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Abstract
Spinal cord injury causes rapid, severe osteoporosis with increased fracture risk. Mechanical
unloading after paralysis results in increased osteocyte expression of sclerostin, suppressed bone
formation, and indirect stimulation of bone resorption. At this time there are no clinical guidelines
to prevent bone loss after SCI and fractures are common. More research is required to define the
pathophysiology and epidemiology of SCI-induced osteoporosis. This review summarizes
emerging therapeutics including anti-sclerostin antibodies, mechanical loading of the lower
extremity with electrical stimulation, and mechanical stimulation via vibration therapy.
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Introduction
An estimated 12,000 new cases of spinal cord injury (SCI) occur in the United States each
year. The prevalence has increased from 207,000 cases in 1994 to roughly 270,000 cases in
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2012 due to improvements in medical care and greater survival [1]. Low bone mass and
deterioration of the skeletal architecture is a well-known consequence of SCI. Long-term
follow-up data suggest that as many as 50% of people with SCI will sustain a low-impact or
an osteoporotic fracture at some point following their injury [2]. These low-impact fractures
often occur spontaneously and in the absence of trauma. Fractures have serious health
implications in SCI since they severely reduce independence and mobility and result in
significant medical complications. Most fractures are treated non-operatively. Within the
Veterans Affairs Health Care system, fracture hospitalizations result in lengths of stay 7
times longer than non-fracture related hospitalizations [3]. During fracture-healing,
concurrent skin pressure ulcers can develop that sometimes result in lower extremity
amputation [4]. Reduced range of motion and contractures of the hip and knee are another
common long-term fracture consequence [5]. In addition to limiting mobility and
compromising skin integrity, osteomyelitis at the fracture site can occur and manipulation of
a fracture site can trigger severe hypertensive crisis due to autonomic dysreflexia. Despite
these serious health implications, there is currently no standard of care or well-accepted
clinical guidelines for the diagnosis, prevention, or treatment of SCI-induced osteoporosis.
Diagnosis of osteoporosis is difficult in SCI since no standardized clinical screening
recommendations exist to identify those at greatest risk for fracture. This clinical void is due
in part to limited information regarding the natural course of SCI-induced bone loss. In this
article we will review recent advances in the epidemiology and pathophysiology of SCI-
induced osteoporosis and highlight emerging therapeutics as they relate to these advances.

Physiologic Changes in Bone after SCI
Normally, bone formation is tightly coupled to bone remodeling with the amount of new
bone formed equivalent to the old bone that is removed. In SCI, bone remodeling becomes
uncoupled with an initial decrease in bone formation and steadily increasing bone resorption
[6]. Bone formation rates normalize after 2 weeks post-injury, however this immediate
uncoupling leads to a 4% per month reduction in sublesional (below the neurologic level of
injury) trabecular bone mineral content with a 40% reduction of sublesional BMD by 2
years post-injury [7]. There is controversy in the literature regarding the extent of ongoing,
chronic bone loss in SCI. Some studies suggest that bone loss plateaus at 3–5 years post-
injury [8, 9]. Other studies have demonstrated ongoing bone loss beyond this initial rapid
phase in both the cortical and trabecular compartments of bone. These latter findings are
supported by quantitative computed tomography studies demonstrating deterioration of
trabecular bone microarchitecture at the distal femur and proximal tibia in men with chronic
SCI compared to uninjured controls [10]. There was a positive correlation between time
since injury and tibial trabecular number and spacing, suggesting that trabecular
deterioration progresses for years after injury. Similarly, trabecular deterioration in post-
menopausal women with complete SCI is greater than in ambulatory post-menopausal
women [11]. Cortical thinning also occurs in the long bones of the lower extremity
following SCI [12, 13]. It has been suggested that cortical thinning is slower and steadier
than trabecular loss following SCI [14, 15]. This steady rate of cortical bone loss may
account for the finding that the mean time to first fracture is 9 years post-injury in SCI [16,
17].

