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Abstract

Background: Taxonomic classification is a corner stone for the characterisation and comparison of microbial

communities. Currently, most existing methods are either slow, restricted to specific communities, highly sensitive

to taxonomic inconsistencies, or limited to genus level classification. As crucial microbiota information is hinging on

high-level resolution it is imperative to increase taxonomic resolution to species level wherever possible.

Results: In response to this need we developed SPINGO, a flexible and stand-alone software dedicated to high-

resolution assignment of sequences to species level using partial 16S rRNA gene sequences from any environment.

SPINGO compares favourably to other methods in terms of classification accuracy, and is as fast or faster than those

that have higher error rates. As a demonstration of its flexibility for other types of target genes we successfully

applied SPINGO also on cpn60 amplicon sequences.

Conclusions: SPINGO is an accurate, flexible and fast method for low-level taxonomic assignment. This combination is

becoming increasingly important for rapid and accurate processing of amplicon data generated by newer next

generation sequencing technologies.
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Background
Analysis of microbial communities (microbiota) sampled

directly from their natural environment, without clonal

culturing, is a rapidly evolving field with wide-ranging

applications within ecology, agriculture and medicine. A

relatively straight-forward approach for characterizing and

comparing microbiota is to sequence variable regions of

the ubiquitous 16S rRNA gene following amplification

using universal primer pairs. The resulting sequence reads

can either be analysed as groups of similar sequences

(operational taxonomic units: OTUs), or as raw reads. In

either case, taxonomic classification of the resulting

sequence reads is a crucial component for characterising

microbiota composition. The most common tool for this

is the RDP-Classifier which generally assigns partial 16S

rRNA gene sequences down to genus level [1]. There is,

however, a need among investigators to increase the taxo-

nomic resolution to include species assignments wherever

possible. For example, a genus like Streptococcus has

species that are either considered beneficial (S. thermophi-

lus) or pathogenic (S. pneumoniae), thus it is crucial to be

able to identify species with good accuracy whenever se-

quence specificity allows it. In addition, a subset of the

Gram-positive and endospore-forming bacterial species

have traditionally been structured into Clostridium clus-

ters, primarily based on 16S rRNA gene similarities [2].

Many of the species in these clusters often belong to gen-

era other than Clostridium, often due to discrepancies

between their traditionally characterised phenotypes and

molecular phylogeny. As there are established primer

combinations for many of these clusters, which are

frequently used by microbiologists to elucidate micro-

biota community structure, there is a need to link

high-throughput data derived from culture-independent

methods to these more targeted and traditional methods.

So far, the few existing methods that can be used for

species classification “out-of-the-box” are rather limited

and not designed for such purposes: they are either ap-

plied on a very restricted set of species [3, 4], or are only

suitable on reads from soon-obsolete technologies like

the 454 Pyrosequencing due to the low computational

classification speed [5]. Even though broad taxonomic
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assignment of representative OTU sequences is the main

objective for UCLUST as implemented by the assign_

taxonomy.py script within the QIIME software suite [6],

it does have the capacity for species-level assignment

when Greengenes is used as a reference database [7].

However, this is just for a minor subset of OTUs as

Greengenes only have 627 unique species (version 13.5)

compared to 12,394 species in the RDP database (ver-

sion 11.2) compliant with the NCBI Taxonomy. While

both databases have uneven representation of taxa, this

is more prominent for Greengenes where the most

abundant species is Faecalibacterium prausnitzii (15 %

of sequences with species classification) compare to the

RDP database where the most abundant species is

Bacillus subtilis (2 %). Both the Java and mothur imple-

mentations of the RDP-classifier can also be used for

species classifications, however these methods were

designed for broader taxonomic classification [1] and

require re-training using non-default databases. A ver-

satile species-classifier should be able to classify se-

quenced from very diverse environments, and also be

capable of efficiently processing millions of amplicon

sequences generated by more contemporary and low-

cost high-throughput technologies, e.g. Illumina MiSeq,

within a reasonable time-frame. This sequencing tech-

nology now routinely generates 300 bp long paired-end

reads, thereby facilitating coverage of several adjacent

variable regions of the 16S rRNA gene when overlap-

ping paired-end reads are merged.

Here, we present SPINGO (Species-level IdentificatioN

of metaGenOmic amplicons), a stand-alone software

application capable of classifying assignable species sampled

from any environment. Its flexible design, accuracy and

speed allows for frequent taxonomy updates facilitating

even more precise high-resolution classifications without

becoming a computational bottleneck for downstream

analysis.

