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Abstract. We describe a method to automatically predict radiological
scores in spinal Magnetic Resonance Images (MRIs). Furthermore, we
also identify and localize the pathologies that are the reasons for these
scores. We term these pathological regions the “evidence hotspots”. Our
contributions are two fold: (i) a Convolutional Neural Network (CNN) ar-
chitecture and training scheme to predict multiple radiological scores on
multiple slice sagittal MRIs. The scheme uses multi-task CNN training
with augmentation, and handles the class imbalance common in med-
ical classification tasks. (ii) the prediction of a heat-map of evidence
hotspots for each score. For both of these, all that is required for training
is the class label of the disc or vertebrae, no stronger supervision (such
as slice labels) is needed. We report state-of-the-art and near-human
performances across multiple radiological scorings including: Pfirrmann
grading, disc narrowing, endplate defects, and marrow changes.

1 Introduction

Automated detection and localization of abnormalities in medical images is an
important task to support clinical decision making across many medical spe-
cialties. However, to date, many such techniques have relied on strong supervi-
sion for their development; yet obtaining sufficiently large, accurately delineated
datasets in medical imaging can be prohibitively expensive due to limits in clini-
cal time. In contrast, scores or even indicators relating to the presence or absence
of pathology are more readily available. It is therefore desirable to develop tech-
niques that can learn to predict radiological scores and localise them from weakly
labelled training data i.e. (disc-volume) supervision.
In this paper, we propose a CNN-based framework to classify and qualita-

tively localize multiple abnormalities in T2 weighted sagittal lumbar MRIs. The
method is trained, validated and tested on a dataset of 2009 patients (12018
individual spine disc volumes). The localizations are achieved implicitly through
training the network for the classification tasks, and no other labels are needed
apart from the classification labels. Given an input scan, the trained model: (i)
predicts six separate labels corresponding to six different radiological scores, and
(ii) produces six heat-maps, that localizes possible pathological evidence unique
to each task. A simplified view of the overall pipeline is given in Fig. 1.

Why multi-task? Despite their advantages and leading performance, one of
the challenges of utilizing CNNs in medical imaging remains their need for large
training datasets. We address this in our work through the use of multi-tasking
where one architecture serves to address multiple problems and hence reduce the
number of free parameters. Since each classification problem is its own unique
task, solving them at the same time is akin to multi-tasking. Moreover, the clini-
cian is typically required to assess the state of different anatomical regions within



Fig. 1: Pipeline: For each of the six intervertebral discs assessed as inputs, there are
six corresponding pairs of outputs in the form of evidence hotspot mappings, and pre-
dictions of labels specific to the radiological score. Refer to Table 1 for the distribution.
The dimension of each input disc volume is 112×224×9, essentially a stack of 9 image
slices of the disc, which is also the dimension of the evidence hotspot heat-map.

the medical image either because they are relevant to the answering the clinical
question or because they are required to assess visible anatomy for so-called inci-
dental findings. Hence, the development of techniques that can predict multiple
scores simultaneously is desirable; in our application of interest, each disc and
vertebrae can have grades to describe their state of normality or degradation.

Why qualitative localization? We believe that the integration of automated
quantitative scores into clinical practice can be aided if the system can highlight
the regions within the image that lead to the prediction. However, as mentioned
above, the cost of obtaining such image mark-up can be prohibitive. Moreover,
it is often difficult for a clinician to identify precisely the voxels that resulted
in their opinion. Often it is the overall appearance of an area that leads to
the conclusion. To this end, we leverage the ability of CNNs to learn to localize
important features of objects when trained for object classification tasks, e.g. [8].

