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Abstract—This study investigates a novel CT/MR spine image
fusion algorithm based on graph cuts. This algorithm allows physi-
cians to visually assess corresponding soft tissue and bony detail
on a single image eliminating mental alignment and correlation
needed when both CT and MR images are required for diagnosis.
We state the problem as a discrete multilabel optimization of an
energy functional that balances the contributions of three compet-
ing terms: (1) a squared error, which encourages the solution to
be similar to the MR input, with a preference to strong MR edges;
(2) a squared error, which encourages the solution to be similar
to the CT input, with a preference to strong CT edges; and (3) a
prior, which favors smooth solutions by encouraging neighboring
pixels to have similar fused-image values. We further introduce
a transparency-labeling formulation, which significantly reduces
the computational load. The proposed graph-cut fusion guarantees
nearly global solutions, while avoiding the pix elation artifacts that
affect standard wavelet-based methods. We report several quan-
titative evaluations/comparisons over 40 pairs of CT/MR images
acquired from 20 patients, which demonstrate a very competitive
performance in comparisons to the existing methods. We further
discuss various case studies, and give a representative sample of
the results.

Index Terms—Graph cuts, image fusion, medical imaging, spine.

I. INTRODUCTION

FOR spine diseases and injuries, it is common for a pa-

tient to receive both an MR and a CT scan because of

their individual benefits. MR images depict useful soft-tissue

details including the spinal discs, nerves, cerebral spinal fluid,

and spinal cord. Therefore, it is the primary modality to diag-

nose protruding and degenerated discs. CT images clearly depict

bony structures, especially the bone cortex, allowing the assess-
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ment of damaged joints or osteophyte growth (bony spurs at the

margins of a joint).

Radiologists currently display MR and CT images side by

side, when both images are available. This does provide them

with all the available image information, but its accessibility

is limited to visual correlation between the two images. It can

be difficult to determine whether narrowing of a spinal canal

is caused by a tissue or bone from clinical MR images: hence,

both CT and MR can be employed [1]. Using both CT and MR

images, as opposed to relying on a single modality can benefit

diagnosis and treatment of osteophytes and degenerate discs that

impact bone and nerve structures. In addition, both modalities

can aid postoperative follow up after the spinal surgery [2].

Here, both the CT and MR modalities provide complementary

information. In order to properly visualize the related bone and

soft tissue structures, the images must be mentally aligned and

fused together. Detecting changes on unregistered, uncombined

images is an error prone task [3]. Therefore, it is highly desirable

to fuse these two modalities into a single image showing the

clinically significant CT and MR details as well as their relative

locations on a single image. This will remove the need for

mental juxtaposition when examining multiple views. Our goal

is to provide and validate such a system.

Here, we present a novel method for image fusion of the

spine, which preserves the bone structures and soft tissue detail

in a single image. Spine image fusion has the potential to en-

able more effective and efficient evaluations of spine disorders,

more so as the number of spine scans increase very rapidly. For

instance, in the U.S., there has been a 300% increase in lower

spine MR scans in the period between 1994 and 2006 [4], and

the percentage of adults who have suffered from back pain is

75% [5].

Multimodality image fusion has been studied in other fields,

with applications varying from multifocal [6] to geographical

images [7]. In medicine, image fusion has been used for brain

imaging [8], [9], MRI-SPECT fusion [10], epilepsy treatment

planning [11], liver ablation [12], and digital subtraction an-

giography [13]. For the spine, registered and overlaid CT and

MR spine images have been used for surgery planning [1], [14]

and evaluation of bone implants [2]. A wavelet-based approach

to image fusion has been proposed by Li et al. [6]. The two input

images were fused in the wavelet domain, and an inverse trans-

formation was applied to produce the result. Other variations

of this technique include additive wavelet decomposition [7],

the contourlet transform [8], [15], the curvelet transform [16],

and the complex wavelet transform [17], [18]. The wavelet or

transform-based methods can suffer from pixelation artifacts

when two dissimilar images are fused. This is a result of the

decimations involved in the wavelet transform as well as the
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translation dependence of standard wavelets. This may result

in small details being distorted, leading to a significant loss in

image quality. Pathologies that should have been visible may no

longer be seen.

Variational fusion methods have also been investigated

[19]–[23]. These methods consist of finding the optimum of

an energy functional, often via standard continuous optimiza-

tion techniques, e.g., gradient descent. For these variational ap-

proaches, the main difficulties come from the limitations of the

optimizers. Gradient-descent procedures [19]–[23] yield subop-

timal solutions and have a very high-computational load.