Implementation
Construction of a species reference database

Full-length (≥1200 bp) bacterial and archaeal 16S rRNA

gene sequences were obtained from the Ribosomal Data-

base Project version 11.2 (http://rdp.cme.msu.edu/). All

sequences were labelled to species names according to

the NCBI (http://www.ncbi.nlm.nih.gov/guide/taxonomy/),

which is readily available and distributes the original

nomenclature as deposited with the submitted sequence

(http://www.ncbi.nlm.nih.gov/WebSub/html/requirements.

html). Only sequences with complete binomial (genus +

species) names were retained, and identical sequences

from the same species were removed in order to reduce

the training dataset. Sequences that were identical, but as-

sociated to multiple species were on the other hand

retained, as such sequences represent species that are not

assignable using our algorithm outlined below. Thus, the

resulting SPINGO reference database only contained full-

length, species-specific 16S rRNA gene sequences, which

were non-redundant for each species. For example, if Spe-

cies A has sequences ACG/ACC/ACC/CCC before this

operation, it will afterwards only have sequences ACG/

ACC/CCC. From this SPINGO database of 95,210 se-

quences and 12,394 unique species, a taxonomy mapping

file was created linking the original sequence identifiers

with a two-level hierarchy comprising both genus and spe-

cies names, as well as Clostridium clusters where applic-

able. For the latter, a lookup table linking species

names with these clusters had previously been com-

piled [2, 8]. Albeit not the main aim of SPINGO, genus-

level classification is also enabled by default to broaden its

application for high taxonomic resolution. The taxonomy

mapping file can be re-used by the make_database.py

script to facilitate future updates or reconstruction based

on other types of taxonomic hierarchies.

Algorithm

Assignment of amplicons to the closest known species

is based on the reference database described above.

This database is loaded into memory and indexed by

k-mers using an inverted index structure, a

SQ;R ¼
QK∩RKj j

QKj j

commonly used index data structure for storing words

(k-mers), which allows for rapid retrieval of all sequences

which contain a given word (k-mer). Query sequences

are then compared to the reference database using the fol-

lowing similarity score: given a query sequence Q and a

reference sequence R, QK is the set of overlapping and

fixed length k-mers present in Q, and RK is the set of over-

lapping k-mers in R. A similarity score SQ,R is calculated

as the number of k-mers shared between the reference

and query sequence, normalized by the number of unique

k-mers in the query sequence thus giving a number in the

range [0, 1].

For each query sequence, the database is searched

using both the forward and reverse complement of the

query and a list of the reference sequence(s) giving the

highest score is retrieved. For each of the taxonomic

levels in the two-level hierarchy, genus and species level,

as well as clostridium cluster, an assignment is made at

that level if the annotations of the reference sequences

are in agreement, otherwise the assignment is consid-

ered to be ambiguous. If an assignment is made at any

taxonomic level, a bootstrapping process, similar to that

of the RDP-classifier [1], is performed to provide a confi-

dence estimate of the taxonomic assignment. Briefly, for

each bootstrap trial at a given k-mer size ksize, a subset
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qk of QK is sampled at random, where |qk| = |Qk|/ksize.

The taxonomic annotations at each level for the refer-

ence sequences giving the highest Sq,R are obtained. The

confidence estimate is then calculated as the proportion

of retrieved sequences with a taxonomic assignment

matching that of Qk at the same level. A low confidence

estimate indicates that many reference sequences have a

similar (but not identical) set of k-mers (low distinctive-

ness), while a high confidence estimate indicates that

there are few reference sequences with a similar com-

position (high distinctiveness).

Creation of validation datasets

To evaluate SPINGO and demonstrate its utility for spe-

cies classification we used two different approaches. First,

we used a 10-fold cross validation [9] with the SPINGO

database on four different methods for species classifica-

tion: SPINGO, the mothur-implementation of the RDP-

classifier (v1.34.1), UCLUST (v1.2.22q; default method in

QIIME’s assign_taxonomy.py) and BLASTn (v.2.2.28),

while keeping database, k-mer size (8-mer) and number of

bootstrap runs (100) constant across compared methods.

