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Abstract—SpiNNaker is a novel chip – based on the ARM
processor – which is designed to support large scale spiking
neural networks simulations. In this paper we describe some
of the features that permit SpiNNaker chips to be connected
together to form scalable massively-parallel systems. Our even-
tual goal is to be able to simulate neural networks consisting
of 10

9 neurons running in ‘real time’, by which we mean that
a similarly sized collection of biological neurons would run at
the same speed.
In this paper we describe the methods by which neural

networks are mapped onto the system, and how features
designed into the chip are to be exploited in practice. We will
also describe the modelling and verification activities by which
we hope to ensure that, when the chip is delivered, it will work
as anticipated.

I. INTRODUCTION

THE SpiNNaker Massively Parallel Computing System
is designed to mimic neural computation [1] which is

characterized by massive processing parallelism and a high
degree of interconnection among the processing units [2].
The system is highly scalable to support a neural simulation
from thousands to millions of neurons with varying degree
of connectivity. A full scale computing system is expected
to simulate over a billion neurons in real-time employing
over one million processing cores to simulate neural com-
putation in parallel. To support the tremendous amount of
inter-neuron communication, a highly efficient asynchronous
packet-switching routing network has been used to connect
the processing cores. Figure 1 shows a logical view of the
SpiNNaker computing system.
Inspired by the structure of brain, the processing cores
have been arranged in independently functional and identical
Chip-Multiprocessors (CMP) to achieve robust distributed
computing. Each processing core is self-sufficient in the
storage required to hold the code and the neurons’ states,
while the chip holds sufficient memory to contain synaptic
information for the neurons in the system connected to
the local neurons. The system at the chip- and system-
level has sufficient redundancy in processing resources and
communication infrastructure to provide a high level of fault
tolerance. The platform makes a large-scale neural simulation
possible in real-time which would otherwise take days to
simulate with software on a personal computer.
As part of this research, a system-level functional model
for the SpiNNaker computing system has been developed
in SystemC capturing cycle-approximate functionality of all
chip components at the transaction-level. Mapping neural
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Fig. 1. Multichip SpiNNaker CMP System.

applications on the SpiNNaker architecture as described
in [3] has been tested on the system-level model with virtual
inter-neuron connectivity by configuring the on-chip router
to verify the functional correctness of the system while the
components are still in the design phase. There were two
mapping challenges as how to group the neurons to minimize
inter-processor communication and then reduce the inter-chip
communication; and how to keep the number of entries in
the multicast routing table to a minimum. In this paper we
share our experiences during the two case studies performed,
mapping two different kinds of neural network applications
onto the SpiNNaker architecture. The experiments will be of
interest to the neural system engineering community, using
architectures similar to the SpiNNaker [4].

II. SPINNAKER ARCHITECTURE

The SpiNNaker CMP has been designed to support highly
parallel distributed computing with high bandwidth inter-
process communication. Each chip contains 20 ARM968
processing cores with a dedicated tightly-coupled memory
holding 32KB of instructions and 64KB of data, sufficient to
implement a fascicle (group of neurons with associated inputs
and outputs) of about 1000 simple spiking neurons. Each
processing core is provided with other peripherals such as a
Timer, Interrupt Controller, Communication Controller and
a DMA Controller to support neural computation. Besides
the cores’ private memory, each chip contains an off-chip
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SDRAM of 1GB which holds most of the information
on synaptic connectivity. The SDRAM is shared among
the 20 processing cores and transfers information to the
tightly coupled memory of the core as and when required,
using the DMA Controller. The off-chip memory module
supports easy upgrading of memory to larger size as per the
requirements of the application. The SDRAM is connected
to the processing cores through the DMA Controller with
the help of an asynchronous Network-on-Chip (NoC) as a
high-bandwidth shared medium among the 20 processing
cores [5]. The network is called the System NoC and it
provides a bandwidth of 1Gb/s. Other chip resources, like the
System RAM, Boot ROM, System Controller and the Router
Configuration Registers are also connected to the processing
cores via the System NoC.

