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Abstract— Objective: Sleep spindle features show developmen-
tal changes during infancy and have the potential to provide an
early biomarker for abnormal brain maturation. Manual identifi-
cation of sleep spindles in the electroencephalogram (EEG) is
time-consuming and typically requires highly-trained experts. Au-
tomated detection of sleep spindles would greatly facilitate this
analysis. Research on the automatic detection of sleep spindles
in infant EEG has been limited to-date. Methods: We present a
random forest-based sleep spindle detection method (Spindle-AI)
to estimate the number and duration of sleep spindles in EEG
collected from 141 ex-term born infants, recorded at 4 months of
age. The signal on channel F4-C4 was split into a training set (81
ex-term) and a validation set (30 ex-term). An additional 30 ex-term
infant EEGs (channel F4-C4 and channel F3-C3) were used as an
independent test set. Fourteen features were selected for input into
a random forest algorithm to estimate the number and duration of
spindles and the results were compared against sleep spindles
annotated by an experienced clinical physiologist. Results: The
prediction of the number of sleep spindles in the independent test
set demonstrated 93.3% to 93.9% sensitivity, 90.7% to 91.5% speci-
ficity, and 89.2% to 90.1% precision. The duration estimation of
sleep spindle events in the independent test set showed a percent
error of 5.7% to 7.4%. Conclusion and Significance: Spindle-AI has
been implemented as a web server that has the potential to assist
clinicians in the fast and accurate monitoring of sleep spindles in
infant EEGs.

Index Terms— EEG, infants, sleep spindles, Spindle-AI

I. INTRODUCTION

Sleep spindles are an indicator of the development and integrity of
the central nervous system in infants [1]. They were first described
by Loomis et al. [2] as rhythmic 12-14 Hz oscillations which last
0.5 to 3 seconds with a waxing and waning shape [3]. They have
been observed clearly in EEG during stages N2 and N3 [4] from
the 4th week post-term and are present in the EEG of all infants
by nine weeks post-term [5]. Sleep spindles have been shown to
change with aging [6], [7] possibly reflecting maturation changes
such as synapses generation and elimination, and myelination [8].
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For example, when sleep spindles first appear, they are of low
amplitudes showing, however, an ascendant trajectory [4]. Spindle
spectral power (measured as sigma power over central and occipital
channels) increases in early childhood from 2 to 5 years [9]. Within
participants ranging from 4 to 24 years old, a decrease of the spectral
power over the frontal and centroparietal areas was seen [10]. It is
also during adulthood that amplitudes stabilize, meaning that, for
peak-to-peak analysis of the automatically detected sleep spindles,
groups of 20-30 year old showed higher amplitudes than the 41-
59 and the 60-73 year old participant groups, particularly in the
frontal left region; but no statistically significant differences were
seen between the latter groups in any of the areas spindles were
studied: the frontopolar, frontal, central, parietal and occipital areas
[11]. This evolution is also evident in the frequency domain, fast
spindles predominate during infancy where their density peaks in
groups from 4-12 months old, and decrease after that; while slow
spindles tend to appear after the first year and keep increasing in
density across the different age groups studied at least until the age
of 25-48 months [12]. Mean frequency of sleep spindles peak at 4
to 12 months of age decreasing after that until at least 25 to 48
months [12]. Spindle duration decreases across infancy and early
childhood and increases again after 3 years of age [9], [13], [14].
Sleep spindle density decreases from the second half of the 9th

month up to 1 year and 8.4 months, then shows a trend of increasing
density up to 11 years [13]. Sleep spindle parameters might estimate
neurodevelopment as their variations evolve with aging [13]. The
rapid development of the infant brain, and the variability in sleep
spindles makes infant sleep spindle detection challenging.

The visual detection of sleep spindles in EEG is a laborious and
time-consuming task. Automated detection of sleep spindles would
reduce the burden associated with the analysis of large datasets
and facilitate more rapid identification of sleep abnormalities and
an objective means to quantify spindle features. Previous studies
have used various methods to measure the duration and number of
sleep spindles automatically in adult sleep EEG [15]–[21]. However,
research on the automatic detection of sleep spindles in infant
EEGs to-date has been limited. To the best of our knowledge, there
have only been two previously published studies on the automatic
estimation of the number of sleep spindles in infant EEGs. In the
first, Held et al. [22] presented an automated method to estimate
the number of sleep spindles which was trained on three and tested
on two infants. They achieved a sensitivity of 87.7% and an 8.1%
false-positive rate. This method combined two different approaches:
detection criteria on the sigma-band filtered EEG signal, including the
application of fuzzy thresholds, and mimicking current procedures
for manual identification of sleep spindles in infant EEG. However,
only the number of sleep spindle events was estimated; sleep spindle
duration was not considered. The second approach for estimating
the number of sleep spindles in long EEG recordings, developed by
Estevez et al. [23], used a Merge Neural Gas algorithm and was
trained on a single infant, and tested on another achieving 62.9%
sensitivity. In their work, the EEG recording was divided into 0.512s
epochs, and a human expert labelled each epoch as containing sleep
spindles or not. Epochs in which sleep spindles were contained
in only part of the epoch were labelled as a sleep spindle event.
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However, if a sleep spindle was divided across different epochs,
the sleep spindle was treated as two or more sleep spindles events.
Moreover, in this way, the duration (start time and end time) of the
sleep spindles can not be accurately estimated. There thus remains a
need for an automated method of spindle detection in infant EEG that
can accurately estimate the number and duration of spindle events.

