
J
H
E
P
0
8
(
2
0
1
9
)
0
6
6

Published for SISSA by Springer

Received: May 15, 2019

Accepted: July 21, 2019

Published: August 12, 2019

Spinning operators and defects in conformal field

theory

Edoardo Lauria,a Marco Meinerib and Emilio Trevisanic,d

aInstituut voor Theoretische Fysica, KU Leuven,

Celestijnenlaan 200D, B-3001 Leuven, Belgium
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1 Introduction

The most natural observables in a conformal field theory (CFT) are correlation functions.

In this paper, we target the correlators which involve one extended operator and multiple

local insertions. In fact, conformal invariant extended operators, or conformal defects for

short, have been studied extensively at least since the early days of two dimensional CFTs,

starting from the seminal work of Cardy [1] on boundary conditions in the minimal models.

Rather than attempting a review of the relevance of conformal defects in both low and high

energy physics, let us only mention the most recent motivation for the present work.

On one hand, both numerical [2–6] and analytical [7, 8] conformal bootstrap tech-

niques1 have been applied to the study of conformal defects. The main targets have been

so far the two-point function of scalar primaries in the presence of a flat defect, and the

four-point function of local operators living on the defect itself. Boundaries and inter-

faces provide an exception: there, external stress-tensors were considered in [2]. A natural

generalization of this setup is the bootstrap of the correlators of two bulk local operators

with spin and a defect. Conserved currents and the stress-tensor are of course the main

candidates. As we shall demonstrate in this paper, the more complicated kinematics offers

a considerably smaller challenge with respect to the case of a four-point function of local

operators with spin [10–12].

On the other hand, control over the kinematics involved in correlators of spinning op-

erators with a defect should be useful also when tackling specific examples with techniques

different from the bootstrap. For instance, the technology of defect CFT played a crucial

role in proving the Quantum Null Energy Condition (QNEC) [13] via the replica trick. In

particular, the Operator Product Expansion (OPE) of the stress tensor with the so-called

replica defect [14, 15] contains the non trivial information about the matrix elements of

the modular Hamiltonian, which not only lies at the heart of the proof of the QNEC, but

is also an important quantity in its own right. Therefore, the two-point function of the

stress tensor is again a natural observable to focus on in this context. Another example is

provided by the class of line defects, e.g. Wilson and ’t Hooft lines, which correspond to

massive probes. When these external objects surf the vacuum on a generic worldline, they

emit radiation. This real time process, so relevant in the case of a gauge theory, is again

1See [9] for a comprehensive review of the numerical bootstrap.
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captured by correlation functions of the stress tensor with the line defect. In a supersym-

metric setup, a recent proof of a series of conjectures concerning the energy emitted by an

accelerated quark [16, 17] has been obtained by studying the coupling of the stress tensor

with a line defect [18].

Let us begin by recalling a few definitions. The conformal defect will always be taken

either flat or spherical, and the following convention is adopted:

p = dimension of the defect, q = codimension of the defect, d = dimension of spacetime,

(1.1)

so that p+ q = d. We call bulk OPE the fusion of local operators away from the defect,

O1(x1)O2(x2) ∼
∑

O
c12OO(x2) . (1.2)

A conformal defect can be excited locally by a set of defect operators, which appear in the

OPE of a bulk operator with the defect, or defect OPE for short:2

O(x) ∼
∑

Ô

bOÔÔ(x‖) . (1.3)

Here, the presence of a flat defect is understood, defect operators are denoted with a hat,

and x‖ denotes the projection of x onto the defect.

Let us recapitulate the status of the art in the analysis of the symmetry constraints

on correlation functions of local operators with a defect. The case of a boundary in higher

dimensional CFT was first studied in [19]. In the case of a defect of generic codimension,

one-point functions3 of bulk operators, correlators of a symmetric traceless bulk operator

and a defect operator, and two-point functions of bulk symmetric traceless operators were

analyzed in [20]. The tensor structures which appear in the correlation function of mixed

symmetry bulk operators were recently studied in [21]. The bulk OPE was considered from

a different point of view in [22]: this paper studies the expansion of a spherical defect in a

sum over local operators, and describes the OPE-blocks for this kind of fusion. In [23], the

additional constraints implied by N = 4 superconformal symmetry were tackled. Mellin

space for defect CFT was considered in [24, 25]. Finally, [26] deals with defects which

break rotational invariance also in the q orthogonal directions. Although the authors do

not discuss examples, defects of this kind might arise as endpoints of flows triggered by

relevant defect operators with spin in the transverse directions: one such operator exists

for instance on the 3d Ising twist defect [27]. In the rest of this work, we only consider

defects which preserve the SO(q) group of transverse rotations.

2In fact, the set of operators obtained fusing bulk operators with the defect is complete, in the sense that

if a defect primary does not appear in the defect OPE of a bulk primary, then it belongs to a decoupled

sector. More precisely, call φ̂i the set of operators for which bOφ̂i
= 0 for all O, and Ôi the complementary

set. Then cÔiÔj φ̂k
= 0 and cÔiφ̂j φ̂k

∝ δÔi,1
, where the c’s are the coefficients of the three-point functions

on the defect. The result is easily reached by analyzing the defect channel in the three-point functions of

the form 〈O1O2φ̂i〉 = 0 and 〈O1φ̂iφ̂j〉 = 〈O1〉 〈φ̂iφ̂j〉.
3We use a terminology which leaves the present presence of the defect as understood. For instance, a

one-point function is the correlator of a bulk operator with the defect. In section 2, though, we discuss

correlation functions of local operators without defects: we hope that this creates no confusion.
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The minimal correlator which admits an expansion both in the bulk and the defect

channels is the two-point function of local operators in the presence of the defect. Re-

sults for conformal blocks are available in the literature, in the case of scalar external

primaries [19, 20, 28]. In particular, in [28] a convenient set of cross-ratios was defined, the

so-called radial coordinates, which we shall also adopt here.

Finally, in the recent paper [29], the conformal blocks for pairs of defects were studied.

The authors map the problem of finding the blocks into the problem of finding eigenfunc-

tions of a Calogero-Sutherland Hamiltonian. The approach allows to extend a set of known

dualities between blocks [20, 23, 30], and as a special case applies to the bulk channel blocks

for the two-point function of external scalars with a single defect.

The content of the paper is two-fold. Sections 2 and 3 are dedicated to the tensor

structures appearing in correlation functions of local operators in arbitrary representations

of the rotation group. We describe a way of explicitly building the structures in embedding

space, which we apply both in the ordinary CFT setup, and in the presence of a defect. In

section 4, we turn to the computation of the conformal blocks for the two-point function

of traceless symmetric primaries. In the bulk channel, we extend the results of [28] and

explain how to efficiently generate the blocks in an expansion in radial coordinates and by

mean of the spinning differential operators of [31]. In the defect channel, the full set of

conformal blocks can be computed in closed form, and we describe the general solution.

Finally, in section 5 we illustrate the results in the simple context of a free defect CFT.

2 Mixed symmetry representations and CFTs

In this section we introduce new tensor structures for mixed symmetry representations

which generalize the Hij and Vi,jk introduced in [32]. We will find a minimal choice

of polynomials which are in 1 − 1 correspondence with the conformal invariant tensor

structures in a correlation function. Our structures differ therefore from the ones introduced

in [33], which are not minimal and cannot be used for the counting of tensor structures.

2.1 Tensor structures for SO(n) mixed symmetry representations

We begin in the context of the orthogonal group. This allows us to review some background

material and set up a technology that, with minor modifications, will be applied to cor-

relation functions constrained by the full conformal group. Furthermore, defect operators

enjoy a global SO(q) symmetry, and the content of this subsection can be used verbatim

to take care of the associated representation theory.

2.1.1 Mixed symmetry tensors as polynomials

A tensor tl in a irreducible representation l = l1, . . . , l[n
2
] can be labelled by a Young

tableau which has indices in each box. The indices in the rows are symmetrized, while

antisymmetrization is performed on the indices in each column. Finally, all the traces are

removed. In order to make the symmetrization manifest we can contract all the indices of
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the i−th row with the same polarization vector z(i),

tl(z) ≡ tl




z(1) ··· ··· ··· ··· ··· z(1)

z(2) ··· ··· ··· z(2)

.

.

.

.

.

.

.

.

. . .
.

z(k) ··· z(k)


 = tl




µ1
1 ··· ··· ··· ··· ··· µ1

l1

µ2
1 ··· ··· ··· µ2

l2
.

.

.

.

.

.

.

.

. . .
.

µk
1 ··· µk

lk




k∏

i=1

z
(i)

µi
1
· · · z(i)

µi
li

, (2.1)

where k ≤ [n2 ]. A vector (e.g. z(i)) inside a box means that the index of the vector is con-

tracted with the index of the box. The result is a polynomial tl(z) which has homogeneity

li for all the z(i),

z(i) · ∂z(i) tl(z) = li tl(z) . (2.2)

Antisymmetry of the columns (or better mixed symmetry of the Young tableau) is the

statement that it is not possible to symmetrize an index of a row j with all the indices of

a given a row i, with i < j. In terms of the polynomials this condition can be imposed

asking that

z(i) · ∂z(j) tl(z) = 0 , ∀j > i . (2.3)

Alternatively, we can say that tl(z) is invariant under the map z(j) → z(j) +αz(i) for j > i

and for any α ∈ R. Finally, tracelessness implies

∂z(i) · ∂z(j) tl(z) = 0 , ∀i, j . (2.4)

Rotations act naturally on tl(z), the generators being Lµν =
∑[n

2
]

i=1(z
(i)µ ∂ν

z(i)
− z(i) ν ∂µ

z(i)
).

It follows that tl(z) are eigenfunctions of the Casimir operator C ≡ −1
2L

µνLµν :

Ctl(z) = cltl(z) , cl =

[n
2
]∑

i=1

li(li + n− 2i) . (2.5)

So far the vectors z(j) are unconstrained. However, there is a cheaper way to encode

a tensor in terms a polynomial tl(z), by asking that it is defined in the following subspace

N ≡
{
z(1), . . . z([

n
2
]) ∈ R

n : (z(i) · z(j)) = 0, for all i, j
}
. (2.6)

Indeed, the tensor can be uniquely recovered from the polynomial restricted to the subspace

N . It is important that the tensor should be transverse, namely

tl(z) ∈ S ≡ {f : N → R such that z(i) · ∂z(j)f = 0} . (2.7)

Transversality has useful consequences. For instance, the action of the Casimir operator

on functions tl(z) ∈ S reduces to

Ctl(z) =

[n
2
]∑

i=1

(z(i) · ∂z(i) + n− 2i)(z(i) · ∂z(i))tl(z) , ∀ tl(z) ∈ S . (2.8)

Therefore any function tl(z) ∈ S with the correct homogeneity in z(i) automatically satisfies

the Casimir equation.
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Equations (2.7) and (2.8) make sense because the vectors Lµν and z(i) ·∂z(j) are tangent
to the manifold N . This is not true of the partial derivative ∂z(i) . It follows that indices

cannot simply be opened while staying inside N , nor can the tracelessness condition (2.4)

be verified. Still, a recipe exists to recover the tensor from the polynomial restricted to N .

The recipe [33, 34] is to derive all the z(i) of tl(z) and contract the resulting open indices

with a projector π
SO(n)
l into the representation l of SO(n). This prescription defines a (gen-

eralization of) the differential operator introduced in [35]. Namely, given tl(z) ∈ S we have

tl




µ1
1 ··· ··· ··· ··· ··· µ1

l1

µ2
1 ··· ··· ··· µ2

l2

.

.

.

.

.

.

.

.

. . .
.

µk
1 ··· µk

lk




= c π
SO(n)
l




µ1
1 ··· ··· ··· ··· ··· µ1

l1

µ2
1 ··· ··· ··· µ2

l2

.

.

.

.

.

.

.

.

. . .
.

µk
1 ··· µk

lk

,

∂z(1) ··· ··· ··· ··· ··· ∂z(1)

∂z(2) ··· ··· ··· ∂z(2)

.

.

.

.

.

.

.

.

. . .
.

∂z(k) ··· ∂z(k)




tl(z),

(2.9)

where c = 1/(l1! . . . lk!) comes from the derivatives. We will comment on the definition of

π
SO(n)
l in the next section. Let us briefly explain why (2.9) works. On one hand the oper-

ation (2.9) recovers the original tensor if applied to tl(z) with unconstrained polarization

vectors. On the other hand any tl(z) defined in N differs from the unconstrained tl(z) only

by terms proportional to z(i) · z(j). However these terms are automatically annihilated by

the operation (2.9), because the projector is traceless. The result follows.

Let us summarize. A tensor in a representation l = (l1, . . . l[n/2]) of SO(n) is encoded

in a polynomial tl(z) with the following three properties

• tl(z) is defined on the subspace (z(i) · z(j)) = 0,

• tl(z) has homogeneity li in z(i), i.e. it satisfies (2.2),

• tl(z) is transverse: it is invariant under z
(j) → z(j)+αz(i) for j > i, i.e. it satisfies (2.3).

We recover the initial tensor from the polynomial tl(z) by performing the operation (2.9).

Given any tensor t, there is a simple way to project its indices onto a representation l.