All these methods use enumeration of k-mers at an early

stage, but differ significantly in how these counts are proc-

essed in the downstream analysis. A key difference be-

tween SPINGO and the other algorithms is that SPINGO

identifies sequences for indistinguishable species and

discards them as ambiguous candidates, whereas the other

methods will always classify the query sequence even if

there are multiple conflicting hits. Even so, by specifying a

non-default option it is also possible to list all ambiguous

species hits. SPINGO is thus designed to classify relatively

short sequences where the percentage deviation from a

reference sequence is relatively small. One can view k-mer

counting as a proxy for standard pairwise sequence align-

ment based on sequence similarity, but as there still are

some important differences it can be useful to briefly out-

line situations where false positive and negatives will

occur. For example, if a sequence is made of two regions

A =ATATTAAATT and B =GCCGGGCGGC the k-mers

would be ATAT TATT ATTA TTAATAAA AAATAATT

ATTG TTGC TGCC GCCG CCGG CGGG GGGC

GGCG GCGG CGGC, while if A and B where switched

the k-mers would be GCCG CCGG CGGG GGGC GGCG

GCGG CGGC GGCA GCAT CATA ATAT TATT ATTA

TTAA TAAA AAAT AATT, with the k-mers unique to ei-

ther A or B underscored. Thus, the k-mer similarity score

would be high (14/17), but an alignment score would be

low resulting in a false positive. A similar situation could

occur at the start or end of a sequence: For example, if

there is a substitution at the start of sequence 5′-

ATTTGCG, which has k-mers ATTT TTTG TTGC

TGCG, to 5′-GTTTGCG the new k-mers are GTTT

TTTG TTGC TGCG, resulting in a k-mer similarity score

of 3/4 against the original sequence. However, if there

instead is a substitution in the middle to 5′-ATTCGCG

the new k-mers are ATTC TTCG TCGC CGCG, resulting

in k-mer similarity score of 0, much lower than an align-

ment score (false negative). False negatives will also occur

if a query sequence contains a large number of errors

equally spread along the sequence, as the k-mer score

will be lower than what a global alignment score would

be. Nevertheless, a sequence that is not classified due to

a large number of mutations or sequencing errors

should not be classified, even if there is a high global

similarity. This makes sense in a situation where differ-

ent species may differ in only a small number of bases.

So while these issues are worth considering, our empir-

ical data shows that they do not adversely affect the

classifier performance. False positive rate will be more

greatly affected by mislabelled sequences in the data-

base. As for false-negatives, SPINGO does not try to

predict which species are not in a sample - absence of

evidence is not evidence of absence - so that discussion

is purely academic.

For each 10th of the SPINGO database, 12 different vari-

able 16S rRNA gene regions were extracted using the V-

ripper script (Additional file 1 and GitHub distribution)

and classified. Second, we obtained three different data-

sets, based on a simulation, a mock community and a

real-life environmental sample. For the simulation, we

created a dataset of 10,067 full-length 16S rRNA gene

sequences, each representing one type strain, from the

SILVA Living Tree Project version 11.5 [10] using the

NCBI Taxonomy nomenclature,. This facilitated a like-

for-like comparison with the SPINGO database which

contains sequences from the RDP database, but with

species names labelled according to the NCBI Taxonomy.

A hold-out evaluation database was created by removing

9,607 sequences from the SPINGO database that were

present in the SILVA database. Variable regions V1-V3

(6,046 sequences), V3-V5 (5,860) and V6-V9 (5,241) were

extracted from the SILVA database using previously

described primers [11] with the V-ripper script and subse-

quently classified using the evaluation database not con-

taining the 9,607 test sequences. In addition, we classified

sequences derived from a mock community of 21 known

bacterial species in even composition [12]. The 454

Pyrosequencing reads covering the hyper-variable re-

gions V1-V3, V3-V5 and V6-V9 were chimera filtered

using UCHIME [13] with the “Gold” database (http://

microbiomeutil.sourceforge.net) as reference to remove

chimeric sequences. Sequences were considered to be cor-

rectly classified if the unambiguously assigned species was

a known component of the mock community. To also

explore a real biological environment we analyzed amplicon

sequences based on the three primer combinations referred

to above for a stool sample originating from a healthy male
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subject (sample SRS019089 from the Human Microbiome

Project http://hmpdacc.org/HM16STR/healthy).