In this study we develop a random forest-based sleep spindle
detection method (Spindle-AI) to estimate the number and duration
of sleep spindles in the EEGs of ex-term born infants recorded at
four-month of age. The random forest algorithm is one of the most
successful modern general-purpose classification algorithms [25] and
has been widely used to identify sleep events in sleep EEG recordings
[20], [26]–[28]. Moreover, it is generic enough to be applied to
large-scale problems, easily adaptable to a variety of special learning
tasks, and returns a measure of feature importance [25]. The ap-
proach combines several randomized decision trees and aggregates
their predictions by averaging. The study builds on our previous
preliminary work to develop a method to detect sleep spindles in
infant EEGs [24]. Spindle-AI has been implemented as a web server
freely available for academic use at http://lisda.ucd.ie/Spindle-AI/.
Spindle-AI estimates the number of sleep spindles and identifies the
specific time and duration of occurrence of the sleep spindle events,
this has the potential to assist clinicians in the monitoring of sleep
spindles in EEGs of infants faster than current methods.

II. METHODS

The Spindle-AI method was developed and tested on EEG data
recorded from 141 infants on EEG channels F4-C4 and F3-C3. Four-
teen features were selected for input to a random forest algorithm.
Synthetic Minority Over-sampling Technique (SMOTE) was used to
balance the dataset. The model was trained using 81 infant EEG data
as inputs to the random forest algorithm. After that, the signal was
post-processed using sleep spindle detection criteria to estimate the
number and duration of sleep spindles. An overview of Spindle-AI
is presented in Fig. 1.

Fig. 1. Overview of Spindle-AI. Infants’ sleep EEG data on channel
F4-C4 were used to develop the random forest-based method. Infants’
sleep EEG data on channel F4-C4 and channel F3-C3 were used
as an independent test set. Features were estimated after removing
artefacts, and feature selection was performed using a random forest-
based wrapper method. SMOTE was applied to balance the dataset.
The method was then trained using 81 infant EEG data as inputs to the
random forest algorithm. The number, start time and end time of sleep
spindles are estimated by post-processing the signals according to the
sleep spindles detection criteria.

A. Participant details

Ethical approval was granted from the Clinical Research Ethics
Committee of the Cork Teaching Hospitals, Cork, Ireland and written
consent from parents or guardians of the infants included in the
study was obtained. A cohort of healthy full-term infants (n=181)
was recruited soon after birth at Cork University Maternity Hospital

(CUMH). Inclusion criteria were gestational age higher than 37
weeks, being healthy and singleton. EEG data were recorded from
sleeping infants at four months, with each infant’s EEG recorded for
around two hours. Three datasets were excluded due to abnormal
EEG. A further 37 datasets were excluded due to software incom-
patibilities. Therefore, 141 ex-term infants (i.e. infants born after 37
weeks but before 42 weeks of gestation) EEG were included in this
study.

B. Data collection

EEG data were recorded using a 31-channel polygraph system
(Lifelines, UK) that included 21 EEG electrodes (FP2, FP1, F8, F7,
F4, F3, FZ, A2, A1, T4, T3, C4, C3, CZ, T8, T7, P4, P3, PZ, O2,
O1), ground and reference electrodes. Two electrooculogram (EOG)
channels (below the outer canthus of the left eye and above the outer
canthus of the right eye) monitored rapid and slow eye movements,
chin tonicity was recorded using surface electromyography (EMG).
Separate electrodes were applied for electrocardiogram (ECG), and
a movement sensor was placed on the abdominal region for the
recording of respiration. EEG, EMG, ECG, EOG data and movement
sensor were recorded at a sampling rate of 500 Hz. Sleep spindles of
ex-term infants were annotated on channel F4-C4 and channel F3-C3
by an experienced clinical physiologist as the gold standard. In the
following text we refer to the sleep spindles in channel F4-C4 as “R-
Spindle” and the sleep spindles in channel F3-C3 as “L-Spindle”. The
number and duration of the sleep spindles identified by the clinical
physiologist are presented in Table I.

TABLE I
NUMBER AND DURATION OF SLEEP SPINDLES ANNOTATED BY AN

EXPERIENCED CLINICAL PHYSIOLOGIST

F4-C4 F3-C3
Infants number 141 141
Average number of sleep spindles per infant 167 155
Total number of sleep spindles 23,520 21,815
Total duration of sleep spindles (s) 67,997 66,320
Total duration of non-sleep spindles (s) 509,535 511,212

C. Data pre-processing and feature estimation

The EEG data were processed at the original sampling frequency
of 500 Hz, a 50 Hz notch filter was applied to remove power
line interference from the EEG recordings, and the DC offset was
removed from each channel. The pre-processed EEG signals detected
on channels F4-C4 and F3-C3 were segmented into 0.5s epochs with
0.25s overlap for feature estimation. The length of 0.5 seconds was
chosen as this is the minimum required length of a sleep spindle [3].
EEG recordings from channel F4-C4 from 81 ex-term infants were
used for training and 30 ex-term infants were used for validation.
An additional 30 EEG recordings from channel F4-C4 and F3-C3 of
ex-term infants were used for independent testing of the method. A
selection of 43 time and frequency domain features previously used
in EEG event identification, including sleep stage classification and
seizure detection, were identified from the literature and estimated
for each epoch. A list of the features estimated is provided in Table
II.

