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1 Introduction

Conformal field theories (CFTs) play an important role throughout theoretical physics.

Their use ranges from describing string worldsheets in two dimensions, to condensed matter

systems in three dimensions, to having numerous phenomenological applications in beyond

the standard model physics in four dimensions. Moreover, in any number of dimensions

they help to shed light on fundamental questions about quantum gravity and effective

field theories, via the AdS/CFT correspondence. However, while it is possible to find

solvable CFTs in two dimensions (where one can use the full Virasoro algebra) or in highly

supersymmetric theories, more generally very few tools exist to learn about the behavior

of concrete CFTs.
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Recently some progress has been made at pursuing the approach called the ‘confor-

mal bootstrap’ [1, 2], which aims to learn about CFTs by understanding the constraints

imposed by associativity of the operator product expansion (OPE). In [3–10] it was for

example demonstrated that crossing symmetry of four point functions of scalars combined

with unitarity leads to completely general bounds on CFT operator dimensions and OPE

coefficients. On the other hand, in [11, 12] it was shown that explicit solutions to the con-

straints of crossing symmetry can be constructed in large N theories, where the solutions

are in a one-to-one correspondence with local interactions in AdS. Additional progress has

been made at understanding the constraints of unitarity in this context [13], as well as

in exploring the recently found analogy between CFT correlation functions in the Mellin

representation and scattering amplitudes [14–17].

In the above concrete implementations of the bootstrap program, an extremely impor-

tant role is played by the functions referred to as the conformal blocks. These functions

depend on the conformal cross-ratios u, v, and represent the contribution of a given con-

formal primary operator and all of its descendants to a CFT four point function. As such,

conformal blocks are in principle completely determined by the dimensions and spins of

the external primary operators, as well as those of the exchanged primary operator.

So far, conformal blocks have been worked out only for external operators being Lorentz

scalars, while the exchanged operator can be a traceless symmetric tensor of arbitrary spin

l. In even space-time dimensions, closed form expressions for the conformal blocks in terms

of hypergeometric functions are known [18, 19]. On the other hand, in odd dimensions,

less explicit but perhaps still useful expressions exist, either in terms of simple integrals,

or in terms of a double power series expansion in u and 1 − v for l = 0, combined with

recursion relations for higher spins [18, 20].

For external fields of nonzero spin, however, conformal blocks have so far remained

elusive. Yet it would be very interesting to know them, at least for situations where the

external spins are equal to 1 or 2. The bootstrap program could e.g. then be attempted

for four point functions containing the stress tensor and/or global symmetry currents.1

These fields, unlike the external scalars used so far [3–12], are conserved, so they have

protected (and thus known) dimensions. They can then for example be used to study any

CFT with a given global symmetry. This is particularly important if one is interested in

CFTs without low-dimension scalars, as would be expected in CFT duals to pure quantum

gravity in AdS.

The purpose of the present paper is to make progress on the problem of finding confor-

mal blocks for four point functions of operators with nonzero spin, building on the results

and formalism developed in [22]. Our main result is an expression which allows us to com-

pute any such conformal block in terms of derivatives acting on the basic scalar conformal

blocks, provided that the exchanged field is a traceless symmetric tensor. This limitation is

due to the fact that only traceless symmetric tensors can appear in the OPEs of scalars; we

will also comment on possible approaches to obtaining the higher spin conformal blocks for

other possible exchanged operators (such as antisymmetric tensors). To arrive at our result,

we will make extensive use of the ‘index-free’ embedding space formalism presented in [22].

1See however [21] for recent progress at understanding the superconformal blocks of currents in four

dimensional theories with N = 1 supersymmetry, where currents reside in scalar multiplets.
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This paper is organized as follows. In section 2 we review the derivation of the confor-

mal blocks for four point functions of scalar operators. In section 3 we begin by presenting

a method to express three point functions containing operators of arbitrary spin in terms

of differential operators acting on the basic scalar-scalar-spin l three point functions. We

then argue that applying the same differential operators to scalar conformal blocks will

generate higher spin conformal blocks, and we discuss some simple examples and special

cases of the application of this technique. We conclude in section 4.

2 Scalar conformal blocks revisited

2.1 Conformal blocks and the operator product expansion

In this paper we will focus on conformal field theories in d ≥ 3 Euclidean dimensions, so

that the conformal group is SO(d + 1, 1). All of our equations can be Wick-rotated to

the Minkowski signature, paying attention to the iǫ prescription. We will assume that the

reader is familiar with the basics of the theory, see e.g. [23], chapter 4.

Let us begin by considering a correlation function between four scalar primaries φi of

dimension ∆i, which is fixed by conformal invariance to be of the form

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =

(

x224
x214

)
1

2
∆12
(

x214
x213

)
1

2
∆34 G(u, v)

(x212)
1

2
(∆1+∆2)(x234)

1

2
(∆3+∆4)

,

(2.1)

where xij ≡ xi−xj , ∆ij ≡ ∆i−∆j , and G(u, v) is an arbitrary function of the conformally

invariant cross-ratios

u =
x212x

2
34

x213x
2
24

, v =
x214x

2
23

x213x
2
24

. (2.2)

In general, G(u, v) can be expanded in a basis of functions called conformal blocks. To

obtain these, we should first consider the operator product expansion (OPE)

φ1(x1)φ2(x2) =
∑

O

λ12OC(x12, ∂x2
)e1...elOe1...el(x2) , (2.3)

where the sum runs over all primary operators O which appear in the φ1×φ2 OPE. For the

OPE of two scalars, these operators are traceless symmetric tensors of an arbitrary spin

l. The function C(x12, ∂x2
) is then fixed by conformal invariance in terms of the operator

dimensions, while λ12O is an undetermined numerical coefficient. Inserting this OPE as well

as the analogous OPE for φ3×φ4 into the four point function, we obtain the representation

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =
∑

O

λ12Oλ34OWO(x1, x2, x3, x4) , (2.4)

where the contribution of the operatorO, which we call a conformal partial wave, is given by

WO(x1, x2, x3, x4) = C(x12, ∂x2
)e1...elC(x34, ∂x4

)f1...fl〈Oe1...el(x2)Of1...fl(x4)〉

=

(

x224
x214

)
1

2
∆12
(

x214
x213

)
1

2
∆34 GO(u, v)

(x212)
1

2
(∆1+∆2)(x234)

1

2
(∆3+∆4)

. (2.5)
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This equation defines a function GO(u, v) called a conformal block.2 We will comment in

section 2.4 below why it is possible to express WO in the same form as eq. (2.1), via a

function of cross ratios.

Comparing with eq. (2.1), we obtain

G(u, v) =
∑

O

λ12Oλ34OGO(u, v) . (2.6)

Thus, we see that the expansion in conformal blocks allow us to obtain a representation

of the otherwise arbitrary function G(u, v) in terms of CFT data, namely the spectrum of

operator dimensions appearing in the OPE and the corresponding OPE coefficients. This

explains their fundamental importance.

2.2 Explicit conformal blocks

The most direct definition of a conformal block comes from eq. (2.5). In fact, it was by

using this definition that Dolan and Osborn first computed closed form expressions for

the conformal blocks of an arbitrary spin-l primary in d = 2, 4 [18]. The d = 4 result

is given by

GO(u, v) =
(−)l

2l
zz̄

z − z̄
[ k∆+l(z)k∆−l−2(z̄)− (z ↔ z̄)] , (2.7)

kβ(x) ≡ xβ/22F1

(

β −∆12

2
,
β +∆34

2
, β;x

)

, (2.8)

where the variables z, z̄ are related to u, v via

u = zz̄, v = (1− z)(1− z̄) . (2.9)

Unfortunately, similarly explicit expressions are not yet known in d = 3, but there do exist

simple integral representations and power series expansions (see [18] and more recently [20])

which may prove useful.