SPINGO’s accuracy and target versatility was finally dem-

onstrated and evaluated on amplicon sequences derived

from the universal house-keeping gene cpn60. Here, a 10-

fold cross validation was performed on 6,690 amplicon

sequences of the cpn60 Universal Target region (~500 bp)

for which there was a full species name, which were

downloaded from cpnDB [14] on March 4th 2015 (http://

www.cpndb.ca/search.php). The scripts and syntax

used for evaluation are available in the Additional file 1.

Results and discussion
Performance evaluation

The 10-fold cross validation found SPINGO to consist-

ently have the highest classification accuracy regardless

of 16S rRNA gene region (Fig. 1), when keeping k-mer

sizes, database and number of bootstraps constant. Across

all 16S rRNA gene regions tested, SPINGO provided an

increase of on average 15 % to 17 % percentage points in

classification accuracy over the two RDP-classifiers, 21

percentage points over UCLUST, and 30 % percentage

points over BLASTn. Interestingly, while both implemen-

tations of the RDP-classifier give comparable accuracies

for most regions, the Java implementation performs better

than the mothur implementation for the V1V2 and V6V8

regions. The 10-fold cross validation also demonstrates

that SPINGO’s classification accuracy is less impacted by

sequence length than the other classifiers, as can be ob-

served for the shorter regions. We also investigated

whether the accuracy of SPINGO varied much for the

various combinations of k-mer sizes and number of boot-

straps. There were only marginal differences where the

average accuracy for 8-mers was 0.5 % higher with 10

times more bootstrap runs, whereas it was 1.9 % higher

for 12-mers for the corresponding bootstrap increase

(Additional file 2: Figure S1).

The second evaluation approach involved the simulated,

mock and real-life samples, using the four different

methods, all applied on SPINGO’s database: SPINGO

(Fig. 2a-c); the RDP-classifier (Fig. 2d-f); UCLUST

(Fig. 2g-i); and BLASTn (Fig. 2j-l). Unsurprisingly, the

proportion of incorrect assignments decreased with higher

confidence estimate cut-offs. The higher proportion of

incorrect assignments in the SILVA dataset can be attrib-

uted to its greater species diversity. For this dataset,

SPINGO provided the highest True Positive Rate of any of

the classifiers across the three regions tested, and while

Fig. 1 Comparison of species level classification accuracy for 12 different 16S rRNA gene regions by SPINGO, RDP-Classifier, UCLUST and BLASTn,

using 10 fold cross validation. All classifiers were trained on the SPINGO 16S species level database, used k-mer size 8 and 100 bootstraps
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Fig. 2 (See legend on next page.)
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other classifiers such as BLASTn may classify a higher

proportion of sequences SPINGO makes far fewer mis-

takes, in agreement with the results from the 10-fold cross

validation. Similarly for the 21-strain mock community,

SPINGO provides the best True Positive Rate across the

regions and confidence estimates, albeit the difference

between SPINGO and the RDP-classifier here is smaller.

Both BLASTn and UCLUST classified more sequences

than SPINGO and the RDP-classifier, but at a severe cost

to accuracy, except for the V1V3 region where UCLUST

and BLASTn were comparable to SPINGO for the lower

similarity cut-offs and percent identities, respectively. For

the real-life HMP sample there was relatively little vari-

ation of microbiota composition for the 10 most prevalent

species, with SPINGO classifying marginally fewer species

than the other methods. Depending on the variable region,

roughly half of the reads were assigned to a species,

whereof the 10 most abundant species have been associated

to the human gastrointestinal tract (Fig. 2c). Given

SPINGO’s higher classification accuracy from the 10-fold

cross validation and consistently higher True Positive Rate

over the simulated and mock datasets tested, much due to

not accepting ambiguous hits, it is quite conceivable that

the SPINGO assignments are more often correct. Interest-

ingly, the V1V3 region consistently shows the greatest

accuracy of all three 16S regions. The by SPINGO

assigned Clostridium clusters are an additional and useful

feature for researchers interested in the gut microbiome.

Note that while a sequence can be unassigned at species

level due to ambiguity it may still be unambiguously

assigned to a Clostridium cluster, which explains the lar-

ger proportions at this level.

Fig. 3 Species level classification accuracy for SPINGO (k-mer sizes 8,10 and 12, and 100 sub-samples) and RDP-Classifier (only k-mer size 8 and

100 sub-samples due to RAM exhaustion for higher k-mer sizes) as assessed by 10-fold cross validation on a database of 6,690 cpn60 sequences,

using the Universal Target region of each sequence for classification

(See figure on previous page.)