To support the event-driven modeling of spiking neurons
as described in [3], the Timer generates an interrupt with a
millisecond interval notifying the processing core to update
the neurons’ state in its fascicle [6]. The other event is
generated by the Communication Controller on receipt of a
spike in the form of a multicast packet coming from a neuron
in some other fascicle. The Communication Controller is
also responsible for forming a (40bits) packet with source
identifier (containing the firing neuron’s identifier along with
its fascicle identifier and chip address) as a routing key
along with a control header byte on behalf of the firing
neuron in the fascicle. The spike transmission is carried over
yet another asynchronous NoC called the Communications
NoC. The hub of this NoC is a specially designed on-
chip multicast router that routes the packets (spikes) to 20
internal outputs corresponding to on-chip processing cores
and 6 outward links towards other chips as a result of
source-based associative routing. Each chip has links from
its six neighbours that terminate in the Communications NoC
where these along with the internal packets, are serialized
by the Communications NoC before going to the router.
The six two-way links on each chip extend the on-chip
Communications NoC to the six other neighbouring chips
to form a system-wide global packet-switching-network. A
system of any desired scale can be formed by linking chips
to each other with the help of these links, continuing this
process until the system wraps itself around to form a toroidal
mesh of interconnected chips as shown in Figure 1.

The router contains 1K words of associative memory as
a look-up table to find a multicast route associated with the
incoming packet’s routing key. If a match is not found, the
router passes the packet towards the link diagonally opposite
to the incoming link. The process is called ‘default routing’
and it helps in reducing the number of entries in the look-
up table. The global packet-switching network to support
spike communication has been hierarchically organized to
keep the address space to a manageable scale. On the global
network, only chip addresses are visible. Each chip maintains
a chip-level private subnet of 20 fascicle processing cores
that is visible only to the local router, while an individual
neuron’s identifier is local to the processing core. With this

Fig. 2. Multicast Routing.

scheme we can keep the global address space to a limited
number of entries in the routing tables. The router masks
the bits containing neurons identifier to look up against the
chip address and fascicle identifier only. Fascicle identifier is
included in this lookup to identify packets destined for the
local chip. This way, for a fascicle size of 256 neurons we
can mask 8 bits carrying the neuron’s identifier and thus can
reduce the number of entries in the routing table to only 64
instead of 16,384 (= 214) with a source identifier of 14 bits
as shown in Figure 2. To deal with transient congestion at the
outer links, the router can route the packet to its adjacent link
as a measure of emergency routing. The neighbouring chip’s
router aligns the packet back to its correct path. The router
is an efficient hardware component that can route one packet
per cycle at 200 MHz. The Communications NoC supports
up to 6 Gb/s per chip bandwidth [7]. The router can also
route point-to-point and nearest neighbour packets which are
used for system management and debugging/configuration
purposes.
The system is connected to a personal computer called the
Host System by linking any one (or more) chip(s) through
an on-chip Ethernet link. The system is configured at the
boot-up and the routing tables are computed and loaded to
each chip as per the application’s setting. The application
is injected to the connected chip(s) using Ethernet frames,
from where it is flood filled to other chips via the global
asynchronous packet-switching network.

III. NEURAL NETWORK MODELS

Both biological data and computer modelling indicate that
patterns of connectivity are largely responsible for observed
differences in network behaviour. It is therefore essential to
be able to model differing connectivity patterns in spiking
neural hardware if the device is to be biologically plausible
(or computationally useful), however, this presents significant
challenges. Most significant among them is the sheer scale of
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the connection structure: even a relatively simple biological
neural network might contain 10,000 neurons, with 1000
connections each, resulting in 10,000,000 potential connec-
tion paths for each neuron. Furthermore, known biological
effects like Spike-Timing Dependent Plasticity (STDP) [8]
and axonal delays [9] play significant roles in the compu-
tation that the model cannot ignore, or simplify too much,
without risking severe degradation in realism or computing
power. Implementing these connections as physical wires
very quickly runs up against fundamental scaling barriers in
silicon process technology: routing overhead, wire density,
and limits to routability imposed by a finite number of metal
layers. It is therefore essential to find novel routing strategies
that permit a reduction in the number of wires, using virtual-
mapping techniques that decouple the physical wire structure
from the modelled connectivity of the network.