One can just construct the associated polynomial tl(z) as follows. For each column with m

boxes in the Young tableau of the representation, contract m of the indices of the tensor t

with the following antisymmetric tensor

c(m)
z µ1...µm

≡ z
(1)
[µ1

· · · z
(m)
µm] , m = 1, . . . ,

[n
2

]
. (2.10)

The tensors c
(m)
z are automatically transverse in all the z(i) such that 1 ≤ i ≤ [n/2]. For

instance, given a tensor t with 8 indices, we obtain the polynomial tl(z) associated to the

representation l = (4, 3, 1) as follow:

tl(z) = t




µ1 µ2 µ3 µ4

ν1 ν2 ν3

ρ1


 c(3)µ1ν1ρ1

z c(2)µ2ν2
z c(2)µ3ν3

z c(1)µ4
z . (2.11)

Notice that the polynomial tl(z) now scales correctly in z(i) and it is automatically trans-

verse. From now on we can therefore think that any tl(z) is just a tensor contracted

opportunely with a set of c
(m)
z .

– 5 –
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2.1.2 Projectors onto representations of SO(n)

As explained, the projectors π
SO(n)
l onto a representation l of SO(n) are useful objects. In

order to make the paper self contained we review here their definition and the state of the

art on the subject. For more details, see for instance [34].

A projector π
SO(n)
l (a, b) depends on two sets of tensor indices a, b (a = α1, . . . α|l|,

b = β1, . . . β|l|, where |l| = l1 + · · · + l[n/2]). Both sets of indices have the symmetries of

the Young tableaux of the representation l of SO(n). The projector is invariant under

conjugation by an element of SO(n). As a consequence, when the projector is contracted

on one side with an arbitrary tensor ta, the result is a new tensor t′b which transforms in

the irreducible representation l of SO(n):

t′b = π
SO(n)
l (a, b) ta . (2.12)

The projector is also idempotent,

π
SO(n)
l (a, b)π

SO(n)
l (b, c) = π

SO(n)
l (a, c). (2.13)

When we contract with vectors the two sets of tensor indices in a projector we find a

polynomial4

Pn
l1,...,lk

(X1, . . . , Xk;Y1, . . . , Yk) ≡ π
SO(n)
l1,...,lk




X1 ··· ··· ··· ··· ··· X1

X2 ··· ··· ··· X2
.

.

.

.

.

.

.

.

. . .
.

Xk ··· Xk

,

Y1 ··· ··· ··· ··· ··· Y1

Y2 ··· ··· ··· Y2
.

.

.

.

.

.

.

.

. . .
.

Yk ··· Yk


 ,

(2.14)

where k ≤ [n/2]. The vectors Xi and Yi are meant to be unconstrained (Xi ·Xj 6= 0 and

similarly for Yi). It follows from the discussion of the previous section that these polyno-

mials need to satisfy scaling (2.2), transversality (2.3), tracelessness (2.4) and the Casimir

equation (2.5) both in the Xi and in the Yi. One can use these requirements to bootstrap

the form of the polynomials (2.14). This approach was used in [34] in order to obtain a vast

class of such polynomials for generic l1, and many choices of small integer values of l2, l3.

The simplest polynomial is the symmetric and traceless one,

Pn
l (X1;Y1)

(X1 ·X1)l/2(Y1 · Y1)l/2
=

l!

2l(n2 − 1)l
C

n
2
−1

l (x) , x ≡ X1 · Y1√
(X1 ·X1)(Y1 · Y1)

. (2.15)

A less trivial example is the polynomial Pn
l,1 which can be obtained in a closed form for

4In the following, we will use these polynomials both in physical and in embedding space. The coefficients

of the polynomials do not depend on the signature of the metric, while the variables, which are scalar

products in Xi and Yi, do. With abuse of notation, we will intend the polynomial Pd as a function of scalar

products built out of the metric of the physical space R
d, while P

d+2 will depend on scalar products built

out of the metric of the embedding space R
1,d+1.

– 6 –



J
H
E
P
0
8
(
2
0
1
9
)
0
6
6

any l [34, 36] in terms of operations performed on the projector (2.15),

Pn
l,1(X1, X2;Y1, Y2)

(X1 ·X1)
l
2 (Y1 · Y1)

l
2

= cl,1

[
n

(
(X1 · Y2)(X2 · Y1)√
X1 ·X1

√
Y1 · Y1

− x(X2 ·Y2)
)
∂x

+

(
x
(X1 ·X2Y1 · Y2 +X1 · Y2X2 · Y1)√

X1 ·X1

√
Y1 · Y1

− X1 ·X2X1 · Y2
X1 ·X1

− Y1 · Y2X2 · Y1
Y1 · Y1

−
(
x2 − 1

)
X2 ·Y2

)
∂2
x

]
C

n
2
−1

l (x) , (2.16)

where x is defined as in (2.15) and cl,1 is a normalization coefficient, irrelevant for the

purposes of this paper. Importantly, l appears in (2.16) only through the Gegenbauer

polynomial (beside the overall normalization cl,1). This makes the formula convenient for

generic integer l, and even suggests its analytic continuation to real values. Moreover, in

all the known cases the functions Pn
l1,...,lk

take the form [34]

Pn
l1,...,lk

(X1, . . . , Xk;Y1, . . . , Yk)

(X1 ·X1)l1/2(Y1 · Y1)l1/2
= # Dn

l2,...,lk
(X1, . . . , Xk;Y1, . . . , Yk, ∂x)C

n
2
−1

l1
(x) (2.17)

where Dn
l2,...,lk

are some explicit differential operators which can be found in [34]. For

example, Dn
1 is the one defined in the square brackets in (2.16). Again, notice that in (2.17)

the full l1 dependence is carried by the Gegenbauer polynomial. In [37] it was also found

that one can generate all the operators Dn
l2

(for any l2) by acting successively with some

weight shifting differential operators [38].

2.2 Tensor structures for SO(d + 1, 1) mixed symmetry representations

In this section we construct tensor structures for mixed symmetry representations of SO(d+

1, 1), exploiting the fact that they can be seen, roughly speaking, as analytic continuations

of representations of SO(d+ 2).

It is convenient to lift CFT operators to the embedding space [32]. Given a primary

Oα1,...α|l|(x), defined on x ∈ R
d, with αi = 1 . . . d, conformal dimension ∆ and SO(d) spin

l = (l1 . . . , l[d/2]) we can lift it to the embedding space as an operator whose indices have

the same symmetries:

Oα1,...α|l|(x) → OA1,...A|l|(P ) (2.18)

where |l| = l1 + · · · + l[d/2] and P ∈ R
d+1,1. The tensor can be as usual encoded in a

polynomial:

O(P,Z(i)) ≡ O(P )




A1
1 ··· ··· ··· A1

l1

.

.

.

.

.

.

.

.

. . .
.

Ak
1 ··· Ak

lk




k∏

i=1

Z
(i)

Ai
1
· · ·Z(i)

Ai
li

, (2.19)

where k ≤ [d/2]. The operator (2.19) is required to satisfy the following scaling and

transversality relations

O(αP, βiZ
(i)) = O(P,Z(i)) α−∆

[ d
2
]∏

i=1

βli
i , (2.20)

P · ∂Z(j)O(P,Z(i)) = 0 , Z(k) · ∂Z(j)O(P,Z(i)) = 0 , (j < k). (2.21)

– 7 –
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We recognize the scaling and transversality conditions which we imposed for tensors of

SO(n). The only difference from what discussed in section 2.1 is that the embedding space

operator does not scale in P as a polynomial. However, when −∆ ∈ N we can think of

O(P,Z(i)) as a tensor of SO(d+2) associated to the Young tableau (−∆, l1, . . . , l[d/2]) with

an extra line of −∆ symmetric indices contracted with “polarization vectors” P . In this

case one can write the operator O as a polynomial following the recipe of section 2.1,

O(P,Z(i)) ∼ O




A0
1 ··· ··· ··· ··· ··· A0

-∆

A1
1 ··· ··· ··· A1

l1

.

.

.

.

.

.

.

.

. . .
.

Ak
1 ··· Ak

lk




PA0
1
· · ·PA0

−∆

k∏

i=1

Z
(i)

Ai
1
· · ·Z(i)

Ai
li

. (2.22)

Of course, the indices in the first row (highlighted in yellow) cannot be defined for generic

∆ ∈ R. Nevertheless, we keep in mind the picture (2.22) to motivate the following prescrip-

tions, in analogy with the discussion on SO(n) presented in section 2.1. First, following

section 2.1.1, we consider vectors P and Z(i) satisfying the conditions

P · P = 0 , P · Z(j) = 0 , Z(k) · Z(j) = 0 . (2.23)

These conditions match the ones derived in [32] and [33]. Notice, however, that the first

two conditions have a different status here: they are forced on us by the projection onto

physical space, as we review in subsection 3.3.

According to section 2.1.1, we can think of the operator O(P,Z(i)) in (2.22) as con-

tracted with antisymmetric tensors of the form

C
(m)
P A1...Am

≡ P [A1
Z

(1)
A2

· · · Z
(m−1)
Am] , m = 1, . . . ,

[
d

2

]
+ 1 . (2.24)

To avoid cluttering, we do not explicitly denote the dependence of C
(m)A1...Am

P on the

polarization vectors Z(j).

Using (2.24) one can write a correlation function of generic operators Oi(Pi, Z
(j)
i ) in

terms of scalar contractions of the associated antisymmetric tensors C
(m)A1...Am

Pi
. As an

example we define the following class of scalar contractions,

Tn,m1m2

i,jk ≡ C
(n) A1...An

Pi
C

(m1)
Pj A1...Am1

C
(m2)
Pk Am1+1...An

, (2.25)

where n = m1 + m2. Although more contractions are in general possible among the

tensors (2.24), the (2.25) are sufficient for the purposes of this work. The structures (2.25)

satisfy the properties

Tn,n0
i,jk ≡ Tn,n

i,j = Tn,n
j,i , Tn,m1m2

i,jk = (−1)m1m2 Tn,m1m2

i,kj , Tn,m1m2
i,jj = 0 , (2.26)

which easily descend from the symmetries of the tensors (2.24). The simplest instance is

the scalar product

T 1,1
i,j = Pi · Pj . (2.27)
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The well known Vi,jk and Hij introduced in [32] are in correspondence with the (2.25) as

well:

T 2,11
i,jk ↔ Vi,jk ≡ (Pi · Pj)(Zi · Pk)− (Pi · Pk)(Zi · Pj)√

−2(Pi · Pj)(Pj · Pk)(Pk · Pi)
,

T 2,2
i,j ↔ Hij ≡ (Pi · Pj)(Zi · Zj)− (Pi · Zj)(Pj · Zi)

(Pi · Pj)
.

(2.28)

The structures T 2,11
i,jk and T 2,2

i,j scale with the Pi, while Vi,jk and Hij were chosen to be scale

invariant. This is convenient, and we shall also often define structures with degree zero

in the Pi, by an appropriate choice of factors Pi · Pj . Let us now use the formalism to

characterize two and three-point functions.

Before we proceed, we want to comment on one important difference between SO(n)

tensors and embedding operators seen as (2.22). For SO(n) tensors we chose polarization

vectors z(k) which satisfy z(k) · z(j) = 0 as a trick, but in the end we needed to restore their

dependence on unconstrained z(k) ∈ R
n by using the prescription (2.9). For embedding

operators instead we will never want to restore their dependence on unconstrained P ∈
R
d+1,1, since the subspace described by the null cone P 2 = 0 (and similarly P · Z(k) = 0)

is still redundant (it is a d + 1 dimensional space, while the physical space is R
d). In

subsection 3.3 we review how to recover the physical space operators form the operators

defined on the null cone by further restricting the vectors P to a d-dimensional subspace

of the null cone. On the other hand, one may want to lift the results to the case of

embedding space polarization vectors which are not constrained to be transverse to each

other, Z(k) · Z(j) 6= 0. If the operator and the polarizations are transverse to P — i.e. O
obeys the first of the (2.21) and P · Z(i) = 0 — this operation can be performed by using

the prescription of section (2.9), using SO(d) projectors [32].

2.3 Examples of correlation functions

Two-point functions. Using the structures (2.25) it is trivial to see that all the two-

point functions of operators Oi(Pi, Z
(j)
i ), transforming in a representation ℓi ∈ SO(d), are

fixed in terms of a unique combination of structures. This combination is only allowed

when ∆1 = ∆2 ≡ ∆ and ℓ1 = ℓ2 ≡ l = (l1, . . . , l[ d
2
]) and it reads

〈O(P1, Z
(j)
1 )O(P2, Z

(j)
2 )〉 ∝

[ d
2
]∏

i=0

(T i+1,i+1
1,2 )ni . (2.29)

In (2.29) we wrote ∆, l in terms of the associated Dynkin labels n = [n0, n1, . . . n[ d
2
]] such

that n0 = −∆− l1, n[ d
2
] = l[ d

2
] and ni = li− li+1 (for i = 1 . . . [d2 ]−1). We stress that (2.29)

is the only possible combination of structures which satisfies equations (2.20)–(2.21). As

an example, the two-point function of traceless and symmetric operators of spin l reduces

to the usual expression,

〈O(P1, Z1)O(P2, Z2)〉 =
H l

12

(−2P1 · P2)∆
. (2.30)

– 9 –
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Notice that a two-point function for Z
(j)
i such that Z

(j)
i · Z(k)

i 6= 0 is fixed in terms of the

polynomial Pn defined in (2.14),5

〈O(P1, Z
(i)
1 )O(P2, Z

(j)
2 )〉 ∝

Pd+2
l1l1,...,l[d/2]

(P1, Z
(1)
1 , . . . , Z

([d/2])
1 ;P2, Z

(1)
2 , . . . , Z

([d/2])
2 )

(P1 · P2)∆+l1
, (2.31)

It is possible to check that, setting Z
(j)
i ·Z(k)

i = 0 in (2.31), one does recover exactly (2.29).