In the time domain, the root mean square, the mean absolute
amplitude, skewness, and kurtosis, of the pre-processed EEG signals
were calculated for each epoch. In addition, max and min absolute
amplitudes as well as max–min difference of amplitude (max-min
difference) of the pre-processed EEG signals were estimated. The
Teager-Kaiser energy operator (TKEO) is a nonlinear energy tracking
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TABLE II
TIME AND FREQUENCY DOMAIN FEATURES ESTIMATED FROM EACH

0.5S EEG EPOCH OF PRE-PROCESSED EEG SIGNAL

Domain Features Reference

Time

SD, RMS and mean absolute amplitudes [29], [30]
Max and min absolute amplitudes [29]–[31]
Max–min difference of amplitude [29]–[31]
Skewness and Kurtosis [32]
Hjorth activity, complexity, mobility [31], [32]
Fractal Dimension [33]
Symmetry and Anti-symmetry [22], [31]
Number of peaks [31]
Mean and standard deviation TKEO values [31]

Frequency

Mean frequency [22], [29]
Integral of the full band power (0-500 Hz) [33]
Mean value of the envelope in sigma band
(12.5-15 Hz) and sleep spindle band (10.5-
16 Hz)

[34]

Mean absolute amplitudes in sigma and
sleep spindle bands

[15], [35]

Mean absolute amplitudes in delta (0-4 Hz),
theta (4-8 Hz), alpha (8-12 Hz), beta (12-30
Hz) bands

[36]

Relative and absolute power in sigma and
sleep spindle bands

[31]

Relative and absolute power in delta (0-4
Hz), theta (4-8 Hz), alpha (8-12 Hz), beta
(12-30 Hz) bands

[37]

Sigma Index, alpha band ratio and sleep
spindle band ratio

[20], [35]

SD: standard deviation; RMS: root mean square; TKEO: Teager–Kaiser
energy operator

operator capable of determining the instantaneous energy of a non-
stationary signal, which has been applied to detect abrupt changes
in biological signals [38]. The mean and standard deviation of the
TKEO value in each epoch were also estimated.

TKEO[n] = x[n]2 − x[n− 1]x[n+ 1] (1)

Where: x[n] is the nth sample, x[n-1] is the (n-1)th sample and
x[n+1] is the (n+1)th sample of the pre-processed EEG signal in the
epoch.

The signal symmetry (Sym) and anti-symmetry (Antisym) were
estimated [22], [31] along with the EEG signal complexity which
was quantified using fractal dimension (FD) [33], [39] and Hjorth
parameters (Mobility and Complexity)) [31], [32].

Sym =

∑N/2
i=0 f+[i]

N(max
N/2
i=0 (f+[i]))2

where: f+[i] =
x[N/2+i]+x[N/2−i]

2 (2)

Antisym =

∑N/2
i=0 f−[i]

N(max
N/2
i=0 (f−[i]))2

where: f−[i] =
x[N/2+i]−x[N/2−i]

2 (3)

FD =
logN10

logN10 + log
N/(N+0.4δ))
10

(4)

Mobility =

√
Var(ẋ)
Var(x)

(5)

Complexity =
Mobility(ẋ)
Mobility(x)

(6)

Where: x[N/2+i] is the (N/2+i)th sample and x[N/2-i] is the (N/2-
i)th sample of the processed EEG signal in the epoch; N is the

number of samples in each epoch; and δ is the number of sign changes
in the signal derivative in that epoch; ẋ is the time derivative of the
pre-processed EEG signal x, and Var (x) is the variance of x estimated
for that epoch.

The EEG data were filtered using a 4th order Butterworth filters
(IIR) within the frequency bands of interest: delta (0-4 Hz), theta (4–8
Hz), alpha (8–12 Hz), sigma (12.5-15 Hz), sleep spindle (10.5-16
Hz) [40] and beta (12–30 Hz). The mean absolute amplitude, signal
envelope (estimated using the Hilbert transform), relative power in
each band and absolute power in each band was estimated for each
epoch. The mean frequency of each 0.5 s epoch was also estimated
[15], [31], [34]–[37].

In addition to these classical metrics, we included the sigma index
(Sigmaindex) [20], alpha band ratio and sleep spindle band ratio
which have proven successful for adult sleep spindle detection in
[20], [35].

Sigmaindex =
mean(|F3(x)|)

mean(|F1(x)|)) +mean(|F2(x)|) (7)

Where F1(x), F2(x) and F3(x) represent the pre-processed EEG
signals filtered in the 4-10 Hz, 20-40 Hz and 12.5-15 Hz bands,
respectively.

The alpha band ratio is estimated as the ratio of the root mean
square (RMS) amplitude in alpha band (8-12 Hz) compared to total
RMS amplitude of pre-processed signal in each epoch. The sleep
spindle band ratio is estimated as the ratio of the RMS amplitude in
sleep spindle band (10.5-16 Hz) compared to total RMS amplitude
of pre-processed signal in each epoch.