Discrete optimization methods, which use graph-cut algo-

rithms have recently sparked a substantial research effort in

computer vision, and led to very efficient algorithms in image

segmentation [24], [25], stereo vision [26], and image restora-

tion [27]. For object recognition, graph cuts have been em-

ployed to segment planar surfaces from depth images [28].

Both depth and intensity values were combined as inputs to

a graph cut-based segmentation algorithm. Graph cuts have also

been used to determine the optimal fusion rules for combining

subbands of a beamlet transform [29]. Although this method uti-

lizes a graph-cut approach for combining subbands, it is still a

transform-based method, and, therefore, is limited by the trans-

formation performed. To the best of our knowledge, graph-cut

formulations have not been previously studied in the context of

variational approaches to image fusion.

In this study, we state image fusion as a discrete multil-

abel optimization problem, which can be solved efficiently with

graph cuts [26], [30], [31], via the well-known swap or alpha-

expansion moves [26]. The proposed energy function [32] bal-

ances the contributions of three competing terms: 1) a squared

error, which encourages the solution to be similar to the MR

input, with preference to strong MR edges; 2) a squared er-

ror, which encourages the solution to be similar to the CT

input, with preference to strong CT edges; and 3) a prior,

favoring smooth solutions by encouraging neighboring pixels

to have similar fused-image values. We further introduce a

transparency-labeling formulation, which significantly reduces

the computational load. The proposed graph-cut fusion guar-

antees nearly global solutions, while avoiding the pixelation

artifacts that affect standard wavelet-based methods. We report

several quantitative evaluations/comparisons over 40 pairs of

CT/MR images acquired from 20 patients. The results demon-

strate very competitive performance in comparisons to existing

variational and transform-based methods [6], [8], [19].

This study is a significant extension of a preliminary con-

ference version [32]. The dataset was increased from 9 to 20

patients, resulting in validation on 40 image slices. A compar-

ison to Piella’s variational method and validation results based

on the structural similarity information measure (SSIM) have

also been added. Two more clinical case studies have also been

included. In Section II, we present our formulation of image

fusion as a graph-cut labeling problem. This is followed by a

description of the dataset, its registration, preprocessing, and

fusion in Section III. We further discuss various case studies,

and give a representative sample of the results in IV with a

discussion following in V.

II. FORMULATION

A. Multilabel Formulation

We state image fusion as the following multilabel optimiza-

tion problem

λ
∗ = minE(λ) with E(λ) = D(λ) + c1R(λ) (1)

where

1) Variable λ is a labeling function that assigns each point in

image domain Ω to a label l, which describes the intensity

of the fused image at that point

λ : p ∈ Ω → λ(p) ∈ L (2)

with L ⊂ I denoting a closed finite set of integers (the

possible output intensities).

2) Data term D is defined as

D(λ) =
∑

p∈Ω

Dp (λ(p))

=
∑

l∈L

∑

p∈R l

[

w1 (l − u1(p))2 + w2 (l − u2(p))2 ]

(3)

where u1 : Ω → R and u2 : Ω → R denote the in-

put images, and Rl is the l-label region defined by

{p ∈ Ω|λ(p) = l}. w1 and w2 are weights defined as fol-

lows:

s1 = |∇u1 | ∗ K s2 = |∇u2 | ∗ K

w1 =
s1

s1 + s2
w2 =

s2

s1 + s2
(4)

K is a kernel, for instance, a box filter. w1 and w2 bias the

solution toward strong edges in u1 and u2 , respectively.

The data term balances the contributions of two competing

terms.

a) A squared error which encourages the solution to be

similar to the first input u1 with preference to strong

edges in u1 .

b) A squared error which encourages the solution to

be similar to the second input u2 with preference to

strong edges in u2 .

3) Smoothness term R favors smooth solutions by encourag-

ing neighboring pixels to have similar fused-image values

R(λ) =
∑

{p,q}∈N

r (λ(p), λ(q)) (5)

with N being a set containing all pairs of pixels p and q

in a local neighborhood of p and r (λ(p), λ(q)) is defined

by the truncated absolute value

r (λ(p), λ(q)) = min (c2 , |lp − lq |) (6)

with c2 being a positive constant.