One can also check that (2.31) reduces to the two-point function in physical space once we

write it in the Poincaré section described in subsection 3.3, with generic polarizations z
(j)
i .

Three-point functions. Here we classify the tensor structures in the OPE of two trace-

less and symmetric operators. We claim that any three point-function of operators O1,O2

traceless and symmetric with spin l1, l2 and an operator O3 in a representation with generic

spin (l
(1)
3 , l

(2)
3 , l

(3)
3 ) can be written as follows

〈O1(P1, Z1)O2(P2, Z2)O3(P3, Z
(i)
3 )〉 =

∑

p

O1

p O3

O2

=

∑
p
c
(p)
123Q

(p)(Pi, Zi, Z
(j)
3 )

P
∆1+∆2−∆3

2
12 P

∆1+∆3−∆2
2

13 P
∆2+∆3−∆1

2
23

.

(2.32)

where c
(p)
123 are the OPE coefficients and Pij ≡ −2(Pi · Pj). Each OPE coefficient in (2.32)

is multiplied by a conformal invariant structure of the form6

Q(p)(Pi, Zi, Z
(i)
3 ) =

∏3
i=1(Vi)

ni
∏

i<j(Hij)
nij (T 3,21

3,12 )
k1(T 3,21

3,21 )
k2(T 4,22

3,12 )
k

[−2(P1 · P2)(P2 · P3)(P3 · P1)]
k1+k2+k

2

, (2.33)

where V1 ≡ V1,23, V2 ≡ V2,31, V3 ≡ V3,12. The values of p in (2.33) label the choices of

exponents in the right hand side of (2.33), which are non-negative integers subject to the

conditions

k = l
(3)
3 ,

k1 + k2 + k = l
(2)
3 ,

n3 + n13 + n23 + k1 + k2 + k = l
(1)
3 ,

n1 + n12 + n13 + k1 + k = l1 ,

n2 + n12 + n23 + k2 + k = l2 .

(2.34)

5Actually a more elegant equivalent way to define the two point function is in terms of the analyt-

ically continued projector P
d+2
−∆l1,...,l[d/2]

(P1, Z
(1)
1 , . . . , Z

([d/2])
1 ;P2, Z

(1)
2 , . . . , Z

([d/2])
2 ) which will be used in

section 4.2.1. It is easy to check that this analytically continued projector reduces to (2.31) when P ·P = 0

and P · Z(k) = 0.
6The structures (2.33) are scaleless in all the Pi. The three point function (2.32) could have also been

written in a compact way in terms of the structures Tn,m1m2
i,jk alone, but we decided for a form which may

be more familiar to the reader.
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As an example we write the number of structures Q(p) in some three point functions for

fixed spin l1, l2 and generic l
(1)
3 :

l1, l2 = 1, l
(1)
3 ≥ 2 ,

(l
(2)
3 , l

(3)
3 ) (0, 0) (1, 0) (1, 1) (2, 0)

# 5 4 1 1
(2.35)

l1, l2 = 2, l
(1)
3 ≥ 4 ,

(l
(2)
3 , l

(3)
3 ) (0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (1, 1) (2, 1) (3, 1) (2, 2)

# 14 16 11 4 1 5 4 1 1

It follows from the relations (2.34), as one can check from the table (2.35), that the non-

vanishing three-point functions need to satisfy the conditions

l1 + l2 ≥ l
(2)
3 + l

(3)
3 , l1 ≥ l

(3)
3 , l2 ≥ l

(3)
3 . (2.36)

In the table we also recognize some seed three point functions [39, 40], which are defined as

the three point functions with only one tensor structure7 for generic l
(1)
3 (in this case p only

takes the value 1, so we will drop it). We treat O3 differently, asking for the length of its first

row to be generic, because we think of it as the exchanged operator in the OPE of O1 and

O2, see section 4. From the conditions (2.34) it is easy to see that a seed three point function

is generated by exhausting all the polarization vectors Z1 and Z2 while building the tensor

structures T 3,21
3,12 , T

3,21
3,21 , T

4,22
3,12 . In other words, seed three point functions can be obtained by

looking for solutions of (2.34) with nij = n1 = n2 = 0. These are uniquely obtained as

k = l
(3)
3 , n3 = l

(1)
3 − l

(2)
3 , k1 = l1 − l

(3)
3 , k2 = l2 − l

(3)
3 , (2.37)

provided that the external operators satisfy the following seed condition

l1 + l2 = l
(2)
3 + l

(3)
3 ⇔ seed . (2.38)

The seed three point functions saturate the first of the three conditions (2.36). The re-

quirement (2.38) matches the one obtained in [34].

The prominence of the seeds stems from the fact that all other three-point functions

are obtained by acting on them with a set of differential operators [31] which increase the

spins l1 or l2. In fact, as we explain in subsection 4.1.3 and in appendix B.1, the minimal

set is even smaller. Out of the l
(2)
3 − l

(3)
3 + 1 pairs (l1, l2) which exchange a given O3 as a

seed, only one is necessary. The others can be in fact obtained by acting with differential

operators [34] which map seeds into seeds (see appendix B.1). It is therefore convenient to

choose a representative seed three point function for each O3 exchanged. A natural choice

is to consider seeds that also saturate another of the (2.36), say l2 = l
(3)
3 ,

seed representative ≡

O
∆1 l1=l

(2)
3

O
∆3 l

(1)
3 l

(2)
3 l

(3)
3

O
∆2 l2=l

(3)
3

. (2.39)

7Actually, also when l1 (or l2) = l
(3)
3 , l

(1)
3 = l

(2)
3 and l1 + l2 > l

(2)
3 + l

(3)
3 there is only one structure. This

additional case, where l
(1)
3 is bounded for fixed l1, l2, is not counted among the seeds. Indeed, the same

O3 is exchanged by external primaries with lower spin, which saturate the first of the (2.36). The single

structure of the additional case can then be obtained by applying the spinning operators of subsection 4.1.3.
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In appendix B.1 it is detailed how to obtain all the three-point functions by acting with a

set of differential operators on the representative seeds (2.39).

As a last remark, we would like to discuss conservation of seed correlation functions.

Let us consider the case of a seed three-point function 〈O1O2O3〉 in which one symmetric

and traceless operator (let say Oµ1...µl1
1 ) is conserved, namely it satisfies ∂µ1O

µ1...µl1
1 = 0. It

is trivial to see that the seed three-point function is automatically conserved. Indeed, since

the three-point function with the operator O1 saturates the condition (2.36), the three-

point function with (∂µ1O
µ1...µl1
1 ) violates it, thus it vanishes. The same argument holds

for more generic seed correlation functions, because seed correlations functions saturate a

condition of existence of the kind (2.36). In subsection 3.2, we shall see another example of

conservation of seed correlation functions in the case of the bulk-defect two-point functions.

3 Mixed symmetry representations and defect CFTs

In a defect CFT, a p dimensional defect breaks the SO(d + 1, 1) symmetry to a SO(p +

1, 1) × SO(q) (with p + q = d) subgroup of the original conformal group. As in the pure

CFT case, the non linear realization of the stability group of the vacuum makes it hard

in general to implement the symmetry constraints on correlation functions. The uplift to

the embedding space for defect CFTs of general codimension was worked out in [20]. In

the present section, we will extend the analysis of [20] to operators transforming in mixed

symmetry representations of SO(d). This problem was addressed in the recent paper [21],

using the formalism of [33]. Our solution, as in section 2, employs commuting polarization

vectors to build a minimal set of structures with no redundancy, thus facilitating the task

of enumerating them.

Before presenting the results, let us set our conventions up. Following [20], in the

embedding space it is convenient to split the (d + 2)-dimensional scalar product P · Q ≡∑
M PMQM into its counterparts parallel and transverse to the defect, which is always lifted

to a (p + 2)-dimensional time-like plane. Following the convention of [28], we implement

the splitting by defining projectors Π•,Π◦:

P •Q ≡ P ·Π• ·Q (parallel) , (3.1)

P ◦Q ≡ P ·Π◦ ·Q (orthogonal) , (3.2)

with Π•+Π◦ = diag(−1, 1, . . . , 1). The shape of the defect in physical space can be chosen

by specifying the form of the projectors (3.1)–(3.2). With the usual conventions for the

projection onto the Poincaré section, to define a flat defect it is sufficient to take the axis P−

to lie on the parallel subspace, while in general the defect will be spherical [28]. Of course,

equations (3.1)–(3.2) define a splitting of the physical space scalar product x · y ≡ xµyνδµν
as well

x • y ≡ x · π• · y (parallel) , (3.3)

x ◦ y ≡ x · π◦ · y (orthogonal) , (3.4)

with π• + π◦ = δ. When the defect is spherical and centered in the origin, the p + 1

directions in which the defect is embedded are defined to be parallel.
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3.1 Operators and tensor structures

There are two classes of operators: bulk operators O and defect operators Ô. Bulk inser-

tions are the same local operators of a d dimensional CFT. We discussed them in section 2.2.

Defect operators Ô deserve a separate treatment. Since they live on the defect, they can

be thought of as operators of a p dimensional CFT, with quantum numbers under symme-

tries acting parallel to the defect. They also transform under an SO(q) global symmetry,

the rotations trasverse to the defect. The defect operators Ô are therefore labeled by

SO(p+ 1, 1)× SO(q) quantum numbers, in particular

∆̂ conformal dimension,

l̂ =
(
l̂1, . . . l̂[p/2]

)
parallel SO(p) spin,

}
SO(p+ 1, 1)

s =
(
s1, . . . s[q/2]

)
transverse SO(q) spin.

(3.5)

As we did in (2.19), we consider operators in embedding space, Ô(P ) with P living on

the defect (PMΠMN
• = PN ), and contract the SO(p) indices with polarization vectors

Z(1) . . . Z([p/2]) and the SO(q) indices with new polarization vectors W (1), . . .W ([q/2]). In or-

der to make analogies with 2.1.1, we also repeat the construction (2.22) for defect operators,

Ô
(
P,Z(j),W (j)

)
∼ Ô




P ··· ··· ··· ··· ··· P

Z(1)
··· ··· ··· Z(1)

.

.

.

.

.

.

.

.

. . .
.

Z(k)
··· Z(k)

,

W (1)
··· ··· ··· W (1)

.

.

.

.

.

.

.

.

. . .
.

W (h)
··· W (h)




, (3.6)

where k ≤ [p2 ] and h ≤ [ q2 ]. As we did in (2.22), we coloured in yellow the line of the

tableau which makes sense for −∆̂ ∈ N. We think of PM , Z
(j)
M , W

(j)
M as vectors in R

d+1,1

(therefore M = 0, . . . d + 1), but P, Z(j) only have non zero components parallel to the

defect, while the only non zero components of W (j) are transverse to the defect, namely

Z
(j)
M ΠMN

• = Z(j) N and W
(j)
M ΠMN

◦ = W (j) N .

We associate to a defect operator two sets of antisymmetric tensors: the C
(n)M1...Mn

P

as defined in (2.24), with n = 1, . . . ,
[p
2

]
+ 1, and the following

C
(n)
W M1...Mn

≡ W
(1)
[M1

· · · W
(n)
Mn]

, n = 1, . . . ,
[q
2

]
, (3.7)

which are of the form (2.10). We can build all the conformal invariant structures appearing

in a correlation function of bulk and defect operators by contracting the tensors C
(n)
Pi

and

C
(n)
Wj

. The only extra ingredient are the projectors (3.1)–(3.2), namely the indices of the

C(m) can be contracted either with Π• or with Π◦. For our purposes, the following class of

structures will suffice:

T ⋆ n,m1m2

I,JK ≡ C
(n)
I M1...Mn

C
(m1)
J N1...Nm1

C
(m2)
K Nm1+1...Nn

ΠM1N1
⋆ · · ·ΠMnNn

⋆ , (3.8)

where ⋆ = • , ◦ labels the two projectors and the capital letters I, J,K = Pi,Wi are

introduced to distinguish between CPi and CWi . For simplicity we denote T ⋆ n,n0
I,JK ≡ T ⋆ n,n

I,J .
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Explicit examples are the building blocks analogous to the Hij and Vi,jk of (2.28)

T ⋆ 2,11
Pi,PjPk

↔ V ⋆
i,jk ≡ (Pi ⋆ Pj)(Zi ⋆ Pk)− (Pi ⋆ Pk)(Zi ⋆ Pj)√

−(Pi •Pj)(Pj •Pk)(Pk •Pi)
,

T ⋆ 2,2
Pi,Pj

↔ H⋆
ij ≡ (Pi ⋆ Pj)(Zi ⋆ Zj)− (Pi ⋆ Zj)(Pj ⋆ Zi)

(Pi ⋆ Pj)
,

(3.9)

where ⋆ = • , ◦ . By taking an opportune set of linearly independent V ⋆
i,jk and H⋆

ij one can

write any correlation function of bulk traceless and symmetric operators. In the following,

we will give a set of linearly independent structures for the two-point function.