D. Feature selection

The feature selection algorithm was built as a wrapper method
around a random forest classifier. The mean precision loss and
standard deviation were calculated, and a ranking of features was
provided as output. In addition, Pearson’s correlation coefficient
[42] between all pairs of features was measured to identify highly
correlated pairs of features.

E. Dataset balancing

The number and duration of sleep spindle events in the dataset were
substantially less than the number and duration of non-sleep spindle
events resulting in a class imbalance problem that can make training
a machine learning algorithm challenging [44]. To address this, the
Synthetic Minority Oversampling Technique (SMOTE) [45] was used
to balance the data. SMOTE is a method of oversampling, in which
the minority class is oversampled by creating ‘synthetic’ samples in
the feature space. Synthetic data points are generated by following
the line of segments connecting randomly chosen neighbours from
k nearest neighbours according to the required excessive sampling
quantity. In addition, the random state is used as a seed to the
random number generator, which ensures that the splits generated
are reproducible. In this work, we chose k = 5, and the random state
= 2.

F. Classification algorithm of Spindle-AI

Before selecting the random forest algorithm, it was first bench-
marked against three other algorithms (Multilayer Perceptron, Naive
bayes and eXtreme Gradient Boosting). In preliminary testing the
random forest algorithm had higher performance than the other
algorithms (see APPENDIX Table VIII), it has a shorter processing
time than the Multilayer Perceptron, is less likely to overfit a training
dataset than the XGBoost algorithm [46] and has the advantage that
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it can return the importance of the features after training the model.
Random forest is an integrated technique that contains many decision
trees and classifies by voting on the weakest unbiased classifiers [41].
The decision trees are executed on different bagging instances of
the training set and the classification accuracy loss is caused by the
feature importance measure being randomly arranged as the feature
value.

The random forest classifier was implemented using the sklearn
library [47] within the Python 3 environment. The structure of the
random forest classifier is shown in Fig. 2. Three parameters were
optimized; n-estimators, which is the number of trees in the forest;
min-samples-split which is the minimum number of samples required
to split an internal node; and min-samples-leaf which is the minimum
number of samples required to be at a leaf node. These parameters (n-
estimators, min-samples-split, and min-samples-leaf) were optimized
based on the performance of the validation set, to improve the
performance of the method for the estimation of sleep spindles in
the EEG recordings. The validation set was found to achieve the best
performance for n-estimators = 100, min-samples-split = 120, and
min-samples-leaf = 20.

Fig. 2. The structure of a random forest classifier. Random Forest is an
ensemble learning method that combines several randomized decision
trees and aggregates their predictions by averaging [25].

G. Sleep spindle detection criteria: sleep spindle number and
duration estimation

EEG typically contains artefacts which may interrupt and mask the
sleep spindle trace [48]. To overcome this, consecutive sleep spindles
estimated by the random forest algorithm with an interval less than
1 second were grouped together, and their duration was extended
from the start time of the first component to the end time of the
last component. Rodenbeck et al. [3] proposed that the length of
0.5 seconds is the minimum required length of a sleep spindle [3],
therefore, if the duration of a sleep spindle identified by the random
forest algorithm was less than 0.5 seconds it was relabelled as a non-
sleep spindle event. After this initial post-processing step, the number
of sleep spindles in the EEG recordings, and the start, end times and
duration of each estimated sleep spindle event were estimated.

H. Performance evaluation
Sleep spindle number estimation: Sleep spindle number estima-

tion: The sensitivity (Sens), specificity (Spec) and precision (Prec)
of Spindle-AI in estimating the number of sleep spindle events was
evaluated. Matthews correlation coefficient (MCC) was used as an
additional evaluation metric due to the imbalanced nature of the
dataset. The evaluation metrics were estimated as follows:

Sens =
TP

TP + FN
× 100% (8)

Spec =
TN

TN + FP
× 100% (9)

Prec =
TP

TP + FP
× 100% (10)

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(11)

where:
• True Positive (TP): Annotated by experts as a sleep spindle and

predicted as a sleep spindle
• True Negative (TN): Not annotated by experts as a sleep spindle

and not predict as a sleep spindle
• False Negative (FN): Annotated by experts as a sleep spindle

and not predict as a sleep spindle
• False Positive (FP): Not annotated by experts as a sleep spindle

and predicted as a sleep spindle

Fig. 3. Evaluation metrics used for: (a) sleep spindle number estima-
tion; and (b) sleep spindle duration estimation.

Sleep spindle duration estimation: Sleep spindle duration es-
timation: The duration of sleep spindles estimated by Spindle-AI
in the EEG recording was evaluated using the percent error on
individual infant EEG. In addition, true negative rate (TNR), recall
and Intersection over Union (IoU) were also used to evaluate the
performance of duration estimation [18], [20], [21] as follows, Figure
3:

Percent error =
|DE −DM |

DE
× 100% (12)

Recall =
T3

T2 + T3
× 100% (13)

TNR =
T1

T1 + T4
× 100% (14)

IoU =
T3

T2 + T3 + T4
(15)

where DE is the duration of the sleep spindles identified by expert
readers, DM is the duration of the sleep spindle estimated by Spindle-
AI. T1 is the duration of the period between non-sleep spindle events
labelled as non-sleep spindle event by both the expert reader and
Spindle-AI, T2 is the duration of the period labelled as a sleep spindle
event by the expert reader but labelled as a non-sleep spindle event
by Spindle-AI, T3 is the duration of the period between sleep spindle
events labelled as sleep spindle event by both the expert reader and
Spindle-AI, T4 is the duration of the period labelled as a non-spindle
event by the expert reader but labelled as a sleep spindle event by
Spindle-AI.