The solutions that present themselves in silicon technology
fall into 2 broad classes, time multiplexing and component
abstraction. Tuffy et al. [10] use time-multiplexing circuitry
to aggregate the outputs from multiple neurons onto a single
bus wire. This effectively collapses the interconnect, how-
ever, the neurons themselves remain physically implemented,
and this in turn limits the achievable on-chip densities
(to about 3000 neurons/chip), as well as hard-wiring some
topological characteristics because of the fixed master/slave
relationship of the bus architecture. Reconfigurable FPGA
architectures, e.g. [11] are another, extremely popular time-
multiplexing technique, here multiplexing the entire network
by swapping out physical components. FPGAs are also pop-
ular for the second method, component abstraction [12]. The
component abstraction technique reduces size by developing
modules with generic functionality, which can implement
arbitrary neural function (often with some simplification).
FPGAs, however, are notorious for high power consump-
tion, slow speed, and cumbersome reconfiguration. Hence
application-specific hardware embedding dedicated abstract
neural components have recently emerged [13]. These de-
vices can be very general-purpose but still suffer from
routing overhead unless combined with time-multiplexing
techniques. However, if taken as completely arbitrary in
topology and dynamics, such systems encounter formidable
routability and memory size barriers.

Observed properties of real neural networks permit several
important simplifying assumptions that make the general-
purpose architecture feasible. One of the most significant is
that neurons tend to cluster in well-identified groups possess-
ing dense local connectivity and relatively sparse long-range
connectivity [14]. Sometimes, e.g. in V1 regions in the visual
cortex [15], the local connectivity patterns express via their
spatial position external spatial or logical topologies in the
real world; in other cases, e.g. hippocampal place cells [16],
it is possible to identify connectivity groupings even though,
to date, no direct mapping has been identifiable with external
features. It is also evident from these observations that
it must be possible to implement a hierarchical locality
containing regions, subregions, fields, etc. Since in most

cases, the projections of these regions into further processing
areas are much sparser than the local connections, taking
a model that presumes a connection density gradient with
distance, particularly one with an exponential distribution,
allows the mapping of neurons to processors and connections
to concentrate associated groups into a single processor or a
small group of processors on the same die, preserving limited
long-range routing resources for the sparser connections.

Real spiking networks have both sparse patterns of activity
and relatively slow signalling. Common estimates of spike
frequency suggest an upper limit of about 100 Hz on spike-
frequency rates, with delays over the entire network being
of the order of milliseconds. By contrast silicon has delays
of the order of nanoseconds, and if it is understood that
the mapping technique decouples the physical wire structure
from the connectivity patterns of the modelled network,
the system will be able to hide delays and effects of the
physical routing itself, so that the network model does not
have any dependencies on the hardware implementation.
Slow signalling speeds with sparse activity also mean the
routers themselves can effectively process a large number
of connections without excessive congestion. If about 1% of
neurons are spiking at any one moment, at the full spiking
rate of 100Hz, then a router processing at the rate of 100MHz
will, on average, be able to handle the traffic from 108

neurons. If this router contains 1000 routing entries, this
means in turn that it will be able to aggregate 105 neural
signals into a single entry, greatly simplifying the structure
since the router can simply steer generic groups of signals
into a given path. In short, it is not particularly important
that the router direct each individual signal along a precise
route.