Correlation functions of defect operators only can be also written in terms of structures

of the kind (3.9), but in this case the label ⋆ = • , since the P and Z(j) live in the parallel

space. In order to take into account the global symmetry SO(q) of the operators, we

need to add to the mix similar structures obtained by transverse contractions of C
(n)
Wi

, like

T ◦ 1,1
Wi,Wj

= W
(1)
i ◦W (1)

j .

A more involved set of structures appears for correlation functions involving both bulk

and defect operators. Indeed, it is possible to contract C
(n)
Wi

of a defect operator with C
(n)
Pj

of a bulk operator, in this case using the transverse product, since the Wi are orthogonal

to the defect. The simplest structures are

T ◦ 1,1
Wi,Pj

↔ Ki
j ≡ W

(1)
i ◦Pj

(Pj ◦Pj)1/2
,

T ◦ 2,11
Pi,WjPk

↔ Y j
i,k ≡

(Pi ◦Pk)(Zi ◦W (1)
j )− (Pi ◦W (1)

j )(Pk ◦Zi)

Pi ◦Pk
,

T ◦ 2,2
Wi,Pj

↔ Si
j ≡ (W

(1)
i ◦Pj)(W

(2)
i ◦Zj)− (W

(2)
i ◦Pj)(W

(1)
i ◦Zj)

(Pj ◦Pj)
1/2

.

(3.10)

Again we normalized the structures so that they have degree zero in Pi. In the next

subsection, we exemplify the formalism.

3.2 Examples of correlation functions

One-point functions. The one-point function of a bulk operator O(P1, Z
(j)
1 ) can be

constructed with the structure T • n,n
P,P . Notice that, since P 2 = P •P + P ◦P = 0, the

structure defined with ◦ is not linearly independent, T ◦ n,n
P,P = (−1)nT • n,n

P,P . We obtain,

up to a normalization constant,

〈O(P,Z(j))〉 ∝
imax∏

i=0

(T • i+1,i+1
P,P )ni/2 , imax = min (p+ 1, q − 1, [d/2]) . (3.11)

In (3.11), as in (2.29), we wrote ∆, l in terms of the associated Dynkin labels n =

[n0, n1, . . . n[ d
2
]] such that n0 = −∆− l1, n[ d

2
] = l[ d

2
] and ni = li − li+1 (for i = 1 . . . [d2 ]− 1).

For example, the one-point function of a traceless and symmetric primary of spin l is fixed

as follows

〈O(P1, Z1)〉 = aO
(H •

11)
l/2

(−P1 •P1)
∆
2

. (3.12)
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The function (3.11) must be a polynomial in the Z
(j)
1 , and this only happens if all the li

are even. We conclude that the operators with non vanishing one-point function are8

O∆2l1...2limax
. (3.13)

The maximum number of rows imax cannot exceed [d/2], of course, nor can it be larger

than min(p + 1, q − 1). The latter bound follows from the fact that it is impossible to

antisymmetrize a larger number of vectors in the parallel or in the orthogonal subspaces,

which makes the structures (2.24) vanish identically if they have too many indices. In

particular, notice that if the defect has codimension one, then only scalar primaries acquire

a one-point function. As in the case of the two-point functions (2.29), the one-point function

can be written in terms of a projector when the Z(j) obey Z(j) · P = 0, but Z(i) · Z(j) is

unconstrained. In this case, the projector is contracted on one side with the Z(j) and on

the other side with ΠMN
• :

〈O∆l(P1, Z
(j)
1 )〉 ∝

P • d+2
l1l1,...,l[d/2]

(P1, Z
(1)
1 , . . . , Z

([d/2])
1 )

(P1 •P1)∆+l1
. (3.14)

Here we introduced the notation P • d+2 for the following polynomial

P • d+2
l1,...,lk

(X1, . . . , Xk) ≡ π
SO(d+2)
l1,...,lk




X1 ··· ··· ··· ··· ··· X1

X2 ··· ··· ··· X2

.

.

.

.

.

.

.

.

. . .
.

Xk ··· Xk

,

M1
1 ··· ··· ··· ··· ··· M1

l1

M2
1 ··· ··· ··· M2

l2
.

.

.

.

.

.

.

.

. . .
.

Mk
1 ··· Mk

lk




×
k∏

j=1

Π
Mj

1 Mj
2• · · ·Π

Mj
lj−1

Mj
lj

• , (3.15)

where k ≤ [d/2]+1. As in footnote 4, with abuse of notation we will use the functions (3.15)

both in physical and in embedding space. The metric for the scalar products is intended as

the metric of these spaces. Moreover when we use (3.15) in physical space we contract the

SO(d) projector to πµν
• — defined in (3.3) — instead of its embedding space counterpart

ΠMN
• . By construction, these polynomials are non zero only when l1, . . . , lk are all even

numbers. Also, it is easy to check that (3.14) reduces to (3.11) when Z(j) · Z(k) = 0. We

can give some examples of these polynomials

P • d
j (X1) =

(
−j−q+3

2

)
j
2(

d+j−2
2

)
j
2

(X1 ·X1)
j/2

2F1

(
− j

2
,
d+ j − 2

2
;
p+ 1

2
;
X1 •X1

X1 ·X1

)

and similarly in appendix A we define the function P • d
j,2 .

In the next section, the polynomials P •n will play an important role in the computation

of the bulk channel conformal blocks.
8This rule applies to parity even primaries. The one-point function of parity odd operators is constructed

by contracting structures C(n) with the epsilon tensor of the p+2 or q dimensional space. Using this recipe,

it is not hard to classify the parity odd operators which can acquire a one-point function.
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Two-point functions of bulk traceless and symmetric operators. In this case the

set of linearly independent building blocks is

V •
1 , V •

2 , V ◦
1 , V ◦

2 ,

H •
12 , H ◦

12 , H •
11 , H •

22 ,
(3.16)

where V ⋆
i is defined in terms of the structures V ⋆

1,12 and V ⋆
2,21 of (3.9):

V ⋆
i ≡ V ⋆

i,i(3−i)

[
P1 •P2

P1 ⋆ P2

√
P1 •P2

P1 · P2

]
. (3.17)

Terms in square brackets are cross ratios, thus are not essential. They have been chosen

so that the tensor structures remain finite and linearly independent in both the bulk and

the defect OPE limits (see appendix C.1). In order to prove completeness of the struc-

tures (3.16), it is convenient to use the radial coordinates defined in subsection 3.3. Using

the bulk radial coordinates to fix ideas, the elementary building blocks are the bilinears

in the physical space polarizations z1, z2 and in the angle n. It is easy to see that said

bilinears are in one-to-one correspondence with the (3.16), thus proving the completeness

of the latter.9

In sum, a two-point function of bulk operators Oi of dimension ∆i and spin li can be

written as follows

〈O1(P1, Z1)O2(P2, Z2)〉 =
1

(P1 ◦P1)
∆1
2 (P2 ◦P2)

∆2
2

∑

k

fk({ua})Qk(P1, P2, Z1, Z2) . (3.18)

The structures Qk are given in terms of the building blocks

Qk = (H •
12)

m •
12(H ◦

12)
m ◦

12

2∏

i=1

(V •
i )n

•
i (V ◦

i )n
◦
i (H •

ii )
m •

ii , (3.19)

where the index k labels the choice of non-negative integers n⋆
i and m⋆

ij which satisfy the

relation

li = m •
12 +m ◦

12 + n •
i + n ◦

i + 2m •
ii . (3.20)

The functions fk({ua}) depend on two cross ratios [28].

Two-point functions of generic defect operators. The two-point function of a defect

operator Ô with transverse spin s and parallel spin l̂ is fixed in a combination of tensor

structures

〈Ô(P1, Z
(j)
1 ,W

(j)
1 )Ô(P2, Z

(j)
2 ,W

(j)
2 )〉 ∝

[ p
2
]∏

i=0

(T • i+1,i+1
P1,P2

)ni ×
[ q
2
]∏

i=1

(T ◦ i,i
W1,W2

)mi . (3.21)

As before n = [n0, n1, . . . n[ p
2
]] are defined as the Dynkin labels associated to

(−∆, l1, . . . l[p/2]) such that n0 = −∆ − l1, n[ p
2
] = l[ p

2
] and ni = li − li+1 (for i =

9This basis can be also written in terms of the structures defined in [20].
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1 . . . [p2 ] − 1). The extra labels m = [m1, . . .m[ q
2
]] are instead the Dynkin labels associ-

ated to s = (s1, . . . s[q/2]).

As an explicit example, the two-point function of a defect operator Ô with symmetric

and traceless parallel and transverse spin l̂ and s, is fixed as follows:

〈Ô(P1, Z1,W1)Ô(P2, Z2,W2)〉 =
(H •

12)
l̂ (W1 ◦W2)

s

(−2P1 •P2)
∆̂
2

. (3.22)

It is easy to generalize this result to higher point functions of defect operators, since

they coincide with those of a p-dimensional CFT with a global symmetry. Vice versa one

can also use this formalism in order to write correlation functions of CFTs with SO(q)

global symmetry.

Bulk-defect two-point functions. We consider now a correlation function of a bulk

symmetric traceless primary O, with dimension ∆ and spin l, and a generic defect primary

Ô, with dimension ∆̂ parallel spin l̂ and transverse spin s. Using the structures (3.8), it is

easy to see that the defect operator is fixed to be a traceless and symmetric parallel tensor

of spin l̂ and a tensor of orthogonal spin s = (s1, s2), with si = 0 for i > 2. Therefore

〈O(P1, Z1)Ô(P2, Z2,W
(j)
2 )〉 =

∑

p

O p Ô =

∑
p
b
(p)

OÔQ
(p)(P1, Z1, P2, Z2,W

(j)
2 )

(−2P1 •P2)∆̂(P1 ◦P1)
∆−∆̂

2

,

(3.23)

where10

Q(p) = (H •
12)

l̂ (S2
1)

s2 (H •
11)

m11 (V •
1,12)

n1 (K2
1 )

n2 (Y 2
1,1)

m12 . (3.25)

The structures involved are defined in (3.9) and (3.10). The index p labels the choices of

non-negative integers mij and ni which satisfy the constraints

l − l̂ − s2 = 2m11 + n1 +m12 ,

s1 − s2 = n2 +m12 .
(3.26)

Eq. (3.26) implies the requirement

l ≥ l̂ + s2 . (3.27)

Let us now exemplify the counting of tensor structures for fixed spin of the bulk operator.

Analogously to the discussion in subsection 2.2, we are mainly interested in defect operators

with label s1 generic, which in this case means s1 ≥ l − l̂:

l = 1 , s1 ≥ 1− l̂ ,
(l̂, s2) (0, 0) (1, 0) (0, 1)

# 2 1 1
(3.28)

l = 2 , s1 ≥ 2− l̂ ,
(l̂, s2) (0, 0) (1, 0) (0, 1) (2, 0) (1, 1) (0, 2)

# 4 2 2 1 1 1
(3.29)

10The building blocks map to the ones defined in [20] as follows:

H •
12 = Q0

BD, K2
1 = Q1

BD, V •
1,12 = −Q2

BD, Y 2
1,1 = Q3

BD, H •
11 = Q4

BD. (3.24)

We introduced an extra structure in order to take into account operators with transverse spin s2 > 0.
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From formula (3.26) and from the table it is clear that, for large enough s1, the number

of structures only depends on the difference N ≡ l − l̂ − s2 and in particular it is equal to

# = (1 +N/2)2 for even N and # = (1 +N)(3 +N)/4 for odd N . We are led to a simple

characterization of the seed two-point functions, which are again defined as the correlation

functions which appear with a single structure # = 1 (for large enough s1). These are

forced to have N = 0 or equivalently

l = l̂ + s2 ⇔ seed ≡ O∆l Ô∆̂,l̂=l−s2,(s1,s2)
, (3.30)

in which case mij = 0 = n1 (of course s1 ≥ s2).

Using more generic structures (3.8) one can characterize the bulk-defect two-point func-

tion also when the bulk operator transforms in a generic representation l = (l1, . . . , l[d/2])

and the defect operator has generic parallel l̂ = (l̂1, . . . , l̂[p/2]) and transverse s =

(s1, . . . , s[q/2]) spin. In particular it is easy to see that all the non zero two-point func-

tions satisfy li ≥ l̂i + si+1. Moreover, this condition is saturated by the bulk-defect seeds,

which obey li = l̂i + si+1. As a last comment, we would like stress that, as we already ex-

plained at the end of subsection 2.2 for bulk seed structures, the seed bulk-defect two-point

function of a conserved bulk operator is automatically conserved.

3.3 Correlation functions in physical space

This section is dedicated to the projection of the embedding space expressions to physical

space. We will simply gather the relevant formulae, referring the reader to the literature

for a complete discussion [20, 28, 32].

