represented by the Schwarzschild
metric. In Sec. 5, the Einstein vacuum field equations lin-
earized about the Minkowski metric are solved and in Sec. 6,
the Dirac equation in spherical coordinates is solved.

The results given in Secs. 3 and 5, below, coincide with
those obtained in Refs. 7, 8, and 12 by means of a differ-
ent approach, while the derivation of the expression for the
electromagnetic field in the Schwarzschild space-time is pre-
sented here for the first time.

2. Spin-weighted spherical harmonics

2.1. Spherical harmonics

The Laplacian operator in the three-dimensional Euclidean
space expressed in terms of the spherical coordinates is given
by

∇2f =
1
r
∂ 2

r (rf)− 1
r2

L2f, (1)

whereL2 = (−ir×∇)2 is the square angular momentum op-
erator in units such that~ = 1. Hence, a function of the form
f(r, θ, φ) = rlg(θ, φ) (l = 0, 1, . . .) satisfies the Laplace
equation,∇2f = 0, provided that

L2g = l(l + 1)g, (2)

i.e. g(θ, φ) is a spherical harmonic of orderl. A simple
way of finding the spherical harmonics then follows from
the fact that any polynomial in theCartesian coordinates
(x, y, z) = (x1, x2, x3) of the form

f(x, y, z) = dij...kxixj · · ·xk, (3)
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(i, j, . . . = 1, 2, 3), where thedij...k are constant (real or
complex) coefficients totally symmetric, satisfies the Laplace
equation if and only if the trace ofdij...k vanishes,

diik...m = 0. (4)

(Throughout this paper there is summation over repeated
indices.) In effect, the Laplacian operator is given by
∇2f=∂i∂if , where∂i = ∂/∂xi; hence, ifdij...k hasl in-
dices, making use of the symmetry ofdij...k,

∇2(dij...kxixj · · ·xk) = ∂m∂m(dij...kxixj · · ·xk)

= ∂m(ldmjs...kxjxs · · ·xk)

= l(l − 1)dmms...kxs · · ·xk.

Thus, assuming that Eq. (4) holds,

f(x, y, z) = dij...kxixj · · ·xk = rldij...kN iN j · · ·Nk,

whereN i ≡ xi/r, is a solution of the Laplace equation and

dij...kN iN j · · ·Nk (5)

is a spherical harmonic of orderl (see also Ref. 18).
Among other things, Eq. (5) shows that, under the inversion
(x, y, z) 7→ (−x,−y,−z), a spherical harmonic of orderl is
multiplied by a factor(−1)l, which means that the parity of
a spherical harmonic of orderl is equal to(−1)l.

Despite the simplicity of the condition (4), expression (5)
is not particularly useful for finding the explicit form of the
spherical harmonics. However, by expressing the compo-
nentsN i in terms of spinors, one obtains a useful representa-
tion for the standard spherical harmonicsYlm.

2.2. Spinors and spin weight

Let V be a three-dimensional real vector space with a pos-
itive definite interior product, and let{e1, e2, e3} be an or-
thonormal basis ofV . As we shall show, it is convenient to
introduce another set of three vectors labelled by two indices
that take two values only,e.g.1 and 2,

e11 ≡ 1√
2
(e1 + ie2), e12 = e21 ≡ − 1√

2
e3,

e22 ≡ 1√
2
(−e1 + ie2). (6)

These vectors form a basis of (the complexification of)V ; in
fact, defining

v11 ≡ 1√
2
(v1 + iv2), v12 = v21 ≡ − 1√

2
v3,

v22 ≡ 1√
2
(−v1 + iv2) (7)

[cf. Eqs. (6)], where thevi are the components with respect
to {e1, e2, e3} of an arbitrary vector, one finds that

viei = −v11e22 + 2v12e12 − v22e11 = −vABeAB , (8)

where, as in what follows, the capital Latin indicesA,B, . . .,
take on the values 1 and 2, and these indices (which will
be called spinor indices) are lowered or raised following the
rules

ψA = εABψB , ψA = −εABψB , (9)

where εAB is the Levi-Civita symbol: ε12=1, ε21= − 1,
ε11=0=ε22. Then we have, for instance,ψ2=ψ1, ψ1=−ψ2,
v11=v22, v12=− v21. (On the other hand, the tensor indices
i, j, . . . are raised or lowered using the Kronecker delta and
therefore,e.g., vi = vi.) In this manner, instead of represent-
ing a vector by means of an array of the form(v1, v2, v3), we

will have a symmetric matrix

(
v11 v12

v21 v22

)
.

