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Introduction

The spindle assembly checkpoint (SAC) is critical for prevent-

ing the onset of anaphase until all chromosomes are aligned on 

the metaphase plate. A single misaligned kinetochore is suffi -

cient to generate a wait anaphase signal, thereby ensuring that 

all sister chromatids segregate to opposite ends of the spindle 

and are equally distributed to the daughter cells. Failure of the 

SAC can lead to premature anaphase onset and aneuploidy (Liu 

et al., 2003; Kops et al., 2005b; for review see Kadura and Sazer, 

2005). Such defects can have consequences for a whole organ-

ism, as mice that lack a full complement of SAC genes have 

more frequent DNA segregation errors and are more susceptible 

to tumor development (Baker et al., 2005).

The presence of the SAC was initially inferred from obser-

vations that cells delay in metaphase when meiotic sex chromo-

somes fail to pair and align or after the spindle is perturbed by 

either microtubule poisons or microsurgery. Molecules respon-

sible for the SAC were later identifi ed in yeast genetic screens 

and named Mad1, -2, and -3 (Mad for mitotic arrest defi cient) 

and Bub1, -2, and -3 (Bub for budding unperturbed by benzimid-

azole). Subsequent work showed that these proteins together 

with the MPS1 kinase form distinct complexes that target to the 

kinetochore (for reviews see Lew and Burke, 2003; Kadura and 

Sazer, 2005; Malmanche et al., 2006; Musacchio and Salmon, 

2007). Two additional metazoan checkpoint proteins, Zw10 and 

Rough Deal (Rod), were later isolated as cell cycle mutants in 

Drosophila melanogaster. These two proteins, together with a 

third protein called Zwilch, form a complex (Rod–Zw10–Zwilch 

complex [RZZ]) that regulates the levels of Mad1 and Mad2 on 

the kinetochore (for review see Karess, 2005).

Ultimately, the SAC pathway must lead to inhibition of the 

anaphase-promoting complex (APC), a multisubunit ubiquitin 

E3 ligase that targets multiple mitotic regulators (e.g., mitotic 

cyclins as well as the securin protein that inhibits the cleavage of 

cohesin molecules) for proteosome degradation to allow mitotic 

exit (Acquaviva and Pines, 2006). Several studies have shown 

that localization of the checkpoint proteins to misaligned kineto-

chores is essential for establishing the SAC and keeping the 

APC inhibited, most likely by generating a diffusible signal that 

inhibits the APC (Taylor et al., 2004; Pinsky and Biggins, 2005; 

for review see Musacchio and Salmon, 2007). The nature of the 
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diffusible signal is still subject to debate. However, a current 

model suggests that the kinetochore-bound Mad1–Mad2 com-

plex acts as a template that coverts the free, inactive Mad2 to an 

active form that can diffuse away from the kinetochore and bind 

to and sequester Cdc20, a regulatory component of the APC (for 

review see Musacchio and Salmon, 2007).

The capture of microtubules by the kinetochore and the 

downstream activity of two different microtubule motors are re-

quired for silencing the SAC in metazoans. One of these motors is 

the kinesin centromere protein (CENP) E, which may act as a ten-

sion sensor that, when stretched, inactivates the BubR1-dependent 

inhibition of Cdc20 (Chan et al., 1999; Mao et al., 2005). The 

second motor is dynein, which transports Mad1, Mad2, and 

RZZ from the kinetochore to the spindle pole (Howell et al., 

2001; Wojcik et al., 2001). Dynein-based removal of Mad1 and 

Mad2 from the kinetochore may disrupt the template mechanism 

that generates the active Mad2 that inhibits the APC (De Antoni 

et al., 2005; for review see Musacchio and Salmon, 2007). After 

inhibition or depletion of dynein or its cofactors, metazoan cells 

arrest in metaphase with correctly aligned chromosomes and high 

levels of kinetochore-bound Mad1, Mad2, and RZZ.

Resolving the mechanism of dynein recruitment to kineto-

chores is important for understanding how kinetochore–

microtubule binding ultimately leads to inactivation of the SAC. 

Currently, it is thought that dynein is brought to the kinetochore 

by binding directly to dynactin (a multisubunit complex re-

quired for multiple dynein functions; Schroer, 2004), which, in 

turn, binds to the Zw10 subunit of the RZZ complex (Starr et al., 

1998). Lis1, another dynein cofactor, also has been proposed to 

play a role in targeting dynein to kinetochores (Dzhindzhev 

et al., 2005). Dynactin, Lis1, and Zw10 are not kinetochore-

specifi c factors, as they are involved in targeting dynein to mul-

tiple other locations in the cell (Cockell et al., 2004; Hirose 

et al., 2004). It has not been clearly established whether dynac-

tin and Lis1 are suffi cient for targeting dynein to kinetochores 

or whether other proteins might be involved.

To fi nd new proteins that might participate in the SAC, we 

undertook an automated 7,200 gene mitotic index RNAi screen 

in S2 cells. This screen uncovered a novel gene, which we also 

identifi ed in an independent screen of genes involved in S2 cell 

spreading and morphology. We show that this protein (termed 

Spindly) localizes to microtubule plus ends in interphase and to 

kinetochores during mitosis. Cells depleted of Spindly arrest in 

metaphase with high levels of Mad2 and Rod on aligned kineto-

chores, a defect caused by a failure to recruit dynein to the 

kinetochore. However, Spindly is not required for other dynein 

functions during interphase and mitosis. We also identify a hu-

man homologue of Spindly, which is similarly involved in re-

cruiting dynein to kinetochores. Thus, our results have uncovered 

a novel conserved dynein regulator that is involved specifi cally 

in dynein’s function in silencing the SAC.

Results

Identifi cation of Spindly in two 

RNAi screens

Using a double-stranded RNA (dsRNA) library corresponding 

to �7,200 Drosophila genes (Echard et al., 2004), we performed 

two screens using Drosophila S2 cells (Fig. 1, b–d). The fi rst 

screen measured mitotic index (the percentage of phospho-

histone H3–positive cells in a population; see Materials and 

methods). In the second screen, the shape of S2 cells (spread on 

concanavalin A [Con A]–coated surfaces; Rogers et al., 2003) 

was evaluated by visual inspection.