2.3 Conformal block normalization

Next, we will explain the normalization of the conformal blocks (2.8) by making a direct

comparison with the OPE. To begin, we will require that two point functions of primaries

have a unit normalization. For scalars, this is given by

〈φi(x)φj(0)〉 =
δij

(x2)∆i
, (2.10)

while for tensors a convenient way to express the unit normalization condition is by con-

tracting with two constant traceless symmetric rank l tensors K and K ′:

〈K · O(x)K ′ · O(0)〉 =
1

(x2)∆
Ka1...alK ′b1...blIa1b1(x) . . . Ialbl(x) , (2.11)

Iab(x) ≡ δab − 2
xaxb
x2

. (2.12)

2Note that some authors also refer to GO as a conformal partial wave. However, it seems more natural

to us to apply the latter name to the whole function WO.
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The OPE coefficient λ12O is then defined via the three point function

〈φ1(x1)φ2(x2)K · O(x3)〉 =
λ12O Ka1...alY

a1 . . . Y al

(x212)
1

2
(∆1+∆2−∆+l)(x223)

1

2
(∆2+∆−∆1−l)(x213)

1

2
(∆1+∆−∆2−l)

,

(2.13)

Y a ≡
xa13
x213

−
xa23
x223

. (2.14)

These definitions then correspond to the following normalization of the leading term in the

OPE (2.3):

φ1(x1)φ2(x2) ∼
x12→0

λ12O

(x212)
1

2
(∆1+∆2−∆+l)

xa112 . . . x
al
12Oa1...al(x2) . (2.15)

An analogous expression holds when x34 → 0 in the φ3×φ4 OPE. Comparing with eq. (2.5),

we see that the conformal blocks should have the asymptotic behavior

GO(u, v) ∼
x12,x34→0

xa112 . . . x
al
12Π

b1...bl
a1...al

Ib1c1(x23) . . . Iblcl(x23)x
c1
34 . . . x

cl
34

(x212x
2
34)

1

2
(−∆+l)(x223)

∆
. (2.16)

Here Πb1...bl
a1...al

is the projector onto the space of traceless symmetric tensors of rank l. It

is enough to apply it once, since contractions with Ibc(x) tensors preserve the property of

tracelessness.

Let us now use the formula3

xa1 . . . xal Πb1...bl
a1...al

yb1 . . . ybl = cd,l (x
2y2)l/2Ch−1

l (x̂ · ŷ) , (2.17)

cd,l ≡
l!

2l(h− 1)l
, (2.18)

where h ≡ d/2, x̂ ≡ x/(x2)1/2, Ch−1
l (t) is a Gegenbauer polynomial, and (n)l = Γ(n +

l)/Γ(n) is the Pochhammer symbol. The asymptotic behavior of eq. (2.16) then becomes

GO(u, v) ∼
x12,x34→0

cd,l
(x212x

2
34)

1

2
∆

(x223)
∆

Ch−1
l (x̂12 · I(x23) · x̂34) . (2.19)

Now, in the limit x12, x34 → 0 that we are considering the conformal cross ratios have the

asymptotic behavior

u = zz̄ → 0, u ∼ x212x
2
34/x

4
23 , (2.20)

v ≈ 1− z − z̄ → 1, v ∼ 1 + 2u1/2x̂12 · I(x23) · x̂34 . (2.21)

Substituting these into (2.19), we get the final result for the conformal block asymptotics:

GO(u, v) ∼
u→0,v→1

cd,l u
1

2
∆Ch−1

l

(v − 1

2u1/2

)

∼
z,z̄→0

cd,l (zz̄)
1

2
∆Ch−1

l

(

−
z + z̄

2(zz̄)1/2

)

. (2.22)

3This formula follows from the theory of spherical harmonics and the fact that the Poisson kernel is the

generating function of Gegenbauer polynomials [26, 27]. The constant cd,l is easy to fix by considering the

leading x · y asymptotics, for which the terms subtracting traces in the projector are irrelevant.
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This asymptotic behavior is valid in any dimension. The explicit d = 4 conformal

blocks (2.8) behave in the same limit as

GO(u, v) ∼
z,z̄→0

(−)l

2l
(zz̄)

1

2
∆
[ρl/2+1

ρ− 1
+ (ρ → ρ−1)

]

, ρ ≡ z/z̄ , (2.23)

which is identical to the d = 4 case of (2.22) using the properties of the Gegenbauer

polynomials.

Alternatively, and somewhat more easily, one can check the asymptotics by considering

just one of the limits. For example, demanding that the partial wave WO is consistent with

the x34 → 0 OPE, we see that the conformal block should behave as

GO(u, v) ∼
x34→0

Y a1 . . . Y al Πb1...bl
a1...al

xb134 . . . x
bl
34

(x212x
2
34)

1

2
(−∆+l)(x224x

2
14)

1

2
(∆−l)

∼
x34→0

cd,l

(

x212x
2
34

x224x
2
14

)∆/2

Ch−1
l (Ŷ · x̂34) . (2.24)

Finally, by using

v ∼
x34→0

1 + 2Y · x34 = 1 + 2
Ŷ · x̂34

u1/2
, (2.25)

we obtain the same asymptotics as (2.22).

2.4 Casimir differential equation

An alternative and very efficient way to compute conformal blocks is based on using the

Casimir differential equation. While we will not be relying on this method in this work

(see footnote 5), we review it here for completeness.

Consider the conformal group generators Pa, Ka, D, Mab, written collectively in the

SO(d+ 1, 1) notation as MAB. Conformal invariance of the scalar four point function can

be expressed by the equation

(

4
∑

i=1

MiAB

)

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 = 0 , (2.26)

where the generatorMi acts on φi(xi). The action of conformal generators on primary fields

is given by well-known differential operators [24, 25], so that (2.26) becomes a differential

equation whose most general solution can be shown to have the form (2.1).

Conformal invariance of the OPE (2.3) can be also expressed in this language. Acting

on the l.h.s. of this equation by M1AB+M2AB corresponds to a certain differential operator

with coefficients depending on x1,2. Conformal invariance means that applying this differen-

tial operator to the r.h.s. gives the same result as acting with MAB on the operator O(x2).

Using this observation, we can show that every WO in the decomposition (2.4) can

indeed be expressed in terms of a function of cross ratios as in (2.5). Applying
∑4

i=1MiAB

to the first line of eq. (2.5), we can replace this differential operator by the sum of generators

acting on O(x2) and O(x4), which gives zero since the two point function is conformal.

– 6 –
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Thus, every WO satisfies the same differential equation (2.26) as the four point function

itself, and should therefore have the same functional form.

Let us now apply the differential operator (M1AB + M2AB)(M
AB
1 + MAB

2 ). By the

same argument, the result will be equal to the one obtained by acting with MABM
AB on

the operator O(x2). However, MABM
AB is the quadratic Casimir of the conformal group,

so that we have an eigenvalue equation

1

2
MABM

ABO(x2) = C∆,lO(x2) , (2.27)

where the eigenvalue depends only on the dimension ∆ and spin l of the traceless symmetric

primary:

C∆,l = ∆(∆− d) + l(l + d− 2) . (2.28)

We conclude that the operator O contribution in eq. (2.4) satisfies the Casimir differential

equation,
[1

2
(M1AB +M2AB)

2 − C∆,l

]

WO(x1, x2, x3, x4) = 0 . (2.29)

This differential equation can then be rewritten4 as an equation for GO(u, v), and solved in

closed form when d is an even integer [19]. The results are consistent with those obtained

by direct summation of the OPE series (2.5).