B. Alpha-Blending Reformulation

The aforementioned formulation requires a one-to-one corre-

spondence between the labels and pixel intensities. Therefore,
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(a) (b)

Fig. 1. Illustration of the graph-cut problem: a) Graph with three possible
labels showing the data cost of assigning a label to a node and smoothness
cost of assigning a labeling to adjacent pixel locations, and b) end result of the
labeling of the graph.

the number of labels needed to express the output image is

equal to the number of all possible pixel values. This may lead

to a high computational load in the case of images with large

dynamic ranges, as is common in medical imaging. To reduce

the number of labels, we reformulate the data term as a trans-

parency labeling. This is done by expressing the output image

as a function of u1 and u2 via a transparency image α with

α(p) ∈ [0, 1]∀p ∈ Ω,

uα = αu1 + (1 − α)u2 (7)

where uα denotes the output fused image.

Based on this formulation, we rewrite the data term in (3) as

follows:

D(λ) =
∑

p∈Ω

Dp (λ(p))

=
∑

l∈Lα

∑

p∈R l

[

w1 (uα (p, l) − u1(p))2

+w2 (uα (p, l) − u2(p))2
]

(8)

where

uα (p, l) =
l

Nl

u1(p) +

(

1 −
l

Nl

)

u2(p) l ∈ Lα (9)

with Lα being a new (reduced) set of nonnegative integer labels

{0, 1, 2, . . . , Nl}, parameterized by the user specified number

of labels Nl .

C. Graph-Cut Optimization

Our problem is amenable to efficient graph-cut optimiza-

tion [26], [30], [31]. An illustration of the multilabel graph-cut

problem is provided in Fig. 1. Exactly one label is given to each

pixel in the image, with associated data and smoothness costs

assigned to the links in the graph. To formulate this optimization

let G = 〈V, E〉 be a weighted graph, with V a set of nodes and

E a set of weighted edges. V contains a node for each pixel in

Ω and for each label in Lα . There is an edge e{p,q} between

every pair of nodes p, q. A cut C ⊂ E is a set of edges that sep-

arates all the label nodes from each other, thereby, creating a

subgraph for each label. The minimum-cut problem consists of

finding a cut C with the lowest cost. The cost of this minimum

cut, denoted |C|, equals the sum of the edge weights in C. By

TABLE I
WEIGHTS ASSIGNED TO THE EDGES OF THE GRAPH FOR MINIMIZING

THE PROPOSED FUSION ENERGY

edge weight for

{l, p} w1 (uα(p, l) − u1)2 + w2 (uα(p, l) − u2)2 p ∈ Ω, l ∈ Lα

{p, q} r(lp, lq) p, q ∈ Ω

properly setting the weights of the graph, one can use a series of

swap moves from combinatorial optimization [30] to efficiently

compute the minimum-cost cuts corresponding to a minimum of

functional E.

A swap move starts with a labeled graph and determines for

a given pair of labels, p and q, whether each node having a

value in p, q should 1) retain its current label or 2) be updated to

the other label in the pair. Each swap is accomplished globally

in an exact manner by finding the minimum cut on a binary

graph consisting of only two labels. This can be extended to the

multilabel case by iterating over the set of all possible pairs of

labels. The minimum cut is selected at each stage, with the final

labeling corresponding to a minimum of the energy functional.

One can also use alpha-expansion moves [26] to optimize energy

functions of the form E. It is well- known that alpha-expansion

moves guarantee a solution that is within a constant factor of

the global optimum [26]. However, experimentally, it is well

established that swap moves outperform alpha expansions [26].

Therefore, in this study, we used swap moves with the edge

weights defined in Table I, where e{l,p} denotes an edge between

a label and a pixel, and e{p,q} an edge between two adjacent

pixels.

III. METHODS

This retrospective study was approved by the Human Subjects

Ethics Board of the University of Western Ontario, with the re-

quirement for informed consent being waived. Twenty patient

image sets were randomly selected with the criteria of patients

having had both a lumbar MR and CT scan within a one-year

time period. None of these patients had fractures, but other dis-

eases such as degenerate / protruding discs, spinal stenosis, and

osteophytes were present. The images were acquired using ei-

ther a Magnatom or Avanto Siemens 1.5T MR scanner (Seimens

AG, Erlangen, Germany), with varying CT scanners depending

on the location the CT images were obtained. The MR scans

were acquired using a 3-D T2 weighted pulse sequence, and the

CT scans were acquired from either helical or axial slice CT im-

ages. No contrast was used in either scan. The lumbar spine was

assumed to be rigid between scans, because the patients were

scanned in a feet first prone position, resulting in very similar

postures. We evaluated the proposed method over 40 pairs of

CT/MR images acquired from these 20 patients. Twenty pairs

were from the center sagittal slice, and 20 were from the left side

of the patient through the nerve root bundle. T2-weighted 3-D

MR images were used because they clearly present the discs,

nerve root bundle, and cerebral spinal fluid. The 3-D MR/CT im-

ages were then registered and preprocessed. Finally the images

were fused as sets of 2-D images because radiologists typically

view 3-D volumes as stacks of 2-D images.
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TABLE II
IMPLEMENTATION DETAILS AND PARAMETERS FOR THE THREE METHODS FROM LITERATURE