The implications of continued bone loss are not typically addressed in the clinical setting
until a fracture occurs. An improved understanding of the natural history and risk factors for
chronic bone loss following SCI is essential to designing therapies to reduce the rate of bone
loss, define fracture risk, and ultimately prevent osteoporotic fractures and their associated
morbidity.
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Role of Sclerostin in SCI-Induced Bone Loss
Elucidation of the Wnt signaling pathways in bone homeostasis has radically transformed
our understanding of the cellular and molecular mechanisms governing bone adaptations to
mechanical loading and unloading [18, 19]. The currently accepted paradigm states that Wnt
binds to a co-receptor complex involving Frizzled receptor and low-density lipoprotein
receptor-related protein (LRP)-5 or LRP-6, both present on osteoblasts. This binding
stabilizes cytoplasmic β-catenin causing it to translocate to the nucleus. Translocation of β-
catenin, in turn, activates the transcription of genes that promote osteoblast proliferation,
differentiation and function, ultimately resulting in new bone formation. Several antagonists
have been described that can inhibit this signaling pathway. For instance, molecules such as
secreted frizzled-related proteins, Wif (Wnt inhibitor factor), and Cerberus, can bind Wnt
and functionally block the pathway. Sclerostin and Dickkopf-related protein 1 (Dkk1), on
the other hand, inhibit the Wnt pathway by preventing the formation of the Wnt-Frizzled-
LRP5 complex by promoting the internalization of the LRP5/6 co-receptor (Dkk1) or by
competitive binding to LRP5 (sclerostin) [20, 21].

Recent studies suggest that sclerostin is a key mediator of SCI-induced bone loss. Sclerostin,
encoded by the sost gene, is produced primarily by osteocytes and is a potent inhibitor of
bone formation and growth [22–24]. Mechanical unloading causes up-regulation of
sclerostin, leading to reduced Wnt/β-catenin signaling in osteoblasts. While the anti-
anabolic role of sclerostin has been well characterized, recent evidence [25] indicates that
sclerostin also has catabolic activity. In fact, sclerostin causes up-regulation of RANKL and
down-regulation of OPG expression by osteocytes, increasing osteoclast differentiation and
activity, ultimately leading to bone resorption. Several elegant animal studies have shown
that sclerostin levels are inversely proportional to bone mass [23, 26] and mechanical
loading in rats and mice dramatically reduces that production of sclerostin by osteocytes
[27–29]. These studies have defined the central role of sclerostin in the pathogenesis of
disuse osteoporosis. They provide an explanation for the regulation of bone responses to
unloading via a mechanism that permits enhanced or reduced Wnt signaling upon
mechanical stimulation or unloading, respectively.

In humans, mechanical unloading of bone occurs in diseases that cause paralysis, or the
inability to walk. Therefore, the association between sclerostin and bone loss is expected to
be strongest in disease conditions like spinal cord injury. Stroke can also cause paralysis,
and sclerostin levels are increased in subjects with mobility impairments studied a mean of
10 months after stroke [30]. Similarly, we recently analyzed circulating sclerostin in 155
men with varying degrees of SCI who were 1 year or more post-injury [31]. Sclerostin levels
were greatest in subjects with SCI who were injured less than 5 years and decreased
significantly as a function of time during this period. In contrast, there was no association
between sclerostin and injury duration in subjects with chronic SCI (more than 5 years post-
injury). In another study, we evaluated 49 subjects with varying degrees of chronic SCI and
found that sclerostin was significantly lower during the chronic phase of SCI that is
characterized by severe osteoporosis [32]. Lower extremity bone mineral density (BMD)
was lowest in persons with the lowest circulating sclerostin. These results would seem
paradoxical considering the proposed mechanism of sclerostin-induced bone loss in acute
SCI. However, in chronic SCI circulating sclerostin is more a biomarker of osteoporosis
severity because it reflects the reduced bone mass in the paralyzed lower extremity. We
assessed the relationship between bone density and several circulating bone-related proteins
including sclerostin, DKK-1, sRANKL, osteoprotegerin, osteocalcin, and c-telopeptide in 39
men with chronic SCI and 10 men with no SCI (In Press, Osteoporosis International). We
found that only sclerostin was associated with bone density and is therefore a candidate
biomarker of osteoporosis severity in chronic SCI. Taken together, these data suggest that
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sclerostin levels are initially increased after SCI in response to mechanical unloading and
then decrease over time as rapid bone loss progresses. Collectively these findings support a
dual role for sclerostin after SCI: a potential therapeutic target in acute SCI to prevent rapid
immobility-induced bone loss, and a biomarker of osteoporosis severity in chronic SCI.
These findings require confirmation in people with acute SCI followed longitudinally.