RNAi of one novel gene, CG15415, produced strong pheno-

types in both screens. CG15415 is a novel uncharacterized 

Drosophila gene encoding a 780–amino acid protein with pre-

dicted N-terminal coiled-coil sequences and four repeats with 

the consensus sequence T P X K P Q X K G T P V K  (Fig. 1 a). In the 

interphase screen, many of the CG15415-depleted cells showed 

spiky and elongated microtubule-rich projections in contrast to 

the rounded shape of normal spread S2 cells (Fig. 1, b and c). In 

the mitotic index screen, the depletion of CG15415 caused an 

increase in mitotic index that was comparable with that observed 

Figure 1. RNAi of Spindly alters cell morphology and causes mitotic 
arrest in Drosophila S2 cells. (a) Domains of the Spindly protein showing pre-
dicted coiled-coil sequences in red and repeated motifs in blue; sequence 
alignment of residues in the repeat motifs is shown below. The locations of 
two nonoverlapping dsRNAs used to deplete Spindly are shown in green. 
A third dsRNA to the 3′ UTR was also used (not depicted). (b and c) Wild-
type (wt) S2 cells show a uniformly spread morphology (b), whereas Spin-
dly RNAi-treated cells (c) show marked defects in the actin lamellae as well 
as increased numbers of cells with long microtubule-rich projections. Actin, 
red; microtubules, green; DNA, blue. (d) The mitotic index of S2 cells is 
increased after the depletion of Spindly, dynein heavy chain (DHC), or a 
subunit of the APC (Cdc16; mean ± SEM [error bars]; n = 3 experiments, 
with 1,000–3,000 cells counted per experiment). Values are expressed as 
a ratio of RNAi-treated to untreated cells (untreated cells have a mitotic 
index of 1–3%). (e) The ratio of metaphase to anaphase cells (scored manu-
ally after staining with anti-tubulin and antiphosphohistone antibodies; see 
Materials and methods) reveals a selective increase in metaphase cells af-
ter Spindly and DHC RNAi (mean ± SEM; n = 2 experiments, with >200 
mitotic spindles scored per experiment). (d and e) The expression of GFP-
tagged Spindly can rescue the mitotic phenotype after endogenous Spindly 
is depleted using a dsRNA that targets the Spindly 3′ UTR. Bars, 10 μm.
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for RNAi of the dynein heavy chain (DHC) and the APC sub-

unit Cdc16 (Fig. 1 d). The majority of the mitotic CG15415-

depleted cells were arrested in metaphase, which is also similar 

to DHC depletion (Fig. 1 e). This result was confi rmed in live cells 

expressing GFP-tubulin, in which CG15415-depleted cells failed 

to enter anaphase within 4 h after nuclear envelope breakdown. 

In contrast, untreated cells initiated anaphase within 20–85 min 

of nuclear envelope breakdown (unpublished data). Because the 

depletion of CG15415 produced spindle-shaped interphase cell 

morphology and arrested cells with metaphase spindles, we refer 

to this protein as Spindly.

The specifi city of the Spindly phenotypes was confi rmed 

using three nonoverlapping dsRNAs: two in the coding region 

and one dsRNA that targets the 3′ untranslated region (UTR; Fig. 

1 a). Using an antibody generated against Spindly’s C-terminal 

357 amino acids, we confi rmed that the three dsRNAs effectively 

depleted the protein after 5 d (Fig. S1 a, available at http://www

.jcb.org/cgi/content/full/jcb.200702062/DC1). As further confi r-

mation of the specifi city of the Spindly RNAi phenotype, we 

found that expression of a GFP-Spindly fusion protein could 

rescue the metaphase block after the endogenous protein was 

depleted with the 3′ UTR dsRNA. This result also indicates that 

Spindly retains its function after fusion to GFP, enabling the 

localization studies described in the next section.

GFP-Spindly targets to microtubule 

plus ends in interphase and to kinetochores 

in mitosis

To learn more about Spindly’s function, we examined the lo-

calization and dynamics of GFP-tagged Spindly. In live cells 

expressing low levels of GFP-Spindly, the protein was concen-

trated in punctae that continually moved to the periphery of the 

cell, which is behavior typical of microtubule plus end–binding 

proteins (Video 1, available at http://www.jcb.org/cgi/content/

full/jcb.200702062/DC1). Fixation and staining of cells 

 expressing low levels of GFP-Spindly with an antibody to EB1 

(a well-established plus end–binding protein) confi rmed this 

localization, although the plus end enrichment was less pro-

nounced than that displayed by EB1 (Fig. 2 a). At higher levels 

of GFP-Spindly expression, the protein began to decorate along 

the length of the microtubule and to localize to the lamella 

(unpublished data).

After cells entered mitosis, GFP-Spindly was no longer lo-

calized to microtubule tips but instead was found on kinetochores. 

In prometaphase cells, GFP-Spindly was found on most kineto-

chores, a localization confi rmed by colocalization with anti-

Cid antibodies, which recognize the Drosophila homologue 

of CENP-A. However, in metaphase cells, the levels of GFP-

Spindly were reduced considerably on the kinetochores of aligned 

chromosomes, and the protein was more evident on the mitotic 

spindle, especially at spindle poles (Fig. 2 b). During anaphase, 

GFP-Spindly was seen once again at high levels on kinetochores, 

but, after the nuclear envelope reformed in telophase, the protein 

was excluded from the nucleus. Time-lapse microscopy revealed 

that high initial levels of GFP-Spindly on misaligned chromo-

somes decreased as these chromosomes were pulled toward 

the metaphase plate (Fig. 2 c and Videos 2 and 3, avail able 

at http://www.jcb.org/cgi/content/full/jcb.200702062/DC1). 

A similar distribution of endogenous Spindly in mitosis was 

confi rmed using an affi nity-purifi ed antibody in cells express-

ing the Drosophila homologue of the kinetochore protein Mis12 

(CG18156) fused to GFP (Fig. S1). The transient targeting 

of Spindly to kinetochores is very similar to what has been re-

ported for the mitotic checkpoint proteins Rod and Mad2 (Chen 

et al., 1996; Scaerou et al., 1999). This dynamic kinetochore lo-

calization together with the data from our mitotic index screen 

led us to focus our efforts on understanding Spindly’s role 

during mitosis.