As mentioned in subsection 2.2, the CFT lives on the null cone of R1,d+1. The usual

flat Euclidean space with Cartesian coordinates xµ is obtained by restricting the operators

to lie on the Poincaré section:

PM
Poincaré =

(
1 + x2

2
, xµ,

1− x2

2

)
, (3.31)

where the first coordinate is the time-like one. The embedding space indices of the oper-

ators are projected onto the physical ones via the Jacobian of the immersion (3.31). The

polarization vectors in embedding and in physical space are related by requiring that such

a projection, applied to the tensor structures in embedding space, yields the polynomial

which encodes the tensor structures in physical space. Since in the following the only ex-

ternal operators will be bulk primaries, we only explicitly consider their polarizations. A

possible choice is

Z(k)M = z(k)µ
∂

∂xµ
PM
Poincaré = (z(k) · x, z(k)µ,−z(k) · x) . (3.32)

The polarizations defined this way obey (2.23) if z(i) · z(j) = 0, but the choice (3.32) is non

unique, since a shift Z
(k)
M → Z

(k)
M + αPM leaves the correlation functions invariant.

In the next section, we will be concerned with the two-point function of bulk primaries.

In [28], two convenient configurations for this correlator were discussed, which we call the

bulk radial frame and the defect radial frame.
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b
O1

O2

n

b

bb
DD

bb

b

b O1

O2

D n

n
′

Figure 1. The bulk and defect radial frames, corresponding to equations (3.33) and (3.36). Bulk

radial frame (left): the defect is spherical and orthogonal to the plane drawn in the figure, and

crosses it at the position marked by the red dots. The operators O1 and O2 sit at the same radius

r. Defect radial frame (right): the defect is flat and orthogonal to the plane drawn in the figure,

and crosses it at the position marked by the red dot. The operator O1 sits at unit radius, while O2

lies at radius r̂.

Bulk radial frame. In the bulk radial frame, the defect is a p-sphere of unit radius

centered in the origin. The operators are inserted in P1 and P2, with

P1 =

(
1 + r2

2
, rnµ,

1− r2

2

)
, P2 =

(
1 + r2

2
,−rnµ,

1− r2

2

)
, (3.33)

where n is a unit vector in R
d and 0 < r < 1. The configuration, which is depicted on the

left in figure 1, naturally defines the two cross-ratios

r , η2 ≡ n •n . (3.34)

The polarization vectors are

Z
(k)
1 =

(
r z

(k)
1 · n, z(k)µ1 ,−r z

(k)
1 · n

)
, Z2 =

(
−r z

(k)
2 · n, z(k)µ2 , r z

(k)
2 · n

)
, (3.35)

Defect radial frame. On the other hand, in the defect radial frame the defect is taken

to be flat and the operators are located at

P1 = (1, nµ, 0) , P2 =

(
1 + r̂2

2
, r̂n′µ,

1− r̂2

2

)
, (3.36)

where 0 < r̂ < 1, and n, n′ are now unit vectors in the transverse space R
q, i.e. πµν

• nν =

πµν
• n′

ν = 0. The coordinates of P2 can be taken as cross ratios:

r̂ , η̂ ≡ n ◦n′ , (3.37)

and the configuration is depicted on the right in figure 1. The polarization vectors are

Z
(k)
1 =

(
z
(k)
1 ◦n, z(k)µ1 ,−z

(k)
1 ◦n

)
, Z

(k)
2 =

(
r̂ z

(k)
2 ◦n′, z(k)µ2 ,−r̂ z

(k)
2 ◦n′

)
. (3.38)
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4 Spinning conformal blocks

We would like to study the two-point function of symmetric and traceless bulk operators

Oi, with dimension ∆i and spin li, in the presence of a defect:

F2({Pi, Zi}) ≡ 〈O1(P1, Z1)O2(P2, Z2)〉 . (4.1)

We are going to consider the conformal partial wave decomposition of the two-point func-

tion both in the bulk and the defect channel. In the bulk channel one has

F2({Pi, Zi}) =
∑

O

∑

p

aO c
(p)
12O G

(p)
O ({Pi, Zi})

=
∑

O

∑

p

aO c
(p)
12O

O1

p
O

O2

.

(4.2)

Here aO is the one-point function coefficient, which is implicit in (3.11) and appears ex-

plicitly in (3.12). The c
(p)
12O are the three-point function OPE coefficients defined in (2.32).

The exchanged operator O with conformal dimension ∆ and SO(d) spin l needs to have a

non-vanishing one-point function in order to appear in the bulk OPE. From the discussion

of subsection 3.2 we therefore conclude that all the Cartan labels l = (ℓ1, . . . , ℓ[d/2]) of O
are forced to be even numbers.

The defect channel expansion is written as follows:

F2({Pi, Zi}) =
∑

Ô

∑

p,q

b
(p)

1Ô b
(q)

2Ô Ĝ
(p,q)

Ô ({Pi, Zi})

=
∑

Ô

∑

p,q

b
(p)

1Ô b
(q)

2Ô
O1 p

O2 q

Ô
(4.3)

where bulk-defect OPE coefficients b
(p)

1Ô, b
(q)

2Ô were defined in (3.23). The exchanged operator

Ô is labelled by its conformal dimension ∆̂, the SO(p) representation l̂ and the SO(q) repre-

sentation s. As explained in subsection 3.2, the parallel spin l̂ is always traceless and sym-

metric, while the transverse spin smay be in a mixed symmetric representation s = (s1, s2).

It is often convenient to study conformal blocks (CBs) in the radial coordinates defined

in 3.3. Following the conventions of [28], we expand the partial waves in terms of a sum

of conformal blocks, which depend on two cross ratios. In the bulk channel, from (4.2) we

define

G
(p)
O ({Pi, Zi}) =

A(r, η)

(P1◦P1)
∆1
2 (P2◦P2)

∆2
2

kmax∑

k=1

g
(p),k
O (r, η)Qk({Pi, Zi}) , (4.4)

where the structures Qk are defined in (3.18) and A is the following function

A(r, η) ≡ (2r)−∆1−∆2
(
r4 − 4η2r2 + 2r2 + 1

) 1
2
(∆1+∆2) . (4.5)
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A similar expansion holds for the defect channel partial waves (4.3), where we define r̂, η̂

as in 3.3:

Ĝ
(p,q)

Ô ({Pi, Zi}) =
1

(P1◦P1)
∆1
2 (P2◦P2)

∆2
2

kmax∑

k=1

ĝ
(p,q),k

Ô (r̂, η̂)Qk({Pi, Zi}) . (4.6)

In tables (4.7)–(4.8) we give some examples of conformal blocks which appear in various

two-point functions of bulk operators with spin l1 and l2. The notation is as follows. When

the number of OPE tensor structures (which we recall are labeled by p in the bulk channel

and (p, q) in the defect channel) is 1, we call the associated conformal block a seed block.

The label kmax is the number of tensor structures in the two-point function, according

to (4.4) and (4.6).

l1 l2 kmax Bulk OPE

0 0 1
∆,l

1 0 2
p

∆,l

p = 1, 2

1 1 6
p

∆,l

p = 1, . . . , 5

∆,(l,2)

seed CB

2 2 27
p

∆,l

p = 1, . . . 14

p

∆,(l,2)

p = 1, . . . 11

∆,(l,4)

seed CB

∆,(l,2,2)

seed CB

(4.7)

From tables (4.7) and (4.8), we see that the total number of partial waves in the bulk

and defect channels is equal. They are also equal to the number of two-point function

tensor structures kmax. For instance, the two-point function of spin one operators can be

decomposed in 5 + 1 = 6 bulk partial waves, or in 22 + 1 + 1 = 6 defect partial waves

and has kmax = 6. Similarly, the two-point function of spin two operators is decomposed

in 14 + 11 + 1 + 1 = 27 bulk CBs and in 42 + 2 × 22 + 3 × 1 = 27 defect ones and again

kmax = 27. In fact one can check that this match continues also for external operators with

higher spin. It would be interesting to justify this match by using representation theory as
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it was done in [41] for correlation functions in CFTs without defects.

l1 l2 kmax Defect OPE

0 0 1 ∆̂, l̂ = 0, s

1 0 2

p

∆̂, l̂ = 0, s

p = 1, 2

1 1 6

p

∆̂, l̂ = 0, s

q

p, q = 1, 2

∆̂, l̂ = 0, (s, 1)

seed CB

∆̂, l̂ = 1, s

seed CB

2 2 27

p

∆̂, l̂ = 0, s

q

p, q = 1, . . . , 4

p

q

p, q = 1, 2

∆̂, l̂ = 1, s

∆̂, l̂ = 0, (s, 1)

seed CBs

∆̂, l̂ = 2, s

∆̂, l̂ = 1, (s, 1)

∆̂, l̂ = 0, (s, 2)

(4.8)

In the following, we describe some techniques to determine the conformal blocks g and

ĝ in formulae (4.4) and (4.6). In general, the bulk CBs are going to be computable only as

an expansion in radial coordinates: roughly speaking the bulk CBs are as hard as the CBs

for the four-point function, with which they share the same bulk OPE. On the other hand

we will be able to determine a closed form formula for any defect channel CB.

In appendix B, C, D and E we will exemplify the techniques by computing CBs with

l1 = 1, l2 = 0 and l1, l2 = 1.

4.1 Bulk channel

The bulk channel partial waves (4.3) are eigenfunctions of the quadratic Casimir operator:

− 1

2
(J1 + J2)

2 G
(p)
O ({Pi, Zi}) = c∆l G

(p)
O ({Pi, Zi}) . (4.9)

The eigenvalue is c∆l = ∆(∆− d) + l(l+ d− 2) and the generators are JMN
i ≡ 2P

[M
i ∂

N ]
Pi

+

2Z
[M
i ∂

N ]
Zi

. Different partial waves associated to the same operator are distinguished by the

asymptotic behavior in the OPE limit. Equation (4.9) can be cast into a set of second

order partial differential equations which couple the functions g
(p),k
O (r, η) defined in (4.4)

for k = 1, . . . , kmax. We schematically write

kmax∑

k′=1

Mkk′(∂r, ∂η)g
(p),k′

O (r, η) = 0 . (4.10)
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Here the matrix M depends on the cross ratios r, η and the derivatives ∂r, ∂η. A closed

form solution for generic dimension and codimension is not known.

The goal of this section is to compute spinning conformal blocks by generalizing differ-

ent methods that were used in [28] to compute the scalar blocks. First, we explain how to

write CBs as a series expansion in the radial coordinates. The coefficients of the expansion

can be computed in various ways. In particular, we comment on an efficient way to gen-

erate them through a recurrence relation of the kind introduced by Zamolodchikov in [42].

Finally, we explain how to obtain the spinning conformal blocks by acting with differential

operators on seed blocks, following the idea of [31].

4.1.1 Radial expansion

The existence of the bulk OPE implies that the bulk CBs can be written as a power

expansion in the radial coordinates of section 3.3 (see [28, 43, 44]). In fact, by writing

the two-point function in the cylinder frame (3.33), it becomes clear that the powers of r

measure the cylinder energy of the operators exchanged in the OPE. The dependence on

the unit vector n is fixed by the SO(d) representations of the descendants, and encoded in

the polynomials P • d of (3.15). Finally, the expansion can be conveniently repackaged in a

finite number of functions W (r, η, n, zi) in one-to-one correspondence with the three-point

function tensor structures given in subsection 2.3.

The object of interest is the following matrix element in radial quantization:

GO = 〈0̂|rHcylPO O1(n, z1)O2(−n, z2)|0〉 , (4.11)

where PO is the projector onto the conformal family with highest weight labelled by ∆ and

SO(d) spin l and Hcyl is the Hamiltonian conjugate to the cylinder time τ = log r. The

function GO is equivalently obtained by writing the conformal partial waves into the bulk

radial frame11

∑

p

c(p)G
(p)
O ({Pi, Zi}) −→

b.r.f.
r−∆1−∆2GO(r, η, n · zk, n • zk, z1 · z2, zk • zj) , (4.12)

as explained in appendix C.1. In this section we define a • b ≡ a · π• · b with π• the parallel

projector for spherical defects, namely the diagonal matrix with p + 1 ones followed by

q − 1 zeros. Eq. (4.12) makes it manifest that in the radial frame the functions GO can be

expanded in tensor structures generated by the building blocks n·zk, n • zk, z1·z2, zk • zj . It
is natural to rewrite the projector PO in (4.11) as a sum over a complete basis of bulk states:

GO =
∞∑

m=0

r∆+m
∑

j

∑

d

〈0̂|m, j, d〉〈m, j, d|O1(n, z1)O2(−n, z2)|0〉 , (4.13)

where we sum over all states at level m of the conformal family, organized in irreducible

representations (irreps) with spin j = (j1, j2, . . . , j[d/2]) of SO(d). d labels the degeneracy

of such states.

11In practice, the freedom contained in the coefficients c(p) is translated in the freedom of choosing the

coefficients w(p)(0, l) in eq. (4.21) below.
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The one-point function 〈0̂|m, j, d〉 is always fixed in terms of a single tensor structure.

For example when j = (k, 2) we have

〈0̂|m,
µ1 µ2 ··· µk

ν1 ν2
, d〉 = v(m; j, 2; d)π

SO(d)
k,2

(
µ1 µ2 ··· µk

ν1 ν2
,
ρ1 ρ2 ··· ρk

σ1 σ2

)
πσ1 σ2
• πρ1 ρ2

• · · ·πρk−1 ρk
• .