Discreet Wavelet [6] Contourlet Transform [8] Piella Variational [19]

• Subbands: 3 subbands
• Wavelet: Haar wavelet
• Lowpass Rule: pixel-wise averaging
• Highpass Rule: pixel-wise selection of the
coefficient with the largest maximum value

• Subbands: 4 subbands, with 4,8,16 di-
rectional subbands in levels 2,3,4 (lowest
detail to highest)

• Filters: Lowpass 9-7 Filter, directional
PKVA

• Lowpass Rule: local energy in a 3x3 win-
dow

• Highpass Rule: local contourlet contrast

• Parameters η = 0.1, β = 0.5, γ = 0.3,
δt = 0.15

• Kernel w - Gaussian, σ = 0.1
• Polynomial J n = 7, α = 10, k = 0.25

Validation was completed based first on visual results of the

fusion, studying clarity of the detail presented in the fused im-

age, and second via a statistical comparison of the clinically

significant bone and tissue transferred to the fused images. Four

clinical case studies were then examined to illustrate the poten-

tial clinical value of this technique. Our method was compared

to four methods: 1) an averaging of the two images, and three

methods from recent literature: 2) the discrete wavelet transform

(DWT), [6] 3) the contourlet transform (CLT) [8], and 4) Piella’s

variational method [19]. These methods were implemented us-

ing the parameters listed in their papers. Table II contains a

summary of these features.

A. Registration and Preprocessing

The input volumes were registered, using a rigid 3-D versor-

based transform in ITK [33]. The optimizer used maximiza-

tion of mutual information (MI) [34] to align soft tissue details

present in both images (note the soft tissue details in the CT

image are suitable for registration, but MR is better for diagno-

sis). For the purpose of aligning soft tissue each CT image was

thresholded from −255 to 255 Houndsfield Units (HU) or −255

to 0 HU if needed. This kept many of the soft tissue details, but

removed most of the bone detail. Both images were then scaled

to an intensity range of 0 to 255 to be in the same range. The

transform was initialized using two corresponding user-selected

points, one from the CT and the other from the MR image. After

this, MI was calculated from the voxels in both images, and the

versor transform was iteratively updated based on MI of the two

images at each step. Using the obtained optimal transform, the

original MR image (without intensity scaling) was transformed

and resampled to the voxel spacing of the CT image.

Manual points were selected in the 3-D images for the target

registration error (TRE) and the fiducial localization error (FLE)

evaluation. The TRE is the mean post-registration Euclidean

distance between corresponding pairs of fiducials from the input

images. The FLE is the root mean squared difference in locations

when selecting the same fiducial multiple times in an image [35].

The TRE used 17 points from two image pairs. For the FLE, five

distinct points were defined on the CT image. On five separate

days, corresponding points in the MR image were identified

producing a total of 25 point sets. These errors were used to

validate the registration.

After registration, the original CT images were thresholded

at 0 HU, setting any negative values to 0 HU and leaving other

values unchanged. This removed most of the soft-tissue details

(a) (b) (c)

Fig. 2. Histograms of all the images. a) Histogram of all 40 MR images.
b) Histogram of all 40 CT images. c) Histogram of all 40 CT images after
preprocessing (excluding pixels with an intensity of 0) and histogram of all 40
MR images.

Fig. 3. Flow chart of the image fusion process: the MR is registered to the CT
image. The CT is thresholded and its histogram is adjusted to match the MR.
Finally the images are fused.

and was done because the MR presents the tissue detail with

more clarity, so the CT tissue detail is undesirable for the fused

image. For all 20 patients, the MR images were found to have

a maximum intensity of about 700, and the CT images were

found to have a maximum intensity of about 1400. In view of

this, the CT intensities were divided by two so that the MR

and CT histograms would have similar intensity ranges prior to

fusion. This was needed to eliminate bias in the fusion algorithm

due to differing intensity ranges in the input images. MR and

CT histograms are shown in Fig. 2, while Fig. 3 shows a flow

chart describing the registration and preprocessing steps.