Spindly is shed from the kinetochore 

in a dynein-dependent manner and requires 

Rod to target to the kinetochore

Components of the RZZ complex as well as Mad2 accumulate on 

kinetochores in prometaphase and are shed from metaphase 

 kinetochores by dynein-dependent transport along kinetochore 

microtubules (Howell et al., 2001; Wojcik et al., 2001). Using faster 

acquisition live cell imaging, we similarly observed punctae of 

GFP-Spindly moving processively from metaphase-aligned kineto-

chores toward the spindle poles (Fig. 3 a and Video 4, available 

at http://www.jcb.org/cgi/content/full/jcb.200702062/DC1). 

Kymograph analysis revealed that GFP-Spindly moved poleward 

at a mean velocity of �12 μm/min (Figs. 3 b and S2), which is 

similar to rates reported for the dynein-mediated transport of 

Figure 2. Spindly binds to microtubule plus ends in interphase and to 
 kinetochores in mitosis. (a) GFP-Spindly–expressing cells were fi xed with 
methanol-formaldehyde and stained with anti-EB1 and anti-tubulin anti-
bodies. The insets (magnifi ed image of boxed area) show GFP-Spindly and 
anti-EB1 antibodies colocalized on the tips of microtubules. (b) Stably 
 expressed GFP-Spindly (green) localizes to kinetochores (marked by the 
CENP-A homologue Cid; red) but substantially enriches on kinetochores 
that have not yet aligned on the metaphase plate (compare top kineto-
chores [aligned kinetochores] with bottom kinetochores [unaligned kineto-
chores]). (c) A time-lapse sequence of a GFP-Spindly–expressing cell 
starting in prometaphase. The arrows show an unaligned chromosome that is 
captured by microtubules from the opposite pole and then dragged to the 
metaphase plate. As this chromosome reaches the metaphase plate, the kine-
tochore levels of GFP-Spindly decrease until they reach the levels of the 
aligned chromosomes (the minutes and seconds elapsed are shown at the 
bottom). The video (Video 2) is available at http://www.jcb.org/cgi/
content/full/jcb.200702062/DC1. Bars (a and b), 10 μm; (c) 5 μm.
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RZZ and Mad2 in Drosophila (Wojcik et al., 2001; Basto et al., 

2004). However, not all GFP-Spindly particles moved uniformly; 

some paused or made short reversals toward the kinetochore 

before continuing toward the spindle pole (Video 4), which is 

behavior similar to that described for dynein–dynactin complexes 

in vitro (Ross et al., 2006).

To establish whether dynein is indeed the motor respon-

sible for the poleward transport of Spindly, we examined GFP-

Spindly after RNAi-mediated depletion of the cytoplasmic DHC. 

Under these conditions, high levels of GFP-Spindly accumu-

lated on metaphase-aligned kinetochores (Fig. 3 d and Video 4), 

which is similar to what has been described for Rod and Mad2 

after the disruption of dynein (Wojcik et al., 2001; unpublished 

data). Immunofl uorescence localization of endogenous Spindly 

confi rmed this result (unpublished data). We also no longer 

observed the poleward transport of GFP-Spindly by time-lapse 

microscopy. RNAi-mediated depletion of the dynein regulatory 

proteins Lis1 and p150Glued produced similar results (Video 4 

and not depicted, respectively). These results indicate that kineto-

chore to pole movement of Spindly depends on cytoplasmic 

dynein and its activators, as is true of other known components 

of the SAC.

We next sought to determine how Spindly is targeted to the 

kinetochore. It has been previously shown that recruitment of 

dynein–dynactin to the corona region of the kinetochore depends 

on the RZZ complex, which, in turn, links through Zwint-1 to the 

Ndc80 and Mis12 complexes of the kinetochore (Starr et al., 

1998; Obuse et al., 2004; Kops et al., 2005a). The depletion of 

any of the three RZZ polypeptides destabilizes the whole com-

plex and prevents the recruitment of Mad2 and dynein–dynactin 

(Scaerou et al., 1999, 2001; Buffi n et al., 2005). When Rod was 

depleted by RNAi, GFP-Spindly no longer localized to kineto-

chores or the spindle poles (Fig. 3 e and Video 4). These results 

indicate that Spindly is a part of the corona region of the kineto-

chore and requires the RZZ complex (but not dynein or dynactin, 

as discussed above) for its kinetochore localization.

Spindly-depleted cells arrest in mitosis 

with high levels of Rod and Mad2 

on aligned kinetochores

Because Spindly is required for cells to complete mitosis and 

localizes to kinetochores in a manner similar to known SAC 

proteins, we decided to investigate the role of Spindly in the 

kinetochore localization of Rod and Mad2. In prometaphase cells, 

Rod and Mad2 are more abundant on misaligned than aligned 

chromosomes and are also observed on the spindle and spindle 

poles (Fig. 4, a and d) as previously described (Chen et al., 1996; 

Williams et al., 1996). However, after Spindly RNAi, the levels of 

Rod and Mad2 were comparable on misaligned and metaphase-

aligned kinetochores, which is similar to the outcome of DHC 

RNAi (Fig. 4, b, c, e, and f). These results indicate that both dy-

nein and Spindly are required for the shedding of Rod and Mad2 

from the kinetochore. Consistent with this interpretation, the 

staining of Rod and Mad2 on the spindle (likely refl ecting the 

population of molecules undergoing transport) was severely re-

duced after Spindly and DHC RNAi (Fig. 4, b, c, e, and f). The 

retention of Rod and Mad2 on metaphase-aligned chromosomes 

explains the high mitotic index and increased number of meta-

phases seen after Spindly or DHC depletion (Fig. 2 a).

The metaphase arrest and retention of Mad2 and Rod on 

aligned chromosomes seen after Spindly depletion could be the 

result of defects in dynein-based transport or of alterations in 

kinetochore–microtubule interactions, which would keep the 

SAC activated even on seemingly aligned kinetochores. To test 

the latter possibility, we examined two parameters of the spindle 

that probe the microtubule–kinetochore interface. First, we mea-

sured the distance between paired centromeres (as marked by 

anti-Cid staining); larger distances refl ect higher micro tubule-

generated tension pulling the two sister chromatids apart. 