III. RESULTS

A. Feature Selection
In this study, the 25 top ranking features estimated by the random

forest feature selection algorithm were chosen. In addition, Pearson’s
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correlation coefficient (corr) [42] between all pairs of features was
measured to identify highly correlated pairs of features (absolute
value of corr greater than 0.80). The pairs of features that were found
to be highly correlated are presented in Table III. Therefore, signal
envelope, max-min difference, symmetry, mobility, and number of
peaks were removed. We further reduced the remaining 20 features by
removing them individually, and reevaluating the performance of the
random forest using MCC [43] on the validation set. An additional six
features were removed (TKEO amplitude, variance, skewness, beta
power, complexity, and fractal dimension) as removing them caused
a drop in MCC < 0.0001, leaving a total of 14 features:

1) The mean absolute amplitude;
2) Root mean squared value;
3) Mean frequency;
4) Sigma index;
5) Alpha band ratio;
6) Sleep spindle band ratio;
7) Mean absolute amplitude in sigma band;
8) Mean value of the envelope in sigma band;
9) Relative power in sigma band;

10) Absolute power in sigma band;
11) Mean absolute amplitudes in sleep spindle band;
12) Mean value of the envelope in sleep spindle band;
13) Relative power in sleep spindle band;
14) Absolute power in sleep spindle band;

TABLE III
HIGHLY CORRELATED FEATURES.

Feature 1 Feature 2 Corr
Root mean square Signal envelope 0.97
Variance Max-min difference 0.85
Mean absolute amplitude Symmetry 0.98
Mean frequency Mobility 0.87
Fractal dimension Number of peaks -0.98
Corr: Pearson’s correlation coefficient

Fig. 4. A random forest feature importance plot of the selected features
in the training dataset. Feature importance ranks the features by their
contribution to the prediction of the sleep spindle events.

B. Estimation of the number of sleep spindles

Table IV summarizes the performance of the Spindle-AI method
at estimating the number of R-Spindles and L-Spindles in the ex-
term dataset. For the ex-term test set in channel F4-C4, 3,979 of
the 4,263 R-spindle annotated by experts were correctly identified by
Spindle-AI with 93.3% sensitivity, 91.5% specificity and precision of
90.1% (Table IV). We also evaluated the performance of the method

on channel F3-C3 (L-Spindle) of the test set, which was not used
for training. Experts labelled 4,268 L-spindles in the 30 ex-term
infants. 4,491 L-spindles were predicted by the method, 4,006 of
these were in agreement with the expert annotations, giving a 93.9%
sensitivity, 90.7% specificity and 89.2% precision. Additionally, the
test set yielded an MCC of 0.843 - 0.846 on the ex-term infant EEG
demonstrating that the method performs well at identifying both the
negative (non-sleep spindle) and the positive (sleep spindle) events.
Table VI presents a comparison of the sensitivity, specificity and
precision of Spindle-AI with recent studies on sleep spindle number
estimation in EEG recordings. Figure 5 presents the sleep spindle
detection criteria.

C. Estimation of sleep spindle duration

Table V summarizes the performance of Spindle-AI at estimating
the duration of sleep spindles in the training set, validation set and
test set for ex-term infant EEG recordings. The mean duration of each
sleep spindle labelled by experts in the test set was 3.16s (± 0.57s)
on channel F4-C4 and 3.04s (± 0.59s) on channel F3-C3. Compared
with the expert annotation, Spindle-AI estimated the mean duration
of sleep spindles as 3.28s (± 0.61s) and 3.22s (± 0.64s) on channel
F4-C4 and F3-C3, respectively. Spindle-AI yielded a percent error of
5.7% (channel F4-C4) and 7.4% (channel F3-C3) in the test set. Table
VII presents the results of the Spindle-AI method compared with
those of recent studies on sleep spindle duration estimation in EEG
recordings. The results for estimating the duration of sleep spindles
by Spindle-AI on the test set show high recall (89.7%) and TNR
(97.8%) in channel F4-C4 (R-spindle). Spindle-AI also performed
well on channel F3-C3 (L-Spindle) of the ex-term infants in the test
set, which were not used in training (90.5% recall and 97.3% TNR).
The results show that Spindle-AI can generalize to both channels of
F4-C4 and F3-C3 in ex-term born infants.

D. Implementation

Spindle-AI has been implemented as a web server and is freely
available for academic use at http://lisda.ucd.ie/Spindle-AI/. The user
can choose the sample frequency of their data and submit a CSV file
that contains a single-channel EEG signal. Spindle-AI will predict if
an event is a sleep spindle events and then return the start time and
end time of each predicted sleep spindle event. Additionally, Spindle-
AI returns the total number of sleep spindle events detected in the
EEG.

IV. DISCUSSION

In this study, we present a random forest-based sleep spindle
detection method, Spindle-AI, to estimate the number and duration of
sleep spindles in infant EEG. The random forest algorithm can return
a measure of feature importance, which is essential to understand the
decision making of the algorithm. However, some artefacts of EEG
mask the sleep spindle trace, which may increase the FP events (not
annotated by experts as a sleep spindle, but predicted as a sleep
spindle, see Figure 5C). Therefore, we combined the random forest
algorithm with sleep spindle detection criteria to develop the final
Spindle-AI method (Fig. 5D).

