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Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder and a leading genetic
cause of infantile mortality. SMA is caused by mutation or deletion of Survival Motor Neuron-1 (SMNT1). The
clinical features of the disease are caused by specific degeneration of a-motor neurons in the spinal cord,
leading to muscle weakness, atrophy and, in the majority of cases, premature death. A highly homologous
copy gene (SMN2) is retained in almost all SMA patients but fails to generate adequate levels of SMN protein
due to its defective splicing pattern. The severity of the SMA phenotype is inversely correlated with SMN2
copy number and the level of full-length SMN protein produced by SMN2 (~10-15% compared with
SMNT1). The natural history of SMA has been altered over the past several decades, primarily through suppor-
tive care measures, but an effective treatment does not presently exist. However, the common genetic etiol-
ogy and recent progress in pre-clinical models suggest that SMA is well-suited for the development of
therapeutic regimens. We summarize recent advances in translational research that hold promise for the pro-

gression towards clinical trials.

INTRODUCTION

5g-Spinal muscular atrophy (SMA) is an inherited autosomal
neurodegenerative disease caused by the homozygous deletion
of Survival Motor Neuron-1 (SMN1) (1). The carrier frequency
of SMA is ~1:35 with an incidence of 1 in 6000 live births,
making it a leading genetic cause of infantile mortality (2).
Clinically, SMA severity spans a broad spectrum based upon
the age of onset and the severity of symptoms, including a
severe form (type I; Werdnig—Hoffmann disease), an inter-
mediate form (type II) and a less severe disease or ‘juvenile’
form (type III; Kugelberg—Welander disease). All forms of
SMA are caused by the loss of SMNI/. Humans are the only
species that also carry a nearly identical gene called SMN2
(3); however, the majority of SMN2-derived pre-mRNA tran-
scripts are alternatively spliced and subsequently encode a trun-
cated, dysfunctional protein, SMNA7 (Fig. 1) (1,4-7).
Increasing SMN2 copy number, and more importantly, the
small amount of full-length SMN produced by SMN2, is
observed in milder forms of the disease (2). Therefore, SMN2
is the primary disease-modifying gene in humans and in trans-
genic models of disease (2,8). Although not conclusively
demonstrated yet, Plastin-3 may prove to be an additional
genetic modifier based upon expression studies that correlated

with a decrease in severity in some female SMA patients (9).
The precise SMN-associated function that is abrogated in
SMA is currently controversial; however, two principal hypoth-
eses have developed: (i) SMN performs an axonal-specific func-
tion potentially involving mRNA transport, such as 3-actin; or
(i1) SMA is caused by decreased SMN activity in snRNP biogen-
esis, and presumably, motor neurons are especially vulnerable to
SMN-dependent snRNP perturbations (10).

SMN REGULATION

SMNI and SMN2 maintain identical coding sequences; however,
a silent cytosine-to-thymine (C—T) transition within exon 7 (4 6)
induces the alternative splicing event common to the majority of
SMN2-derived transcripts (Fig. 1). Exon 7 is a highly regulated
region comprised of 54 nucleotides and contains the translation
termination signal for all full-length products, whereas the trans-
lational termination of the exon-skipped product is at the 5" end
of exon 8. The balance between full-length expression and
exon-skipping is accomplished through a complex interplay
between positively and negatively acting regulatory elements
(Fig. 2). A critical AG-rich exonic splicing enhancer (ESE)
within exon 7 is bound and regulated by Tra2-31, an SR-like
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Figure 1. Schematic of the human SMN locus. The human SMN genes, SMN1 and SMN2, are located in close proximity on chromosome 5. The SMN2 locus is
likely derived from a recent duplication event of a genomic region spanning ~500 kb which contains additional genes and microsatellite markers. The SMN
genes comprise nine exons and eight introns and encode an identical protein product. A silent C—T transition in exon 7 of SMN2 alters a critical exonic
splice enhancer and results in a strong reduction of exon 7 inclusion during splicing. Consequently, ~85% of the mature mRNA lacks exon 7 (A7), highlighted
by the RT—PCR in the bottom panel. The truncated protein is defective in SMN self-association and is degraded rapidly.
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Figure 2. Schematic of the exon 7 region and the factors involved in the inclusion or exclusion of exon 7 within SMN pre-mRNA. Components of the machinery
are shown in blue. The positively acting sequences and splicing factors are shown in green. The negatively acting sequences and splicing factors are shown in

red. The C—T transition at 46 is indicated.