By taking advantage of these important characteristics,
the hardware routing structure can, at least in theory, be
relatively small and simple yet be able to cope with millions
or even billions of connections without causing intractable
difficulties in routability. The architecture, in essence, time-
multiplexes large numbers of neural connections onto the
same network fabric, so that a single physical link represents
in fact multiple neural links, taking advantage of the great
differences in speed between electronic and biological signal
transmission. Biological experiments, however, demonstrate
that delays in neural networks, particularly axonal delays,
have a significant effect on the processing, and this would
be a potentially fatal shortcoming of the architecture if it
were proposed that the network fabric itself model these
delays, either through direct hardware support or by a scaling
of the silicon delays themselves. In a separate paper [6],
however, we demonstrate that it is possible to model these
delays effectively at the processing nodes themselves, taking
advantage in this case of the extreme difference in the
processing speed of digital computation against real neurons.
Therefore, no part of the network fabric itself need have any
direct correlation to the network being modelled, and this
is the essence of the approach, complete decoupling of the
silicon hardware from the modelled network.
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Such a network is flexible enough to map multiple differ-
ent patterns of connectivity in the same way that various dif-
ferent biological networks or brain regions display markedly
different connectivity patterns, e.g., the difference between
cerebellar regions and primary visual cortex. At the same
time it does not exhibit any critical model dependence: the
hardware does not embed the characteristics of a particular
neural model into its design, and so it is able to accomodate
new and developing models of neuronal computation, e.g.
[17]. Provided the routing structure is run-time reconfig-
urable, it can also dynamically reassign connections, not
simply by a reshuffling of weight values (although this is
a simple way to achieve changes) but also through processes
that physically remap connections operating over long time
scales, which recent work demonstrates may be important
for long-term development [18]. Ideally, such connectiv-
ity should be able to express the inherently fault-tolerant
property of biological systems: the network can adapt and
remap itself to compensate for failure or death of a group of
neurons.
Critically, however, the connectivity must be scalable.
Biological neural networks range from simple systems of
creatures such as the squid up to the extraordinary complexity
of the human brain, and yet use the same underlying archi-
tecture, the same componentry, the same signalling methods.
If a system for spiking neural networks is to be biologically
plausible, therefore, it must display at least reasonable scal-
ability, so that the same mapping and routing strategies that
are effective for small groups of tens or hundreds of neurons
remain effective when modelling millions or tens of millions
of neurons. It is first and foremost the question of scalability
that makes it essential to turn to simulation and modelling,
in order to verify the architecture prior to committing it to
silicon.

IV. MAPPING NEURAL NETWORKS

To test the hardware models and to check that our routing
table software (SpiNNit) works correctly, we have developed
a mechanism to generate random networks and to generate
random traffic on such networks. One quick and obvious way
to generate test data is to ignore the virtualization of the
addresses of the neurons and instead work with neurons that
have already been placed in a fixed 2-dimensional square
grid pattern. It is then a simple matter to connect neurons
randomly together. This is the approach we have taken, since
we then do not have to contemplate the problem of assigning
locations to virtual neurons. Subsequently, we also generate
random packets for this network and with these we validate
the hardware design.
We begin by describing our method for generating random
neural nets. The worst case for the SpiNNaker is when
neurons connect to other neurons with no locality effects.
This can be modelled by connecting a neuron to any other
neuron with fixed probability p. The distribution of the con-
nections is then uniform since the probability of connecting
to any other neuron is constant. Simulation data for this
model was encouraging in the sense that the machine still

ran, but it needs to be borne in mind that the simulated
systems were relatively small. Although the performance of
the machine was adequate the routing tables were small. This
behaviour arose because most spikes were sent to most of
the other processors, and hence default routing and multicast
provide an effective method for getting spiking events to all
of the other processors that would need to know what had
happened.
However, the SpiNNaker machine is designed to perform
best when neural connections demonstrate some kind of lo-
cality. One simple way to generate the required locality is to
generate connections for which there is a higher probability
of a short connection than a long one. A simple mathematical
model of this assumes that the distribution of connections is
normally distributed in the x and y directions. This can be
thought of as a ‘target-like’ distribution where most of the
‘hits’ are clustered around the centre, and fewer ‘hits’ occur
in the outlying regions. The distribution of connections is
then normal, since the dependence of connection probability
with the x and y distances follows a normal Gaussian
distribution.
The method for generating these normally distributed ran-
dom connections uses the Box-Muller transformation [19].
If we consider the pair of random variables (X, Y ) as
describing rectangular coordinates in 2-dimensional space
then the transforming them to polar coordinates makes things
much easier.
Suppose that U1, U2 are independent, continuous,
uniformly-distributed random variables on the interval (0, 1].
Then, letting r =