If viei and wiei are two arbitrary vectors, then their
scalar product is given by

viwi = −vABwAB . (10)

Owing to the rules (9), we have

ψAφA = ψ1φ
1 + ψ2φ

2 = −ψ1φ2 + ψ2φ1

= −ψ2φ2 − ψ1φ1 = −ψAφA; (11)

thereforevABwAB = vABwAB andφAφA = 0.
Let λ1, λ2 be two auxiliary complex variables; the double

sumvABλAλB is explicitly given by

vABλAλB = v11(λ1)2 + 2v12λ
1λ2 + v22(λ2)2

= (λ2)2
[
v11(λ1/λ2)2 + 2v12(λ1/λ2) + v22

]

= (λ2)2 v11

(
(λ1/λ2)− ra

)(
(λ1/λ2)− rb

)
,

wherera andrb are the roots of the polynomial
v11z

2+2v12z+v22. Hence,

vABλAλB = v11(λ1 − raλ2)(λ1 − rbλ
2). (12)

The values ofra andrb are [see Eq. (7)]

ra,b =
−2v12 ±

√
(2v12)2 − 4v11v22

2v11

=
v3 ±

√
(v1)2 + (v2)2 + (v3)2

v1 + iv2

=
v cos θ ± v

v sin θ eiφ
,

wherev, θ, andφ are the norm and the polar and azimuth
angles ofviei. Thus

ra,b = e−iφ cos θ ± 1
sin θ

= e−iφ cos2 1
2θ − sin2 1

2θ ± 1
2 sin 1

2θ cos 1
2θ

,

i.e.

ra = e−iφ cot
1
2
θ, rb = −e−iφ tan

1
2
θ,
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and therefore, from (12)

vABλAλB =
1√
2
v eiφ sin θ(λ1 − e−iφ cot

1
2
θ λ2)

× (λ1 + e−iφ tan
1
2
θ λ2)

=
√

2 v eiφ sin
1
2
θ cos

1
2
θ(λ1 − e−iφ cot

1
2
θ λ2)

× (λ1 + e−iφ tan
1
2
θ λ2)

=
√

2 v(eiφ/2 sin
1
2
θ λ1 − e−iφ/2 cos

1
2
θ λ2)

× (eiφ/2 cos
1
2
θ λ1 + e−iφ/2 sin

1
2
θ λ2).

Now, letting
(

o1

o2

)
=

(
e−iφ/2 cos 1

2θ
eiφ/2 sin 1

2θ

)
, (13)

we can writeeiφ/2 sin 1
2θ λ1 − e−iφ/2 cos 1

2θ λ2 = oAλA.
Defining the conjugate or mate ofoA by

ôA ≡ oA, (14)

we have
(

ô1

ô2

)
=

( −e−iφ/2 sin 1
2θ

eiφ/2 cos 1
2θ

)
, (15)

and, therefore,eiφ/2 cos 1
2θ λ1 + e−iφ/2 sin 1

2θ λ2 = ôBλB .
Hence,

vABλAλB =
√

2 v oAλAôBλB ,

which implies that

vAB =
√

2 v o(AôB), (16)

where the parentheses denote symmetrization on the indices
enclosed [e.g., o(AôB) = 1

2 (oAôB + oB ôA)]. In the case of a
complex vectorw, we can writewAB = α(AβB), whereβA

is not proportional to the mate ofαA.
If (UA

B) is a 2 × 2 matrix belonging to SU(2),
and o′A≡UA

BoB , then the mate ofoA transforms in the
same manner,̂o′A=UA

B ôB , inducing the transformation
v′AB=UA

CUB
DvCD on the spinor components of a vec-

tor [see Eq. (16)], which corresponds to a rotation about the
origin. This conclusion follows from the fact that the trans-
formationvAB 7→ v′AB is linear and the norm of a vector is
preserved under this transformation:

v′ABv′AB = UA
CUB

DvCDUARUBSvRS . (17)

But, according to the rules (9),

UA
CUAR = U1

CU1R + U2
CU2R

= U1
CU2

R − U2
CU1

R

= U1
CU2

R − U1
RU2

C

= (U1
1U

2
2 − U1

2U
2
1) εCR.

One can convince oneself of the validity of the last equality
noting that the two expressions coincide for each combina-
tion of values of the spinor indicesC andR, taking into ac-
count the definition of the Levi-Civita symbolεCR. Hence,
for any matrix with unit determinant,(UA

B),

UA
CUAR = εCR,

and Eqs. (17) and (9) give

v′ABv′AB = εCRεDSvCDvRS = vCDvCD

(which amounts tov′iv′i = vivi [see Eq. (10)]). It can
be shown that the determinant of the induced transformation
vi 7→ v′i is positive.