B. Parameters of our Fusion Method

After preprocessing was completed, fusion could be carried

out. For the purpose of these experiments, c1 was set equal to
0.001(Im a x )2

c2
, c2 equal to 0.40 (Nl), and Nl equal to 20, with

Imax being the maximum intensity value in both inputs. Nl and

c1 were tuned manually to balance image quality and speed of

computation. c2 was set empirically for smoothness. Constant

c1 was set in relation to the maximum value in the data term and

in relation to c2 .
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Fig. 4. Sample masks for validating the quality of the fusion algorithm. (Top
left) sample MR image, (Top right) soft tissue Mask, (Bottom Left) sample CT
image, and (Bottom right) bone detail mask.

C. Statistical Evaluation of the Fused Images

We compared each of the MR and CT images to the fused

result within: 1) the regions of soft tissues, and 2) the regions

of bone structures. The soft-tissue details consisted of the discs,

nerves, and cerebral spinal fluid from the MR image, and the

bone details were from the CT image, with a specific focus on

the bone cortex. The trabecular bone does not contact soft tissue,

and so was omitted. We created image masks of the tissue and

bone details for each patient. The tissue masks were created by

manual segmentations of the MR images, and the bone masks

were obtained by thresholding the CT images at a user selected

HU for each image and then manually correcting any errors.

Fig. 4 shows sample masks of the tissue and bone detail.

We defined a fusion error as the mean absolute-value differ-

ence between the MR/CT images and the fused images in the

tissue regions defined by the masks. For the MR images, we

calculated the following two errors

eMR ,Tissue =

∑

MT is s u e
|IMR − Ifused |

area of the tissue mask
(10)

eMR ,Bone =

∑

MB o n e
|IMR − Ifused |

area of the bone mask
(11)

where IMR is the intensity of the MR image for a given pixel,

Ifused is the intensity of the fused image at a given pixel and

MTissue , MBone are the nonzero domains of the two masks. Sim-

ilarly, two additional errors, eCT ,Bone and eCT ,Tissue were de-

fined for the CT images. Ideally, there should be no tissue differ-

ences between the MR images and the fused images in the tissue

regions (eMR ,Tissue = 0) and no bone difference between the CT

images and the fused images in the bone regions (eCT ,Bone = 0).

The hypothesis we tested was that the error obtained for the

MR images is lower than the one obtained for the CT im-

ages within soft-tissue regions, i.e., eMR ,Tissue < eCT ,Tissue ,

and higher within bone regions eMR ,Bone > eCT ,Bone .

Each of the four errors were calculated for each patient. Some

of the data were found to be nonnormal using a Shapiro–Wilks

test [36]; thus, a non-parametric Wilcoxon test [37] was used

to compare sets of errors. The tissue errors: eMR ,Tissue and

eCT ,Tissue were compared to each other and the bone errors:

eCT ,Bone and eMR ,Bone , were also compared, in order to deter-

mine if there was a statistical significance difference between

them for the 40 patient image sets. These calculations were per-

formed for each of the five fusion methods using version 20

of the SPSS statistical software (SPSS Inc., an IBM Company,

Armonk, NY, USA).

D. Additional Metrics for Evaluation

In addition to the above statistical tests, we have also exam-

ined the sensitivity and specificity or our algorithm along with

the structural similarity in the masks [38]. For classification, we

have defined true and false positives/negatives (TP, FP, TN, FN)

per pixel as:

1) TPtissue and TNbone if (eMR ,Tissue < eCT ,Tissue);
2) FPtissue and FNbone if (eMR ,Tissue ≥ eCT ,Tissue);
3) TNtissue and TPbone if (eMR ,Bone > eCT ,Bone);
4) FNtissue and FPbone if (eMR ,Bone ≤ eCT ,Bone).
Sensitivity and specificity were calculated for each using the

total number of TPs, FPs, TNs, and FNs normalized over the

image masks, which we denote by nTP, nFP, nTN, and nFN.

Sensitivity and specificity are defined in (12). Since the tissue

sensitivity is equal to the bone specificity and the bone sensitivity

is equal to the tissue specificity, only the two sensitivity values

have been reported

Sensitivity =
nTP

nTP + nFN

Specificity =
nTN

nTN + nFP
. (12)

The structural similarity metric [38] is defined as

SSIM(x, y) =
(2µxµy + C1) (2σxy + C2)

(

µ2
x + µ2

y + C1

) (

σ2
x + σ2

y + C2

) (13)

where µx , µy , σx , σy , σxy represent the means in the x and y

images, the variances in the x and y images and the covariance of

the two images, respectively. This metric has been applied over

a local window for pixels within the given masks, comparing the

MR images to the fused images in the tissue mask, and the CT

images to the fused images in the bone masks. The window was

defined as an 11×11 Gaussian kernel with σ = 1.5. C1 = 0.01

and C2 = 0.03 are positive constants.