√
−2 ln(U1) and θ = 2πU2, we obtain

two independent, normally-distributed random variables
X and Y with X = r cos(θ) and Y = r sin(θ); each is
distributed N(0, 1).
This also demonstrates how to compute a sequence
of exponentially-distributed random numbers: generate a
uniformly-distributed random variable (U ) and then trans-
form to X = ln(U). This is exponentially-distributed with
parameter λ = 1.
An interesting phenomenon has been observed: networks
with high locality generate routing tables with relatively few
entries (6–12); networks with low locality generate routing
tables with relatively few entries (again 6–12); however, net-
works with intermediate locality generate very large routing
tables (typically 1, 000–10, 000 entries). We can handle this
behaviour by multicast default routing these spikes to all
neurons, but this is less than ideal. It remains to be seen if
this behaviour is a feature of real neural nets or is instead
an artifact of simplistic modelling assumptions.
To generate random traffic, we have given each neuron
a fixed time constant, and assumed that it fires after a
time t which is exponentially distributed. This simplifies the
mathematical modelling – queueing theory with exponential
inter-arrival times is tractable – but the assumption that these
events are independent is obviously unlikely to be observed
in reality.
Our mathematical modelling of the generation of networks

2008 International Joint Conference on Neural Networks (IJCNN 2008) 2853



and traffic is crude, and it remains for the hardware to be built
in order to see how accurate we have been. It should be noted
that the methods described have been useful debugging and
validation tools, even if the data generated is not entirely
accurate.

V. IMPLEMENTATION PROCESS FOR MAPPING THE
NEURAL NETWORKS

As shown above, each SpiNNaker chip is connected to
six neighbours. We expect a flat, 2D interconnect – resulting
in a hexagonal pattern – to suffice for the intended appli-
cation and this will allow straightforward layout on PCBs.
However, this certainly should not be taken to imply that
the system can only model 2D neural structures; SpiNNaker
can model networks in two, three or more dimensions. The
key to this flexibility is that SpiNNaker maps each neuron
into a virtual address space. Assignments can be arbitrary,
though assignments related to physical structure are likely to
improve modelling efficiency. Neurons can be allocated to
any processor, and the routing tables must be configured to
send the neural events accordingly.

NEURON ADDRESS

P00

C01

C10

C11

C00

P01 P11

P10

P01 P11

P10

P01 P11

P10P00

P01 P11

P10P00

P00

X Y X Y X Y

Fig. 3. Neuron Assignment and Mapping.

The first step in the mapping process is to assign every
neuron to a processor. Given the absolute flexibility in as-
signment, this is a heuristically-driven step. Figure 3 shows a
small (8 neuron by 8 neuron, shown as black circles) section
of a 2D neural network. Spiking neural nets tend to show
locality of connections, i.e., neurons tend to be connected to
nearby neurons, forming clusters; these clusters are some-
times known as fascicles. Therefore, assigning neighbouring
neurons to the same processor, or processors in the same
chip, will result in shorter routes and less inter-chip traffic.
Figure 3 shows a very simple, ‘rectangular’ assignment of
neurons to processors (labelled Pnn) and chips (labelled
Cnn). Interestingly, even though the chips are connected
in a pattern that would suggest some form of hexagonal
addressing scheme [20], our experiments have shown that

a Cartesian coordinate system is adequate for an efficient
mapping and routing process.
The second step in the process is to map the neuron into
a virtual address space. As explained above, the routers can
associate the neurons in groups and each group is routed
using the same look-up table entry. The chosen mapping,
shown at the bottom of Figure 3, guarantees that neurons that
have been assigned to the same processor can be grouped in
the same routing entry. By giving proper values to the router
entry masks, neurons assigned to different processors in the
same chip can also be grouped in the same entry, if adequate.