family member (11). Tra2-1 likely serves as a nucleation point
for several additional regulatory factors that indirectly associate
with SMN exon 7, including SRp30c, hnRNP-Q, hnRNP-G and
RBMY (12—-14). Overlapping the C—T transition is an important
ESE bound by SF2/ASF (15,16). This high-affinity SF2/ASF
motif is disrupted in the SMN2 context. Concomitantly, the
C-T transition appears to create a novel inhibitory region
called Extinct that can also be bound by hnRNP-A1 (17-19).
Flanking exon 7 are evolutionarily conserved positively acting
regulatory sequences (20) as well as several potent negatively
regulating elements, including intronic splice silencer (ISS)
regions such as element 1 in intron 6 at the —75/—89 position
(relative to exon 7) and a sequence immediately downstream
of exon 7 called ISS-N1 (21,22). Although the precise mode of
inhibition for the ISS elements is currently unknown, PTB,
FUBP and hnRNP-A1/A2 have been identified in complexes
with these ISS regions (23-25).

The natural history of SMA has been altered over the past
several decades, primarily through supportive care measures,
many of which are summarized within the recently published
consensus statement for standards of care (26,27). However, a
treatment or cure has not been identified. Since all SMA patients
retain varying copy numbers of SMN2, the SMN2 gene and gene
products have become a focal point for SMA therapeutic
development. In this review, the primary focus will be on
recent translational strategies that are SMN-dependent and
SMN-independent approaches to develop therapeutics for SMA.

THERAPEUTIC RNA MOLECULES: RNA-BASED
MODULATION OF SMN2
Utilizing small RNA molecules to reprogram the splicing of a

faulty pre-mRNA is an expanding area of focus for a wide
range of genetic diseases including SMA (28,29). Modulating

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S'N Aq 001 €29/L L LY/ LYH/6L/2101e/Buwy/woo dno-olwepese//:sdiy woly papeojumoq



Human Molecular Genetics, 2010, Vol. 19, Review Issue 1

SMN2 pre-mRNA splicing is a direct approach to restore
proper expression of the normal SMN protein. Initial efforts
involved antisense oligonucleotides (ASOs) to redirect splice
decisions by blocking the 3’ splice site (ss) of exon 8 (30)
and to inhibit the function of a negative splicing regulator
(E1) within intron 6 (21). The ASO targeting the 3’ ss of
exon 8 was incorporated into U7 snRNA for stable expression
(31) and increased exon 7 inclusion and SMN protein levels
following delivery into SMA type-I patient fibroblasts (3813
cells) using adeno-associated virus (AAV-5) (32). The anti-
sense strategy was further extended by developing alternative
chemistries and through the incorporation of an untethered
binding platform for positively acting splicing factors to the
SMN?2 exon 7 region. This was accomplished by combining
the antisense region with either a covalently bound synthetic
peptide (16) or with a non-complementary ESE sequence
acting as a binding platform for SR proteins (bifunctional
RNAs) (Fig. 3A) (33,34). Conceptually similar to the synthetic
RNAs, bifunctional RNAs were able to be expressed from
AAV-2 vectors, leading to increased SMN protein levels in
cell-based models (33). An alternative version of the bifunc-
tional RNAs targeted the intron 7—exon 8 border and con-
tained binding motifs for the negatively acting splicing
factor, hnRNP-A1 (35). As opposed to the previous bifunc-
tional RNAs that were designed to directly stimulate SMN2
exon 7 inclusion by recruiting positively acting splicing
factors, this alternative class of RNAs recruited negatively
acting factors to the 5’ end of exon 8 as a means of shifting
the equilibrium towards full-length expression. Intravenous
injection into the temporal vein of SMA mice with these syn-
thetic 2’-O-methyl bifunctional RNAs enhanced SMN protein

A

SMN Exon 6
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expression in the liver and kidney, whereas intracerebroventri-
cular (ICV) injections increased SMN levels in brain tissue
from treated SMA mice (35).

The sequence targeted by the ASOs must be carefully
selected to avoid masking any regulatory region that is
crucial for exon 7 splicing. Ideally, a bifunctional RNA
would have two modes of action: (i) the inhibition of a spli-
cing silencer mediated by the antisense region, and (ii) the
recruitment of SR proteins. Therefore, regions such as the
hTra2B1 ESE represent poor molecular targets (11,36),
whereas blocking its flanking regions (nucleotides 7—21 and
34-48; positions A and B, respectively) greatly improves
the level of exon 7 splicing and SMN protein in cell-based
models (36). Consistent with this refined targeting notion, a
bifunctional RNA that blocked position B and contained
SF2/ASF ESEs was delivered into 3813 cells, using a lenti-
virus vector (37). In cell-based assays, the outcome was
97% inclusion of exon 7 and a ~2-3-fold increase in SMN
protein (37). The viability of this approach was further illus-
trated through the development of a transgene expressing a
similar RNA within the context of a very severe model of
SMA (38). In all measured outcomes, bifunctional RNA
expression resulted in levels of SMN protein that rescued
the severe SMA phenotype (38).