Equations (6) and (7) can be written in the form

eAB =
1√
2
σi

AB ei and vAB =
1√
2
σi

ABvi

(18)
with

(σ1AB) =
(

1 0
0 −1

)
, (σ2AB) =

(
i 0
0 i

)
,

(σ3AB) =
(

0 −1
−1 0

)
. (19)

Then, from Eq. (10) we can see that

σi
ABσj

AB = −2δj
i (20)

and therefore

ei = − 1√
2
σi

AB eAB and vi = − 1√
2
σi

ABvAB . (21)

In the case of a unit vector,N i, from Eqs. (16) and (21)
it follows thatN i = −σi

ABoAôB . Hence, going back to ex-
pression (5) for spherical harmonics, we find that any spheri-
cal harmonic of orderl can also be expressed in the form

dij...k N iN j · · ·Nk︸ ︷︷ ︸
l

= (−1)ldij...k σi
ABoAôB σj

CDoC ôD · · · σk
EF oE ôF

= (−
√

2)ldABCD...EF oAôBoC ôD · · · oE ôF

with

dABCD...EF ≡
(

1√
2

)l

σi
AB σj

CD · · ·σk
EF dij...k (22)

[cf. Eqs. (18)]. SinceσiAB=σiBA [see Eqs. (19)], the coeffi-
cientsdABCD... satisfy

dABCD...EF = dBACD...EF = dABDC...EF = dABCD...FE
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and, as a consequence of the symmetry ofdij...k,
dABCD...EF = dCDAB...EF . Furthermore, a difference of
the formdABCD...EF − dACBD...EF is given by

dABCD...EF−dACBD...EF

= (dA12D...EF − dA21D...EF ) εBC

= dA
R

RD...EF εBC

and, using Eqs. (22), (11), (20), and (4),

2l/2dA
R

RD...EF

= σi
A

Rσj
RD · · ·σk

EF dij...k

=
1
2
(σi

A
Rσj

RD + σj
A

Rσi
RD) · · ·σk

EF dij...k

=
1
2
(σi

A
Rσj

RD − σi
D

Rσj
RA) · · ·σk

EF dij...k

=
1
2
σiSRσj

RSεAD · · ·σk
EF dij...k

= −δijεAD · · ·σk
EF dij...k

= −εAD · · ·σk
EF dii...k = 0,

which means thatdABCD...EF is totally symmetric under all
transpositions of its indices. Hence, any spherical harmonic
of orderl has the form

dAB...CDE...F oAoB · · · oC︸ ︷︷ ︸
l

ôDôE · · · ôF︸ ︷︷ ︸
l

, (23)

with dABCD...EF being totally symmetric in its2l indices.
For example, any spherical harmonic of order 2 has the form

dABCDoAoB ôC ôD

= d1111o
1o1ô1ô1 + d1112(2o1o1ô1ô2 + 2o1o2ô1ô1)

+ d1122(o1o1ô2ô2 + 4o1o2ô1ô2 + o2o2ô1ô1)

+ d1222(2o1o2ô2ô2 + 2o2o2ô1ô2) + d2222o
2o2ô2ô2

= d1111
1
4e−2iφ sin2 θ − d1112 e−iφ sin θ cos θ

+ d1122
1
2
(3 cos2−1) + d1222 eiφ sin θ cos θ

+ d2222
1
4e2iφ sin2 θ

= d1111

√
2π

15
Y2,−2 − d1112

√
8π

15
Y2,−1

+ d1122

√
4π

5
Y2,0 − d1222

√
8π

15
Y2,1 + d2222

√
2π

15
Y2,2,

whered1111, d1112, d1122, d1222, and d2222, are arbitrary
complex numbers and we have made use of the standard def-
inition of the spherical harmonicsYlm.

A quantity η is said to have spin weights if, under
the transformationoA 7→ eiχ/2oA, it transforms intoeisχη
(hence, the componentsoA have spin weight 1/2). Then,

from Eq. (14) it follows that̂oA has spin weight−1/2 and
Eq. (23) shows that an ordinary spherical harmonic has spin
weight equal to zero. By definition, a spin-weighted spherical
harmonic of orderj and spin weights will be an expression
of the form

sPj = dAB...CDE...F oAoB · · · oC︸ ︷︷ ︸
j+s

ôDôE · · · ôF︸ ︷︷ ︸
j−s

, (24)

where the coefficientsdAB...F are totally symmetric in their
2j indices (j = 0, 1

2 , 1, . . .). According to the definition
given above, the function (24) has spin weights. Sincej + s
and j − s must be integral numbers,j ands must both be
integers or half-integers and

|s| 6 j. (25)

An alternative characterization of the spin-weighted
spherical harmonics, analogous to Eq. (2), can be given mak-
ing use of the operatorsð andð defined by [1]