(4.14)

The case of generic j is just a straightforward generalization. Equation (4.14) implies that

the only allowed one-point functions correspond to states for which all the Cartan labels

j1, j2, . . . j[d/2] are even integers. While we pointed out in subsection 3.2 that this is true

for primary operators, we now see that the same holds for descendants as well, but only

when acting on the vacuum at the center of a spherical defect.

The overlaps 〈m, j, d|O1(n, z1)O2(−n, z2)|0〉 of (4.13) were already considered in [44].

For concreteness we present here some examples of their form. If j is a symmetric and

traceless SO(d) representation, the overlap is fixed by Lorentz invariance up to a few

coefficients u(p)(m, j, d),

〈m, α1 ··· αj , d|O1(n, z1)O2(−n, z2)|0〉 =
∑

p

u(p)(m, j, d) t(p)(n,∇n, z1, z2)π
SO(d)
j

(
α1 ··· αj , n ··· n

)
,

(4.15)

where we introduced the covariant derivative on the sphere ∇µ
n = ∂µ

n − nµ (n · ∂n). The

coefficients u(p)(m, j, d) multiply the tensor structures t(p). The tensor structures t(p) are

homogeneous functions of zi of degree li and are generated as products of the following five

building blocks (we take all the derivatives to be ordered on the right of the polynomial):

(n · z1), (n · z2), (z1 · ∇n), (z2 · ∇n), (z1 · z2) . (4.16)

For example, for one external vector we get two structures

t(1) = (z1 · n) , t(2) = (z1 · ∇n) . (4.17)

While for two external vectors we get five structures

t(1) = (z1 · n)(z2 · n) , t(2) = (z1 · n)(z2 · ∇n) , t(3) = (z2 · n)(z1 · ∇n) ,

t(4) = (z1 · ∇n)(z2 · ∇n) , t(5) = (z1 · z2) .
(4.18)

The exchange of other representations j require appropriate SO(d) projectors in eq. (4.15).

For instance, if the primaries O1 and O2 are vectors, they also exchange operators in the

representation j = (ℓ, 2),

〈m,
α1 α2 ··· αℓ

β1 β2
, d|O1(n, z1)O2(−n, z2)|0〉 = u(m, ℓ, 2, d)π

SO(d)
ℓ,2

(
α1 α2 ··· αℓ

β1 β2
,

n n ··· n

z1 z2

)
.

(4.19)

Notice that in this case there are no tensor structures t(p) since all the polarization vectors

z1, z2 are being contracted with the SO(d) projector. In fact this is a seed three-point

function as defined in (2.38).
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Putting all together, one obtains a general formula for the radial expansion:

G∆,l1,...,l[d/2](r, η, n, zi) =
∑

p

∑

j2,...,j[d/2]

t(p)(n,∇n, z1, z2)W
(p)
j2,...,j[d/2]

(r, η, n, zi) , (4.20)

W
(p)
j2,...,j[d/2]

(r, η, n, zi) ≡
∞∑

m=0

l1+m∑

j1=max[l1−m,j2]

w
(p)
j2,...,j[d/2]

(m, j1) r
∆+m P • d

j1,...,j[d/2]
(n, zi) ,

(4.21)

where w
(p)
j2,...,j[d/2]

(m, j1) ≡
∑

d
u(p)(m, j, d)v(m, j, d).

Notice that the sums in (4.20) over p and j2, . . . j[d/2] span a finite sets of elements: p is

bounded by the number of tensor structures in the OPE O1 ×O2, while the Cartan labels

j2, . . . j[d/2] are bounded by the possible representations exchanged in the OPE O1 × O2

and need to be even. This means that to compute the conformal blocks we need to know a

finite number of functions W
(p)
j2,...,j[d/2]

. They are constrained by Lorentz symmetry as shown

in equation (4.21), where the only unknowns are the coefficients w(p). Equation (4.21)

provides a natural expansion in radial coordinates, where at each new level in r there is a

finite number of coefficients to be computed.

In (4.21) we loosely write P • d
j1,...,j[d/2]

(n, zi), where zi are the polarization vectors of the

external operators. This is a schematic formula to stress that all the complication of a mixed

symmetry exchanged representation are encoded in the polynomials P • d
j defined in (3.15).

More precisely, in the definition (3.15) each line of the Young tableau is contracted with

the same polarization vector, while in (4.20) different polarization vectors may appear in

the same line. Let us exemplify this construction with the two-point function of vector

operators,

G∆,l1,l2(r, η, n, zi) =
5∑

p=1

t(p)(n,∇n, z1, z2)W
(p)
0 (r, η, n) +W2(r, η, n, zi) , (4.22)

where the structures t(p) are defined in (4.18). We dropped the label p from W2 since it

only has one tensor structure and we omitted the dependence on zi from W
(p)
0 since it does

not depend on them. The definition of the functions W is as follows,

W
(p)
0 (r, η, n) =

∞∑

m=0

l1+m∑

j1=max[l1−m,0]

w
(p)
0 (m, j1) r

∆+mP • d
j1 (n), (4.23)

W2(r, η, n, zi) =
∞∑

m=0

l1+m∑

j1=max[l1−m,2]

w2(m, j1) r
∆+m(z1 · ∂z2)P • d

j1,2(n, z2). (4.24)

The purpose of the derivative (z1 · ∂z2) is to insert the polarization vector z1 in the second

line of the Young tableau, in accordance with equation (4.19).

The final task is to fix the coefficients w. A possible strategy uses the Casimir equation,

which can be cast as a recurrence relation for the coefficients w. This strategy was used for

example in [28] to compute the bulk channel scalar CBs. In the next subsection, we explain

instead how to compute them using a recurrence relation akin to the one Zamolodchikov

proposed for 2d Virasoro CBs [42].
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4.1.2 Zamolodchikov recurrence relation

In [28] we explained how to write a Zamolodchikov recurrence relation [42] for scalar bulk

blocks following the recipe of [45–47]. Here, we show that it is easy to generalize the

Zamolodchikov recurrence relation to the case of external operators with spin. Following

the argument of [47], a conformal block for the exchange of an operator O of conformal

dimension ∆ and SO(d) spin l = (l1, l2 . . . , l[d/2]), has the following pole structure as a

function of ∆:

G
(p)
∆l (Pi, Zi) =

1

∆−∆⋆
A

∑

p′

(RA)pp′G
(p′)
∆AlA

(Pi, Zi) +O((∆−∆⋆
A)

0) . (4.25)

In equation (4.25) we denoted by ∆A and lA = (lA 1, lA 2, . . . lA [d/2]) the labels of the

operator OA which is a descendant of O. The descendant operator OA becomes primary

when we tune the dimension of the primary O to ∆ = ∆⋆
A, in which case ∆A = ∆⋆

A + nA,

where nA ∈ N is the level. Being both a primary and a descendant, OA has a vanishing

norm, which in turn gives rise to a pole in the conformal block [47]. We break up the

matrix RA into the following pieces:

(RA)pp′ = M
(L)
A QA(M

(R)
A )pp′ , (4.26)

where the coefficients MA and QA take into account the different normalization of the

operator OA with respect to a canonically normalized operator O with the same SO(d)

spin as OA [28, 47]. In particular QA,M
(L)
A are defined by

〈OAOA〉−1 =
QA

∆−∆⋆
A

〈OO〉−1 +O(∆−∆⋆
A) , 〈OA〉 = M

(L)
A 〈O〉 , (4.27)

while the matrix M
(R)
A implements the following change of basis,

O1

p OA

O2

=
∑

p′

(M
(R)
A )pp′

O1

p′ O
O2

. (4.28)

As we explained in [28], the pole structure matches the one of the conformal blocks

for theories without defects [44, 47]. However, parity even primaries with odd spin have

vanishing one-point functions — see section 3.2. Therefore, in the present case the spins

li, lA i are even integers. For completeness, we write the full set of poles ∆⋆
A and the
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quantum numbers of the associated primary descendants OA in the following table

A ∆⋆
A nA lAk

Ik, n = 2, 4, . . . , lk−1 − lk k − lk − n n lk + n

IIk, n = 2, 4, . . . , lk − lk+1 d+ lk − k − n n lk − n

III, n = 1, 2, . . .∞ d
2 − n 2n lk

IV, n = 1, 2, . . . , l[d/2]
d+1
2 − n 2n lk

(4.29)

where k = 1, . . . , [d/2].

Also the coefficients QA and the matrices M
(R)
A are the same as the ones defined in [47].

They were computed for the vector-scalar and the vector-vector cases in [10, 44, 47]. Finally,

M
(L)
A was computed in appendix B.2 of [28] for all the operators OA in a symmetric and

traceless representation.

The conformal blocks (4.4) are obtained by summing over all the poles in ∆ and the

regular part as follows:

h
(p),k
∆l (r, η) ≡ (4r)−∆g

(p),k
∆l (r, η) −→

∆→∞
h
(p),k
∞l (r, η) (4.30)

h
(p),k
∆l (r, η) = h

(p),k
∞l (r, η) +

∑

A

∑

p′

(RA)pp′

∆−∆⋆
A

(4r)nAh
(p′),k
∆A lA

(r, η) . (4.31)

The functions h
(p),k
∞l (r, η) can be computed by solving the Casimir equation at leading order

for ∆ → ∞. Notice that, since nA > 0, we can use this recurrence relation to compute the

radial expansion of the conformal blocks.

4.1.3 Spinning differential operators

It is possible to obtain spinning conformal partial waves in the presence of defects by acting

on seed conformal partial waves with appropriate differential operators D(p), first defined

in [31]. These differential operators act by effectively increasing the spin of operators in a

three-point function

D(p)

O∆1 l1=l(2)

O∆ l

O∆2 l2=l(3)

=

O∆1 l′1

p O∆ l

O∆2 l′2

, (4.32)

where l′i ≥ li and l ≡ (l(1), l(2), l(3)). The three-point function on the left hand side of (4.32)

is a representative seed of the kind (2.39) (here we named O3 = O), while the one on the

right hand side is a generic three-point function, thus it is labeled by a tensor structure
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index p. The result of [31] is that D(p) can be constructed as compositions of the following

elementary operators

D11 ≡ (P1 · P2)(Z1 · ∂P2)− (Z1 · P2)(P1 · ∂P2)− (Z1 · Z2)(P1 · ∂Z2) + (P1 · Z2)(Z1 · ∂Z2),

D12 ≡ (P1 · P2)(Z1 · ∂P1)− (Z1 · P2)(P1 · ∂P1) + (Z1 · P2)(Z1 · ∂Z1) ,

D22 ≡ (P2 · P1)(Z2 · ∂P1)− (Z2 · P1)(P2 · ∂P1)− (Z2 · Z1)(P2 · ∂Z1) + (P2 · Z1)(Z2 · ∂Z1),

D21 ≡ (P2 · P1)(Z2 · ∂P2)− (Z2 · P1)(P2 · ∂P2) + (Z2 · P1)(Z2 · ∂Z2), (4.33)

and H12 as defined in (2.32). With the above definitions Dij increases the degree in Zi

and Pj by one unit, while H12 increases both Z1 and Z2. With respect to [31], we want to

consider an extra operator which increases the degree in Zj while deceasing the degree of Zi

by one unit. This is the so called spin transfer operator D
(T )
ij of [34] defined in equation (B.8)

in appendix B. This has the special role of mapping seeds in seeds (see appendix (B.1)).

Therefore it allows us to construct all the seed three-point functions (2.38) from its action

onto the seed representatives (2.39).

The bulk OPE is not affected by the presence of the defect. This means that it is

possible to generate the spinning blocks in the bulk channel by acting with D(p) on the

(representative) seed partial waves,

D(p)

O∆1 l1=l(2)

O

O∆2 l2=l(3)

=

O∆1 l′1

p
O

O∆2 l′2

. (4.34)

In appendix (B.1) we show that the full set of partial waves (for Oi in traceless and

symmetric representations) is obtained by acting on seed partial waves with the following

combinations:

D(p̄) = Hn12
12 Dn13

12 Dn23
21 Dn1

11D
n2
22D

(T ) k2
12 Σn1+n23,n2+n13 . (4.35)

The label p̄ counts the choices of non-negative integers nij , ni which satisfy the con-

straints (2.34). The operator Σx1,x2 implements the shift on the external dimensions

∆i → ∆i + xi.

We put a bar on the OPE label p̄ because the basis of differential operators is different

from the OPE basis (labelled by p) defined in (3.19). There is however a linear map

between the two bases D(p) =
∑

p̄
(ap̄ p)

−1D(p̄) which can be easily obtained acting with

D(p̄) on the representative seed and expressing the result in terms of the OPE basis (3.19).

This problem was already addressed in the paper [31] (see equation (3.31)). The matrix

(ap̄ p)
−1 is computed explicitly in few examples in appendix B.