The Casimir differential equation is second order, so it is important to impose the

correct boundary conditions in order to distinguish conformal blocks from other possible

solutions. These boundary conditions are provided by the asymptotics (2.22).

3 Conformal blocks of operators with spin

3.1 Formulation of the problem and the basic idea

In the previous section, we considered four point functions of scalar primary operators and

expanded them into conformal blocks representing the exchange of an intermediate spin

l primary. We would now like to extend the conformal block construction to cases where

the fields entering the correlator (the external fields) themselves have nonzero spin. Two

particularly interesting examples are four point functions of the stress tensor and four point

functions of conserved currents.

The definition of conformal blocks given in section 2.1 generalizes easily to this situ-

ation. In order to do this we have to generalize the OPE to cases where the operators φi

have spin. This OPE will look like eq. (2.3), but the OPE coefficient function C(x12, ∂2)

will additionally carry external operator indices:

φ
{a}
1 (x1)φ

{b}
2 (x2) =

∑

O

λ12OC(x12, ∂x2
){a,b,e}O{e}(x2) , (3.1)

where we have used the shorthand notation {e} ≡ e1 . . . el, etc. We can then define partial

waves WO analogously to the first line of eq. (2.5). Our goal is then to find explicit

4The actual computation is best performed by lifting to the embedding space where conformal generators

act simply, see [19].
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expressions for WO, in the same way that eqs. (2.5) and (2.8) solve this problem for scalar

external fields.

One complication in the case of nonzero external spin is that there will be in general

more than one partial wave corresponding to each exchanged field O. The number of

partial waves will generically be given by the product N12ON34O, where N12O and N34O

are the number of inequivalent ways in which O can appear in the OPE φ1×φ2 and φ3×φ4,

respectively. For external scalars we had N12O = N34O = 1, but this is no longer true for

external operators with nonzero spin.

The problem of finding conformal blocks for nonzero external spin then naturally splits

into two steps.5 First, we need to classify all of the possible OPE structures. Second, for

each pairwise product of structures we need to perform the summation indicated in eq. (2.5).

One can foresee that the second step is likely to be more complicated. After all, it

was for many years that the OPE of two scalars and a spin l field was known, but it was

only in 2001 that Dolan and Osborn [18] performed the summation and found the explicit

conformal blocks.

The main point of our paper is that the computation can be organized so that the

second step is avoided altogether. The idea is that we can represent the OPE structures

for external nonzero spin, eq. (3.1), in terms of derivatives acting on the scalar OPE

functions defined in eq. (2.3):

C(x12, ∂x2
){a,b,e} = D{a,b}

x1,x2
C(x12, ∂x2

){e} . (3.2)

Here D is a differential operator, which creates open indices {a} and {b}. Each different

conformal structure in the l.h.s. will have its own differential operator. Moreover, as indi-

cated, this operator will be acting on the external field coordinates x1 and x2 only. This

last property is crucial. It implies that once the OPEs φ1×φ2 and φ3×φ4 are plugged into

the definition of partial waves, these extra differentiations factor out. As a result, partial

waves of nonzero spin fields are reduced to derivatives of the known scalar partial waves:

W
{a,b,c,d}
O (x1, x2, x3, x4) = D{a,b}

x1,x2
D{c,d}

x3,x4
WO(x1, x2, x3, x4) . (3.3)

In the rest of the paper we will carry out this program in detail.

To summarize, the advantage of our approach is that it allows us to recycle a highly

nontrivial computation — the summation of the double OPE series — which was already

performed by Dolan and Osborn in the external scalar case. Unfortunately, there is a

flipside to that coin: the only exchanged fields which can be treated by our method are those

which are already present for the external scalars, which are traceless symmetric tensors of

an arbitrary rank l. Partial waves corresponding to the exchange of antisymmetric tensors

or fields of mixed symmetry cannot be found this way. We will comment on this limitation

in more detail below.
5One could also in principle attempt a derivation based on the Casimir differential equation, which allows

a straightforward generalization to the nonzero external spin case. However, proceeding this way one gets

a coupled system of N12O ×N34O second order equations which is nontrivial to solve. Even if the system

could be solved, there would still remain a problem of establishing a correspondence between partial waves

and OPEs. For these reasons we will not pursue this method here.

– 8 –
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3.2 Classifying three point functions

The first step of the program that we outlined above consists in classifying conformally

invariant OPEs (3.1), and then representing them as derivatives of the scalar-scalar-spin

l OPE as indicated in eq. (3.2). As is well known, OPEs in conformal field theory are in

one-to-one correspondence with conformally invariant three point functions. Indeed, we

used this fact when we discussed the normalization of the conformal blocks in section 2.3.

Thus we have an equivalent problem: classify conformally invariant spin l1-spin l2-spin l

three point functions and represent all of them via differential operators acting on the basic

scalar-scalar-spin l three point functions given in eq. (2.13),

〈φ
{a}
1 (x1)φ

{b}
2 (x2)O

{e}(x3)〉 = D{a,b}
x1,x2

〈φ1(x1)φ2(x2)O
{e}(x3)〉 . (3.4)

3.2.1 Three point functions and the OPE

The problem of classifying three point functions of arbitrary spin l fields has previously

been discussed several times in the literature [28–30], as well as more recently in [22]. The

results can be compactly presented by using a notation where fields are contracted with

auxiliary d-dimensional polarization vectors [35–37],

φ(x; z) ≡ φa1...al(x)z
a1 . . . zal . (3.5)

The most general three point function in physical space can then be written in the form [22]

〈φ1(x1; z1)φ2(x2; z2)φ3(x3; z3)〉

=
t (x̃12, z̃1, z̃2, z3)

(x212)
1

2
(τ1+τ2−τ3)(x213)

1

2
(τ1+τ3−τ2)(x223)

1

2
(τ2+τ3−τ1)

+O(z2i ) , (3.6)

where τi ≡ ∆i + li,

xij ≡ xi − xj , x̃12 ≡ x13 x
2
23 − x23 x

2
13, z̃1 ≡ I(x13) z1, z̃2 ≡ I(x23) z2 , (3.7)

and t(x, z1, z2, z3) is an arbitrary O(d)-rotational invariant homogeneous polynomial of

degree (l1 + l2 + l3, l1, l2, l3).
6

As indicated, eq. (3.6) only determines the l.h.s. modulo O(z2i ) terms. We don’t have

to keep track of these terms because they are not independent — they are fixed by the

condition of tracelessness of the φi’s. Explicitly, the full tensor can be recovered by using

the formula [35–37]

φa1...al(x) =
1

l!(h− 1)l
Da1 · · ·Dal [φ(x; z) +O(z2)] , (3.8)

where the operator Da is given by

Da =

(

h− 1 + z ·
∂

∂z

)

∂

∂za
−

1

2
za

∂2

∂z · ∂z
, (3.9)

6Notice that x̃12 as just defined is proportional to the vector Y a defined in (2.14).
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and we recall that h ≡ d/2. The previous remark also means that polynomials

t(x, z1, z2, z3) differing by an O(z2i ) amount really correspond to the same three point func-

tion. This needs to be kept in mind when counting the number of independent structures;

see eq. (3.21) below.

The three point function (3.6) corresponds to an OPE whose leading singularity is

expressed in terms of the same polynomial:

φ1(x, z1)φ2(0, z2) ∼
x→0

(x2)−
1

2
(τ1+τ2−τ3)φ3(0, ∂z3) t(x, z1, z2, z3) +O(z21 , z

2
2) . (3.10)

Notice that the form of this OPE is fixed by O(d) invariance and the scaling dimensions

of the fields. Eq. (3.6) shows that any such O(d) invariant OPE can be uniquely lifted to

a fully conformally invariant three point function.