According to the performance on the validation set, we selected
the 14 features that gave the best performance on the validation set to
develop the Spindle-AI method. As can be seen from Figure 5E, sleep
spindle events are characterized by an increase in signal power in the
frequency range between 10 Hz and 15 Hz, and at frequencies around
30 Hz when compared with non-sleep spindle events. Consequently,
the sigma index is important for distinguishing between the sleep
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TABLE IV
PERFORMANCE OF SLEEP SPINDLE NUMBER ESTIMATION BY SPINDLE-AI ON THE TRAINING, VALIDATION, AND TEST SETS.

Dataset Actual Automatic TP FN FP TN Sens (%) Spec(%) Prec (%) MCC

R-SS
Training set (n=81) 13,463 13,499 12,257 1,206 1,242 14,422 91.0 92.1 90.8 0.831
Validation set (n=30) 4,304 4,640 4,050 254 590 4,982 94.1 89.4 87.3 0.830
Test set (n=30) 4,263 4,418 3,979 284 439 4,736 93.3 91.5 90.1 0.846

L-SS Test set (n=30) 4,268 4,491 4,006 262 485 4,726 93.9 90.7 89.2 0.843
R-SS: Channel F4-C4/R-Spindle; L-SS: Channel F3-C3/L-Spindle; Actual: The sleep spindles annotated by experts; Automatic: The sleep spindles predicted

by Spindle-AI.

Fig. 5. Sleep spindle detection criteria: (A) original EEG signal (the signal in the red window indicates the presence of a sleep spindle event);
(B) Sleep spindles annotated by experts; (C) Sleep spindles identified by the random forest algorithm (before application of the sleep spindle
detection criteria); (D) Sleep spindles estimated by Spindle-AI; (E) Spectrogram of original EEG signal (the signal in yellow and red blocks around
the frequency of 13 Hz indicate the presence of sleep spindle events).

TABLE V
PERFORMANCE OF SLEEP SPINDLE DURATION ESTIMATION BY SPINDLE-AI ON THE TRAINING, VALIDATION, AND TEST SETS.

Dataset Mean act dur (± std) (s) Mean est dur (± std) Mean of error (± std) (s) Percent error (± std) (%)

R-SS
Traing set (N=81) 3.08 (± 0.60) 3.20 (± 0.60) 0.19 (± 0.13) 6.2 (± 4.3)
Validation set (N=30) 3.07 (± 0.52) 3.21 (± 0.53) 0.22 (± 0.16) 7.4 (± 5.6)
Test set (N=30) 3.16 (± 0.57) 3.28 (± 0.61) 0.18 (± 0.13) 5.7 (± 4.0)

L-SS Ex-term (N=30) 3.04 (± 0.59) 3.22 (± 0.64) 0.22 (± 0.15) 7.4 (± 5.2)
R-SS: Channel F4-C4/R-Spindle; L-SS: Channel F3-C3/L-Spindle; Act dur: actual sleep spindle duration annotated by experts; Est dur: estimated sleep

spindle duration by Spindle-AI.
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TABLE VI
PREVIOUS WORK ON SLEEP SPINDLE NUMBER ESTIMATION.

Ref Subjects N SS Sens
(%)

Spec
(%)

Prec
(%)

[16] Adults 10 164 98.9 88.5 -
[49] Adults 110 - 68.0 - 74.0
[19] Adults 6 159 70.2 98.6 -
[15] Adults 2 3,335 79.0 - -
[17] Adults - 175 95.4 - -
[50] Adults 9 725 81.2 81.2 -
[51] Adults 6 575 78.4 88.6 -
[52] Adults 12 95 - 93.9 -
[35] Adults 12 6,043 70.0 98.6 -
[53] Adults 12 2,140 92.9 - -
[54] Adults 20 27,923 74.1 -
[31] Adults 8 355 53.0 96.0 37.0
[31] Adults 19 11,207 77.0 96.0 46.0
[18] Adults 1 - 87.5 97.3 -
[55] Adults 2 1,089 96.5 98.1 -
[56] Adults 8 3,875 96.0 92.9 -
[48] Children 56 40,412 88.2 89.7 -
[23] Infants 1 - 62.9 - 89.7
[22] Infants 2 803 87.7 - 91.9
Tra Ex-term (R-SS) 81 13,463 91.0 92.1 90.8
Val Ex-term (R-SS) 30 4,304 94.1 89.4 87.3
Test Ex-term (R-SS) 30 4,263 93.3 91.5 90.1
Test Ex-term (L-SS) 30 4,268 93.9 90.7 89.2

N: Number of subjects; SS: Number of sleep spindles; R-SS: Channel
F4-C4/R-Spindle and L-SS: Channel F3-C3/L-Spindle; Tra: Training set;

Val: Validation set; Test: Test set;

TABLE VII
PREVIOUS WORK ON SLEEP SPINDLE DURATION ESTIMATION.