As in the case of a four-point function of local operators, the differential opera-

tors (4.35) are not sufficient to generate all the blocks, since they do not provide a way to

compute the seed representatives. In the four-point function case the problem was solved

by the introduction of weight shifting operators [38] which can be used to generate seed

blocks by acting on scalar ones. It would be interesting to generalize this technology to

defect CFTs.
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Finally, it is important to stress that there are just three new seed blocks which need

to be computed in the case of the two-point function of spin two operators with a defect in

generic dimensions. This has to be compared with the eight (non symmetric and traceless)

seeds which are needed to tackle the case of the four-point function of stress tensors. In

order to compute the missing seeds (in radial expansion) one can apply the techniques ex-

plained in the sections above. Moreover, in three spacetime dimensions only traceless and

symmetric representations are allowed, therefore by acting with spinning differential opera-

tors [31] on the scalar bulk channel CB one can generate the full set of bulk channel blocks.

4.2 Defect channel

In the following, we show that the full set of defect partial waves can be written in a closed

form. In particular, they are simply related to the set of special functions Pn introduced

in (2.14). The functions Pn explicitly computed in [34, 37] are sufficient for obtaining all

the defect CBs “of interest”. In order to further illustrate and check the results, in subsec-

tions 4.2.3 and 4.2.4 we also extend the radial expansion techniques to the defect channel. A

list of computed conformal blocks for external vector operators is presented in appendix F.

The factorized form of the defect symmetry group SO(p + 1, 1) × SO(q) gives rise to

two independent Casimir equations for the parallel and transverse factors. We claim, and

check in various cases, that the conformal partial waves (4.6) can be written in embedding

space in a completely factorized form:

Ĝ
(p,q)

Ô (Pi, Zi) ≡
Ĝ

• (p,q)
∆̂l̂

(Pi, Zi) Ĝ
◦ (p,q)
s (Pi, Zi)

(P1 ◦P1)
∆1
2 (P2 ◦P2)

∆2
2

. (4.36)

The functions Ĝ • and Ĝ ◦ are eigenfunctions of the parallel and transverse Casimir equa-

tions respectively (with appropriate boundary conditions), namely

− 1

2
(J •

1 )2 Ĝ
• (p,q)
∆̂l̂

= c •
∆̂l̂

Ĝ
• (p,q)
∆̂l̂

, −1

2
(J ◦

1 )2 Ĝ ◦ (p,q)
s = c ◦s Ĝ ◦ (p,q)

s . (4.37)

Here J1 is defined as JMN
1 ≡ PM

1 ∂N
P1

− PN
1 ∂M

P1
+ ZM

1 ∂N
Z1

− ZN
1 ∂M

Z1
where the suffix • ( ◦ )

means that we consider the indices M,N to be in the parallel (transverse) space. The

eigenvalues are

c •
∆̂l̂

= ∆̂(∆̂− p) +

[ p
2
]∑

i=1

l̂i(l̂i + p− 2i) , c ◦s =

[ q
2
]∑

i=1

si(si + q − 2i) . (4.38)

Notice that Pi ◦Pi commutes with both the Casimir operators. This implies that the defect

conformal blocks are independent of the dimensions ∆i of the external operators.

4.2.1 Seed blocks as projectors

Our strategy will be to obtain a closed form expression for the so called seed partial waves

and then to act on them with differential operators in order to generate the full set of

conformal blocks.
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In this subsection we explain how to obtain all the seed conformal blocks in terms of

the mixed symmetry projectors found in [34], schematically

seed CB = Projector[SO(p+ 1, 1)]× Projector[SO(q)] . (4.39)

Let us now explain the ingredients that enter formula (4.39). From the discussion in

subsection 3.2, defect seed conformal blocks appear when the SO(d) representations li =

(li 1, . . . , li [ d
2
]) of the external operators Oi satisfy the following relation:

seed ↔ l1 i = l2 i = l̂i + si+1 , (4.40)

where l̂ = (l̂1, . . . , l̂[ p
2
]) and s = (s1, . . . , s[ q

2
]) are respectively the parallel and transverse

spins of the exchanged operator Ô. For the sake of clarity, and in line with the main

focus of the paper, from now on we restrict ourselves to the case of external traceless and

symmetric primaries with spin l1 and l2,

seed CB =

O∆1l

Ô∆̂, l̂=l−s2, (s1s2)

O∆2l

. (4.41)

It is convenient to rephrase the condition (4.40) as a property of the parallel and

transverse seed partial waves defined in (4.36). The factorized seeds need to satisfy the

following scaling properties:

Ĝ •
∆̂l̂
(Pi, αiZi) = (α1α2)

l̂Ĝ •
∆̂l̂
(Pi, Zi) , Ĝ ◦

s1s2(Pi, αiZi) = (α1α2)
s2Ĝ ◦

s1s2(Pi, Zi) . (4.42)

This implies in particular that the full seed block Ĝ∆̂l̂(s1,s2)
satisfies the seed condi-

tion (4.40). As we remarked at the end of section 3.2, seed blocks are automatically

conserved.

We claim that all the transverse seed blocks can be simply written in terms of the

polynomials (2.14). For example, if the external operators are symmetric and traceless we

can write all the transverse seeds as follows

Ĝ ◦
s1s2(Pi, Zi) =

Pq
s1,s2(P1, Z1;P2, Z2)

(P1 ◦P1)
s1
2 (P2 ◦P2)

s1
2

. (4.43)

This can be easily seen from the leading defect OPE as we will describe in more detail

in section 4.2.3. From an abstract point of view, one can check that (4.43) satisfies all

the required properties to be a seed. In fact (4.43) has the appropriate scaling (4.42)

and it satisfies the Casimir equation (4.37). In addition, (4.43) is conserved. All of this

immediately follows from the properties of the projectors described in subsection 2.1.2.

We moreover claim that also the parallel seed blocks can be written in terms of the

polynomials (2.14). This statement may look less trivial since the parallel seed Ĝ •
∆̂l̂

is not
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a polynomial. However, if ∆̂ is a negative integer the parallel seed satisfies the same set of

properties as the transverse one, thus, in this special case, we are lead to write

Ĝ •
∆̂l̂
(Pi, Zi) =

Pp+2

−∆̂,l̂
(P1, Z1;P2, Z2)

(P1 •P1)
− ∆̂

2 (P2 •P2)
− ∆̂

2

. (4.44)

On the other hand, we are interested in the case where ∆̂ is a positive real number. We

therefore define (4.44) as the analytic continuation of (2.14) for a Young tableau with a

negative real number of boxes in the first row. In practice, this analytic continuation is

straightforward: roughly speaking it amounts to replace a Gegenbauer polynomial by a

Hypergeometric function 2F1.
12 As an example, we first revisit the scalar case, where the

projector into the traceless and symmetric representation simply reduces to the Gegenbauer

polynomial (2.15). The transverse partial wave is in fact Ĝ ◦
s ∝ C

q
2
−1

s (η̂). The parallel one

can be written as [20]

Ĝ •
∆̂l̂=0

∝ χ∆̂
2F1

(
1 + ∆̂

2
,
∆̂

2
; ∆̂− p

2
+ 1;χ2

)
, χ = −(P1 •P1)

1
2 (P2 •P2)

1
2

P1 •P2
. (4.45)

Notice that the parallel block Ĝ • is equal to the Gengenbauer C
p
2

−∆̂
(1/χ) when ∆̂ is a nega-

tive integer, up to an overall normalization. Thus, Ĝ • is an analytic continuation of the pro-

jector (2.15) for a number −∆̂ of boxes in the first row, and for n = p+2. It is easy to check

that the function Ĝ • has the correct asymptotic behaviour to describe a defect conformal

block. We claim that even for more general Young tableaux we can still use the prescription

C
n
2
−1

l (x) →
2l
(
n
2 − 1

)
l

Γ(l + 1)
xl2F1

(
1− l

2
,− l

2
;−l − n

2
+ 2;

1

x2

)
. (4.46)

Notice that this replacement is easy to perform since every projector in [34, 37] is written

in terms of an explicit differential operator acting on a single Gegenbauer polynomial as

shown in (2.17).

Equations (4.43)–(4.44) are powerful formulae. Indeed, just by knowing (2.15)

and (2.16) we automatically obtain the seed blocks for the exchange of the operators

Ô∆̂,l̂=0,s (which appears for scalar external operators, li = 0), Ô∆̂,l̂=1,s, Ô∆̂,l̂=0,(s,1) (which

appear for li = 1) and Ô∆̂,l̂=1,(s,1) (for li = 2). In [37] it is explained how to obtain

projectors with an arbitrary number of boxes in the second row by applying differential

operators on the traceless and symmetric projector. This implies that from (4.43)–(4.44)

we can obtain the defect seed blocks for any two point function of traceless and symmetric

operators. Moreover from the projectors computed in a closed form in [34] one can also

extract seed blocks for external operators in mixed symmetric representations of SO(d).

From formulae (4.43)–(4.44) it is also possible to argue that, when p is even, the

dependence on r̂ of all the seed blocks is of the form r̂∆̂R(r̂), where R(y) is a rational

function of y. Indeed, from formula (2.17), we see that all the parallel seed blocks are

12This kind of analytic continuation applied to different physical problems also appeared in [37, 48].
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obtained by acting with a finite number of derivatives on the scalar block.13 Since for even

p the radial part of the scalar block is of the form r̂∆̂R(r̂), we conclude that the full result

takes the same form.

In the next subsection we define new differential operators of the kind explained in

subsection 4.1.3 and in [31], which generate conformal blocks for external operators with

generic spin by acting on a seed block. Knowledge of the seed blocks and of the differential

operators allows to compute all the defect conformal blocks for external traceless and

symmetric operators.

4.2.2 Spinning differential operators

In this subsection we explain how to generate all the spinning defect conformal blocks by

acting with differential operators on seed blocks. First, we define a set of differential oper-

ators D̂ that create the bulk-defect spinning structures out of the seed ones. Schematically,

we look for an operator D̂(p)
i such that

D̂(p)
i O∆il Ô∆̂,l−s2,(s1,s2)

= O∆ili
p Ô∆̂,l−s2,(s1,s2)

, (4.47)

where li > l is a generic spin and the index p labels a choice of bulk-defect tensor structure

as shown in (3.25). Following the logic explained in [31], the differential operators must be

functions of positions Pi and the polarizations Zi of the external bulk operators Oi. As in

the bulk case, we consider D̂i to be a composition of elementary operators, each of them

increasing the degree of homogeneity of Zi of one or two units at a time. To obtain the

form of the operators we first impose that their action preserves the submanifold defined by

Pi · Pi = Pi · Zi = Zi · Zi = 0 . (4.48)

While this condition was sufficient to uniquely fix the bulk differential operator, in the

defect case it leaves some freedom. Therefore, we explicitly require that (4.47) holds,

namely that the action of the differential operators on a generic bulk-defect tensor

structure (3.23) is a linear combination of tensor structures (3.23). This is carefully

explained in appendix E. The result is that the operator D̂i (for i = 1, 2) is generated by

products of three elementary operators. The first two take the differential form

D̂⋆
i ≡ (Pi ⋆Zi)(Pi ⋆∂Pi)− (Pi ⋆Pi)(Zi ⋆∂Pi)− (Pi ⋆Zi)(Zi ⋆∂Zi)+(Zi ⋆Zi)(Pi ⋆∂Zi), (4.49)

where ⋆ = • , ◦ . The third one is simply the multiplication by H •
ii , defined in (3.9), which

increases the spin by two at point Pi.

13To be precise, the derivatives are in the variable 1/χ, but the Jacobian of the change of coordinate from

χ to r̂ is a rational function of r̂. Also, the schematic dependence on x of formula (2.17) is polynomial, as

one can see from the example (2.16).
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In conclusion, we obtain a generic spinning conformal block in the defect channel just

by acting with differential operators on a seed block (4.44), namely

D̂(p)
1 D̂(q)

2




O∆1l

O∆2l

∆̂, l − s2, (s1, s2)




=
O∆1l1

p

O∆2l2
q

∆̂, l − s2, (s1, s2) , (4.50)

where each operator D̂(p)
i is generated by the composition of the elementary building

blocks (4.49) and H •
ii

D̂(p̄)
i = (H •

ii )
mi(D̂ •

i )n
•
i (D̂ ◦

i )n
◦
i Σ

n •
i +n ◦

i
i . (4.51)

The operator Σn
i implements the shift ∆i → ∆i + n. The index p̄ labels the number of

ways in which one can fix the integers mi, n
•
i , n

◦
i such that 2mi + n •

i + n ◦
i = li − l.

We introduced a barred index p̄, since the basis (4.51) of the differential operators is not

the same of (3.25) labelled by p. However one can easily obtain the change of basis by

performing the computation sketched in (4.47) and expressing the right hand side in terms

of (3.25). This procedure gives an invertible map between the differential basis (4.51) and

the basis (3.25). For more details we refer to appendix E.

The differential operators either act on the parallel space or on the transverse one.

Therefore the partial waves preserve the factorized form

Ĝ
• [m,n]

∆̂l̂
≡

(D̂ •
1 )m(D̂ •

2 )nP p+2

−∆̂,l̂
(P1, Z1;P2, Z2)

(P1 •P1)
− ∆̂

2 (P2 •P2)
− ∆̂

2

, (4.52)

Ĝ ◦ [m,n]
s1s2 ≡ (D̂ ◦

1 )m(D̂ ◦
2 )nP q

s1,s2(P1, Z1;P2, Z2)

(P1 ◦P1)
s1
2 (P2 ◦P2)

s1
2

. (4.53)

Hence, we can write a very compact and explicit formula for all the conformal partial waves

which can appear in the expansion of a two point function of any external traceless and

symmetric operator:

Ĝ
(p̄,q̄)

Ô ≡ (H •
11)

m1(H •
22)

m2
Ĝ

• [n •
1 ,n •

2 ]

∆̂l̂
Ĝ

◦ [n ◦
1 ,n ◦

2 ]
s1s2

(P1 ◦P1)
∆1+n •

1 +n ◦
1

2 (P2 ◦P2)
∆2+n •

2 +n ◦
2

2

. (4.54)

Again, here the labels (p̄, q̄) count the possible ways to choose n⋆
i and mi subject to the

constraints mentioned above.