O

D

I D T

Fig. 4. Route Setup.

After the neurons have been assigned to processors and
mapped into the virtual address space, routing information
can be generated. The first step is to set up a route for
every connection in the neural net. The process is driven
by two criteria: the route should go through the minimum
number of routers, and should result in the minimum number
of router entries. These criteria should optimize the use of
router resources and should also have a positive impact in
network traffic. The ‘default’ routing mechanism, introduced
above, is used to eliminate the need for routing entries in
most routers along the selected route. An example which
shows how routes are constructed (or ‘setup’) is illustrated
in Figure 4. A packet sent from the ‘origin’ node (labelled
O in the figure) to the ‘target’ node (labelled T) traverses
the predefined route shown. The route is one of the (possibly
many) shortest routes available, which will comprise, at most,
two straight segments that meet at the ‘inflection’ or turning
node (labelled I). The segments may contain intermediate
nodes (labelled D). If a multicast packet is sent along the
route described above, routing entries are needed in nodes
O, I and T, while the rest of the nodes, i.e. D nodes, can
take advantage of the default routing mechanism. Default
routing can reduce the size of the routing tables significantly,
especially in long-distance neuron connections.
Once a route has been set up for every connection asso-
ciated with a neuron, the next step combines the individual
routing entries into multicast routing entries. This must be
done carefully, given that some of the individual routes rely
on default routing. As a result of this step, ‘primitive route
tables’ are generated, so called because each table has, at
most, one routing entry per neuron. In most cases, due to
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the locality of connections and the use of default routing,
routers will not require a routing entry for a large majority
of the neurons.
The final step in the process generates minimal routing
tables. For this purpose, the tables are treated as logic
functions: the multicast entries constitute the on-set of the
function, the default entries constitute the off-set and ‘un-
related’ neurons, i.e., those that have no routes traversing
the node, are considered the ‘don’t-care’ set. Currently
espresso [21], a well-established logic minimizer, is used
to minimize the tables. An application called SpiNNit was
developed to automate the process and this was used in the
generation of the results presented later.

VI. IMPLEMENTATION

The system-level model for the SpiNNaker computing
system captures the architectural details for each component
in the SpiNNaker CMP to exhibit a cycle-approximate be-
haviour at the functional level. For asynchronous components
like the Communications NoC and the System NoC, the
timing behaviour has been incorporated into the model
using Hardware Description Language (HDL) behavioural
simulation. The ARM core has not been simulated with
an Instruction Set Simulator (ISS); however, it maintains
cycle-approximate communication at the transaction-level
with all its peripherals using the AMBA High-performance
Bus (AHB) model. The model is flexible in scale, memory
size, address space and clock timing, all of which can
be configured with parameters. We simulated the system-
level model for the SpiNNaker computing system at various
scales to verify functional hypotheses. The neural mapping as
described later was implemented on the system-level model
for two different types of neural problems helping us to
verify its functionality at multiple levels. The mapping was
implemented in C++ to run on the processing cores’ models
while the routing tables entries for each on-chip router were
computed with the help of SpiNNit, developed as a part of
this exercise.

A. Simple Spiking Neurons Model

This was a very simple case study designed to verify the
router’s functionality. For this we mapped one neuron to
each fascicle processor. Each chip contained four fascicle
processors and one monitor processor while the system con-
sisted of 4x4 (16) chips. The neurons’ mapping information
was provided to the SpiNNit to determine the routing table
entries for the on-chip routers’ multicast lookup and mask
tables. Sample packet files for each processor were created
by the SpiNNit with expected output files containing the
packets each fascicle processor should receive at the end of
the simulation. The simulation recorded the output packets
with one output file for each processor. While the fascicle
output files recorded the received packets, monitor processor
output files contained any packet dropped to the monitor
processor due to some error such as long lasting congestion,
parity error and time-phase error. It was difficult to check
all the output files manually against their expected output