ðη = −
(

∂θ +
i

sin θ
∂φ − s cot θ

)
η

= − sins θ

(
∂θ +

i
sin θ

∂φ

)
(η sin−s θ),

ðη = −
(

∂θ − i
sin θ

∂φ + s cot θ

)
η

= − sin−s θ

(
∂θ − i

sin θ
∂φ

)
(η sins θ), (26)

wheres is the spin weight ofη. Then one finds that, for
A = 1, 2,

ðoA = 0, ðôA = oA, ðoA = −ôA, ðôA = 0, (27)

and thatð andð are linear and satisfy the Leibniz rule. A
straightforward computation shows that

ðð sPj = −[j(j + 1)− s(s + 1)] sPj ,

ðð sPj = −[j(j + 1)− s(s− 1)] sPj . (28)

Furthermore,ððf = −L2f = ððf , if f is a function with
spin weight equal to zero and applyingð or ð to a spin-
weighted spherical harmonic of the form (24), one obtains
another spin-weighted spherical harmonic with spin weight
s + 1 or s− 1, respectively. That is,ð andð raise and lower,
respectively, the spin weight in one unit.

The symbolsYjm will denote a spin-weighted spherical
harmonic with spin weights, orderj, with a dependence on
φ of the formeimφ such that

2π∫

0

π∫

0

|sYjm|2 sin θdθdφ = 1.

Rev. Mex. F́ıs. S53 (2) (2007) 125–134



SPIN-WEIGHTED SPHERICAL HARMONICS AND THEIR APPLICATIONS 129

The phase of these functions can be chosen in such a way
that [1,7,17]

ð sYjm = [j(j + 1)− s(s + 1)]1/2
s+1Yjm,

ð sYjm = −[j(j + 1)− s(s− 1)]1/2
s−1Yjm, (29)

with 0Yjm=Yjm. From Eqs. (13), (15), and (24) one finds
that, as in the case of the ordinary spherical harmonics,
m = −j,−j + 1, . . . , j.

An important fact is that for a fixed values of the spin
weight, the set of the spin-weighted spherical harmonics
{sYjm} is complete (as well as orthonormal) in the sense that
any function with spin weights can be written as a series in
sYjm [1,7].

3. Solution of the source-free Maxwell equa-
tions

By construction,Ni = −σi
ABoAôB are the Cartesian com-

ponents of a unit radial vector, which is one of the vectors of
the orthonormal basis{er, eθ, eφ}, induced by the spherical
coordinates(r, θ, φ). It turns out thateθ andeφ are the real
and imaginary parts of the vector with Cartesian components
σi

ABoAoB , i.e.

(er)i = −σi
ABoAôB , (eθ + ieφ)i = σi

ABoAoB . (30)

An arbitrary vector fieldF in the three-dimensional Eu-
clidean space can be written in the form

F = Frer + Fθeθ + Fφeφ

or, equivalently,

F = −
√

2 F0 er − 1√
2
F−1(eθ + ieφ)

+
1√
2
F+1(eθ − ieφ), (31)

with

F0 ≡ − 1√
2

Fr, F±1 ≡ ± 1√
2
(Fθ ± iFφ). (32)

According to Eqs. (18) and (30) we also have

F0 = FABoAôB ,

F+1 = FABoAoB , (33)

F−1 = FAB ôAôB .

These last expressions show thatFs has spin weight equal to
s (s = 0, 1,−1). The functionsFs will be referred to as the
spin-weighted components ofF.

Making use of the standard expression for the divergence
of a vector field,

∇ · F =
1
r2

∂r(r2Fr) +
1

r sin θ
∂θ(Fθ sin θ) +

1
r sin θ

∂φFφ,

one obtains [see Eqs. (26)]

∇ · F = −
√

2
r2

∂r(r2F0) +
1√
2 r

(ðF−1 − ðF+1). (34)

Similarly, one finds that

∇× F =
i√
2 r

(ðF−1 + ðF+1) er

+
i√
2 r

[
∂r(rF−1) + ðF0

]
(eθ + ieφ)

+
i√
2 r

[∂r(rF+1)− ðF0] (eθ − ieφ). (35)

The source-free Maxwell equations in a vacuum (in cgs
units) can be written as

∇ · F = 0, ∇× F =
i
c
∂tF, (36)

whereF ≡ E+ iB. Expressed in terms of the spin-weighted
components ofF, these equations read [see Eqs. (34)
and (35)]

−2
r
∂r(r2F0) + ðF−1 − ðF+1 = 0,

−1
r
(ðF−1 + ðF+1) =

2
c
∂tF0,

−1
r
[∂r(rF−1) + ðF0] =

1
c
∂tF−1,

1
r
[∂r(rF+1)− ðF0] =

1
c
∂tF+1. (37)