Fig. 2 Performance of SPINGO across three different datasets and three amplicon regions (8-mers with 100 sub-samples; confidence estimate cut-offs at

the X axis). a Species classification of the SILVA sequences, and b 21 bacterial species from a mock community. Proportion of correctly TPR = TP/(TP + FP),

and incorrectly FPR = FP/(TP + FP) assigned sequences. c Stacked relative species abundance and un-stacked proportions of the most abundant Clostridium

clusters in a single stool sample. Species from the Clostridiales order as red gradient and Bacteroidales order as blue gradient. Corresponding comparisons

for the mother implementation of the RDP-Classifier (d-f), UCLUST (g-i; X axis shows UCLUST similarity cut-offs), and BLASTn (j-l; X axis shows Percent

identity). All classifiers were trained on the SPINGO database, using k-mer size 8 and 100 bootstraps
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Species classification of non-16S rRNA gene sequences

To finally illustrate how SPINGO can be applied for

species-classification using other types of sequences than

16S rRNA genes, we trained both SPINGO and the

mothur-implementation of the RDP-classifier on cpnDB

data (see Implementation), which the latter method has

been used for previously [14]. This single-copy gene has

been used as an alternative target for amplicon sequences

due to its high resolution at species level. The accuracy of

SPINGO and the RDP-classifier for assigning sequences

from the cpn60 Universal Target region, an alternative to

the 16S rRNA gene hyper-variable regions, was also here

assessed by performing a 10-fold cross validation. As with

the results from the 16S validation, SPINGO once again

shows higher classification accuracy than the RDP-classifier

(Fig. 3) for three different k-mer sizes, although the increase

is less pronounced with 4.6 percentage points.

Computational performance

SPINGO is a command-line, stand-alone and multi-

threaded software package written in C++ with pre-and

post-processing scripts written in Python. It can be run on

a modest laptop requiring only 2 GB of RAM to accom-

modate the in-memory database for the default k-mer size.

Processing time is inversely proportional to both the k-

mer and database size, and is proportional to the sequence

length. One million ~440 bp long V3V5 amplicons from

the HMP sample analysed above were classified in ~1.7 h

on a 64-bit server, utilizing 4 CPU threads and a k-mer

size of 12. We compared SPINGO’s computational per-

formance using three different k-mer sizes, with the other

tested methods for species classification of HMP sample

reads using their default settings. When only utilising one

CPU for all methods we concluded that SPINGO using k-

mer size 12was faster than all other methods (Fig. 4).

Fig. 4 Comparison of time required to classify 16S rRNA gene V3V5 amplicon reads when trained on the SPINGO database. SPINGO run times

using three different k-mer sizes and two different bootstrap values (8-mer with 10 bootraps by default) compared to the other methods all using

k-mer 8. Only one CPU was used in all cases
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While SPINGO with the default 8-mer and 10 bootstrap

settings is slower than UCLUST and Java-implementation

of the RDP-classifier, it still outperforms the latter

methods in terms of accuracy as outlined above. As

expected, the 100 bootstrap setting does significantly slow

SPINGO down, however only with a marginal improve-

ment in accuracy (Additional file 2: Figure S1), thereby

warranting the use of only 10 bootstraps when classifying

large number of sequences.

Conclusion
Here we present and demonstrate the utility and perform-

ance of SPINGO, a rapid, accurate and flexible classifier

that improves the taxonomic resolution of 16S rRNA gene

amplicons down to species level. While its primary target

is species from any type of environmental sample, it can

also be adapted to arbitrary classification hierarchies, like

Clostridium clusters which are commonly used for char-

acterising mammalian gut microbiota. SPINGO was

consistently the most accurate species-classifier when

compared to the other methods. To end with, the ef-

ficient algorithm provides a significant speed-up com-

pared to existing classifiers which, when combined

with its high accuracy, makes SPINGO a particularly

valuable tool as amplicons more now than ever are

sequenced in the hundreds of millions.

Availability and requirements
The source code, executables and documentation are

available at https://github.com/GuyAllard/SPINGO.