In colchicine-treated cells (no microtubule-generated tension), 

the distance between paired centromeres was reduced from 0.99 

to 0.66 μm. Interestingly, the depletion of Rod and Cdc27 (an 

APC subunit; Cdc27 was codepleted with Rod to prevent pre-

mature anaphase onset) caused a statistically signifi cant (P < 

0.0001) decrease in the stretch between centromeres of 35.3 ± 

6.4% (from 0.99 to 0.87 μm [±SEM]). However, the deple-

tion of Spindly and DHC only reduced stretch between paired 

Figure 3. GFP-Spindly is moved from kinetochores toward the spindle 
pole in a dynein-dependent manner. (a) By live cell microscopy, a particle 
of GFP-Spindly (arrows in the insets [magnifi ed images of the boxed area]) 
can be seen moving from the kinetochore to the centrosome. The seconds 
elapsed are shown at the bottom (see Video 4, available at http://www
.jcb.org/cgi/content/full/jcb.200702062/DC1). (b) Kymograph analysis 
was performed on the GFP-Spindly particles, and a histogram of the rates 
of 110 GFP-Spindly particles during episodes of continuous motion was 
produced (data were obtained from four separate spindles). The mean 
speed was 11.9 ± 6.9 μm/min (±SD). (c–e) GFP-Spindly in live cells was 
imaged by spinning disc confocal microscopy in untreated (c), dynein 
(DHC) RNAi-treated (d), or Rod RNAi-treated (e) cells. Dynein depletion 
caused Spindly to accumulate at high levels on aligned kinetochores, 
whereas Rod depletion blocked the recruitment of Spindly to the kineto-
chore. Bars, 5 μm.
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centromeres by 10.3 ± 5.4% and 17.9 ± 6.3% (from 0.99 to 

0.95 or 0.93 μm), respectively, and neither distance was statisti-

cally different from untreated cells.

As another measure of kinetochore function, we deter-

mined the time required to align all chromosomes at the meta-

phase plate using a cell line expressing GFP-tagged histone 

H2B and mCherry-tagged α-tubulin and automated time-lapse 

imaging (see Materials and methods). Intriguingly, the Spindly- 

and DHC-depleted cells both required 50% more time to form a 

metaphase plate compared with untreated cells (a mean of 18.5 ± 

2.3 min vs. 28.1 ± 4.9 and 28.2 ± 3.7 min [±SEM] for Spindly 

and dynein, respectively), which might be the result of a de-

fect in initial kinetochore microtubule capture (Fig. 4 h and 

Videos 5–8, available at http://www.jcb.org/cgi/content/full/

jcb.200702062/DC1). Alexander and Rieder (1991) also pro-

posed that kinetochore-associated dynein could play an impor-

tant role in making lateral attachments between chromosomes 

and microtubules before the fi nal end-on attachments observed 

at metaphase, which could explain the delay in chromosome 

alignment after DHC depletion. Consistent with our results for 

centromere tension, cells depleted of Rod and Cdc27 took con-

siderably longer (48 ± 16.9 min) to assemble a metaphase plate, 

which might refl ect a requirement for the RZZ complex to in-

cor porate multiple proteins into the outer corona of the kineto chore. 

In summary, these results suggest that Spindly-depleted cells do not 

have gross defects in kinetochores or kinetochore–microtubule 

interactions but rather have kinetochores that resemble those 

found in cells lacking dynein.

Spindly is a kinetochore-specifi c dynein 

recruitment factor

The similar Spindly and dynein RNAi phenotypes of mitotic 

 arrest, defects in Mad2 and Rod transport, and delays in forming 

a metaphase plate suggested that Spindly might somehow play 

a role in dynein function at the kinetochore. Therefore, we next 

examined whether Spindly affects the kinetochore localization 

of dynein. To more easily assay dynein localization, micro-

tubules were depolymerized with colchicine, which causes a sub-

stantial accumulation of dynein and dynactin on kinetochores 

(Fig. 5 a). Spindly RNAi resulted in a profound reduction in 

DHC staining at kinetochores compared with untreated cells 

(Fig. 5 c). Interfering with dynactin function has also been re-

ported to abolish kinetochore staining of dynein (Vallee et al., 

1995; Starr et al., 1998; Dzhindzhev et al., 2005), a fi nding that 

we repeated as well (Fig. 5 b). However, dynactin, as assayed by 

GFP-p150glued (Fig. 5 e) or with anti-p150glued antibodies (Fig. S3, 

a and c; available at http://www.jcb.org/cgi/content/full/jcb

.200702062/DC1), was still recruited to kinetochores in Spindly-

depleted cells (however, Rod RNAi displaces p150glued from 

kinetochores; Fig. 5 f). To confi rm that Spindly is required for 

dynein kinetochore localization and not the stability of the pro-

tein, immunoblot analysis was performed, which revealed that 

DHC and p150glued protein levels were unaltered by Spindly 

RNAi (Fig. 5 g). Thus, Spindly is required for dynein but not 

dynactin recruitment to kinetochores.

The aforementioned results clearly revealed an important 

role for Spindly in dynein function at the kinetochore. We next 

investigated whether Spindly participates in other dynein-mediated 

activities. In S2 cells, dynein is known to be important for 

spindle focusing, specifi cally in transporting kinetochore fi bers 

along microtubules emanating from the centrosomes. After DHC 

RNAi, the centrosomes detach and move away from the minus 

ends of the K fi bers (Fig. 5 h; Maiato et al., 2004; Goshima et al., 

2005). However, Spindly depletion did not produce the centro-

some detachment or spindle focusing defects seen in cells lacking 

Figure 4. Spindly is required for removing Rod and Mad2 from kineto-
chores. (a) Immunofl uorescence of Rod (red in this overlay) enriches on 
chromosomes (blue) that are not aligned on the metaphase plate (arrow-
heads indicate misaligned chromosomes). (b and c) In DHC and Spindly-
depleted cells, the levels of Rod are similar on aligned and unaligned 
kinetochores. (d) Similarly, Mad2 (red) is barely detectable on aligned 
kinetochores but is present throughout the spindle. (e and f) DHC (e) and 
Spindly (f) depletion causes the accumulation of Mad2 on aligned chromo-
somes (blue) and a decrease in Mad2 staining on the spindle. (g) Intercen-
tromere tension, which was measured as the distance between Cid-stained 
centromeres, was measured in untreated cells and cells treated with the in-
dicated dsRNAs or 6 μg/ml colchicine (4-h treatment; n ≥ 25 for each 
condition; error bars represent SEM; *, P < 5 × 10−5, **, P < 5 × 
10−10). (h) As a second measure of kinetochore function, the time required 
for untreated and dsRNA-treated cells to form a metaphase spindle after 
nuclear envelope breakdown (NEB) was measured from time-lapse videos 
(n ≥ 6 cells for each condition). Bars, 5 μm.