Conceptual Model for Sclerostin Mediated SCI-induced Bone Loss
Figure 1 shows a conceptual model for SCI-induced bone loss. Mechanical unloading
(paralysis) in acute SCI subjects causes greater sclerostin levels than those observed in the
able-bodied. This increase is associated with accelerated bone loss and inhibited bone
formation during the acute phase of SCI. In the chronic phase, bone-wasting results in lower
sclerostin levels than those observed in the able bodied due to the reduction of sclerostin-
producing osteocytes in the osteoporotic bone.

Sclerostin has potential as a therapeutic target to improve bone in both the general
population and in SCI. Preclinical work demonstrated increases in bone formation, bone
mineral density, and bone strength in animals treated with an antibody to sclerostin [33–35].
These results supported the development of anti-sclerostin drugs. AMG 785, a sclerostin
monoclonal antibody developed by AMGEN, is the most promising candidate. Well
tolerated in phase 1 clinical studies [36], AMG 785 is currently being tested in phase 2 trials
examining dosing and efficacy. In addition to antibodies that target sclerostin activity,
sclerostin pathway can be inhibited by PTH and/or mechanical reloading, which inhibit
sclerostin expression [28, 37].

PTH, Bone, and Sclerostin
Vitamin D deficiency and abnormal parathyroid hormone (PTH) levels are common in both
acute and chronic SCI [38]. Acute SCI suppresses PTH levels due to the hypercalcemia that
accompanies increased bone resorption [2, 38, 39]. Low PTH may contribute to SCI-induced
bone loss. In fact, PTH may mediate its anabolic bone effects in part via suppression of
sclerostin expression [40, 41]. Animal studies have demonstrated that PTH suppresses
sclerostin production [37] and intermittent PTH treatment has been clinically demonstrated
to stimulate bone formation in humans [42, 43]. Moreover, interventions that have the
potential to increase bone density in humans, such as functional electrical stimulation and
stationary biking, increase PTH levels [44]. If PTH were a negative feedback regulator of
sclerostin, suppressed PTH in acute SCI would exacerbate sclerostin-mediated bone loss. On
the other hand, variations in PTH levels may modulate the sclerostin response to acute
unloading. However, these important relationships remain unstudied in those with acute
SCI. PTH levels normalize or are elevated with time [45], and associations between PTH
and sclerostin are also uncharacterized in chronic SCI.

Role of Fat-Bone Interactions in SCI-induced Osteoporosis
Obesity is widely considered to be osteoprotective, i.e., persons with a greater BMI are less
likely to have osteoporotic fractures [46–48]. However, the relationship between obesity and
bone loss in SCI is not known. There is an increase in central (visceral) fat, an increase in fat
in the limbs below the level of injury, and some studies have even demonstrated an increase
in fat in non-paralyzed limbs above the level of injury. Although BMI is also increased in
SCI, the true increase in body fat is and, compared to the able-bodied, persons with SCI
have a greater percentage of body fat [49]. Most studies assessing body fat distribution in
SCI using DXA scans have demonstrated an 8 to 18% increase in fat mass compared to the
able-bodied, but have included relatively few SCI subjects (8 to 20 per study) [50]. In the
largest study, the SCI group was 13% fatter per unit of BMI compared to age and sex
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matched controls. Advancing age was strongly associated with greater adiposity and
decreased lean mass, and the effect of age on adiposity was greater than in the able-bodied
[51]. While these data demonstrate that obesity is more common in SCI than the general
population, obesity and high fracture rates co-exist in SCI. This suggests that greater fat
mass may result in greater loss of BMD in the years following SCI. Some reports in the
literature also suggest increased fractures in obese able-bodied adults [52] and obese able-
bodied children. Furthermore, obesity in adolescence causes decreased bone strength
relative to body weight [53]. The impact of obesity on bone is multi-factorial, and may
involve multiple pathways that influence both bone formation and resorption with
competing effects on the skeleton. One such pathway involves increased mechanical loading
that stimulates bone formation. The protective effect of obesity on bone in the able-bodied
may be attributable to the increased mechanical loading of bones during ambulation.
Although persons with SCI have greater body fat compared to the able-bodied, muscle
paralysis does not permit mechanical loading of the long bones in the lower extremity.