Fig. 5. A Typical Multilayer NN Model.

files and then trace any unexpected or dropped packet to
the monitor processor. An automated process was created
with the help of the transaction recording functionality of
the SystemC Verification (SCV) library. This compared the
output with the expected outputs and generated a report for
any missing or unexpected packets found in any fascicle
output file. The experiment was run several times with
many variations for debugging and verification purposes. The
results matched the expected behaviour. The tests included
emergency routing, default routing and packet dropping to
the monitor processor. Critical to reducing routing table size
is the successful exploitation of default routing. This remains
true in the presence of congestion with emergency routing,
as the emergency routing mechanism brings the packet to its
original path despite having been diverted.

B. Layered Neural Networks Model

A typical multilayer neural network learning algorithm
consists of an input layer, an output layer and a number of
hidden layers each containing neurons with the connectivity
as shown in Figure 5. Psychologists use a similar model:
the Parallel Distributed Processing (PDP) learning model.
We carried out a case study to see the feasibility of using
SpiNNaker for running the PDP learning model with the
researchers in the School of Psychological Sciences, at the
University of Manchester. They have been using a PC Cluster
for running the simulation with the Light Efficient Network
Simulator (LENS) [22] application. Every neuron in a layer
can receive input from many neurons (depending on the
connectivity level) in its preceding layer. The inputs are mul-
tiplied by the connection weights and then summed together
to produce the output for the next layer. The output layer
neurons add the weighted inputs to generate the activation
using the activation function. The output is used with the
target output to compute the error (delta) to backpropagate
synaptic updates. The PDP model is very different from a
spiking neural model, as the packets have to carry payload
as input to the next layer neurons and there is no notion of
real-time involved. Moreover, many inputs can converge at
the same target neuron at the same time, which might have
caused bottleneck for the Communications NoC.
These variations made the task a bit difficult for the
communication system of SpiNNaker; however, we could use
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Fig. 6. PDP Neural Mapping.

the flexibility in the SpiNNaker architecture to circumvent
this problem. Instead of using a direct, one-unit-to-one-
processor mapping with the inherent risk of traffic congestion
at target units, we cast the problem as a weights matrix
multiplication problem of the neurons in the hidden and
the output layers. Consider the neurons as partial result-
computing units and feed the results forward to the next layer
units which accumulate these results to those further ahead,
until received by the output layer to compute the activation
and delta. The same process is repeated in back-propagation
of the delta.
We divided the large matrix computational problem into
small portions, assigning one portion to each processor out
of the many spread over different chips. To further reduce
the router traffic we decided to pass on results among the
processors on the same chip by using a shared-memory
message-passing technique with the help of on-chip System
RAM. The partial results to the processors outside the chips
were passed as multicast packets after configuring the routing
tables as per the procedure described above. As shown in
Figure 6, the dark coloured and light coloured processors
in processor columns marked as A in each chip compute
partial products from the input vector and the weight matrix,
and pass these to their corresponding coloured processors
marked as number 2 and 3 respectively using shared-memory
message-passing technique. Processors number 2 and number
3 on each chip in the chip columns C1 to C4 send their results
to processors number 1 in rows R1 and R2 respectively using
multicast packets. After a specified period of time the same
procedure is repeated for dark and light coloured processors
in processor columns B on each chip. The processors number
1 are the output layer processors that compute the activation
output and the partial delta values. In the second phase
of feed-forward pass, processor 1 of each chip in chip-
column C1 will multicast the partial delta result to all number
2 processors in row R1, processor 1 in column C2 will
multicast to all number 2 processors in row R2 and so on.
During back-propagation, the computed delta is transmitted
backward following the same path.
The routing tables for forward and backward path multi-

Fig. 7. Simulation of the PDP Model on the SpiNNaker System.