3.2.2 Three point functions and the embedding formalism

The equations presented in the previous section solve the problem of classifying three

point functions. Next we would like to understand how to represent them via differential

operators acting on scalar-scalar-spin l three point functions.

A natural way to look for such a representation is to lift the whole problem to the

(d+ 2)-dimensional embedding space, where the conformal group is linearly realized. This

approach to CFT computations goes back to the work of Dirac [31], and has been used

on and off since the 1970’s [1, 25, 32] (see also [33, 34] for recent work). An extensive

discussion can be found in [22], where we have developed an improved index-free version of

the formalism, which uses polynomials in auxiliary vector variables to encode embedding

space tensors. We will now give a brief review of the formalism and explain how the three

point functions are lifted to the embedding space. The problem of finding differential

operators will be treated in the next subsection.

In the embedding formalism, points x ∈ R
d in physical space are put in a one-to-one

correspondence with light rays through the origin of the embedding space Md+2. Lorentz

transformations SO(d + 1, 1) of the null vectors P ∈ M
d+2 (where P 2 = 0) then generate

conformal transformations. One goes back to the physical space by projecting onto the

Poincaré section of the light cone

Px = (P+, P−, P a) = (1, x2, xa) . (3.11)

Primary fields of dimension ∆ and spin l are encoded into a field Φ(P,Z), polynomial in

the (d+ 2)-dimensional polarization vector Z, such that

Φ(λP ;αZ + βP ) = λ−∆αlΦ(P ;Z) . (3.12)

Here the scaling with λ encodes the dimension of the field, while the scaling with α means

that the polynomial has rank l (since it was obtained by contracting a rank l tensor ΦA1...Al

with the polarization vector ZA). The invariance under shifts by βP is a consequence of the

fact that the embedding space tensor ΦA1...Al
is required to be transverse. It is important

that this invariance can be required to hold identically in the correlation functions (as
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opposed to the possible weaker requirement of being satisfied modulo terms that vanish on

the P 2 = 0 cone).

Using this formalism, the most general form of the embedding space three point func-

tion containing operators with spins li and dimensions ∆i can be written as

〈Φ1(P1;Z1)Φ2(P2;Z2)Φ3(P3;Z3)〉 =
∑

n12,n13,n23≥0

λn12,n13,n23







∆1 ∆2 ∆3

l1 l2 l3
n23 n13 n12






+O(Z2

i , Zi · Pi) .

(3.13)

Here the sum runs over all the possible elementary three point function structures (that

we will give below), each with arbitrary numerical coefficients. To shorten the notation we

also suppress their dependence on Pi and Zi. The “+O(Z2
i , Zi ·Pi)” means that such terms

are not independent and we do not have to keep track of them. This feature, discussed in

detail in [22], is the hallmark and the great simplification that occurs in our version of the

embedding formalism. It is the embedding space counterpart of not having to keep track

of the O(z2i ) terms in eq. (3.6).

The elementary three point function structures appearing in eq. (3.13) are characterized

by a choice of three nonnegative integers nij . Additionally, these numbers are required to

satisfy the constraints

m1 ≡ l1−n12−n13 ≥ 0 , m2 ≡ l2−n12−n23 ≥ 0 , m3 ≡ l3−n13−n23 ≥ 0 . (3.14)

The three point function structures themselves are given by [22]







∆1 ∆2 ∆3

l1 l2 l3
n23 n13 n12






≡

V m1

1 V m2

2 V m3

3 Hn12

12 Hn13

13 Hn23

23

(P12)
1

2
(τ1+τ2−τ3)(P13)

1

2
(τ1+τ3−τ2)(P23)

1

2
(τ2+τ3−τ1)

, (3.15)

Pij ≡ −2Pi · Pj .

The basic building blocks Vi and Hij entering this equation are defined as

Hij ≡ −2
[

(Zi · Zj)(Pi · Pj)− (Zi · Pj)(Zj · Pi)
]

, (3.16)

Vi,jk ≡
(Zi · Pj)(Pi · Pk)− (Zi · Pk)(Pi · Pj)

(Pj · Pk)
, (3.17)

V1 ≡ V1,23 , V2 ≡ V2,31 , V3 ≡ V3,12 . (3.18)

These particular elementary polynomials are chosen because they are explicitly transverse

(they don’t change under Zi → Zi+βPi); they are also normalized to have a simple scaling

in Pi and a simple projection to the physical space (see below).

The number of elementary three point functions is equal to the number of solutions

to (3.14), and can be found in closed form:

N(l1, l2, l3) =
(l1 + 1)(l1 + 2)(3l2 − l1 + 3)

6
−

p(p+ 2)(2p+ 5)

24
−

1− (−1)p

16
, (3.19)

where we have ordered the spins l1 ≤ l2 ≤ l3 and defined p ≡ max(0, l1 + l2 − l3).
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Finally, to have a complete description, we would like to know which physical space

three point function (or, equivalently, OPE) corresponds to the embedding space correla-

tor (3.15). As shown in [22], to go to physical space we have to replace

Pi → Pxi
, Zi → Zzi,xi

≡ (0, 2xi · zi, zi) . (3.20)

Doing this substitution in (3.15) leads to a physical space three point function of the

form (3.6) with the polynomial t(x, z1, z2, z3) given by

(x2z1 ·z3)
n13(x2z2 ·z3)

n23(x2z1 ·z2−2x ·z1 x ·z2)
n12 (−x ·z1)

m1(−x ·z2)
m2(x ·z3)

m3 . (3.21)

This is clearly the most general O(d) invariant polynomial of the required degree, modulo

terms of O(z2i ).

The discussion in this section needs to be somewhat modified in three special situations:

for parity odd three point functions, in d = 3 dimensions, and for conserved tensors. These

exceptional cases will be discussed later, so as to not interrupt the main line of reasoning.

3.3 Differential representation of three point functions

The differential operator in eq. (3.4) will transform under the conformal group with trans-

formation properties dictated by the fact that it maps one conformally invariant object

into another. Therefore, the problem of finding the differential representation (3.4) will

be greatly simplified by lifting it to the embedding space, where the conformal group acts

linearly on the coordinates.

3.3.1 Elementary differential operators

Using the embedding space three point functions given in the previous section, the embed-

ding space version of (3.4) can be written as







∆1 ∆2 ∆3

l1 l2 l3
n23 n13 n12






=D

(

Pi, Zi,
∂

∂Pi
,

∂

∂Zi

)







∆′
1 ∆′

2 ∆3

0 0 l3
0 0 0






+O(Z2

i , Zi · Pi, P
2
i ) (i = 1, 2) ,

(3.22)

where it is important that the differential operator D only contains the indicated coordi-

nates and derivatives. The dimensions ∆′
1,2 appearing on the right hand side can (and in

general will) be different from ∆1,2. On the other hand, the quantum numbers of the third

field remain the same.

The operator D must satisfy a number of consistency conditions. The most important

condition is that it should take terms which are O(Z2
i , Zi · Pi, P

2
i ) to terms of the same

kind. This condition can be stated equivalently by saying that it should act tangentially

to the submanifold defined by the equations

Z2
i = Zi · Pi = P 2

i = 0 (i = 1, 2) . (3.23)

The reason for this condition is that the correspondence between the embedding space

and physical space fields, as expressed by eq. (3.20), corresponds to restricting to this
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submanifold. Thus, if we want eq. (3.22) to correspond to a differential relation between

physical space quantities after imposing this restriction, the differential operator must act

within the submanifold.

The second condition is that D must map explicitly transverse functions to themselves.

This is because all elementary three point functions are explicitly transverse.

The operator D must raise the degree in the Z1, Z2 variables from 0 to l1, l2. We will

therefore construct it as a composition of elementary operators which raise the degree one

unit at a time. A candidate set of four simple first-order operators are

Zi ·
∂

∂Pj
(i, j = 1, 2) . (3.24)

However, we must add extra terms to these operators in order to satisfy the just mentioned

consistency conditions.