Related work: CNNs have been utilized in medical vision problems in two main
ways: 1) using networks pre-trained on a larger normally non-medical dataset
of natural images, as features, e.g. to detect pathology in chest X-rays [1], and
2) training a network from scratch, e.g. to detect sclerotic metastases in spinal
Computed Tomography (CT) images [11]. In comparison, most research on spinal
diagnosis classification has been primarily conducted with handcrafted features
or what is now referred to as “shallow” learning e.g. in works concerning radiolog-
ical scoring of the intervertebral discs [3, 5, 7, 9]. One recent successful example
of using CNNs on medical images is a segmentation framework proposed by Ron-
neberger et al. [10] which overcame the problem of small amount of data through
the use of elastic augmentation though requiring strong (pixel-level) supervision.
Other methods of visualizing disease regions have been investigated in [12].

2 Classification Framework

The goal is to automatically label each disc and the surrounding vertebrae with
a number of radiological scores. Two scores are predicted for each disc, Pfir-



Fig. 2: Multi-task version of the VGG-M architecture [2] with a branch point after the
Conv5 layer resulting in a multi-way classification tasks. The numbers in each layer
(for example 96 and 7 × 7in Conv1) refer to the number of filters and their size, /2
denotes a stride of 2, and the max-pooling window is set to be 2× 2.

.

rmann grading and disc narrowing, and four for each vertebrae: lower and upper
endplate defects, and lower and upper marrow changes. The six lumbar discs
and vertebrae considered are from T12-L1 to L5-S1.
The method starts by first detecting each disc, and then extracting and nor-

malizing a multi-slice volume around the disc based on the vertebral bodies
detection framework by [5, 7]. This volume, which includes the disc and part of
the vertebral bodies above and below the disc, is the input to the CNN classifier,
which predicts all of the scores simultaneously. As shown in Fig. 2 the networks
for the various scores share the first five convolutional layers, and then branch
out for each individual score. The architecture is described in Section 4 and the
network is trained simultaneously to predict all the scores using a multi-task loss
function. The reason for this choice, rather than say training an individual CNN
tower to predict each score, is that there is more supervision on the common
part of the architecture (the shared early convolutional layers). We explore the
optimum branch point in the experiments. Note, the CNN does not require any
localization or segmentation information for training or inference. As will be seen
in the results, we achieve state-of-the-art and near human performance.

Multi-task loss: Since all of the six tasks are classification problems, we follow
the standard practice of training the network by minimising the softmax log-
losses of all the tasks. For each task, t, where t ∈ {1 . . . T}, and input image, x,
the network outputs a vector y of size Ct which corresponds to the number of
classes in task t. The loss, Lt, of each task over N training images can be defined

as Lt = −
∑N

n=1

(

yc(xn)− log
∑Ct

j=1 e
yj(xn)

)

where yj is the jth component of

the FC8 output, and c is the true class of xn. Solving the multi-task problem in
an end-to-end fashion translates to minimizing the combination of all the losses,
L =

∑

t ωtLt where ωt is the weight of task t. We find setting ωt = 1 for every
t works well on our tasks, but it might be beneficial to fine tune ωt for different
problems. Setting one weight to 1 and the rest to 0 results in a standard training
of a single task. At training time, the loss of task t is only calculated for valid
labels i.e. missing labels of task t are ignored. This is extremely beneficial as
inputs can possess missing labels in one task but not others.

Class-balanced loss per task: Class imbalance refers to the different number
of training examples for each possible outcome of a multi-way classification.
Since most of the classification tasks we deal with are imbalanced, we use a
class-balanced loss during training. For each task, we reweight the loss such that
the combined losses are balanced. To achieve balance in training, class-specific



weights are introduced. These weights are determined to be αc = freq(c)−1,
where freq(c) are the class frequency in the training sets for each task. The
loss for each task can then be expressed as Lt =

∑

c αcℓt(c), where ℓt(c) is the
component of the loss for class c. This is equivalent to oversampling the minority
class but, since our data is multi-labelled, this balance can not be achieved by a
trivial solution such as simply oversampling or undersampling each disc.