Looking for separable solutions of this set of equations of
the form

Fs = gs(t, r) sYjm(θ, φ), s = 0,±1, (38)

making use of Eqs. (29,) one obtains

−2
r
∂r(r2g0) +

√
j(j + 1)(g−1 + g1) = 0,

√
j(j + 1)

r
(g1 − g−1) =

2
c
∂tg0,

−1
r
[∂r(rg−1)−

√
j(j + 1)g0] =

1
c
∂tg−1,

1
r
[∂r(rg1)−

√
j(j + 1)g0] =

1
c
∂tg1. (39)

These equations can be combined to obtain a second-order
equation forg0, g1, org−1. In order to find expressions equiv-
alent to those given in Refs. 7, 8, 19, and 20 we apply the
operator∂t to both sides of the second equation (39),

− 2
c2

∂ 2
t (rg0) =

√
j(j + 1)

1
c
∂t(g−1 − g1)
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and then, making use of the last two equations (39),

− 2
c2

∂2
t (rg0)

=

√
j(j + 1)

r
[−∂r(rg−1) + 2

√
j(j + 1) g0 − ∂r(rg1)]

= 2j(j + 1)
g0

r
− 1

r
∂r[

√
j(j + 1) r(g−1 + g1)]

= 2j(j + 1)
g0

r
− 2

r
∂ 2

r (r2g0).

Letting

χ ≡ −
√

2 rg0 Yjm

j(j + 1)
,

one finds thatχ satisfies the scalar wave equation,

∇2χ− (1/c2)∂ 2
t χ = 0

[see Eqs. (1) and (2)], and from Eqs. (29), (38), and (39),

F+1 = − 1√
2 r

(
1
c
∂t + ∂r

)
rðχ,

F0 =
1√
2 r
ððχ, (40)

F−1 = − 1√
2 r

(
1
c
∂t − ∂r

)
rðχ.

One can verify that these are the spin-weighted components
of the vector field

F = − i
c
∂t(r×∇χ)−∇× (r×∇χ). (41)

The labelsj andm contained in the separable solution
obtained above have a direct physical meaning; they deter-
mine the eigenvalues of the operators representing the square
total angular momentum and thez-component of the total an-
gular momentum of the field, respectively [8,7]. By virtue of
the completeness of the spin-weighted spherical harmonics
and of the linearity of the Maxwell equations and of the ex-
pressions (40) or (41), any solution of the Maxwell equations
can be represented in the form (41), whereχ is a (possibly
complex) solution of the scalar wave equation.

4. Electromagnetic perturbations of the
Schwarzschild solution

In this section, we directly integrate the source-free Maxwell
equations assuming that the background space-time is the
Schwarzschild solution, neglecting the effect of the energy-
momentum of the electromagnetic field on the space-time
curvature. The result obtained here by elementary means is
equivalent to that obtained using other approaches (see,e.g.,
Refs. 21 to 25) which are applicable to more general back-
grounds (e.g. the algebraically special vacuum space-times).

As is well-known, the Maxwell equations for the source-
free electromagnetic field on a possibly curved space-time
can be written as

∂αfβγ + ∂γfαβ + ∂βfγα = 0,

1√
|g|∂α(

√
|g|fαβ) = 0, (42)

where fαβ denotes the electromagnetic field tensor,
∂α≡∂/∂xα, thexα are space-time coordinates,g=det(gαβ),
with gαβ being the components of the metric tensor in the co-
ordinate systemxα, fαβ=gαγgβδf

γδ and the Greek lower
case indices run from 0 to 3 (see for example Ref. 26).
The Schwarzschild metric, which corresponds to the exterior
gravitational field of a spherically symmetric matter distribu-
tion, is usually written in the form

ds2 = −
(

1− 2GM

c2r

)
c2dt2 +

dr2

1− 2GM

c2r

+r2(dθ2 + sin2 θdφ2),

in terms of coordinates(x0, x1, x2, x3) = (ct, r, θ, φ), where
M is a constant; hence

(gµν) = diag(−h(r), h(r)−1, r2, r2 sin2 θ),

h(r) ≡ 1− 2GM

c2r
(43)

and
√
|g| = r2 sin θ.