Through detailed molecular studies, an intertwined series of
enhancers and silencers have been identified. In particular, the
identification of intronic splicing silencers (ISSs) has greatly
impacted the design of exon 7-stimulating ASOs and bifunc-
tional RNAs. In addition to the use of minigene systems,
ASO arrays or tiling has proven to be a powerful and unbiased
means to analyze ASOs in disease-specific cellular contexts

SMNIEXT H p(A) |_3 Trans-splicing

RNA

Exon 6 | SMNIET H p(A) I-:'I Trans-spliced product

Figure 3. (A) Schematic of the exon 7 region and the proposed function of a bifunctional RNA. The bifunctional RNA is illustrated with an antisense-targeting
domain specific to 5" end of exon 7, a short spacer region and a domain comprising three tandem repeats of ESEs shown in green. Positive splicing factors,
interacting with the splicing machinery, are shown in yellow. (B) Schematic of frans-splicing in the context of SMN2 pre-mRNA splicing. The antisense
domain of the trans-splicing RNA binds to endogenous SMN2 pre-mRNA at the intron 6 region by complementary base-pairing. The SMN/I exon 7 is contained
within the frans-splicing RNA and precedes a polyadenylation signal. The product of an interaction between the 5’ ss of intron 6 and the 3’ ss of the trans-splicing
RNA is a trans-spliced mRNA that contains SMN! exon 7. BP, branch point; p(Py), polypyrimidine tract; p(A), polyadenylation signal.

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S'N Aq 001 €29/L L LY/ LYH/6L/2101e/Buwy/woo dno-olwepese//:sdiy woly papeojumoq



R114

(25,36,39,40). ISS-N1 ASOs systemically injected into unaf-
fected SMN2-transgenic, heterozygous SMA mice gave rise
to ~90% inclusion of exon 7 in the liver and kidney,
whereas the effect was modest in thigh muscles and not
evident in the spinal cord (25). However, a recent report indi-
cated that multiple ICV injections of ISS-N1 ASO increase
SMN protein in the brain and spinal cord of the SMAA7
mouse model (41). Remarkably, uptake of uncoupled
2'-O-methyl ASO was significantly greater compared with
ASO incorporated into previously described carriers. The
weight and righting reflex, monitored until post-natal day 12,
were also improved relative to a control group. As further con-
firmation of this regulatory sequence as a bona fide target,
recently, an 8-mer ASO that binds to five nucleotides of
ISS-N1 was reported to increase SMN and SMN-associated
proteins in 3813 cells (39). It is still unclear whether such a
short ASO can function specifically in vivo or whether the
high number of cognate sites within the genome will result
in unwanted off-targets effects.

In addition to ISS-NI1, the detection of the inhibitory
element E1 within intron 6 led to the synthesis of a bifunc-
tional RNA that played a dual role by simultaneously blocking
E1 and recruiting SR proteins (23). Originally, E1 was ident-
ified using an exon-trapping vector and its functionality was
subsequently confirmed in a genomic minigene system and
shown to form a complex with two RNA-binding factors,
PTB and FUSE-BP (21,23). The antisense moiety consisted
of two non-sequential sequences designed to inhibit E1 by
hybridizing to the flanking regions of El. El-bifunctional
RNAs contained the ESE for either ASF/SF2 or hTra2-f3.
Plasmid-derived and 2’-O-methyl RNAs increased SMN
protein levels in 3813 cells. Furthermore, delivery of
2'-O-methyl bifunctional RNAs into the CNS of SMAA7
mice resulted in SMN levels comparable with that of carrier
heterozygous mice in the brain and spinal cord. More impor-
tantly, E1-hTra2-B extended the lifespan and weight in a
more severe mouse model of SMA (23). The ability of small
therapeutic RNAs to reach and penetrate motor neurons, as
well as their intracellular stability, will be key to the further
development of these types of strategies in SMA as well as
other disorders of the CNS.