Project name: SPINGO

Operating system(s): Linux

Programming language: C++ / Python

Other requirements: To compile from source the follow-

ing development libraries are required - Boost.program_

options, Boost.serialization and Boost.thread

License: GNU GPL version 3

Restrictions for use by non-academics: None

Additional files

Additional file 1: Additional information on how the 10-fold cross

validation was performed, and how the reference databases were

re-formated for use with compared methodologies. (PDF 7 kb)

Additional file 2: Figure S1. The impact of k-mer size 8 and 12, as well

as the impact of bootstrap values 10 and 100 on species level

classification accuracy for SPINGO as shown by 10 fold cross validation.

(PDF 312 kb)

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

GA designed, programmed and tested the software. GA and FJR carried out

the sequence analysis and comparisons. IBJ provided intellectual input and

contributed to the design of the software. MJC coordinated the study. MJC,

GA and FJR wrote the manuscript, which all authors read and approved.

Availability of data and materials

Not applicable.

Acknowledgements

Funding

This publication has emanated from research conducted with the financial

support of Science Foundation Ireland under Grant Number 11/SIRG/B2162

and SFI/12/RC/2273. Ian B Jeffery is funded under Grant Number 13/SIRG/

2128. We thank Dr Todd DeSantis for valuable discussions on taxonomic

hierarchies.

Received: 19 March 2015 Accepted: 17 September 2015

References

1. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid

assignment of rRNA sequences into the new bacterial taxonomy. Appl

Environ Microbiol. 2007;73(16):5261–7.

2. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J,

Garcia P, et al. The phylogeny of the genus Clostridium: proposal of five

new genera and eleven new species combinations. Int J Syst Bacteriol.

1994;44(4):812–26.

3. Conlan S. Species-level analysis of DNA sequence data from the NIH Human

Microbiome Project. PLoS ONE. 2012;7(10):e47075.

4. Fettweis JM, Serrano MG, Sheth NU, Mayer CM, Glascock AL, Brooks JP, et al.

Species-level classification of the vaginal microbiome. BMC Genomics.

2012;13 Suppl 8:S17.

5. Nakayama J, Jiang J, Watanabe K, Chen K, Ninxin H, Matsuda K, et al. Up to

species-level community analysis of human Gut microbiota by 16S rRNA

amplicon pyrosequencing. Bioscience of Microbiota, Food and Health.

2013;32(2):69–76.

6. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello

EK, et al. QIIME allows analysis of high-throughput community sequencing

data. Nat Methods. 2010;7(5):335–6.

7. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al.

Greengenes, a chimera-checked 16S rRNA gene database and workbench

compatible with ARB. Appl Environ Microbiol. 2006;72(7):5069–72.

8. Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E

et al. Microbes and health sackler colloquium: composition, variability, and

temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad

Sci U S A. 2010;108:4586-591. http://www.ncbi.nlm.nih.gov/pmc/articles/

PMC3063589/pdf/pnas.201000097.pdf.

9. Refaeilzadeh P, Tang L, Liu H. Cross-Validation. In: Encyclopedia of Database

Systems. Springer USA; 2009: 532–538.

10. Munoz R, Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, et al. Release

LTPs104 of the All-species living tree. Syst Appl Microbiol. 2011;34(3):169–70.

11. Ward DV. Evaluation of 16S rDNA-based community profiling for human

microbiome research. PLoS ONE. 2012;7(6), e39315.

12. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, et al.

Chimeric 16S rRNA sequence formation and detection in Sanger and 454-

pyrosequenced PCR amplicons. Genome Res. 2011;21(3):494–504.

13. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves

sensitivity and speed of chimera detection. Bioinformatics.

2011;27(16):2194–200.

14. Links MG, Chaban B, Hemmingsen SM, Muirhead K, Hill JE. mPUMA: a

computational approach to microbiota analysis by de novo assembly of

operational taxonomic units based on protein-coding barcode sequences.

Microbiome. 2013;1(1):23.

Allard et al. BMC Bioinformatics  (2015) 16:324 Page 8 of 8

https://github.com/GuyAllard/SPINGO
http://www.biomedcentral.com/content/supplementary/s12859-015-0747-1-s1.pdf
http://www.biomedcentral.com/content/supplementary/s12859-015-0747-1-s2.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3063589/pdf/pnas.201000097.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3063589/pdf/pnas.201000097.pdf

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Construction of a species reference database
	Algorithm
	Creation of validation datasets

	Results and discussion
	Performance evaluation
	Species classification of non-16S rRNA gene sequences
	Computational performance

	Conclusion
	Availability and requirements
	Additional files
	Competing interests
	Authors’ contributions
	Availability of data and materials
	Funding
	References