Making use of Eq. (43) and the definitions

F0 =− 1√
2
(f01 + ir2 sin θ f23),

F±1 =± r√
2

[
f02 + i

sin θ

h
f31

±i
(

sin θ f03 + i
f12

h

)]
, (44)

a straightforward computation shows that the Maxwell equa-
tions (42) are equivalent to

−2
r
∂r(r2F0)− ðF+1 + ðF−1 = 0,

2r

c
∂tF0 + h(ðF+1 + ðF−1) = 0,

r

c
∂tF+1 − ∂r(rhF+1) + ðF0 = 0,

r

c
∂tF−1 + ∂r(rhF−1) + ðF0 = 0. (45)

Then, looking for separable solutions of Eqs. (45) of the form

Fs = gs(t, r) sYjm(θ, φ), s = 0,±1, (46)
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applying Eqs. (29) again one obtains

−2
r
∂r(r2g0) +

√
j(j + 1) (g1 + g−1) = 0,

2r

c
∂tg0 −

√
j(j + 1) h(g1 − g−1) = 0,

r

c
∂tg1 − ∂r(rhg1) +

√
j(j + 1) g0 = 0,

r

c
∂tg−1 + ∂r(rhg−1)−

√
j(j + 1) g0 = 0. (47)

(Note that these equations reduce to Eqs. (39) whenh = 1.)
These equations can be combined to obtain asecond order
partial differential equation forg0, g1, or g−1. For instance,
starting from the second equation of Eqs. (47), making use
then of the third, fourth and first equation in (47), one finds
that

1
c2

∂ 2
t (rg0)

=

√
j(j + 1) h

2
1
c
∂t(g1 − g−1)

=

√
j(j + 1) h

2r

[
∂r(rhg1 + rhg−1)− 2

√
j(j + 1) g0

]

= h

[
1
r
∂r(h∂r(r2g0))− j(j + 1)

g0

r

]
. (48)

Clearly this last equation can be reduced to an ordinary differ-
ential equation assuming, for example, thatrg0=f(r) e−iωt,

−ω2

c2
f = h

[
1
r

d
dr

(
h

d
dr

(rf)
)
− j(j + 1)

f

r2

]
.

A simple solution of Eq. (48) is given by
g0=(const.)r−2, with j=0 andF±1=0 [see Eq. (17)]. When
the constant is real, the resulting field is the one present in
the Reissner–Nordström solution.

Now letting

χ ≡ −
√

2 rg0 Yjm

j(j + 1)
,

for j 6= 0, one finds that Eq. (48) is equivalent to

1
c2

∂ 2
t χ = h

[
1
r
∂r (h∂r(rχ)) +

1
r2
ððχ

]
, (49)

which reduces to the scalar wave equation whenh = 1. Com-
bining the first two equations in Eq. (47), one obtains

g±1 =
1√

j(j + 1)

[
1
r
∂r(r2g0)± 1

hc
∂t(rg0)

]
;

hence

F+1 = − 1√
2 r

(
1
hc

∂t + ∂r

)
rðχ,

F0 =
1√
2 r
ððχ, (50)

F−1 = − 1√
2 r

(
1
hc

∂t − ∂r

)
rðχ.

As in the previous example, the linearity of Eqs. (42), (49),
and (50) and the completeness of the spin-weighted spheri-
cal harmonics imply that the general solution to the Maxwell
equations on the Schwarzschild space-time is given by
Eqs. (50), withχ being a solution of Eq. (49).

5. Solution of the linearized Einstein vacuum
field equations

The Einstein vacuum field equations linearized about the
Minkowski metric can be obtained assuming that the space-
time metric, gαβ , differs slightly from the flat Minkowski
metric(ηαβ) = diag(−1, 1, 1, 1),

gαβ = ηαβ + hαβ . (51)

To the first order inhαβ and its derivatives, the curvature is
given by

Kαβγδ =
1
2
(∂α∂δhβγ − ∂α∂γhβδ

+∂β∂γhαδ − ∂β∂δhαγ), (52)

which possesses the symmetries of the full curvature tensor,

Kαβγδ = −Kβαγδ = −Kαβδγ = Kγδαβ ,

Kαβγδ + Kαδβγ + Kαγδβ = 0 (53)

and

∂αKβγδε + ∂βKγαδε + ∂γKαβδε = 0. (54)

The linearized Einstein equations are then given by

Kαβ = 0, (55)

whereKαβ ≡ Kγ
αγβ , with the indices being lowered or

raised by means ofηαβ and its inverseηαβ . From Eq. (54)
(contracting withηγδ), one obtains

∂γKαβγε = 0. (56)

The symmetries (53) and the field equations (55) reduce
to ten the number of algebraically independent components
of the curvatureKαβγδ, which can be represented by the ten-
sor fields (for example Ref. 27)

Eij ≡ K0i0j , Bij ≡ −1
2
εilmKlm0j . (57)

Owing to Eqs. (53) and (55),Eij andBij are symmetric and
their traces are equal to zero. The differential conditions (54)
and (56) are equivalent to