JCB • VOLUME 177 • NUMBER 6 • 2007 1010

dynein (Fig. 5 h). Additionally, after plating on Con A for 3 h, 

Spindly-depleted and untreated interphase cells generally cluster 

their endosomes (marked by GFP-Rab5) toward the cell interior, 

whereas endosomes in dynein- or dynactin-depleted cells 

tend to remain spread throughout the cell (Fig. S4, available at 

http://www.jcb.org/cgi/content/full/jcb.200702062/DC1; dynactin 

depletion data not depicted). Collectively, these experiments 

suggest that Spindly infl uences dynein function at the kinetochore 

but not everywhere throughout the cell.

Identifi cation of human Spindly

We next sought to identify Spindly homologues in other species. 

Standard BLAST (Basic Local Alignment and Search Tool) 

searches identifi ed Spindly homologues in the insects Aedes 

 aegypti and Anopheles gambiae but not in more distant species. 

Multiple Em for motif elicitation was then used to identify con-

served motifs present in all three insect homologues, and these 

motifs were used for MAST (Motif Alignment and Search Tool) 

searches to identify more distant homologues (Bailey and Elkan, 

1994; Bailey and Gribskov, 1998). A conserved 32-amino acid 

motif found in a break between predicted coiled-coil domains 

in the N terminus of all three insect proteins also was found in 

the human protein RefSeq NP_060255 (Fig. S5 a, available at 

http://www.jcb.org/cgi/content/full/jcb.200702062/DC1). The 

overall primary sequence conservation between Drosophila 

Spindly and human NP_060255 is low (14.3% identity), and the 

putative human homologue is somewhat shorter (605 vs. 780 

amino acids). However, the sequences in the 32–amino acid con-

served motif are 56% identical (75% similar), and the fi rst nine 

amino acids of this motif are 100% identical. The predicted coiled-

coil organization and charge distribution of the putative human 

homologue also is similar to Drosophila Spindly, although the 

sequences of the coiled coils are not conserved.

The function of the putative human homologue of Spin-

dly had not been previously characterized. To test whether 

NP_060255 is a bona fi de functional homologue of Drosophila 

Spindly, we examined whether depletion of the protein by 

siRNA caused mitotic defects. Transfection of a siRNA pool 

targeted to NP_060255 reduced NP_060255 protein levels by 

86% (immunoblot analysis; not depicted) and produced a two-

fold increase in the mitotic index of HeLa cells after 48 h (Fig. 

6 a). When these mitotic cells were examined, a dramatic  increase 

in the ratio of metaphase versus anaphase cells was apparent 

(Fig. 6 b), and a substantial number of these cells had mis-

aligned chromosomes (Fig. S5 b). A similar phenotype has been 

reported in HeLa cells after the depletion of either CLIP-170 or 

dynein, which targets CLIP-170 to the kinetochore (Tanenbaum 

et al., 2006). We next localized NP_060255 with a polyclonal 

antibody in HeLa cells treated with colchicine to depolymerize 

spindle microtubules. Similar to the Drosophila protein, we ob-

served punctae of NP_060255 that were coincident with CENP-A–

stained centromeres (Fig. 6 c). This staining was eliminated 

by treating cells with the siRNA oligonucleotides that target 

NP_060255 (Fig. 6 d), confi rming the localization of this protein 

at kinetochores.

 To determine whether NP_060255, like Drosophila Spin-

dly, is required to recruit dynein to the human kinetochore, we 

localized dynein using an antibody to its intermediate chain 

(dynein intermediate chain [DIC]) in colchicine-treated siRNA-

transfected cells. In control siRNA-treated cells, a subset of the 

DIC-stained punctae colocalized with CENP-A, a marker of the 

centromere (Fig. 6 e). However, after siRNA against NP_060255, 

the colocalization of dynein with CENP-A was substantially 

reduced (Fig. 6 f). Similar to what was found for Drosoph ila Spin-

dly, the depletion of NP_060255 also decreased the stretch 

between paired centromeres from 1.15 to 0.98 μm (29.6 ± 

4.5% decrease; P < 0.00005), a result that is in agreement with 

the previously reported effect of p50dynamitin micro injection 

(a dominant-negative inhibitor of dynactin function) on kineto-

chore stretch (Howell et al., 2001). Collectively, our data show 

that the protein encoded by NP_060255 localizes to kineto-

chores and is required for localizing dynein to the kinetochore 

Figure 5. Spindly depletion blocks the recruitment of DHC but not dynac-
tin to kinetochores. (a) In mitotic cells treated with colchicine to depoly-
m erize the mitotic spindle, Rod (red) and DHC (green) colocalize on 
chromosomes (blue). (b and c) In cells depleted of p150Glued (b) or Spindly 
(c), Rod remains bound to kinetochores, but the DHC is displaced. (d–f) S2 
cells stably expressing GFP-p150Glued (a dynactin subunit) were treated 
with 6 μg/ml colchicine for 4 h, and the localization of the protein was as-
sayed after RNAi treatment. In untreated (d) and Spindly-depleted (e) cells, 
GFP-p150Glued still bound to the kinetochore, whereas the depletion of Rod 
(f) prevented the protein from associating with the kinetochore. Images are 
maximum intensity z projections of 2-μm-thick stacks of images taken of 
live cells. (g) Immunoblots of lysates from RNAi-treated S2 cells show that 
Spindly RNAi did not affect dynein (DHC) or dynactin (p150Glued) protein 
levels. (h) The distance between the minus ends of kinetochore (K) fi bers 
and the centrosome (see insets) was measured for untreated (left inset), 
Spindly RNAi (middle inset), and DHC RNAi (right inset) cells (n ≥ 69 for 
each condition; error bars represent SEM; **, P < 5 × 10−10), revealing 
a defect with dynein but not Spindly depletion. Bars, 5 μm.
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and for mitotic progression. Thus, we suggest that NP_060255 

is a true homologue of Drosophila Spindly and propose to re-

name NP_060255 as Hs Spindly. These results also indicate that 

the mechanism for localizing dynein to the kinetochore to silence 

the SAC is conserved between humans and fl ies.