TRANS-SPLICING RNAS

SMN trans-splicing is an alternative RNA therapy with prom-
ising outcomes. Trans-splicing requires a synthetic RNA
(tsRNA) consisting of three domains: (i) a binding domain
to interact with a specific target; (ii) a splicing domain to
undergo a splicing reaction with the selected intron; and (iii)
an intact exon or series of exons to replace the defective
gene segment. The trams-spliced product is a chimeric
mRNA that translates into a functional protein. The original
SMN tsRNA targeted intron 6 and replaced SMN2 exon 7
with SMNI exon 7 (Fig. 3B) (42). AAV-2 delivery of this
construct in 3813 cells significantly increased SMN protein
levels, which was validated by snRNP assembly assay for
functionality (42). To improve the in vivo efficiency, the
tsRNA vector was co-expressed with a short ASO expressed
from a separate promoter (43). The ASO was designed to
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block the downstream splicing at exon 8 and, therefore,
promote a trams-splicing event. The combination of the
tsRNA and ASO was highly effective in vivo as demonstrated
by increased levels of the trans-spliced RNA and SMN protein
in the brain and spinal cord of injected SMAA7 mice (43).
Consistent with this, a single ICV injection of the tsRNA/
ASO vector in a severe model of SMA lessens disease severity
by extending the lifespan nearly 70% (44).

SMA DRUG DEVELOPMENT

The mode-of-action for a potential SMA therapy using small
molecules may include increasing exon 7 inclusion, activating
the SMN2 promoter, extending the half-life of SMN mRNA or
protein and lengthening the protein at the C-terminus—or a
combination of these activities. Following extensive high-
throughput screening of SMN promoter-activating compounds
and medicinal chemistry optimization, novel quinazoline
derivatives were recently developed, which not only increased
SMN in vitro, but also altered the SMA phenotype in the
SMNA7 mouse model (45—47). Several derivatives crossed
the blood—brain barrier and increased SMN in the brain of
neonatal mice. Using protein microarrays, the RNA-decapping
protein DcpS was identified as a target of C5-quinazolines
(48). The exact mechanisms by which DcpS increases SMN
levels are not fully understood and need further investigation.
Nevertheless, oral bioavailability and positive results in safety
studies make quinazolines candidates for SMA clinical trials.
Another group of compounds, histone deacetylase (HDAC)
inhibitors, has shown promise in several models of neurode-
generation (49). Several different HDAC inhibitors have
been tested in SMA mouse models and in patients. Notably,
administration of TSA increased expression of SMN and
improved lifespan and motor performance in the SMAA7
model, especially when combined with nutritional support
(50,51). Positive results were also obtained with sodium buty-
rate and valproic acid (52,53). To date, despite good safety
profiles in clinical trials, valproic acid and phenylbutyrate
have not resulted in dramatic clinical outcomes and efficacy
has been incremental (54,55). However, novel HDAC inhibi-
tor compounds may hold promise since it has been shown
that LBH589 increased SMN levels in cells from patients
unresponsive to valproic acid (56), and SAHA administration
increased lifespan in an SMA mouse model (57).
Heterologous sequences can at least partially substitute for
the reduced oligomerization and functionality of the SMNA7
protein (4—6,58). Based upon these molecular observations,
it was reasoned that the use of compounds that induced a
translational readthrough event of the SMNA7 protein would
lengthen the C-terminus of SMNA7 and ultimately increase
SMN levels. Aminoglycosides, a class of antibiotics, can sup-
press the recognition of termination codons and have been
used in culture to increase SMN protein levels (4,59,60).
The aminoglycoside G418, which was previously shown to
confer improvement in a mouse model harboring a vasopressin
receptor nonsense mutation (61), also increased SMN protein
levels and improved motor function in the SMAA7 model
despite an adverse toxicity profile (4). An aminoglycoside
derivative obtained through a medicinal chemistry approach
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resulted in the elongation of lifespan and functional improve-
ments in this model, suggesting that this class of compounds is
amenable to optimization (62,63). Successful readthrough can
also be achieved using different scaffolds with acceptable
safety profiles as shown by PTC Therapeutics in a clinical
trial with cystic fibrosis patients (64). Therefore, readthrough
compounds with improved safety features and increased sup-
pressive capacities and specificities may become candidates
for SMA drug treatment regimens.