The choice of these compensating terms turns out to be unique. The four first-order

operators which satisfy all of the conditions can be written as

D11 ≡ (P1 ·P2)

(

Z1 ·
∂

∂P2

)

−(Z1 ·P2)

(

P1 ·
∂

∂P2

)

−(Z1 ·Z2)

(

P1 ·
∂

∂Z2

)

+(P1 ·Z2)

(

Z1 ·
∂

∂Z2

)

,

D12 ≡ (P1 ·P2)

(

Z1 ·
∂

∂P1

)

−(Z1 ·P2)

(

P1 ·
∂

∂P1

)

+(Z1 ·P2)

(

Z1 ·
∂

∂Z1

)

, (3.25)

as well as two more with the roles of 1 and 2 interchanged,

D22 ≡ (P2 ·P1)

(

Z2 ·
∂

∂P1

)

−(Z2 ·P1)

(

P2 ·
∂

∂P1

)

−(Z2 ·Z1)

(

P2 ·
∂

∂Z1

)

+(P2 ·Z1)

(

Z2 ·
∂

∂Z1

)

,

D21 ≡ (P2 ·P1)

(

Z2 ·
∂

∂P2

)

−(Z2 ·P1)

(

P2 ·
∂

∂P2

)

+(Z2 ·P1)

(

Z2 ·
∂

∂Z2

)

. (3.26)

In the chosen notation, acting with Dij on a correlator increases the spin at point i by one

unit and decreases the dimension at point j by one unit.

The fifth operator (zeroth-order) is multiplication by H12, which trivially satisfies all

of the conditions. This increases the spin and decreases the dimension by one unit at

both points.

3.3.2 Recursion relations and the differential basis

The five introduced operators satisfy a set of recursion relations which allow us to find a

differential representation for an arbitrary elementary three point function.
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We first present two recursion relations which connect three point functions with

n23 = n13 = 0. The first relation has the form7

(∆3 + l1 + l2 − 2n12 − 2)







∆1 ∆2 ∆3

l1 l2 l3
0 0 n12






(3.27)

= D12







∆1 ∆2+1 ∆3

l1−1 l2 l3
0 0 n12






+D11







∆1+1 ∆2 ∆3

l1−1 l2 l3
0 0 n12






− (l2 − n12)







∆1 ∆2 ∆3

l1 l2 l3
0 0 n12+1






.

The second one is obtained by interchanging 1 ↔ 2. These two relations can be used

together to recursively generate three point functions with n13 = n23 = 0 and arbitrary

values of l1 and l2, starting from the l1 = l2 = 0 seeds. Indeed, the first two terms on

the right hand side involve lower spin three point functions. The third term has the same

spin; however, it has a larger value of n12, and its coefficient vanishes when n12 takes the

maximal value allowed by (3.14). Thus, three point functions can be computed starting

from n12 = min(l1, l2) and going down. This starting point is easily constructed using the

trivial recursion relation






∆1 ∆2 ∆3

l1 l2 l3
n23 n13 n12






= H12







∆1 + 1 ∆2 + 1 ∆3

l1 − 1 l2 − 1 l3
n23 n13 n12 − 1






, (3.28)

which does not change n13 or n23, but raises both spins by one unit. Finally, to get the

remaining three point functions we should use the recursion relation

m3







∆1 ∆2 ∆3

l1 l2 l3
n23 n13 + 1 n12






= −2D12







∆1 ∆2 + 1 ∆3

l1 − 1 l2 l3
n23 n13 n12







+m2







∆1 ∆2 ∆3

l1 l2 l3
n23 n13 n12 + 1






+ (τ1+τ3−τ2+2m2−2m3−2)







∆1 ∆2 ∆3

l1 l2 l3
n23 n13 n12






, (3.29)

as well as the similar equation obtained by permuting 1 ↔ 2. Here the values of the

mi are given by (3.14). These relations allow us to recursively generate nonzero values

of n13 and n23.

To summarize, these recursion relations show that it is possible to represent any three

point function in the form (3.22). To be more precise, we will get a sum of several terms

on the r.h.s. corresponding to several ∆′
1,2 satisfying the constraint

∆′
1 +∆′

2 = τ1 + τ2 . (3.30)

This is a minor technical detail which was not mentioned before so as to avoid cluttering

notation. It implies that, in general, a given spinning conformal block will be related to a

sum of several scalar conformal blocks.
7Here and below we are dropping terms of O(Z2

i , Zi ·Pi, P
2
i ) (for i = 1, 2), which are sometimes generated

by the action of Dij .
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In fact, in practice the computation can be organized without using recursion relations.

Instead, we just have to find the change of basis between the standard three point function

basis (3.15) and the differential operator basis defined by










∆1 ∆2 ∆3

l1 l2 l3
n23 n13 n12











≡Hn12

12 Dn13

12 Dn23

21 Dm1

11 Dm2

22







∆1+m1+n23+n12 ∆2+m2+n13+n12 ∆3

0 0 l3
0 0 0






,

(3.31)

where the m’s are again fixed by (3.14). Note that in this expression we have chosen a par-

ticular ordering for the operators. Different orderings can be related using the commutation

relations

[D11, D22] =
1

2
H12

(

Z1 ·
∂

∂Z1
− Z2 ·

∂

∂Z2
+ P1 ·

∂

∂P1
− P2 ·

∂

∂P2

)

, (3.32)

[D12, D21] =
1

2
H12

(

Z1 ·
∂

∂Z1
− Z2 ·

∂

∂Z2
− P1 ·

∂

∂P1
+ P2 ·

∂

∂P2

)

. (3.33)

All other commutators vanish, including [Dij , H12] = 0 for all i and j.

Acting with the differential operators in (3.31), the differential basis elements can be

expanded in terms of the standard basis (3.15). By inverting the matrix, we can then get

a differential operator representation for all elements of the standard basis (3.15).

3.3.3 Example

We will now demonstrate how the developed formalism works in the case that l1 = l2 =

1 and ∆1 = ∆2. Assuming that l = l3 ≥ 2, we have five possible structures in the

standard basis:






∆1 ∆1 ∆

1 1 l

0 0 0






,







∆1 ∆1 ∆

1 1 l

1 0 0






,







∆1 ∆1 ∆

1 1 l

0 1 0






,







∆1 ∆1 ∆

1 1 l

1 1 0






,







∆1 ∆1 ∆

1 1 l

0 0 1






, (3.34)

as well as the five analogous structures in the differential basis (3.31). We will denote these

structures respectively as [I] and {I}, where I = 1, . . . , 5 in the obvious notation.