Discussion

Using RNAi screens in Drosophila S2 cells, we have identifi ed 

Spindly, a previously uncharacterized protein, as an essential 

factor for docking dynein to the kinetochore. Spindly is re-

cruited to the kinetochore in an RZZ-dependent manner, and 

there, together with dynactin, Spindly recruits dynein to the outer-

most region of the kinetochore. The dynein motor complex then 

transports Spindly along with Mad2 and the RZZ complex to 

the spindle poles to inactivate the SAC. We also identify a Spin-

dly homologue that plays a similar role in human cells, reveal-

ing a conserved dynein kinetochore targeting mechanism in 

invertebrates and vertebrates. These data provide new insight 

into the mechanism and importance of recruiting dynein to the 

kinetochore to inactivate the SAC. We also fi nd that Spindly 

plays a role in maintaining S2 cell morphology during inter-

phase and localizes to the growing ends of microtubules.

Involvement of Spindly in mitotic 

dynein function

The depletion of Spindly creates several mitotic defects that 

appear to refl ect a loss of dynein activity exclusively at the kineto-

chore. Metaphase arrest is the most evident defect observed 

after the RNAi-mediated depletion of Spindly in Drosophila or 

human cells. This metaphase arrest phenotype is most likely ex-

plained by the absence of kinetochore-bound dynein in Spindly-

depleted cells, and, indeed, our data support the model of Howell 

et al. (2001), which proposes that kinetochore-bound dynein is 

required for transporting Mad2 from the kinetochore to inacti-

vate the SAC. Nevertheless, we cannot rule out the possibility 

that the mitotic delay seen after dynein or Spindly depletion is 

caused by another kinetochore aberration that keeps the check-

point activated. However, Spindly-depleted cells ultimately 

overcome metaphase arrest, as seen in our live cell imaging ex-

periments and by the modest increases in the mitotic indices of 

Spindly-depleted S2 and HeLa cells (three- to sevenfold and 

twofold, respectively). The mechanism of slippage from this 

metaphase arrest (Rieder and Maiato, 2004) is not clear, but it 

might involve proteins (e.g., p31 comet) that silence the SAC by 

disrupting the interaction between Mad2 and Cdc20 (Habu 

et al., 2002; Xia et al., 2004).

In addition to mitotic arrest, we observed that chromo-

somes in Spindly- and dynein-depleted S2 cells required a lon-

ger time to align on the metaphase plate. This result may be 

attributable either to the displacement of CLIP-190 (a micro-

t ubule tip–binding protein) from kinetochores after Spindly or 

dynein depletion (Dzhindzhev et al., 2005; unpublished data) or 

Figure 6. Identifi cation of a human Spindly homologue that is also re-
quired for targeting dynein to the kinetochore. (a) The mitotic index was 
determined (n = 3 wells per condition and >1,000 cells per well counted; 
error bars represent SEM) 24 or 48 h after siRNAs targeting the indicated 
proteins were transfected into HeLa cells. (b–d) The ratio of metaphase to 
anaphase cells for these treatments is shown (n = 2 experiments; at least 
75 cells per condition). NP_060255 was localized using crude antisera in 
HeLa cells treated with colchicine to enrich for the protein on kinetochores, 
and we found that NP_060255 colocalizes with the centromere marker 
CENP-A (c). Colchicine treatment helped to accumulate NP_060255 on 
kinetochores; without this treatment, background spindle staining with the 
NP_060255 antibody made it diffi cult to unambiguously visualize kineto-
chore localization, even on prometaphase chromosome. To confi rm the spe-
cifi city of kinetochore localization in colchicine-treated cells, we depleted 
NP_060255 with siRNA oligonucleotides and found that the colocaliza-
tion with CENP-A was eliminated (d). (e and f) The dynein intermediate 
chain (DIC) was localized in control and NP_060255 siRNA–transfected 
cells that had been treated with 6 μg/ml colchicine for 4 h to depolymer-
ize all microtubules. The insets (magnifi ed images of boxed areas) show 

that NP_060255 depletion eliminated the colocalization between CENP-A 
and DIC, demonstrating that NP_060255 is required for bringing dynein 
to the kinetochore. Bars, 5 μm.
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the loss of dynein-mediated lateral attachments to microtubules 

in early prometaphase (Alexander and Rieder, 1991). In HeLa 

cells, we also have noticed a defect in chromosome alignment 

after Hs Spindly depletion, which also has been observed after 

the depletion of dynein (perhaps mediated through a loss of 

kinetochore-bound CLIP-170; Dujardin et al., 1998; Tanenbaum 

et al., 2006).

Thus, the spectrum of mitotic defects observed in Spindly-

depleted cells is consistent with a loss of dynein function spe-

cifi cally at the kinetochore. Spindly depletion did not produce 

any other defects seen after dynein depletion, such as centro-

some detachment and spindle defocusing. Dynactin is another 

protein that is required for recruiting dynein to kinetochores, 

but it is important for other mitotic and interphase dynein func-

tions. Depletion of the RZZ complex inhibits the kinetochore 

recruitment of dynein, but this also prevents Mad1 and Mad2 

recruitment and reduces kinetochore tension to a greater degree 

than Spindly or dynein depletion alone. Thus, Spindly depletion 

appears to be the most specifi c means identifi ed to date for 

interfering with dynein function only at the kinetochore.

Our fi ndings provide new insight into how dynein local-

izes to kinetochores. Previous studies have led to a model in 

which dynactin binds to the RZZ complex and then, either alone 

or in collaboration with Lis1, recruits dynein to the kinetochore 

(Vallee et al., 1995; Starr et al., 1998; Tai et al., 2002; Cockell 

et al., 2004; Dzhindzhev et al., 2005; Siller et al., 2005). Because 

we fi nd that both dynactin and Spindly are required for dynein 

localization to kinetochores, we propose an updated model 

in which Spindly and dynactin target to the kinetochore 

 independently and work together to recruit dynein (Fig. 7). 

Thus, dynein recruitment to the kinetochore may involve multi-

ple weak interactions. Consistent with the possibility of weak 

interactions, endogenous dynein, dynactin, and Rod did not 

 coprecipitate with GFP in pull-down experiments, and Spindly 

did not coenrich with these proteins in sucrose gradient frac-

tions (unpublished data). Lis1 is not included in our dynein lo-

calization model, as we found that Lis1 RNAi did not block 

dynein recruitment to the kinetochore (using our colchicine 

treatment localization assay; unpublished data), although Lis1 

depletion did cause a mitotic delay and substantial increase in 

GFP-Spindly on aligned kinetochores (Video 4). Thus, we fa-

vor a role for Lis1 in dynein activity but not in recruiting dynein 

to the kinetochore.