STEM CELLS

The possibility to replace lost neurons and to support the
remaining neural cell population by neural stem cells is cur-
rently receiving considerable attention. Cell replacement
may be achieved by transplantation of stem cell-derived
cells which have undergone maturation in vitro, or by acti-
vation of endogenous stem cells in the CNS. However, bone
marrow transplantation is the only stem cell therapy currently
in use. In SMA animal studies, significant progress has
recently been reported by Corti et al. (65,66), who injected
primary neural stem cells from the spinal cord, as well as
ES cell-derived neural cell precursors, into the spinal cord of
the relatively severe SMAA7 mouse model. Approximately
15% of the injected cells engrafted into the spinal cord
where they exhibited mostly astrocyte and, to a much lesser
extent, motor neuron characteristics. This resulted in signifi-
cant increases in lifespan, weight gain and improvements in
muscle morphology. Intriguingly, the loss of ventral horn
cells typically seen in this model was mitigated to an extent
that could not be explained by the acquisition of new, stem
cell-derived motor neurons alone, suggesting that the trans-
planted cells exerted a neuroprotective effect. Indeed, the
stem cells secreted neurotrophic factors in culture and trans-
planted spinal cords had increased levels as well (66). Neuro-
protective effects of transplanted stem cells were also
described in several other models of neurodegeneration,
including ALS (67), Purkinje neuron degeneration (68) and
retinal disease (69). Although intrathecal administration of
trophic factors generally had little clinical effect (70), geneti-
cally engineered stem cells may provide enhanced neuropro-
tection and trophic support in situ after differentiation into
glial cells, in addition to replenishing the motor neuron pool.

The successful generation of induced pluripotent stem (iPS)
cells from patient fibroblast was an important step towards the
generation of genetically compatible neurons for stem cell
therapy (71). iPS cells from an SMA patient can be differen-
tiated in culture into motor neurons expressing specific tran-
scription  factors and markers such as choline
acetyltransferase (72). This raises the possibility that the
underlying genetic defect can be repaired in vitro and pre-
differentiated cells then be returned to the patient without
eliciting an adverse immune response. Additionally, valuable
human motor neuron cultures can now be probed for biologi-
cal answers or be utilized as disease-appropriate drug discov-
ery platforms. Traditionally, iPS cells are generated using a
cocktail of four factors delivered by lentivirus vectors,
making them unsuitable for clinical use because of the
potential for integrational mutagenesis and oncogenicity. To
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overcome this limitation, efforts are directed towards generat-
ing iPS cells without permanent genome modification,
employing non-integrating or excisable vectors, or eventually
activating the reprogramming process via protein factors or
small molecules (73—80). Although these developments are
very exciting, it remains to be demonstrated whether trans-
plant motor neurons can form substantial numbers of func-
tional neuromuscular junctions in an SMA model. Thus, at
present, stem cells might be expected to provide primarily
trophic support, and transplantation at the earliest possible
time point should provide maximum benefit.

SMN-INDEPENDENT PATHWAYS
Muscle enhancement

Muscle has also been examined as a potential target for SMA
therapeutics. Although recent work with novel transgenic
animals expressing SMN in muscle under the control of the
HSA promoter demonstrates that SMN restoration in skeletal
muscle alone does not reverse the SMA phenotype (81), the
possibility exists that enhanced muscle may contribute to the
maintenance or stabilization of an intact motor unit. Two con-
trasting studies examined various inhibitors of the myostatin
pathway, one demonstrating a modest extension in lifespan
and gross motor function, following delivery of recombinant
follistatin, the other detecting no phenotypic alteration in the
SMNA7 mice treated with ActRIIB-Fc or transgenic overex-
pression of follistatin (82,83). The basis for this discrepancy
is unclear; however, the possibility remains that motor
neurons may require additional support to optimally respond
to SMN-based therapeutics.

Actin dynamics

Using a novel milder SMA mouse model called Smn®®~, a

dramatic increase in survival was reported in animals treated
with a pharmacological inhibitor of Rho-kinase. Neuromuscu-
lar junctions were also enhanced and appeared more mature
following treatment. Remarkably, these alterations in the
SMA phenotype occurred independently of SMN increases.
These results not only provide new therapeutic targets, but
also may offer insight into the SMN function.

CONCLUSIONS

A tremendous amount of translational work is progressing
rapidly towards the pre-clinical stage in the SMA field.
Clearly, obstacles will exist. Blood—brain barrier penetration
is an impediment for all CNS disorders, especially for vector-
based technology; however, with the analysis of new sero-
types, exciting CNS penetration from an IV injection has
been accomplished using AAV-9 (84,85). Important questions
are still unanswered, which directly impact therapeutic devel-
opment, such as: (i) what SMN-associated defect leads to
SMA development; (ii) when can a therapeutic be delivered
and still result in a beneficial effect; (iii) how do existing
animal models correlate with clinical trial success; and (iv)
will all therapeutic applications work similarly across SMA
types? SMA has benefited tremendously by leveraging
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the basic scientific knowledge into translational research, and
while questions remain, ongoing research is poised to address
many of the current challenges within the SMA landscape.
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