Ref Subjects N Recall(%) TNR(%) IoU
[57] Adults 19 90.1 96.2 -
[57] Adults 8 77.9 94.2 -
[21] Adults 19 84.0 90.0 -
[21] Adults 8 76.0 92.0 -
[20] Adults 15 71.2 96.7 -
[18] Adult 1 - - 0.37
Tra Ex-term (R-SS) 81 88.2 97.6 0.75
Val Ex-term (R-SS) 30 90.2 97.6 0.74
Test Ex-term (R-SS) 30 89.7 97.8 0.77
Test Ex-term (L-SS) 30 90.5 97.3 0.75

N: Number of subjects; R-SS: Channel F4-C4/R-Spindle and L-SS: Channel
F3-C3/L-Spindle; Tra: Training set; Val: Validation set; Test: Test set;

spindle and non-sleep spindle waves and was identified as the highest
ranking feature by the random forest algorithm (Figure 4).

The difference in datasets and means of evaluating performance
make a direct comparison with other published sleep methods
difficult. As discussed, sleep spindles change dramatically during
maturation, and although there is no study directly comparing sleep
spindles of infants at the 4 month mark with adults, there is vast
literature exploring the maturation trajectories in several sleep spindle
features (see for example [4], [9]–[13], [53], [58]). Due to the
constant evolution of sleep spindles which may lead to significant
differences with adult sleep spindles, we believe that there is a need
for an infant-specific sleep spindle algorithm (See Appendix B).

Previous studies on infant data [22], [23] have tested methods on
data from just 1 or 2 infants, with sensitivity of 62.9% to 87.7%.
There are few published methods for estimating EEG sleep spindle
number in infants, we therefore also compared the Spindle-AI method
with sleep spindle number estimation methods reported for adult EEG
[15]–[19], [31], [35], [49]–[56] (shown in Table VI). For the Spindle-
AI method combining successive sleep spindle events separated by
less than 1 second into a single spindle event avoided dividing spindle
events across different epochs which may occur as with previously
presented methods [16], [20], [22], [23], [49]. Moreover, these studies
defined that if only part of the epoch contained sleep spindles, then

this epoch will be labelled as a sleep spindle event. The work of [16],
[20] and [55] used larger duration epochs (3s, 5s and 5s, respectively),
if a sleep spindle and non-sleep spindle event present in the same
epoch, these approaches may take both occurrences as one sleep
spindle event. Therefore, they estimated the number of epochs which
contain sleep spindles, rather than ‘real’ number of sleep spindles.
Moreover, the duration of each sleep spindle and the specific time of
occurrence of the sleep spindle events cannot be accurately expressed
by these methods. In our study, we divided the EEG signal into small
epochs, 0.5s with 0.25s overlap, reduced the problem of two sleep
spindles occurring in one epoch.

A method based on the continuous wavelet transform [21] has
previously been developed to identify the duration of sleep spindles
in two adult EEG datasets: the MASS database [59] comprising
19 healthy controls and the DREAMS sleep spindle database [19]
comprising 8 participants diagnosed with various sleep pathologies.
They obtained recall of 84.0% and TNR of 90.0% on the MASS
dataset and recall and TNR at 76.0% and 92.0%, respectively, on
the DREAMS dataset. A deep learning-based method, SpindleNet,
developed in [57] also estimated the duration of sleep spindle in
the Mass and DREAMS datasets. SpindleNet yielded a recall of
90.1% and TNR of 96.2% on the MASS dataset. For the DREAMS
dataset, SpindleNet obtained recall and TNR of 77.9% and 94.2%,
respectively. Additionally, the random forest-based method described
in [20], used an independent test data (N=12) to test the performance
of the sleep spindle duration estimation. Their method has a TNR
with 96.7% and with a recall of 71.2% for sleep spindle duration
estimation in adult EEG. These methods were developed and tested
on a smaller data (EEG data for 1-19 adult individuals, see Table
VII). Moreover, these methods only estimated the duration of sleep
spindles, and the number of the sleep spindles is not given. The
Spindle-AI method estimate the number of sleep spindles, but also
give the duration of sleep spindles on larger EEG data (N=141). The
work of Ventouras et al. [18] estimates both the number and duration
of sleep spindles by feed-forward networks in adult EEG. The number
of sleep spindles was estimated with sensitivity from 79.2% to 87.5%.
For the duration estimation, an inter-spindle interval (ISI) was defined
as the time difference between the onset of two consecutive sleep
spindles evaluated as (4ts+ 4te)/tV. This is the same matrix as the
IoU that we used to evaluate Spindle-AI. Ventouras et al. obtained a
mean IoU of 0.37 (±0.31). However, this method was developed and
tested using EEG data from only 1 adult. Individual differences may
lead to differences in results, and whether this method is applicable
to other EEG data is not clear.

The Spindle-AI method was developed on single-channel (F4-
C4) EEG recordings of 111 infants (81 for training and 30 for
validation), and tested on another 30 ex-term infants in channel F4-
C4. As different sleep studies may analyse sleep spindle events on
different channels [22], we explored if Spindle-AI can generalise to
different channels, in this case from channel F4-C4 to channel F3-C3.
Therefore, we include the signal in channel F3-C3 as an additional
independent test set. There are a number of potential differences
between R-Spindle (F4-C4) and L-Spindle (F3-C3) including that
it is normal in this age group that R-Spindles and L-Spindles occur
more independently or asynchronously [5]. Bódizs et al. [61] found
that the duration, amplitude and density magnitudes differ between
hemispheres (R-Spindle and L-Spindle) in a predominantly adult
study. However, these differences were observed in an older age
group compared to the cohort in this study. Our results show that in
spite of these potential differences between R-Spindle and L-Spindle,
Spindle-AI can generalize to EEG data from a channel that was not
used in training (Tables IV and V).