cast packets were computed with the help of SpiNNit for var-
ious scales of the SpiNNaker system. Because the ARM968
core has been modeled at an abstract level in the SpiNNaker
system-level model, the computation was modeled using
the cycle-accurate ARM RealView ARMulator ISS model
with an ARM968 core to acquire accurate computational
timing including the time for shared-memory message pass-
ing between local chip processors. We implemented the
PDP model in C++ on the system-level model incorporating
the processing delays acquired from RealView ARMulator.
We simulated a 195-chip SpiNNaker computing system for
150,000ns of activity. As the model gives accurate timing
for the communication, the resulting simulation time was
approximately what we expect on the SpiNNaker hardware.
The simulation results with a comparison to LENS simula-
tion on a PC are shown in Figure 7. In this case study also,
we managed to keep the routing table entries to a minimum
with the help of default routing, masking and shared-memory
message-passing techniques among the fascicle processors on
the same chip.

VII. CONCLUSIONS

We have investigated an alternative to direct-mapped
hardware neural networks: soft-mapping neural connectivity
using a hardware structure that permits a virtual network
topology to be superimposed on a dedicated architecture
designed for its mapping flexibility. Where with direct-
mapped approaches the principal challenges lie in achieving
the required wiring densities in silicon, with the routed virtual
network approach the behaviour and resource requirements
depend on the degree of inhomogeneity of the dynamics and
the topology. Highly homogeneous networks, while easily
mapped, tend to strain the processing capability of the system
since their heavy, symmetric loads defeat attempts to localise
processing or routing. Highly inhomogeneous networks are
also easily mapped, but utilise resources inefficiently since
the extremely local nature of the processing in this case
makes it difficult to distribute the work. Intermediate cases,
meanwhile, efficiently use resources but can strain the size
of the mapping tables required, because the system cannot
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make use of simplistic default routing that aggregates large
numbers of connections. From a system standpoint, this
divides the mapping space into distinct regions or ‘phases’,
where the behaviour is extremely different, and suggests
that the nature of the mapper required will likewise use a
multiphase algorithm to optimise the routing tables.
Initial simulations of performance, while encouraging,
indicate that it will be essential to simulate larger networks.
How the performance scales with very large systems con-
taining thousands of processors is at this point unclear; what
preliminary testing shows is that the effectiveness of the
mapper in finding optimal neuron placement and routing
will have an impact on system performance sufficiently
great that it will probably form the difference between a
working system and one that does not work. Presently we
are refining our system-level model to enable application
development using the ARM instruction set, incorporating
a cycle-accurate instruction set simulator (ISS) model of the
target ARM968E-S processing core with its other peripher-
als. With this model we can develop and test the intended
neural applications for the target hardware. For this purpose
the Izhikevich [23] spiking neuron model, already imple-
mented in an ARM968E-S ISS using ARM’s proprietary
Realview ARMulator [6] is being ported to our system-level
simulator. Provided the test chip is available once this model
is complete, the developed applications will then be run on it
for hardware verification. Performance analysis on the basis
of a system-level simulation of a reasonable scale will be
carried out in near future for design verification. The same
application, after fine tuning, shall serve as a golden model
to refine our mapping technique discussed in this paper. We
intend also to study dynamic mapping by readjusting routing
tables at run-time based on the synaptic update information
at each chip and congestion on the inter-chip links.
We have shown that the system is able to model very
different classes of neural network, but for this capability to
be useful, it must operate in conjunction with configuration
software that can likewise optimise the mapping for the
particular class of network. There thus remains considerable
work to be done in developing the configuration tools,
identifying and classifying biologically realistic patterns of
connectivity, and working both on software simulation and
hardware modelling to extend the size of the networks under
simulation. SpiNNaker’s virtual network approach to neural
modelling extends the size and class of neural networks that
hardware can model, but as an effective tool requires new
insights into the nature of neural connectivity, insights that
may in time prove as useful to the biological community that
is the target end user of the system as to the computational
community that is the source developer of it.
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