∂iFij = 0, εijk∂jFkm =
i
c
∂tFim, (58)

with Fij ≡ Eij + iBij [cf. Eq. (36)].
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As shown in Sec. 2.2, the spinor equivalent of a symmet-
ric tensor with vanishing trace is totally symmetric. Thus,
the spinor equivalent ofFij , FABCD, is totally symmet-
ric and has five algebraically (complex) components, which
can be represented by the five spin-weighted components
[cf. Eqs. (33)]

F+2 = FABCDoAoBoCoD =
1
2
(Fθθ − Fφφ + 2iFθφ),

F+1 = FABCDoAoBoC ôD = −1
2
(Frθ + iFrφ),

F0 = FABCDoAoB ôC ôD =
1
2
Frr, (59)

F−1 = FABCDoAôB ôC ôD =
1
2
(Frθ − iFrφ),

F−2 = FABCD ôAôB ôC ôD =
1
2
(Fθθ − Fφφ − 2iFθφ),

whereFθθ, Fφφ, . . . denote the components ofFij with re-
spect to the orthonormal basis{er, eθ, eφ}. In order to make
use of the spin-weighted spherical harmonics to solve the set
of equations (58), we must express these equations in spher-
ical coordinates (replacing the partial derivatives appearing
in Eqs. (58) by covariant derivatives) and then combine them
in such a way that only quantities with a well-defined spin
weight appear [see Eq. (44)]. Alternatively, we can express
Eqs. (58) in terms of three-dimensional spinors, which di-
rectly yields the desired equations [7]. The result is that the

first equations in (58) are equivalent to

1
r
ðF−2 − 2

r3
∂r(r3F−1)− 1

r
ðF0 = 0,

1
r
ðF−1 − 2

r3
∂r(r3F0)− 1

r
ðF+1 = 0, (60)

1
r
ðF0 − 2

r3
∂r(r3F+1)− 1

r
ðF+2 = 0,

while the second set of equations in (58) is equivalent to

−1
r
[ðF−1 + ∂r(rF−2)] =

1
c
∂tF−2,

−1
r
[ðF−2 + 2∂r(rF−1) + 3ðF0] =

4
c
∂tF−1,

−1
r
(ðF−1 + ðF+1) =

2
c
∂tF0, (61)

−1
r
[ðF+2 − 2∂r(rF+1) + 3ðF0] =

4
c
∂tF+1,

−1
r
[ðF+1 − ∂r(rF+2)] =

1
c
∂tF+2.

Then, for a separable solution of the form

Fs = gs(t, r) sYjm(θ, φ), s = 0,±1,±2, (62)

making use of Eqs. (29), one finds that Eqs. (60) and (61)
reduce to a set of differential equations for thegs

√
j(j + 1)− 2g−2 − 2

r2
∂r(r3g−1) +

√
j(j + 1) g0 = 0,

√
j(j + 1)(g−1 + g1)− 2

r2
∂r(r3g0) = 0,

√
j(j + 1)g0 − 2

r2
∂r(r3g1) +

√
j(j + 1)− 2 g2 = 0, −1

r
[∂r(rg−2)−

√
j(j + 1)− 2 g−1]− 1

c
∂tg−2 = 0,

−1
r
[
√

j(j + 1)− 2 g−2 + 2∂r(rg−1)− 3
√

j(j + 1)g0]− 4
c
∂tg−1 = 0,

−
√

j(j + 1)
r

(g−1 − g1)− 2
c
∂tg0 = 0, −1

r
[−

√
j(j + 1)− 2 g2 − 2∂r(rg1) + 3

√
j(j + 1)g0]− 4

c
∂tg1 = 0,

−1
r
[
√

j(j + 1)− 2g1 − ∂r(rg2)]− 1
c
∂tg2 = 0. (63)

These equations can now be combined to obtain a second-
order decoupled equation for one of the functionsgs. For
instance, one finds that

1
c2

∂ 2
t (r2g0) =

1
r
∂ 2

r (r3g0)− j(j + 1)g0, (64)

which is equivalent to the condition that

χ ≡ − 2r2g0 Yjm

[j(j + 1)][j(j + 1)− 2]

be a solution of the scalar wave equation. Making use again
of Eqs. (63), (64), and (29), one can show that all the spin-

weighted components ofFij are given by

F+2 = − 1
2r2

(
1
c
∂t + ∂r

)2

r2ððχ,

F+1 =
1

2r2

(
1
c
∂t + ∂r

)
rðððχ,

F0 = − 1
2r2
ððððχ, (65)

F−1 =
1

2r2

(
1
c
∂t − ∂r

)
rðððχ,

F−2 = − 1
2r2

(
1
c
∂t − ∂r

)2

r2ððχ.
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As in the case of the electromagnetic field treated in
Secs. 3 and 4, the labelsj andm determine the eigenvalues of
the square total angular momentum and of thez-component
of the total angular momentum of the field (62). Expres-
sions (65) are equivalent to those obtained in Ref. 20.