IV. RESULTS

In the following, we describe a representative sample of the

fusion results, report several statistical evaluations, and discuss

four clinical case studies based on our fusion method.
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Fig. 5. Sample fused Images: (top left) input CT, (top right) input MR. Middle fused images: (a) averaging method, (b) discrete wavelet transform, (c) contourlet,
(d) Piella’s variational method, and (e) our proposed graph-cut method. Bottom row: Magnified images within the region of interest indicated in the images
above.

A. Registration Validation

The TRE [35] was found to be 1.9 ± 0.6 mm with a CT

voxel spacing of 3 × 0.3 × 0.3 mm for the tested images. The

FLE was found to be 0.8 ± 0.4 mm. This demonstrates that the

registration accuracy is subvoxel, since the TRE is greater than

the FLE, but less than the diagonal size of the voxels.

B. Sample Images

Fig. 5 shows sample input images, including the registered

CT and MR inputs and the results of the five fusion methods. It

shows that the algorithms perform very differently in preserv-

ing the CT/MR details. As expected, the averaging method (a)

loses many details, whereas the wavelet method (b) introduces

block-structure artifacts because it does not account for shift in-

variance. The contourlet method (c) significantly blurs the MR

details and adds noise to the CT detail, making it difficult to

identify the nerve structures and bones. The variational method

(d) preserves the details, but significantly reduces the intensity

range of the solution. The graph-cut result (e) depicts sharp MR

and CT details, has a much larger dynamic range than Piella’s

method (d), and is artifact free.

C. Evaluation of Masks

We have calculated the mean intensity in the tissue and bone

masks, for all the MR and CT images. This provides a frame

of reference for the fusion error calculations and to evaluate the

effectiveness of the masks. These intensities are shown in Fig. 6,

with separate graphs for the left sagittal slices through the nerve

root bundle and mid sagittal slices, through the center of the

subject. For the tissue mask, in the left slices the MR values are

about 50, whereas the CT values are between 50 and 100, for the

mid slices the CT values are about 50, whereas the MR values

range between 100–250 for most patients. This demonstrates

that the tissue masks perform well at discriminating between

tissue and bone for the mid slices (high MR, low CT), but have

less differentiation power for the left slices. For the bone masks,

on both the left and mid slices the intensities prior to fusion are

between 200 and 300, with the MR values around 100 or less.

This shows clear differentiation between bony and tissue detail

in the masks.

D. Statistical Results

The results of the fusion errors for our graph-cut method

are shown in Fig. 7. These show that eMR ,Bone is greater than

eCT ,Bone error in all images as was hypothesized. For the tis-

sue errors, eMR ,Tissue is fairly constant at about 50 for all im-

ages, with eCT ,Tissue being much lower on the left images, than

the mid images, but higher than eMR ,Tissue for the majority of

subjects.

For all five methods, Table III reports the mean values of

eMR ,Tissue , eCT ,Tissue , eCT ,Bone, and eMR ,Bone over the 40 im-

age sets. These were measured in pixel intensity. Table III also

shows p-values for the pairwise and independent Wilcoxon
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Fig. 6. Masks Values before fusion. (a) Tissue mask and left slices. (b) Tissue mask and mid slices. (c) Bone mask and left slices. (d) Bone mask and mid slices.

Fig. 7. Fusion Error for our graph-cut method: (a) eTissue for the left slices, (b) eTissue for the mid slices, (c) eBone for the left slices, and (d) eBone for the
mid slices.

tests comparing eMR ,Tissue with eCT ,Tissue and eCT ,Bone with

eMR ,Bone , again over the 40 sets of patient images.

As expected, eCT ,Bone = eMR ,Bone and eMR ,Tissue =
eCT ,Tissue for the averaging method. For the wavelet/contourlet

methods eMR ,Tissue was slightly higher than eCT ,Tissue . This

is the opposite of what is desired. On the contrary, for the pro-

posed graph-cut method and Piella’s method eMR ,Tissue is lower

than eCT ,Tissue . All the methods, except averaging, yielded

eCT ,Bone < eMR ,Bone . Overall, the proposed graph-cut method

resulted in the lowest eCT ,Bone , and the lowest eMR ,Tissue ,

which corresponds well to our purpose. We obtained a mean

eCT ,Bone value of 57.0 based on the CT intensity dynamic range

of 700. For the soft tissues eMR ,Tissue = 46.6. Note that Piella’s

method yielded the highest eMR ,Tissue . For bone regions, all the

methods, except ours, yielded approximately the same eCT ,Bone .