3 Evidence Hotspots

Here we show that a network trained for a fine-grained classification task can
produce a heat-map which pinpoints the region in the image space responsible
for the prediction. This map lights up pathological areas, ‘hotspots’ of the pre-
diction, specific to the trained task in the image; the brighter the hotspot, the
stronger the evidence for that region to influence the classification. Only the
class label is used in training, and no other supervisory information is required.
To achieve this, we modify and extend the saliency method proposed by Si-

monyan et al. [13], that ranks the influence of each pixel in an image, x, according
to its influence on the (unnormalized) class score. The method proceeds by lin-
earizing the relation between a specific output class score and the input pixel
xp as prediction of a specific class, y. For CNNs, we can approximate the highly
non-linear function of y to be y ≈ wTx+b where w and b are the weight and bias
of the model. So ranking the influence of each pixel, p, can be posed as rank-
ing the magnitude of the specific weight, wp, that influences the output y. The

weight can be obtained as wp = ∂y
∂xp

, which can be found by back-propagation.

However, unlike [13], where the input x is a 3 channel RGB image (z = 3),
our input consists of 9 channels (z = 9), each a greyscale image of an MRI
slice in the disc volume. Furthermore, instead of producing a 1 channel saliency
map calculated from the maximum magnitude of w, M = maxz|w| as in [13], the
saliency map is also 9 dimensional, such thatMz = |wz| where z ∈ {1 . . . 9} since
each input channel corresponds to an actual volumetric slice of the disc. Also, the
final heat-map is computed from the average of multiple saliency maps produced
from randomly augmented images using our training augmentation scheme; the
resulting saliency map is transformed back to the original image space with
the reverse of the augmentation. We find that aggressive augmentations is key
to producing better localized hotspots. We visualize the evidence hotspots for
some of the tasks on randomly selected discs in our test set in Fig. 3. The main
visual difference from our maps to the maps shown in [13] is that our salient
regions are more localized and more specific to the area that is the cause for the
classification. We suspect that this might be because our classification tasks are
more fine-grained, and because our input images are visually very similar.

4 Implementation details

CNN architecture: The base network architecture is a modified version of the
1024 variant of the VGG-M network introduced in [2]. To maintain the aspect
ratio of the discs, the input dimension is changed to 112×224×9 where 9 refers
to the number of slices in a disc volume extracted from the full sagittal MR scan.
Consequently, the Conv1 filters of VGG-M are changed to be 7 × 7 × 9 filters
instead of the standard 7 × 7 × 3 filters for RGB images. We also omit the use



Fig. 3: Evidence Hotspots of the Test Set: Examples of disc volumes (upper in
each pair) and their corresponding evidence hotspots (lower in each pair). The leftmost
and rightmost images are the second and eighth slice for each disc, out of the full
volume of 9 slices. Going from top to bottom are examples for each of the binary
tasks: (i) upper endplate defects, (ii) lower endplate defects, (iii) upper marrow change,
and (iv) lower marrow change. Pathological examples are shown for each radiological
score/classification task, with endplate defects appearing as protrusions of the discs
into the vertebral bodies, and marrow changes appearing as localized discolourations
of the vertebral bodies near the vertebral endplates. Note that these hotspots localize
extremely well to the assigned tasks e.g. in the lower endplate defects example the
hotspots appear only in the lower endplate even though there are defects on the upper
endplate. These examples are randomly selected on different patients. Further examples
are given in the supplementary material.

of local response normalization after the Conv1 and Conv2 layers. The point
at which to branch out the learning of the separate tasks are pre-selected and
fixed prior to training. The layers succeeding the branch point are identical for
each task except for the final FC8 layer, which has specific output dimensionality
according to the number of classes in each task e.g. 5-way softmax for Pfirrmann,
and 4-way softmax for disc narrowing classifications. Fig. 2 shows a network with
a branch point after Conv5. The networks were trained via the MatConvNet
toolbox [14] using an NVIDIA Titan X GPU.