Spindly’s role in regulating interphase 

cell morphology

Spindly’s role in the spreading morphology of S2 cells makes it 

unusual among proteins involved in silencing the SAC (including 

dynein and dynactin), which did not produce phenotypes in our 

interphase morphology screen. The Spindly RNAi interphase 

phenotype of defective actin morphology and the formation of 

extensive microtubule projections is still not understood. However, 

a clue may be Spindly’s dynamic localization to the growing 

microtubule plus end. Other plus end–binding proteins (+TIPs) 

interact with signaling molecules that regulate cell shape, one 

 example being the binding and recruitment of RhoGEF2 to the 

microtubule plus end by EB1 (Rogers et al., 2004). Spindly may 

similarly interact with and carry an actin regulatory molecule to 

the cortex, but this hypothesis will require identifying proteins 

that interact with Spindly during interphase.

The mechanism of Spindly recruitment to the microtubule 

plus end also warrants further investigation. This interaction 

must be regulated by the cell cycle because GFP-Spindly no 

longer tracks along microtubule tips in prometaphase. Seven 

consensus CDK1 phosphorylation sites are present in the posi-

tively charged C-terminal repeats of Spindly, and phosphoryla-

tion of these sites could reverse the charge of these repeats and 

regulate the transition from microtubule tip binding to kineto-

chore binding at the onset of mitosis.

Spindly, an example of a cargo-specifi c 

dynein localization factor

Motor proteins must be guided to the correct subcellular site to 

execute their biological function. To carry out the multitude of 

transport activities required in eukaryotic cells, metazoans have 

evolved numerous kinesin motors (25 genes in Drosophila) 

with distinct domains that dictate their localization and regula-

tion (Vale, 2003). In contrast, a single cytoplasmic DHC per-

forms numerous roles in interphase and mitosis, suggesting that 

additional regulatory factors guide dynein to specifi c cargoes (e.g., 

organelles, mRNAs, and vesicles). The main dynein-associated 

proteins (the dynactin complex, Lis1, and NudEL) are involved 

in dynein function at many sites and, thus, do not appear to 

be cargo specifi c. Zw10 was initially thought to specifi cally 

regulate the recruitment of dynein–dynactin to the kinetochore, 

but it now also appears to play an essential role in targeting dy-

nein to membrane-bound organelles (Hirose et al., 2004; Varma 

et al., 2006). Bicaudal D is another multifunctional adaptor 

molecule that has a role in the dynein-based transport of multi-

ple cargoes such as RNA, vesicles, and nuclei (Swan et al., 

1999; Bullock and Ish-Horowicz, 2001; Matanis et al., 2002). 

Perhaps the most site-specifi c dynein recruitment factor is the 

Saccharomyces cerevisiae Num1 protein that binds to the DIC 

Pac11p to target the motor to the cortex of daughter cells, where 

it pulls the nucleus into the bud neck (Heil-Chapdelaine et al., 

2000; Farkasovsky and Kuntzel, 2001). However, dynein only 

serves this one function in yeast compared with its plethora of 

Figure 7. A model of Spindly activity. During mitosis, the RZZ complex 
binds to the outer kinetochore region and recruits Mad2, Spindly, and 
the dynactin complex. Spindly and dynactin then cooperatively work to 
recruit dynein, which then transports the whole complex toward the spin-
dle pole and silences SAC signaling on the kinetochore. See Discussion 
for details.



SPINDLY RECRUITS DYNEIN TO THE KINETOCHORE • GRIFFIS ET AL. 1013

activities in metazoans, and Num1p homologues have yet to be 

identifi ed in higher eukaryotes.

By our assays performed to date, Spindly appears to be a 

highly selective dynein-recruiting factor, and, unlike other dy-

nein cofactors, it does not appear to be involved in the motor’s 

nonkinetochore functions in mitosis (e.g., pole focusing) or in 

interphase (e.g., endosome transport). However, the mechanism 

by which Spindly recruits dynein to the kinetochore remains to 

be elucidated. Our observations that Spindly moves from kineto-

chores to the spindle poles as discrete punctae strongly sug-

gests that it may incorporate into a large and somewhat stable 

particle that contains the RZZ complex, Mad1–Mad2, dynein, 

and likely additional proteins. Therefore, Spindly not only serves 

to recruit dynein to the kinetochore but also is part of a cargo that 

dynein transports. Future studies will be needed to better under-

stand the protein composition of these transport particles and 

the contacts that Spindly makes within them.

Materials and methods

Cell culture, RNAi, and immunofl uorescence
Drosophila Schneider cell line (S2) cells (Invitrogen) were cultured, and 
dsRNA incubation was performed as previously described (Goshima and 
Vale, 2003; Rogers et al., 2003). The 7,200 gene screens were performed 
with a previously described library (Echard et al., 2004). After 5 d of 
dsRNA treatment, cells were plated in glass-bottom 96-well plates (Whatman) 
coated with Con A (Sigma-Aldrich). Cell shape phenotypes were manually 
scored and documented on a microscope (Axioplan 200M; Carl Zeiss 
 MicroImaging, Inc.) equipped with a 40× 1.3 NA objective and a cooled 
CCD camera (Sensicam HQ; The Cooke Corporation) after staining with 
an anti-tubulin antibody (DM1A, anti–α-tubulin; 1:500; Sigma-Aldrich) and 
rhodamine phalloidin. For the mitotic index screen, mitotic index was 
determined by dividing the number of phosphohistone H3–positive nuclei 
(1:1,000; Upstate Biotechnology) by the total number of nuclei (determined 
by DAPI staining). These cells were imaged using a 20 or 10× air objec-
tive in either an ArraySCAN HCS System (Cellomics Inc.) or an automated 
microscope (ImageXpressMicro; Molecular Devices).