With the exception of the averaging method eMR ,Tissue was

found to be pair wise statistically different from eCT ,Tissue and

eCT ,Bone was found to be pair wise statistically different from

eMR ,Bone . The independent Wilcoxon tests showed that only

Piella’s method and our graph-cut method were statistically

significantly different when analyzed as a group.

E. Additional Metrics

The images have also been analyzed for the sensitivity and

specificity of the number of correctly fused pixels along with
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TABLE III
MEAN FUSION ERROR VALUES FOR THE 20 PATIENT DATA SETS AND

STATISTICAL-SIGNIFICANCE TEST RESULTS FOR THE FUSION METHODS

Method eMR,Tissue eCT,Tissue PPairwise PIndependent

Averaging 64.2 ± 26.0 64.2 ± 26.0 1 1

DWT [6] 64.9 ± 26.1 63.9 ± 25.9 < 0.001 0.707
Contourlet [8] 73.4 ± 28.6 64.2 ± 24.9 < 0.001 0.083
Piella [19] 152.8 ± 52.6 175.9 ± 54.0 0.002 0.006
Graph Cuts 46.6 ± 12.3 81.7 ± 52.6 0.006 0.020

Method eCT,Bone eMR,Bone PPairwise PIndependent

Averaging 82.5 ± 19.8 82.5 ± 19.8 1 1

DWT [6] 81.9 ± 19.7 83.7 ± 19.8 < 0.001 0.583
Contourlet [8] 82.6 ± 19.7 89.0 ± 18.6 < 0.001 0.121
Piella [19] 84.1 ± 40.6 188.7 ± 48.0 < 0.001 < 0.001
Graph Cuts 57.0 ± 11.9 108.0 ± 36.2 < 0.001 < 0.001

TABLE IV
MEAN SENSITIVITY FOR TISSUE AND BONE DETAILS ALONG WITH MEAN

SSIM INDEX MEASURES FOR ALL FIVE METHODS.

Method Sensitivity Sensitivity SSIM SSIM

Tissue Bone Tissue Bone

Averaging 0 ± 0 0 ± 0 0.59 ± 0.32 0.08 ± 0.04

DWT [6] 0.51 ± 0.01 0.76 ± 0.17 0.54 ± 0.32 0.11 ± 0.06
Contourlet [8] 0.50 ± 0.01 0.75 ± 0.17 0.22 ± 0.30 0.12 ± 0.08
Piella [19] 0.86 ± 0.11 0.87 ± 0.08 0.32 ± 0.31 0.15 ± 0.11
Graph Cuts 0.63 ± 0.12 0.84 ± 0.09 0.52 ± 0.33 0.21 ± 0.12

the structural similarity between the input images and the fused

images within the mask regions (see Table IV).

These results show that the averaging method has zero sensi-

tivity. The DWT and contourlet methods performed lower than

the other two methods, with Piella’s methods having the high-

est sensitivity for both CT and MR and graph cuts having the

second highest for both. In regards to the SSIM index, the av-

eraging method performed best on the MR data, followed by

the DWT and Graph-Cut methods. Piella’s methods and the the

contourlet transformed did much poorer. For bone details the

graph-cut method did the best, followed by Piella’s method, the

contourlet method, the DWT and finally averaging.

F. Case Studies

Visual Inspection—Lumbar Spine, Joint, and Disc Disease:

We present the first clinical case study for our fusion technique

in Fig. 8. In the first case, the patient had a protruding spinal

disc and damaged facet joint. The disc can be seen in the MR

image as a hypointense region, whereas the facet joint is visible

in the CT image. There is significant osteoarthritis in the joint.

The fused image clearly shows both of these pathologies in a

single image, allowing for a better diagnosis.

Visual Inspection—Osteophyte Growth: The second case

study shows osteophyte growth (see Fig. 9), which is the forma-

tion of bony spurs at the margins of a joint. On the MR image

alone, it is difficult to see the location of the osteophyte. The CT

shows the osteophyte, but none of the surrounding soft tissue.

The fused image shows both the formation of the bony spurs

and the surrounding soft tissue on a single image.