Disc volume extraction: The disc volumes are detected using the approach
of [5, 7]. First a tight bounding volume is obtained about each of the seven
vertebral bodies adjacent to the six radiologically labelled discs via the detection
and regression steps. Then, from each pair of vertebral bodies, rough estimates of
disc bounding volumes are obtained. Finally, the disc volumes for classification
are defined as follows: the region is rotated within the sagittal slice so that the
disc is horizontal and centered. The regions are resized to be the same dimension
112 × 224 per slice; this 1:2 ratio is to ensure that the disc region would not
include the upper and lower endplates of the adjacent vertebral bodies. Roughly



40% of each vertebrae, upper and lower, appear in each region of interest. The
discs are aligned according to their mid-sagittal slices, and narrow discs with
less than 9 slices are zero-padded slice-wise. Each slice of the disc is normalized
such that the median intensity of its pair of vertebral bodies is 0.5 to mitigate
against bias field effects. The range of the intensity inside the disc volume is set
to be between 0 and 1 with higher intensity values clipped to 1.

Training: Training of the six tasks is done end-to-end simultaneously via stochas-
tic gradient descent with momentum from scratch without any pre-training. The
inputs are normalized with per-channel mean subtraction. The hyperparameters
are: mini-batch size 256; momentum 0.9; weight decay 0.0005; initial learning
rate 0.001, which is lowered by a factor of 10 as the error plateaus. The weights
are initialized as [4] and normally reach convergence in about 1000 epochs.

Data augmentation details: We employ several aggressive random on-the-
fly augmentation strategies during training. We include the methods suggested
by [6] for natural images, and also define additional augmentations that are
suited to sagittal scans. The training augmentation strategies are: (i) rotation
with θ = −15◦ to 15◦, (ii) translation of ±32 pixels in the x-axis, ±24 pixels in
the y-axis, ±2 slices in the z-axis, (iii) rescaling with a scaling factor between
90% to 110%, (iv) intensity variation between −0.1 to 0.1, and (v) random slice-
wise flip i.e. reflection of the slices across the mid-sagittal. At test time, the final
prediction is calculated from the average of 54 predictions: (i) 8 patches, ±16
pixels from the origin, alongside the centre patch, (ii) their slice-wise reflections,
and (iii) sliding the slice window ±1 across the volume.

5 Experiments & Results

Dataset & Radiological Gradings: The dataset is sourced from various cen-
tres with different MRI machines and protocols. Because of this, slice thickness
also varies substantially from one scan to the other, ranging from 2.6 mm to 6.0
mm, with a median of 4mm. The scans are T2 sagittal. The scans were annotated
with various radiological scores (global, the whole spine, and local, per disc) by a
single expert radiologist. In all, the dataset consists of 2009 patients from which
we obtained 12018 individual discs, six discs per patient, and their labels. Some
scans contain fewer than six discs but the majority show the complete lumbar
region. We use a 80:10:10 split, on a per patient basis (1602:204:203), of the
dataset to train, validate, and test the performance of our CNN model. The
distribution of labels per disc for each classification task can be seen in Table 1.

Evaluation protocols: To evaluate our classification performance, we use aver-
age per-class accuracy which is suitable for highly imbalanced classifications. For
comparison, we provide the average per-class intra-rater agreement which was
calculated from two separate sets of labels by the same radiologist on a subset of
the dataset which consists of 121 patients (726 discs), compared to the test set
which consists of 203 patients (1217 discs). The intra-rater agreement serves as
a good benchmark of performance since we are essentially limited to the quality
of the label i.e. we can only be as good as the radiologist.

Model components and training: We investigate variations of the architec-
ture by changing the branch point. Layers immediately after a branch point are



Pfirrmann Disc Nar. U Endplate L Endplate U Marrow L Marrow

1 3862 (32%) 7186 (60%) Normal 10952 (91%) 10927 (91%) 10069 (85%) 10077 (85%)

2 1754 (15%) 1375 (12%) Abnormal 1034 (9%) 1056 (9%) 1824 (15%) 1815 (15%)

3 2800 (23%) 2185 (18%) 11986 11983 11893 11892

4 2415 (20%) 1243 (10%)

5 1163 (10%)