A second pathway linking bone to fat involves adipocyte production of hormones that are
known regulators of bone metabolism. Leptin is one example of a bone-regulating hormone
produced primarily by adipocytes. Circulating leptin levels are elevated in SCI compared to
able-bodied controls, and circulating leptin correlates better with other measurements of
adiposity than with BMI [54–56]. Leptin was originally described as the product of the
obesity gene. It is known to regulate energy expenditure and appetite via binding to its
receptor in the arcuate nucleus of the hypothalamus. This binding triggers sympathetic
regulation of energy expenditure in the periphery. The observed link between obesity and
bone mass led to the investigation of leptin’s role in bone metabolism. Several lines of
evidence suggest leptin signals via central and local pathways to regulate both bone
formation and bone resorption. The mechanism of central control of bone is similar to but
distinct from the hypothalamic relay controlling appetite [57]. The downstream target of this
pathway is the beta 2-adrenergic receptor expressed on the surface of osteoblasts. Signaling
via this pathway results in leptin-induced suppression of bone formation by sympathetic
inhibition of osteoblast activity [58]. Within the bone microenvironment, the leptin receptor
is expressed on osteoblasts [59] and has been shown to promote osteoblast over adipocyte
differentiation in bone marrow stromal cells [60]. Leptin has also been shown to inhibit in
vitro differentiation of human peripheral blood mononuclear cells (PBMC) into mature,
functional osteoclasts. Leptin may suppress osteoclast differentiation via a target cell within
the PBMC population. Therefore, leptin can itself have competing effects on bone
metabolism depending upon the signaling pathway. Similarly, adiponectin is a polypeptide
hormone produced by osteoblasts and by adipocytes in both visceral and marrow fat depots.
Active adiponectin receptors are expressed on bone cells [61] and, although adiponectin
levels are typically inversely related to the degree of adiposity, elevated levels of
adiponectin have been associated with bone loss in both men and women as well as in
rodent studies [62–65]. Elevated serum levels of both leptin and adiponectin have been
associated with accelerated bone loss. Each one, acting alone or in conjunction with the
other, may contribute to ongoing bone loss in SCI.

Treatment of SCI-induced Osteoporosis: Limitations of Anti-resorptive
Agents

The use of osteoporosis medications, including the anti-resorptive bisphosphonates, has
been studied in SCI. Bisphosphonates have been shown to slow bone loss in both acute and
chronic SCI [66, 67] but none has demonstrated new bone formation. In one study, a 2-year
course of treatment with the anti-resorptive medication alendronate was shown to prevent
further bone loss in 55 subjects with chronic SCI but did not seem to increase BMD at any
skeletal site tested. These results fell surprisingly short of those reported in able-bodied post-
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menopausal women where alendronate treatment usually results in increased BMD [68].
Given the extreme skeletal wasting that occurs following SCI, an effective therapeutic
intervention should reduce the rate of bone loss and promote normal bone formation.
Potential anabolic therapies include mechanical loading and vibration therapy and recent
advances in both are discussed below.