Visual Inspection—Abnormal Vertebrae and Cord damage:

The third case study shows spinal cord damage (see Fig. 10)

and an abnormal vertebrae on a single fused image. The cord

damage is not visible on the CT image, while the abnormal

vertebrae is difficult to see on the MR image. The fused image

presents both.

Visual Inspection—Osseous Erosion Secondary to Pannus:

In this patient with rheumatoid arthritis (see Fig. 11), pannus is

eroding the posterior aspect of the dens. On the MR, the chronic

pannus is dark and cannot be distinguished from the underlying

bony cortex. On the CT, the margins of the bone are well seen,

but soft-tissue contrast is poor. The relationship of the pannus

to the underlying bone is best seen on the fused image.

V. DISCUSSION

We have investigated a novel CT/MR spine image fusion

algorithm based on graph cuts. We have successfully fused MR

and CT images to create a single fused image, providing a

new and effective combined modality for diagnosis. Images

were registered, preprocessed, and then fused. This has been

tested on 40 sets of clinical images from 20 patients. The graph-

cut results show better performance than the averaging method

and the three state-of-the-art methods from the literature. Our

method successfully transfers bone detail and soft tissue detail

to the resulting fused image, with only a 57.0 difference in

intensity values for the bone details and 46.6 intensity different

for the soft-tissue details, in a dynamic range of 700. Visual

inspection confirms these results, with graph cuts showing the

sharpest detail for both the bone and soft tissue details.

The statistical tests showed pairwise significance for the CT

versus MR error in every method except averaging; however,

only Piella’s method and our graph-cut method showed group-

wise statistical significance between errors, which is a stronger

test. This indicates that these two methods perform better than

the others, in transferring bone detail and soft tissue detail to

the fused image. With regard to the additional methods, Piella’s

method performed better than graph cuts in regards to the sensi-

tivity test. However, the graph-cut method outperformed Piella’s

method in terms of structural similarity, a test where Piella’s

method is expected to perform well. In view of all the numeric

and visual results, the graph-cut method can be concluded to

outperform the existing state-of-the-art methods.

The subvoxel accuracy of the registration ensures that the

fusion errors are a result of the fusion techniques and not mis-

registration for our 20 patients. In the proposed method, the

rigid image registration assumes minimal structure deforma-

tions and patient posture variations. If significant deformation

or patient posture difference was present, the nonrigid registra-

tion, as a preprocessing step, could be replaced with local-affine

or nonrigid image registration, without affecting the quality of

the fused images.

One note of interest is that eMR ,Tissue and eCT ,Tissue for the

DWT are similar or lower than the averaging, contourlet and

Piella’s methods, even though the DWT is visually worse than

Piella’s method. The DWT also has a high SSIM value. There

was pairwise statistical significance of the fusion errors for the

DWT, but no groupwise statistical significance. This indicates
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Fig. 8. Images of damaged spine: left - MR showing a protruding disc (hypointense region); middle - Fused image showing the disc, the spinal cord and the
damaged facet joints; right - CT image showing damaged facet joints.

Fig. 9. Images of bony spur formation: left - in the MR, the osteophyte is not identifiable; middle - in the fused image, the osteophyte is clearly visible along
with the surrounding soft tissue; right - the CT image shows the osteophyte, but not the soft tissue.

Fig. 10. Image of an abnormal vertebrae and cord damage: left - in the MR the cord damage is easily visible; center - the fused image: the cord damage and the
abnormal vertebral body can be seen clearly; right - the CT image shows the abnormal vertebrae.

Fig. 11. The arrows show the pannus eroding the posterior aspect of the tip of the dens. The relationship between the pannus and the surface of the bone is best
seen on the fused image.
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its poor ability to discriminate between tissue and bone detail,

which is essential for clinical use.

In this study, the evaluation focuses on fusion of sagittal non-

contrast CT and T2 MR Data. Nonetheless, the proposed graph-

cut fusion method is general for fusing different image modal-

ities and images formatted in different reconstruction planes. It

is expected to share similar success if the model parameters are

properly adjusted. This is one of the future directions of this

research.

We have also shown the benefit of our fusion system on four

clinical cases, where the fused image clearly shows both the

bone and soft tissue detail on a single image. This highlights

the pathology on a single image. Our method can successfully

combine CT and MR images of the lumbar spine, while retain-

ing the significant clinical detail. This eliminates the need for

radiologists to mentally align and fuse two separate datasets,

along with the associated potential for errors. Although we do

not intend to have fused images replace CT and MR scans for

clinical use, we do see this as a strong tool to add to the current

practice and aid radiologists in completing more accurate and

quicker diagnosis.
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