11994 11989

Table 1: Score label distribution for the six tasks. The six main scores/classifications
tasks are: (i) Pfirrmann grading, (ii) disc narrowing which are multi-class tasks, (iii)
upper endplate defects, (iv) lower endplate defects, (v) upper marrow changes, and
(vi) lower marrow changes which are binary tasks. Here we define marrow changes as
a subset of the full Modic changes which need both T1 and T2 scans. Both endplate
defects and marrow changes have two separate scores, one each for both the upper (U)
and lower (L) endplate regions. Note, there is a total of 12018 discs but since there are
missing labels, the totals of labelled discs shown in the table for each task are different.

duplicated for each of the six tasks e.g. for a network with a branch point after
Conv4 we have six unique Conv5, FC6, FC7, and FC8 layers, one for each
task. The accuracy for each task and the intra-rater agreement is given in Ta-
ble 2. It can be seen that branching immediately after Conv5 is the best choice,
and we use this configuration in subsequent comparisons.To obtain a standard
deviation over the results, two models are trained for each experiment by swap-
ping the validation and test sets. We also experimented with turning off data
augmentation during both training and at test time, and found that there is a
consistent decrease of 0.5% in performance if test time augmentation is turned
off, and the network overfits to the training set when augmentation is turned
off during training. Overall, we achieve near-human performance, comparing our
results to the intra-rater agreement, for all the learned tasks and consistently
better results if the learned tasks are jointly learned. We also conducted further
experiments on the effectiveness of multi-tasking which can be found in the sup-
plementary material at http://www.robots.ox.ac.uk/~vgg/research/spine.

Comparison to the state-of-the-art: We evaluate our performance on Pfir-
rman grading and disc narrowing classifications using the test set and evalu-
ation protocol of Lootus et al. [7]. We surpass their performance by +8.7%
(87.4% → 96.1%) for Pfirrmann grading, and +4.1% (83.7% → 87.8%) for
disc narrowing. It is important to note that in [7]: Pfirrmann grading is measured
in terms of accuracy to ±1 of the radiologist grade, and disc narrowing grading
is simplified to a binary classification of normal/abnormal discs.

6 Summary & Future Work

We have shown that radiological scores and pathology hotspots can be predicted
to an excellent standard using only the “weak” supervision of class labels. The
proposed method is quite general, and although we have implemented it here
for sagittal T2 scans, it could easily be applied to T1 scans, or indeed to any
medical task where weak supervision is available.
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Task
Intra-

rater

Branch Point

None Conv3 Conv4 Conv5 FC6 FC7

Pfirrmann 70.4 69.8 ± 0.4 71.2 ± 1.0 70.9 ± 0.1 71.2 ± 0.4 69.8 ± 0.4 70.9 ± 0.6

Narrowing 72.0 72.3 ± 2.1 74.4 ± 0.4 73.3 ± 1.9 73.9 ± 0.7 73.2 ± 0.1 74.5 ± 0.7

Upper Endplate Defects 80.7 79.0 ± 0.5 83.0 ± 1.5 81.7 ± 2.5 84.8 ± 0.6 85.8 ± 0.3 85.7 ± 0.1

Lower Endplate Defects 83.3 79.5 ± 1.2 82.8 ± 1.5 84.5 ± 1.2 87.3 ± 2.3 85.8 ± 2.0 86.4 ± 2.0

Upper Marrow Changes 92.5 88.1 ± 0.6 89.1 ± 0.1 89.2 ± 0.2 90.1 ± 0.4 89.2 ± 0.3 89.2 ± 0.5

Lower Marrow Changes 91.4 87.3 ± 0.3 88.2 ± 0.7 88.9 ± 0.2 89.0 ± 0.4 88.5 ± 0.8 88.2 ± 0.7

Table 2: The performance (mean ± std %) with various different branch points on the
test set. Branch point labelled “None” refers to six individual networks each trained
for the six individual tasks. It can be seen that multi-task training results in a better
performance across the multiple tasks and that there is a sweet spot for choosing a
branch point at Conv5 in our case. “Intra-rater” is the intra-rater agreement.
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