Using the Spindle-AI method, large volumes of data can be quickly
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reviewed potentially enabling trends and patterns to be identified
in infant EEG recordings that may not be apparent otherwise. In a
clinical setting, once a range of normative values for spindle features
has been established across age groups, automated spindle analysis
has potential as an assessment tool for brain maturation in ‘at risk’ in-
dividuals. As one element of sleep, spindles are considered part of the
‘microstructure’ of sleep. Sleep spindles are markers of maturation
and may reflect neurologic pathologies/non-normative maturation that
share the same neurobiological subtract [60]. Sleep spindle detection
is also essential for the precise labeling of sleep stage N2 [4].
Therefore, the study of sleep spindles provides support for clinical
interpretation and early identification of abnormal brain maturation
in infants. An automated spindle detector might also constitute an
important part of a broader automated algorithm to characterise and
differentiate the various sub-stages of sleep, permitting analysis of the
so called ‘macrostructural’ elements of sleep for the same purpose.
As spindle features have also been shown to change in the short term
following various learning tasks, accurate automated spindle detection
would also progress research in cognitive function.

A limitation of the current study is the range of ages of the infants.
Spindle-AI was trained on ex-term infant EEGs without testing on
infants of other ages. In future work, we would like to apply Spindle-
AI on other infant EEG data. Moreover, as machine learning is
a ‘black box’ method, clinicians may have difficulty trusting the
machine learning-based methods. In future work, we will combine
Spindle-AI with explainable AI (XAI) [62] techniques to help users
understand why certain events are predicted as a sleep spindle, which
may help gain users’ trust in the system and assist experts in analysing
infant sleep spindles.

V. CONCLUSION

Spindle-AI has been developed for use on ex-term infant EEGs
with the aim of assisting clinicians in the estimation of both the
number and the duration of sleep spindles. We implemented a random
forest-based sleep spindle detection method which incorporates novel
post-processing and evaluation techniques. The dataset used to train
and test Spindle-AI is substantially larger than datasets used in
previous studies to identify sleep spindles in infant EEGs. In addition,
Spindle-AI has been implemented as a web server and is freely
available for academic use at http://lisda.ucd.ie/Spindle-AI/. The web
server predicts the start time, end time and the total number of
sleep spindles detected in long EEG recordings, allowing for fast
and accurate analysis of infant sleep spindles in single-channel EEGs
which may act an early biomarker for abnormal brain maturation.

APPENDIX

A. Preliminary analysis

TABLE VIII
PRELIMINARY ANALYSIS (WITHOUT POST-PROCESSING) OF THE

PERFORMANCE OF THE RANDOM FOREST ALGORITHM FOR SLEEP

SPINDLE DURATION COMPARED TO MULTILAYER PERCEPTRON, NAIVE

BAYES AND EXTREME GRADIENT BOOSTING ON THE VALIDATION SET.

Method Recall (%) TPR (%) MCC
NB 95.2 73.6 0.440
MLP 90.7 93.2 0.703
XGboost 91.2 95.5 0.770
RF 91.3 95.7 0.779

NB: Naive bayes; MLP: Multilayer Perceptron; XGboost: eXtreme Gradient
Boosting; RF: Random forest;

B. Replication of adult sleep spindle detection method on infant
EEGs

Due to the constant evolution of sleep spindles that may lead to
significant differences between infant and adult sleep spindles, adult
sleep spindle detection methods may not be suitable for infant sleep
spindle detection. To explore this, we applied the adult sleep spindle
detection method presented by Ventouras et al. [18] on infant EEG
data (preliminary work, results not shown), as this work estimated
both the number and duration of sleep spindles similar to the method
presented here. Ventouras et al. used a feed-forward artificial neural
network on adult EEG, signals with a frequency range of 10.5 - 16
Hz were used as input to the network. The number of sleep spindles
was estimated with sensitivity from 79.2% to 87.5% in adult EEG
data [18]. For the sleep spindle duration estimation on adult EEG,
Ventouras et al. obtained a mean IoU of 0.37 (±0.31). We trained
and tested this method on the infant EEG training and testing datasets
used in the present study. When applying this method to the infant
EEG data, we obtained sensitivity of 53.8% and specificity of 47.8%
on the independent test set in channel F4-C4. For duration estimation,
this method obtained IoU of 0.069. The poor performance of the
adult sleep spindle detection method on the infant data likely reflects
smaller differences between the amplitude of infant sleep spindle and
non-sleep spindle activity in the 10.5 - 16 Hz sleep spindle band when
compared with adult EEG. While a range of EEG features based upon
the sleep spindle and sigma band activity ranked highly among those
selected for the random forest algorithm, additional features including
the mean frequency, RMS and mean absolute amplitude and alpha
band activity were also included in the model (Figure 4). The results
highlight the need for an infant-specific sleep spindle algorithm.
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[60] L. M.J. Fernandez and A. Lüthi , “Sleep spindles: mechanisms and
functions,” Physiological Reviews, vol. 100, no. 2, 2020.
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