Implementing the action of the differential operators on a computer, it is simple to

compute the matrix expressing the differential basis in terms of the standard one:

{I} =
5
∑

J=1

aIJ [J ] , (3.35)

which can then be inverted to express the [J ]’s in terms of the {I}’s. The matrix inverse

(aIJ)
−1 is then given by

1

∆(1−∆)

















1 1 1 1 ∆− 1
∆−l
l

−∆−l
l

∆−l
l

−∆−l
l 1−∆

∆−l
l

∆−l
l

−∆−l
l

−∆−l
l 1−∆

(l−∆)2

(l−1)l
(l−∆)(∆+l)

(l−1)l
(l−∆)(∆+l)

(l−1)l
(∆+l)2−4∆

(l−1)l
(∆−1)(l−∆)

l−1

0 0 0 0 (1−∆)∆

















. (3.36)
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3.4 From three point functions to conformal blocks

We will now explain the last step of the algorithm: how to use the differential representation

of the three point functions in order to compute conformal partial waves for operators with

spin. This part of the computation is also natural to perform in the embedding space. The

lift of the scalar partial waves (2.5) is given by

WO(P1, P2, P3, P4) =

(

P24

P14

) 1

2
∆12
(

P14

P13

) 1

2
∆34 GO(u, v)

(P12)
1

2
(∆1+∆2)(P34)

1

2
(∆3+∆4)

, (3.37)

where

u =
P12P34

P13P24
, v =

P14P23

P13P24
. (3.38)

For a spinning four point function, partial waves will be classified by the couplings (≡

three point functions) of the exchanged field to the external fields. Note that here we are

assuming that the exchanged field is a traceless symmetric tensor. Let us consider these

couplings in the differential basis (3.31):











∆1 ∆2 ∆0

l1 l2 l0
n20 n10 n12











,











∆3 ∆4 ∆0

l3 l4 l0
n40 n30 n34











, (3.39)

where here the exchanged field is denoted by the index 0, and we are considering as before

the (12)(34) channel. In order to instead use the standard three point function struc-

tures (3.15) one has to perform a change of basis as explained in section 3.3.2.

The conformal partial wave corresponding to the couplings (3.39) is then given by:

DleftDrightWO(P1, P2, P3, P4) , (3.40)

where

Dleft = Hn12

12 Dn10

12 Dn20

21 Dm1

11 Dm2

22 Σm1+n20+n12,m2+n10+n12 , (3.41)

and Dright has the same form with 1 → 3 and 2 → 4. These operators are applied to WO,

the conformal partial wave corresponding to the exchange of the same field O between

scalar fields. The symbol Σa,b is present to remind us that dimensions of external scalars

in WO have to be shifted as in the r.h.s. of (3.31):

∆1 → ∆1 +m1 + n20 + n12 , ∆2 → ∆2 +m2 + n10 + n12 . (3.42)

The shifts for ∆3,4 are given by the same equations with 1 → 3 and 2 → 4.

3.4.1 Comments on the final result

The expression (3.40) is the main result of this paper. It gives a compact embedding space

expression for the conformal blocks. If desired, these could in principle be projected to the

physical space. We would now like to comment on the form of the result and on how it

can be used in the future, in particular in the conformal bootstrap program. As we will

see, for these applications projection to the physical space is unlikely to be necessary.
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To begin with, let us imagine that we have performed the differentiations in eq. (3.40).

In practical applications this will be straightforward to do, particularly due to the fact that

interesting cases will involve external spins ≤ 2. The result will then have the structure

expected from a conformal four point function in the embedding space:

(

P24

P14

)

τ1−τ2
2
(

P14

P13

)

τ3−τ4
2
∑

k fk(u, v)Q
(k)({Pi;Zi})

(P12)
τ1+τ2

2 (P34)
τ3+τ4

2

, (3.43)

where Q(k) are explicitly transverse polynomials of Zi which have degree li in Pi. Similarly

to the three point function case, these polynomials are constructed from the basic building

blocks Vi,jk and Hij introduced in section 3.2.2. We refer readers to section 4.3 of [22],

where the problem of constructing and enumerating these polynomials is discussed in detail.

The coefficient functions fk(u, v) will be determined by this computation; they will be

certain linear combinations of derivatives of scalar conformal blocks GO(u, v) with shifted

dimensions. In the next section we consider a simple example where we compute these

functions explicitly.

In the conformal bootstrap program, one imposes the equality of the expansions in

the conformal partial waves in the (12)(34), (13)(24), and (14)(23) channels. A moment’s

thought shows that this crossing symmetry constraint will be easy to impose using directly

the embedding space expressions (3.43).

An important role in existing applications of the conformal bootstrap [3–10] was played

by positivity constraints on the coefficients appearing in the conformal partial wave expan-

sion (2.6). In the simplest case of four identical real scalars φi = φ, these constraints come

from the fact that the coefficients in question are the squares of real OPE coefficients:

λ12Oλ34O ≡ λ2
O > 0 . (3.44)

For the spinning case there are several (let’s sayNO) possible couplings, so that the diagonal

coefficients will be positive, while the cross term coefficients are not sign-definite. The

most general requirement in this case is that the whole matrix of NO ×NO coefficients be

positive-definite; see an analogous discussion in section 2.5 of [8].

Let us now comment on the ‘missing’ conformal blocks of antisymmetric (and mixed

symmetry) fields that we have not yet computed, mentioned at the end of section 3.1. First

of all, there are important partial cases when such fields simply do not appear in the OPE.

The OPE of two scalars is one example, but perhaps not the only one. It is worth checking

if there are other special situations (e.g., involving conserved operators) where such fields

cannot make an appearance.

Second, in d = 3 dimensions the antisymmetric fields can be converted into symmetric

ones using the ǫ-tensor. In this case we can actually compute all of the conformal partial

waves in terms of the scalar ones. The construction requires discussing parity odd three

point functions; see section 3.5.2 below.

In all the other cases the antisymmetric and mixed conformal partial waves need to be

computed before attempting the bootstrap. An efficient way to do so may be as follows.

For any given symmetry of the exchanged field, one can choose the simplest external fields
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which can couple to it. For example, for an antisymmetric rank 2 tensor F[ab], this is a

scalar and a vector, with the OPE

Aa(x)× φ(0) ∼ (x2)
1

2
(∆F−∆A−∆φ+1)xbF[ab] . (3.45)

Since in this simplest case there is only one possible coupling, there will be only one

conformal partial wave, and it can perhaps be found using the Casimir differential equation

method of section 2.4 (compare with footnote 5). If this is done, then external spin can be

increased recursively, just as we did in this paper.

3.4.2 Example

Let us now exemplify the method concretely, by determining the conformal blocks for the

four point function of two spin 1 operators at positions 1 and 2 and two scalar operators at

positions 3 and 4. We will present the conformal blocks corresponding to the differential

basis (3.31) of three point functions. If one wishes, one can easily convert to the standard

basis (3.15) using the discussion of section 3.3.3. There are then 5 independent conformal

partial waves (for internal spin greater than 1):

D11D22W
1,1
O (P1, P2, P3, P4) ,

D21D11W
2,0
O (P1, P2, P3, P4) ,

D12D22W
0,2
O (P1, P2, P3, P4) , (3.46)

D12D21W
1,1
O (P1, P2, P3, P4) ,

H12W
1,1
O (P1, P2, P3, P4) ,

where the superscript in W k1,k2
O denotes the integer shifts in the dimensions of the external

operators ∆1 → ∆ + k1 and ∆2 → ∆2 + k2. As mentioned in the previous section, it

is possible to represent these partial waves in the form (3.43). In this case there are five

polynomials Q(k) representing tensor structures (see section 4.3.1 of [22]). One possible

basis is given by:

Q(k) = {V1,23V2,13 , V1,24V2,14 , V1,23V2,14 , V1,24V2,13 , H12} . (3.47)

For illustrative purposes, we give here the coefficient functions for the first partial wave in

the list (3.46), specializing to the case ∆1 = ∆2, ∆3 = ∆4 for simplicity:

f (1) = f (2) = uw ∂u∂w GO ,

f (3) = (w ∂w)
2GO , f (4) = (u ∂u)

2GO , (3.48)

f (5) = −
1

2
(u ∂u + w ∂w)GO .

Here GO is the scalar conformal block with external dimensions (∆1 +1,∆2 +1,∆3,∆4),
8

expressed in terms of u and w ≡ u/v. Under P3 ↔ P4 we have

Q(1) ↔ Q(2), Q(3) ↔ Q(4), Q(5) = inv, u ↔ w , (3.49)

which expains the symmetry visible in the given expressions for f (k).