6. The Dirac equation

The Dirac equation is given by

i~∂tψ = −i~cα · ∇ψ + Mc2βψ, (66)

whereψ is a four-component column and the4 × 4 matri-
cesαi and β satisfy the conditionsαiαj + αjαi = δijI,
αiβ + βαi = 0, β2 = I (see for example Refs. 28 to 30).
These conditions are satisfied with

αi =
(

0 σi

σi 0

)
, β =

(
I 0
0 −I

)
,

where theσi are the usual Pauli matrices. Expressingψ in

the formψ =
(

u
v

)
, whereu andv are two-component

columns, Eq. (66) amounts to

i~∂tu = −i~cσ · ∇v + Mc2u,

i~∂tv = −i~cσ · ∇u−Mc2v. (67)

These equations are invariant under spatial rotations if one as-
sumes thatu andv are two-component spinors that transform
by means of SU(2) matrices under rotations.

By analogy with Eqs. (33) and (59), a two-component
spinor,

u =
(

u1

u2

)
,

has the spin-weighted components

u+ ≡ uAoA, u− ≡ uAôA, (68)

which have spin weight 1/2 and−1/2, respectively. As can
be readily verified, the analog of Eq. (31) is

u = u+ô− u−o, (69)

whereo andô are the two-component spinors defined by Eqs.
(13) and (15). A straightforward computation yields [7,9]

σ · ∇u = −1
r
[∂r(ru−) + ðu+] o− 1

r
[∂r(ru+)− ðu−] ô;

therefore, Eqs. (67) are equivalent to

1
c
∂tu− = −1

r
∂r(rv−)− 1

r
ðv+ − iMc

~
u−,

1
c
∂tu+ =

1
r
∂r(rv+)− 1

r
ðv− − iMc

~
u+,

1
c
∂tv− = −1

r
∂r(ru−)− 1

r
ðu+ +

iMc

~
v−,

1
c
∂tv+ =

1
r
∂r(ru+)− 1

r
ðu− +

iMc

~
v+. (70)

The system of equations (70) allows separable solutions
of the form

u± = f±(r)± 1
2
Yjm(θ, φ) e−iEt/~,

v± = g±(r)± 1
2
Yjm(θ, φ) e−iEt/~ (71)

(j = 1/2, 3/2, . . .), whereE is a constant. Substituting
Eqs. (71) into Eqs. (70), making use of Eqs. (29), one obtains
the system ofordinarydifferential equations

1
r

d
dr

(rg−)− (j +
1
2
)
g+

r
+

iMc

~
f− =

iE
~c

f−,

−1
r

d
dr

(rg+) + (j +
1
2
)
g−
r

+
iMc

~
f+ =

iE
~c

f+,

1
r

d
dr

(rf−)− (j +
1
2
)
f+

r
− iMc

~
g− =

iE
~c

g−,

−1
r

d
dr

(rf+) + (j +
1
2
)
f−
r
− iMc

~
g+ =

iE
~c

g+. (72)

If we now let

A ≡ f+ + f−, B ≡ f+ − f−,

C ≡ g+ + g−, D ≡ g+ − g−,

Eqs. (72) take the form

1
r

d
dr

(rA)− (j +
1
2
)
A

r
= − i

~c
(E + Mc2)D,

1
r

d
dr

(rD) + (j +
1
2
)
D

r
= − i

~c
(E −Mc2)A, (73)

together with

1
r

d
dr

(rC)− (j +
1
2
)
C

r
= − i

~c
(E −Mc2)B,

1
r

d
dr

(rB) + (j +
1
2
)
B

r
= − i

~c
(E + Mc2)C. (74)

Equations (73) imply thatA satisfies the differential equation

d2A

dr2
+

2
r

dA

dr
+

[
k2 − (j − 1

2 )(j + 1
2 )

r

]
A = 0,

wherek ≡ √
E2 −M2c4/~c. Hence,A must be propor-

tional to a spherical Bessel function,

A(r) = ajj− 1
2
(kr), (75)

wherea is a constant; and, making use of Eq. (73) and the
recurrence relations for the spherical Bessel functions, one
obtains

D(r) = −ia

√
E −Mc2

E + Mc2
jj+ 1

2
(kr). (76)

In a similar way, one finds that

B(r) = bjj+ 1
2
(kr), C(r) = ib

√
E −Mc2

E + Mc2
jj− 1

2
(kr),

whereb is a constant. Further details can be found in Refs. 7
and 9.
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