Treatment of SCI-induced Osteoporosis: Mechanical Loading
The most profound stimulus to bone formation and, in some cases, for reversal of
osteoporosis, is exercise that actively loads the bone. Bone is a dynamic organ that
modulates the rate of new bone formation via osteocyte expression of sclerostin in response
to varying levels of mechanical strain. In complete spinal cord injury the long bones of the
lower extremity adapt to minimal mechanical strain by atrophying as described above.
However, reintroduction of mechanical loading may reverse these changes. The skeleton is
known to respond to mechanical loading by increasing cortical bone at the site of greatest
mechanical strain [69]. However, strain patterns must be atypical, and be delivered with
sufficient force and with sufficient frequency to stimulate new bone formation [70]. Bone
cells rapidly become desensitized to prolonged loading and therefore periods of rest are
required between sessions to maximize osteogenic potential [71, 72]. Based on these
findings, the optimal weight-bearing exercise rapidly delivers a high loading force in an
unusual distribution with sufficient rest between training sessions. Weight bearing exercises
have been shown to increase bone density, cortical thickness, and bone strength in the
general population. While weight-bearing is difficult to achieve after lower extremity
paralysis, this is now possible with electrical stimulation (ES) and functional electrical
stimulation (FES). For this reason, ES and FES training programs are attractive exercise
models for the SCI population. Several animal and human studies have shown new bone
formation in response to electrical stimulation [73–75]. In a small study of 8 men with acute
thoracic motor complete SCI, a single session of electrical stimulation reduced c-telopeptide
levels indicating reduced bone resorption 48 hours after treatment [76]. Electrical
stimulation of the quadriceps muscle in upright stance reduced bone loss and preserved
trabecular bone micro-architecture at the distal femur in seven subjects with SCI compared
to 5 subjects who stood without stimulation and 15 subjects with SCI who received no
standing or stimulation [77]. Similarly, in a study of 26 subjects with acute (less than 12
weeks post-injury) motor complete SCI, electrical stimulation delivered 1 hour a day, 5 days
a week for 6 weeks reduced bone resorption (indicated by n-telopeptide levels) and bone
loss at the distal femur [78]. Improvements in bone have also been reported in response to
FES-cycling [79]. A recent case-report demonstrated feasibility of a home-based FES-
cycling program for people with SCI [80]. The one participant completed 25 of the 27
recommended exercise sessions over a 9 week training period. While these reports are
encouraging, the long-term effects of ES and FES on bone and ultimately fracture risk after
SCI are unknown. Larger longitudinal studies are required to definitively establish the
efficacy of these therapies and to translate of the findings to clinical care.

Treatment of SCI-induced Osteoporosis: Vibration Therapy
Mechanical stimulation via low magnitude mechanical signals (LMMS), has great
therapeutic potential in SCI. LMMS have been shown in both human and rodent models to
promote new bone formation as well as decrease dietary induced obesity [81]. Limited
information exists on vibration therapy for bone in SCI. A case report suggested 10 weeks of
whole body vibration therapy combined with standing increased bone density in the trunk
and spine for a single subject [82]. Similarly, low-intensity vibration was investigated as a
potential therapy for bone loss in SCI. A stimulation applied to the feet was transmissible to
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the axial skeleton in 7 subjects with SCI, suggesting this treatment has potential to modulate
bone metabolism [83].

Emerging Anti-Osteoporosis Agents: Potential Areas of SCI-induced
Osteoporosis Research

Activins are transforming growth factor-β (TGFβ) family and are highly expressed in bone.
Blocking the type II activin receptor (ActRIIA) prevents activin A ligand signaling and
increases bone formation, bone mass, and bone strength in both normal and ovariectomized
mice [84]. Activin blockade may also be beneficial in SCI-induced osteoporosis, but there is
no literature to date on this topic. Similarly, cathepsin-K inhibitors have demonstrated early
success in clinical studies for treatment of post-menopausal osteoporosis [85], but there is no
information in the literature in subjects with SCI-induced osteoporosis.

Conclusion
Osteoporosis is an important complication of SCI. Mechanical unloading after paralysis
results in increased osteocyte expression of sclerostin, suppressed bone formation, and
indirect stimulation of bone resorption. At this time there are no standard clinical guidelines
to prevent the consequences of bone loss after SCI. Sclerostin is both a mediator of acute
bone loss in SCI and a biomarker of osteoporosis severity in chronic SCI. Bone-fat
interactions may also play a role in SCI-induced osteoporosis, though more research is
required to establish this association. Emerging therapeutics to prevent or treat SCI-induced
osteoporosis may include anti-sclerostin antibodies, mechanical loading of the lower
extremity using ES or FES, and mechanical stimulation via vibration therapy.
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Figure 1.
A possible mechanism to explain a decrease of bone mass and increase fragility in chronic
SCI. Immediately after SCI sclerostin levels increase preceding bone loss. In chronic SCI
bone wasting is associated with lower sclerostin levels due fewer sclerostin-producing
osteocytes in the osteoporotic bone.
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