8Actually, the scalar conformal blocks only depend on the differences ∆1 − ∆2 and ∆3 − ∆4 of the

conformal weights of the external operators.
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3.5 Special cases

In the previous section we presented our method of computing spinning conformal partial

waves in the most basic, generic case. There exist three special situations when the method

needs to be modified or expanded; they are treated in this section.

3.5.1 Three dimensions

The case of three spacetime dimensions is special, because the classification of three point

functions as presented in section 3.2.2 has to be modified. Namely, not all three point

functions of the form (3.15) are independent. This is because for d = 3 there exist a

degeneracy between the elementary building blocks, expressed by the identity [22]9

(V1H23 + V2H13 + V3H12 + 2V1V2V3)
2 = −2H12H13H23 +O(Z2

i , Zi · Pi) . (3.50)

This identity is a consequence of the fact that six (d+ 2)-dimensional vectors Zi, Pi must

be linearly dependent for d = 3.

By means of this identity, we can take as truly independent three point functions those

for which at least one of three parameters nij vanishes. The counting formula for these

structures is given in [22].

There is little change to the rest of the algorithm of computing partial waves. We have

to represent the independent three point functions via the differential operators (3.25)

and (3.26) acting on the scalar three point functions. One can do this by using the re-

cursion relations, or by using the matrix inversion method as described at the end of

section 3.3.2 and illustrated in section 3.3.3. The matrix aIJ expressing the elements of

the full differential basis in terms of the reduced standard basis will now be rectangular.

This just means that the elements of the differential basis will also be linearly dependent

for d = 3. Unlike for the standard basis, we were unable to find a general way to give a

canonical linearly independent basis of differential structures. In practice, one can just pick

a square submatrix of aIJ and invert it. The existence of the recursion relations guarantees

that aIJ is of full rank and that an invertible square submatrix must exist.

Once a differential representation is known, one computes the conformal blocks as

in section 3.4.

3.5.2 Parity odd three point functions

So far we have discussed the case of parity even three point functions. This is sufficient in

d > 4 where this is always the case. However, in d = 4 one can use the ǫ-tensor to make

parity odd conformally invariant three point functions. As explained in [22], any parity

odd structure can be obtained by multiplying parity even structures (3.15) by

ǫ(Z1, Z2, Z3, P1, P2, P3) . (3.51)

9The problem of classifying d = 3 three point functions without overcounting was first solved in [38]

using a different language.
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Here and below ǫ(. . .) denotes the full contraction of the ǫ-tensor with the shown vectors.

We would like to be able to generate these structures by acting with differential op-

erators (that only depend on P1, P2, Z1, Z2) on the three point function of two scalars at

points 1 and 2 and an operator with spin at point 3. This goal can be achieved with the

help of the differential operator

ǫ

(

Z1, Z2, P1, P2,
∂

∂P1
,

∂

∂P2

)

. (3.52)

This operator satisfies the same two consistency conditions as the operators Dij . First,

it is interior to the surface defined by the constraints (3.23), i.e. the result of its action

on a function F ({Pi;Zi}) is independent of the values of F outside the constraint surface.

Second, it preserves the explicit transversality of F : F ({Pi;Zi + βiPi}) = F ({Pi;Zi}) for

all βi. Therefore, we can use this operator to generate all parity odd three point functions

by acting on the parity even three point functions (3.31). Note that the order is irrelevant

because (3.52) commutes with H12 and all Dij .

In d = 3 the situation is slightly more complicated. In this case, there are three parity

odd building blocks

ǫij ≡ Pij ǫ(Zi, Zj , P1, P2, P3) (i, j = 1, 2, 3) , (3.53)

which are however not independent [22, 38]. We will not attempt to give a complete

classification of all possible three point functions in terms of differential operators acting

on the basic structure, as in eq. (3.31). Instead, we will define differential operators that

can be used to generate any given parity odd three point function. The following operators

are interior and preserve transversality:

D̃1 = ǫ

(

Z1, P1,
∂

∂P1
, P2,

∂

∂P2

)

+ ǫ

(

Z1, P1,
∂

∂P1
, Z2,

∂

∂Z2

)

,

D̃2 = ǫ

(

Z2, P2,
∂

∂P2
, P1,

∂

∂P1

)

+ ǫ

(

Z2, P2,
∂

∂P2
, Z1,

∂

∂Z1

)

. (3.54)

The first (second) operator adds one unit of spin at point P1 (P2) without changing the

conformal dimensions. One can also define interior and transversality preserving operators

that add spin at both points at once:

ǫ

(

Z1, Z2, P1, P2,
∂

∂P1

)

, ǫ

(

Z1, Z2, P1, P2,
∂

∂P2

)

. (3.55)

These operators may then be used to generate any given parity odd structure in three

dimensions.
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Example. Let us exemplify the method for parity odd structures in d = 3 in the par-

ticular case discussed in subsection 3.3.3. In this case, there are 4 independent parity odd

tensor structures that can be chosen as10

˜[1] ≡ ǫ23







∆1 + 1 ∆1 + 2 ∆+ 2

1 0 l − 1

0 0 0






, ˜[2] ≡ ǫ23







∆1 + 1 ∆1 + 2 ∆+ 2

1 0 l − 1

0 1 0






,

˜[3] ≡ ǫ13







∆1 + 2 ∆1 + 1 ∆+ 2

0 1 l − 1

0 0 0






, ˜[4] ≡ ǫ13







∆1 + 2 ∆1 + 1 ∆+ 2

0 1 l − 1

1 0 0






. (3.56)

For l ≥ 2, the third parity odd structure ǫ12 can be always eliminated in favor of ǫ13 and

ǫ23 by means of the d = 3 identity [22]

V 2
3 ǫ12 = (H13 + V1V3)ǫ23 − (H23 + V2V3)ǫ13 . (3.57)

Alternatively, we can use the differential operators (3.54) to write another basis

˜{1} ≡ D̃1D21







∆1 + 1 ∆1 ∆

0 0 l

0 0 0






, ˜{2} ≡ D̃1D22







∆1 ∆1 + 1 ∆

0 0 l

0 0 0






,

˜{3} ≡ D̃2D12







∆1 ∆1 + 1 ∆

0 0 l

0 0 0






, ˜{4} ≡ D̃2D11







∆1 + 1 ∆1 ∆

0 0 l

0 0 0






. (3.58)

It is possible to find an explicit relation between the two bases:

˜{I} =
4
∑

J=1

bIJ ˜[J ] . (3.59)

To find this relation, one implements the action of differential operators in (3.58) and

reduces the result to a linear combination of the basis ˜[J ] by identities which replace all

occurring ǫ-tensor contractions by ǫ13 and ǫ23. Concretely, in addition to (3.57) mentioned

above, one uses the identity11

2(P1 · P2)(P1 · P3)ǫ (P2, P3, Z1, Z2, Z3)

= ((P1 · P3)(P2 · Z3)− (P2 · P3)(P1 · Z3)) ǫ (P1, P2, P3, Z1, Z2)

+ ((P2 · P3)(P1 · Z2)− (P1 · P2)(P3 · Z2)) ǫ (P1, P2, P3, Z1, Z3)

+ ((P1 · P3)(P2 · Z1) + (P1 · P2)(P3 · Z1)) ǫ (P1, P2, P3, Z2, Z3) , (3.61)

10We use a tilde to distinguish these from the parity even structures of subsection 3.3.3.
11This identity is obtained by expanding the first line in the 6× 6 determinant

∣

∣

∣

∣

∣

A1 A2 A3 A4 A5 A6

Z1 Z2 Z3 P1 P2 P3

∣

∣

∣

∣

∣

= 0 , (3.60)

made to vanish by picking the numbers Ai to respect the linear dependence relation which necessarily exists

for the six 5-vectors forming the last five lines. See eq. (4.50) of [22] where the same idea was applied in

the physical space.
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as well as two similar identities (related by permutations), allowing us to eliminate the

structures ǫ (Pi, Pj , Z1, Z2, Z3).