In the follow-up experiments described in this paper, most assays 
were performed after 7 d of RNAi treatment as previously reported (Goshima 
and Vale, 2003). At the end of the RNAi treatments, cells were re-
suspended and seeded on Con A–coated coverglasses or dishes for 2 h 
before imaging or fi xation. For colchicine treatment, cells were allowed to 
settle for 20 min, the media was removed and replaced with media con-
taining 6 μg/ml colchicine, and imaging or fi xation and staining was per-
formed 4 h after treatment began. HeLa cells were maintained as previously 
described (Griffi s et al., 2002). siRNA oligonucleotides were On-TARGET-
plus SMARTpools (Dharmacon), and transfections were performed using 
Dharmafect1 (Dharmacon) according to the manufacturer’s instructions. 
Immunofl uorescence was performed with affi nity-purifi ed rabbit anti-Dm Spin-
dly (1:100), rabbit anti-Hs Spindly serum (1:100), chicken anti-Cid (1:200; 
provided by G. Karpen, Lawrence Berkeley National Laboratory, Berkeley, 
CA), rabbit anti-Rod (1:200; provided by R. Karess, Centre National de la 
Recherche Scientifi que, Gif-sur-Yvette, France), mouse anti-DHC (1:100; 
provided by T. Hays, University of Minnesota, Minneapolis, MN), rabbit 
anti-p150Glued (1:200; provided by R. Giet, University of Rennes, Rennes, 
France), rat anti–α-tubulin (1:150; Serotec), mouse anti–CENP-A (1:2,000; 
Abcam), rabbit anti-DIC (1:500; provided by K. Vaughan, Notre Dame 
University, South Bend, IN), and rabbit anti-Mad2 (1:35; provided by 
C. Sunkel, (Instituto de Biologia Molecular e Celular, Porto, Portugal). Images 
were collected with either a confocal microscope (LSM510; Carl Zeiss 
MicroImaging, Inc.) using a 63× 1.4 NA objective or a microscope (Axio-
plan; Carl Zeiss MicroImaging, Inc.) outfi tted with 40× 1.3 NA, 63× 1.4 
NA, and 100× 1.3 NA objectives and a cooled CCD camera (Sensicam 
HQ; The Cooke Corporation).

Live cell imaging of GFP-Spindly and analysis
We cloned Spindly from an S2 cell cDNA pool and found that the se-
quenced cDNA clone lacks 27 amino acids from the predicted ORF. This 
ORF was cloned into the pENTR/D-TOPO vector (Invitrogen) and moved 

into N- or C-terminal Gateway GFP vectors under the control of the metallo-
thionein promoter vector (N- and C-terminal fusions produced the same 
results). To observe the tip tracking, it was optimal to use cells without 
inducing GFP-Spindly protein expression with CuSO4. For observation of 
protein on kinetochores, GFP-Spindly expression was induced by incubat-
ing the cells with 20 μm CuSO4 for 18 h. S2 cells stably expressing GFP-
tagged proteins were plated in dishes with coverslip bottoms (MatTek) that 
had been coated with Con A. Images were collected at 1–20-s intervals at 
room temperature using a cooled CCD (Orca II ERG; Hamamatsu 
 Photonics) or iCCD (MEGA10; Stanford Photonics) camera attached to a 
spinning disk confocal scan head (Yokogawa Electric and Solamere Inc.) 
that was mounted on a microscope (Axiovert 200M; Carl Zeiss MicroImaging, 
Inc.) outfi tted with a 100× 1.45 NA objective. Images were collected 
using either MetaMorph software (Molecular Devices), QED (Media 
Cybernetics), or μManager (www.micro-manager.org).

For analysis of GFP-Spindly movement from the kinetochore to poles, 
cells were imaged on the spinning disk confocal microscope with 300-ms 
exposures taken every second. Image stacks were opened in ImageJ 
(National Institutes of Health), and spindles were oriented horizontally. A box 
was drawn that was wide enough to contain all of the kinetochores on one 
half of the metaphase plate and long enough to contain the proximal spin-
dle pole. A stack of kymographs (each one representing a given one-pixel–
thick line within the box) was then generated. These kymograph stacks were 
then combined into maximum intensity z projections, and particle velocities 
were determined by measuring the lengths of the lines created by particles 
moving toward or from the spindle poles (distance traveled) and then divid-
ing that value by the displacement in the y direction (time). To determine sta-
tistical signifi cance, datasets were analyzed using the t test.

Antibody production and immunoblotting
A region of the Drosophila Spindly gene corresponding to amino acids 
451–780 was cloned into pET28a (Novagen), and protein expression 
was induced in BL21 DE3 cells (Invitrogen). Full-length Hs Spindly was also 
cloned into pET28a, and the protein was expressed in BL21 DE3 cells. The 
expressed proteins were purifi ed and used for injecting rabbits (Covance). 
Anti-Dm Spindly antibodies were purifi ed on an Affi -Gel 10 column (Bio-
Rad Laboratories) containing the immobilized antigen. To isolate protein 
from S2 and HeLa cells after RNAi treatment, 100 μl laemmli sample buffer 
was added per well of cells in a 96-well plate. The sample was then pro-
cessed for Western blotting as previously described (Rogers et al., 2003). 
The blot shown in Fig. S1 was pieced together from multiple lanes of a 
larger gel; the blot was cut between the 100- and 150-kD markers and 
blotted with the indicated antibodies (rabbit anti-p150glued; 1:500; pro-
vided by E. Holzbaur, University of Pennsylvania, Philadelphia, PA). The 
blot shown in Fig. 5 was cut at the 250-kD marker and blotted with the 
indicated antibodies (mouse anti-DHC; 1:1,000; provided by T. Hays).

Online supplemental material
Fig. S1 shows that the endogenous Spindly protein also enriches on un-
attached, unaligned, and anaphase kinetochores. Fig. S2 shows kymograph 
analysis of GFP-Spindly particles. Fig. S3 shows that Spindly depletion does 
not alter the targeting of endogenous dynactin to the kinetochore. Fig. S4 
shows that Spindly is not required for the dynein-dependent reorganization 
of endosomes in S2 cells. Fig. S5 shows that the depletion of NP_060255 
causes defects in chromosome alignment. Video 1 shows that GFP-Spindly 
tracks on the plus ends of microtubules in interphase cells. Video 2 shows that 
GFP-Spindly concentrates on lagging chromosomes and then diminishes after 
alignment at the metaphase plate. Video 3 shows that GFP-Spindly returns to 
kinetochores during anaphase, and Video 4 shows that GFP-Spindly traffi cs 
from kinetochores to centrosomes in a dynein- and Rod-dependent manner. 
Videos 5–8 show that the depletion of Spindly, dynein, or Rod slows the align-
ment of chromosomes on the metaphase plate. Online supplemental material 
is available at http://www.jcb.org/cgi/content/full/jcb.200702062/DC1.
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