The matrix bIJ is then given by

(∆− 1)(∆1 − 1)













−1− l
∆−1 −1+ l

∆1−1 (1− l
∆−1)(1+

l(∆−1)
∆1−1 ) 1− l2

∆1−1

−1+ l
∆−1−

2l
∆1−1 −1− l

∆1−1 (1+ l
∆−1)(1+

l(∆−1)
∆1−1 ) 1+ l2

∆1−1

(−1+ l
∆−1)(1+

l(∆−1)
∆1−1 ) −1+ l2

∆1−1 1+ l
∆−1 1− l

∆1−1

(−1− l
∆−1)(1+

l(∆−1)
∆1−1 ) −1− l2

∆1−1 1− l
∆−1+

2l
∆1−1 1+ l

∆1−1













.

(3.62)

Note that the determinant

det bIJ = 4l4(l2 − 1)(∆− 2)(∆− 1)4∆ (3.63)

is positive for l ≥ 2, as ∆ ≥ 3 is required in this case by the d = 3 unitarity bound. This

shows that the differential structures (3.58) indeed provide a basis for the parity odd three

point functions.

3.5.3 Conserved tensors

Now we will discuss the situation when some of the operators appearing in the four point

function are conserved spin l operators, having dimensions ∆ = l + d − 2 that saturate

the d-dimensional unitarity bound. Conservation requires that some of the three point

function coefficients appearing in the sum eq. (3.13) are related to each other, and these

constraints then appear as relations between the coefficients appearing in the conformal

block decomposition eq. (3.43).

In [22] we showed that these constraints could be efficiently analyzed in the embedding

formalism. One does this by requiring that the action of the operator ∂P · DZ vanishes

when applied to eq. (3.13), for a conserved operator at the point {P,Z}, where

∂P ·DZ ≡
∂

∂PM

[(

d

2
− 1 + Z ·

∂

∂Z

)

∂

∂ZM
−

1

2
ZM

∂2

∂Z · ∂Z

]

. (3.64)

These constraints were studied in the basis of Vi’s and Hij ’s in [22]; let us now take

a moment to see what these constraints look like in the differential operator basis in a

simple example.

Example. In the case of two conserved spin 1 currents at points 1 and 2, and a spin l

operator of dimension ∆ at point 3, we can use the basis of 5 parity even structures {I}

introduced in subsection 3.3.3. Requiring that ∂Pi
·DZi

for i = 1, 2 vanishes on an arbitrary

parity even three point function structure
∑5

I=1 αI{I} then leads to the 3 constraints

α1 = −
(∆− l − d)(∆ + l − 2)α2 − 2(d− 2)α4 + 4α5

C∆,l
, (3.65)

α2 = α3 = −
(∆ + l)(∆− l − d+ 2)

C∆,l
α4 , (3.66)

which reduces the number of independent structures down to 2. We do not know of a

natural reason why the Casimir eigenvalue (2.28) arises in these expressions.
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Similarly, we can impose conservation on the general parity odd three point function
∑4

I=1 βI
˜{I} discussed in the previous section for d = 3. The structures ˜{1} and ˜{2} are

automatically conserved at P1, and the structures ˜{3} and ˜{4} are automatically conserved

at P2. Conservation at both points P1 and P2 requires

β2
β1

=
β4
β3

= −
(∆− l − 2)(∆ + l − 1)

C∆,l + 2
, (3.67)

reducing the number of independent parity odd structures from 4 to 2.

Constraints on the three point function coefficients of other conserved operators in the

differential operator basis can be worked out similarly.

3.6 Conformal blocks for conserved currents in CFT3

All irreducible representations of SO(3) are totally symmetric traceless tensors. Therefore,

our method is sufficient to determine all of the conformal blocks in d = 3 dimensions. In

this section, we present explicit expressions for the important case of conserved currents.

The d = 3 conformal partial waves for a four point function of conserved currents are

given by the main formula (3.40), where the operators Dleft and Dright can take one of 4

possible forms. This gives a total of 4× 4 = 16 conformal blocks for each primary operator

appearing in the OPE of the currents. From these 4 possible three point functions between

two conserved currents and a generic operator with spin l ≥ 2, two are parity even and

two are parity odd. Using the results of the previous section, the parity even possibilities

for Dleft can be written as

D
(1)
left =

(

2 +
(∆− l − 1)(∆− l − 3)(∆ + l − 2)(∆ + l)

C∆,l

)

D11D22Σ
1,1

− (∆− l − 1)(∆ + l)
(

D21D11Σ
2,0 +D12D22Σ

0,2
)

+ C∆,lD12D21Σ
1,1 , (3.68)

D
(2)
left =− 4D11D22Σ

1,1 + C∆,lH12Σ
1,1 , (3.69)

while the parity odd forms are

D
(3)
left = (C∆,l + 2) D̃1D21Σ

1,0 − (∆− l − 2)(∆ + l − 1)D̃1D22Σ
0,1 , (3.70)

D
(4)
left = (C∆,l + 2) D̃2D12Σ

0,1 − (∆− l − 2)(∆ + l − 1)D̃2D11Σ
1,0 . (3.71)

As in eq. (3.40), Σa,b in these expressions denotes the shifts in the dimensions appearing

in the scalar conformal block that must be performed before acting with the differential

operators.

4 Conclusions

In this paper we presented a method to efficiently derive the conformal blocks corresponding

to the exchange of traceless symmetric tensors appearing in four point functions of operators

with spin. In particular, we found that all such conformal blocks may be expressed in

terms of simple differential operators acting on the basic scalar conformal blocks, given in

eq. (3.40) for parity even structures. To obtain this result, we made extensive use of the

index-free embedding space formalism developed in [22].
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Our results may be especially useful when applied to four point functions containing

conserved currents or the stress tensor. For example, it would be extremely interesting

to pursue the conformal bootstrap program for four point functions of these important

operators, perhaps following the lines of [3–10]. It is plausible that studying crossing

symmetry of stress tensor four point functions could lead to interesting constraints on

central charges in CFTs, perhaps not unrelated to the bounds of [39] or [40]. In order to

pursue these ideas the results of this paper will be an important ingredient.

They may also be useful in the context of the AdS/CFT correspondence, where stress

tensor four point functions are related to graviton scattering amplitudes. This connection is

particularly transparent when CFT correlators are written in the Mellin representation [14–

17], and we believe that the formalism developed in this paper will be useful for further

exploring this connection. A possible goal of this program might be to utilize some of

the powerful recursion relations known for scattering amplitudes (e.g., [41]) in order to

holographically compute CFT correlators of the stress tensor. Some steps towards this

goal were taken in [16, 17, 42, 43]; we hope that the present formalism will allow for

additional progress to be made.

In this paper, we succeeded at giving expressions for conformal blocks corresponding

to the exchange of traceless symmetric tensors, since these are the only operators that

can appear in scalar OPEs. Other possible Lorentz representations, such as antisymmetric

tensors or operators with mixed symmetry, will require an alternative approach such as

solving the Casimir differential equation. However, it is likely that once the simplest (i.e.,

lowest external spin) versions of these blocks could be found, the blocks corresponding to

higher external spins could again be computed by applying simple differential operators as

in the present paper. We leave further explorations of this approach to future work.

Finally, we would like to emphasize that our method is sufficient to give all conformal

blocks in three dimensional CFTs. This point was exemplified in section 3.6 for the four

point function of conserved currents. This result can be easily extended to the case of the

stress-energy tensor, providing all the basic ingredients to apply the bootstrap program to

CFTs dual to pure four dimensional quantum gravity on AdS4.
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