In appendix E we give more details on the construction of these differential operators,

and provide a few examples.

One can in principle generalize this framework in order to find conformal blocks for

external operators in any representation of SO(d). It would be also interesting to generalize

the formalism of [38], which obtained differential operators that change the representation

of the exchanged operators.
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4.2.3 Radial expansion

In this subsection we show that the defect conformal blocks can be written as a convenient

expansion in radial coordinates. The results presented here are a generalization of the

radial expansion for scalar blocks obtained in [28] and provide a check of formula (4.54).

We are interested in computing the functions ĜÔ which are obtained by projecting the

partial waves (4.6) onto the defect radial frame of section 3.3,

∑

pq

b
(p)

Ô b
(q)

Ô Ĝ
(p,q)

Ô (Pi, Zi) −→
d.r.f.

r̂−∆2 ĜÔ(r̂, η, n ◦ zk, n′ ◦ zk, zk ◦ zj , zk · zj) , (4.55)

as detailed in appendix (C.1). We define the function Ĝ by inserting a projector in the

two-point function written in the defect radial frame,

Ĝ∆̂l̂s =
〈
0̂|O1 (n, z1) r̂

HcylP∆̂l̂sO2

(
n′, z2

)
0̂
〉
. (4.56)

Hcyl is the Hamiltonian conjugate to the cylinder time τ = log r̂. P∆̂l̂s projects onto the

conformal family with highest weight labeled by ∆̂, l̂ and a Young tableau s which encodes

the transverse spin. With traceless and symmetric external operators, the Young tableau

s can have at most two rows, namely s = (s1, s2). We then rewrite the projector as a sum

over a complete basis of defect states

Ĝ∆̂l̂s =

∞∑

m=0

r̂∆̂+m
∑

̂

〈
0̂|O1(n, z1)|m, ̂, s, d〉〈m, ̂, s, d|O2(n

′, z2)|0̂
〉
, (4.57)

where the sum over the parallel spin ̂ runs from max[l̂−m, 0] to min[l̂+m, l1− s2, l2− s2].

Requiring Lorentz invariance fixes the general structure of the bulk-defect overlaps as

follows

〈0̂|O1(n, z1)|m, a1 ··· â ,
i1 ··· ··· ··· is1
i′1 ··· i′s2

, d〉 = z
(a1
1 · · · zâ)1 × (4.58)

×
∑

p

u(p)(m, ̂, d)t
(p)
̂ (z1 ◦∇n, z1 ◦n, z1 ◦ z1) πSO(q)

s1,s2

(
i1 ··· ··· ··· is1
i′1 ··· i′s2

, n ··· ··· ··· n

z1 ··· z1

)
,

where ∇µ
n = ∂µ

n − nµ (n · ∂n), the indices ak are in parallel directions and the indices ik in

orthogonal directions. Notice that the structures t(p) are generated by three building blocks

z1 ◦∇n, z1◦n, z1◦z1, while the extra building block za1 is already factorized in formula (4.58).

The four building blocks plus the projector itself are in fact in correspondence with the

embedding space structures defined in formula (3.25) (the projector takes into account the

contributions of two structures: each column of length 1 correspond to a K2
1 while each

column of length 2 to S2
1). As an example, when the operator O1 has spin l1 = 1 and the

exchanged operator has s2 = 0 we have two possible cases: either ̂ = 0 or ̂ = 1. When

̂ = 0 there are two possible structures,

t
(1)
0 = z1 ◦n , t

(2)
0 = z1 ◦∇n . (4.59)

On the other hand when ̂ = 1 there is just the trivial structure t
(p)
1 = 1.
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Putting together the left and right overlaps we obtain the following expression for the

conformal blocks:

Ĝ∆̂l̂(s1s2)
=

min[l1,l2]∑

̂=0

Pp
̂ (z1, z2)

∑

pq

t
(p)
̂ (z1 ◦∇n, z1 ◦n, z1 ◦ z1)

× t
(q)
̂ (z2 ◦∇n′ , z2 ◦n′, z2 ◦ z2)Pq

s1,s2(n, z1;n
′, z2)W(p,q)

̂ (r̂) ,

(4.60)

where the functions W(p,q)
̂ are defined as

W(p,q)
̂ (r̂) =

∞∑

m=0

w
(p,q)
̂ (m)r̂∆+m . (4.61)

with w(p,q) =
∑

d
u(p)ũ(q). Let us now compare the ansatz (4.60) with the counterpart in

embedding space (4.36). The transverse piece Pq
s1,s2 is equal to the transverse seed (4.43)

after projecting the points to the radial frame (3.36). However, the full result (4.60) for fixed

p, q is not factorized in a purely transverse times a purely parallel part. This is expected,

since the parallel scalar products in embedding space project onto linear combinations of

both parallel and orthogonal products in the defect radial frame of subsection 3.3.

At this point, the parallel functions are still unknown since the coefficients w
(p,q)
̂ have

not been fixed (in fact so far we only imposed Lorentz symmetry). In order to compute

the functions W(p,q)
̂ (r̂) it is convenient to plug the ansatz (4.60)–(4.61) into the Casimir

equation. This leads to simple recurrence relations for the coefficients w
(p,q)
̂ , which we were

able to solve and resum in all the cases that we considered.

In appendix C.2 we give two examples of this technique. First we consider the two

point function of a vector and a scalar operator, then we study the case of two external

vectors. In both cases we obtain closed form expressions for the defect channel conformal

blocks which match the results of formula (4.54).

4.2.4 Zamolodchikov recurrence relation

In this subsection we apply Zamolodchikov’s recurrence to the defect conformal blocks for

spinning external operators. Again, we focus on external operators in the traceless and

symmetric representation, but everything can be easily generalized to other cases.

Spinning defect conformal partial waves have poles at special values of ∆̂ with residues

proportional to other conformal partial waves. The expected analytic structure in the poles

of a generic spinning defect conformal partial wave is

Ĝ
(p,q)

Ô (Pi, Zi) =
∑

p,q

(RA)pp′qq′

∆̂− ∆̂⋆
A

Ĝ
(p′,q′)

ÔA
(Pi, Zi) +O((∆̂− ∆̂⋆

A)
0) . (4.62)

Note that RA is a matrix that mixes the various defect conformal partial waves associated

to the exchange of the primary descendant operator ÔA.
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We can then obtain a recurrence relation for the defect conformal blocks defined in (4.6)

by summing over the poles in ∆̂ and on the regular part,

ĥ
(p,q),k

∆̂l̂s
(r̂, η̂) ≡ (r̂)−∆ĝ

(p,q),k

∆̂l̂s
(r̂, η̂) −→

∆̂→∞
ĥ
(p,q),k

∞l̂s
(r̂, η̂) ,

ĥ
(p,q),k

∆̂l̂s
(r̂, η̂) = ĥ

(p,q),k

∞l̂s
(r̂, η̂) +

∑

A

∑

p′q′

r̂nA
(RA)pp′qq′

∆̂− ∆̂⋆
A

ĥ
(p′,q′),k

∆̂A l̂As
(r̂, η̂) .

(4.63)

The transverse s spin is diagonal in formula (4.63) since ÔA is a descendant of Ô. The sum

over A runs over the types (I,II,III) and the integers n. When the two external operators

are traceless and symmetric, the values of A and n can be found in the following table14

A ∆⋆
A nA l̂A

Type I n = 1, . . . nmax
I 1− l̂ − n n l̂ + n

Type II n = 1, . . . nmax
II l̂ + p− 1− n n l̂ − n

Type III n = 1, . . .∞ p/2− n 2n l̂

(4.64)

and ∆A = ∆⋆
A + nA. The value of n for the type III runs in general over an infinite

range, while the type I and II are bounded by the spin of the external states. In fact

nmax
I = min(l1, l2)−s2 while n

max
II = l̂ ≤ min(l1, l2)−s2, where s = (s1, s2) is the transverse

spin of the exchanged operator. The function ĥ
(p,q),k

∞l̂s
(r̂, η̂) can be computed case by case by

solving the Casimir equation at leading order in large ∆̂. Finally, RA is defined as follows:

(RA)pp′qq′ = (M
(L)
A )pp′Q̂A(M

(R)
A )qq′ , (4.65)

and can be computed following the same logic of [47]. In particular the Q̂A’s are obtained

by comparing the normalization of the two-point function of primary descendant operators

with the one of canonically normalized primaries. The expression of Q̂A is the same as the

one computed in [47], once we replace h → p/2 and l → l̂ and the result is reported for com-

pleteness in appendix D. The coefficients MA are obtained by computing the normalization

of a bulk-defect two-point function where the defect operator is a primary descendant,

〈O1ÔA〉(p) =
∑

p′

(M
(L)
A )pp′〈O1Ô′〉(p′) , (4.66)

where Ô′ is a canonically normalized primary with the same quantum numbers of ÔA.

In appendix D we present all the ingredients to obtain the recurrence relation for the

scalar-vector and the vector-vector two-point functions.

In appendix D - see equation (D.22) - we also show that when p is even the poles of

type III of any seed block have zero residue for n ≥ p/2 − 1. Thus, in this case there is

14When the external operators are not in the traceless and symmetric representation there are more types

which match the extra types Ik, IIk obtained in [47].
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a finite number of poles for any conformal block. We recover the expectation that all the

defect conformal blocks ĥ∆̂l̂s drastically simplify and become rational functions of r̂.

Let us make a general comment on the matrix RA in equation (4.65). From (4.66) it

is easy to see that (M
(L)
A )pp′ = 0 if the two point functions 〈O1Ô〉(p) and 〈O1Ô′〉(p′) do not

share the same transverse tensor structures (i.e. they need to share the same s2, n2,m12

in the notation of (3.25)). In fact the descendant ÔA is obtained by acting with parallel

derivatives on Ô, which commute with all transverse products x ◦ y. Thus, the block Ĝ
(p,q)

Ô
can only be proportional to Ĝ

(p′,q′)

ÔA
for special values of p, p′ and q, q′ when their transverse

part exactly matches. This means that just few of the ĥ(p,q) (with different p, q) will actually

be coupled in (4.63), or in other words that RA is going to be very sparse. We will explicitly

see this phenomenon happening in the examples computed in appendix D.

In order to avoid the redundancy explained above it is possible to directly write a

recurrence relation for any linear combination (in m and n) of Ĝ
• [m,n]

∆̂l̂
defined in (4.52),

which by definition involves only the parallel part of the partial waves. We chose however

to present the recurrence relation without introducing this optimization step for the sake

of clarity. On the other hand, from this point of view we can give a new interpretation

to the Zamolodchikov recurrence relation for defect blocks. Roughly speaking it can be

understood as a recurrence relation for the (analytically continued) projectors themselves.

For example the recurrence relation for the scalar CB (obtained in [28]) can be exactly

interpreted as a property of Pn
−∆̂

when we continue into the complex plane the number

−∆̂ of boxes in the first row of the projector. It would be interesting to expand on this

point of view and see whether it may help in the construction of more generic projectors.

5 Example: the scalar Wilson line

As a further check of our formulae, we would like to apply the formalism to a specific

example. We consider a theory of a complex free boson in 4d coupled to a line defect of

the following form:

D = exp

(
1

π

∫

Σ
λ̄ϕ+ λϕ̄

)
(5.1)

where Σ is a straight line. D is inserted in the path-integral of the free theory. The theory

has a conserved current for the U(1) symmetry of the bulk:

Jµ =
i

2
(ϕ∂µϕ̄− ϕ̄∂µϕ) , (5.2)

while the next vector primary Oµ has dimension ∆O = 3(d− 2)/2 + 1 = 4 in d = 4:

Oµ =
1

2
ϕ̄2∂µϕ− 1

2
ϕϕ̄∂µϕ̄. (5.3)

In the rest of the section, we present the conformal block decomposition of correlators

involving (5.2) and (5.3). We shall take ϕ to be canonically normalized: 〈ϕϕ̄〉 ∼ 1.
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5.1 Decomposition of 〈OO〉

We begin with the non-conserved vector primary (5.3). We choose to exhibit the two-point

function 〈OµOν〉 rather than 〈OµŌν〉. Notice that the former does not vanish since the

defect transforms under U(1). After some simple Wick contractions, one finds:

〈O(P1,Z1)O(P2,Z2)〉=
1

(P1◦P1)2(P2◦P2)2
λ̄2

128ξ3
(5.4)

×
{(

−c
(
16λλ̄ξ+3

)
−16λλ̄ξ2+2ξ

)
Q1−c

(
16λλ̄ξ+3

)
(Q2+Q3)

− c2
(
16λλ̄ξ+3

)
+8ξc

(
2λλ̄ξ+1

)

(2ξ+c)
Q4−4

(
2λλ̄ξ+1

)
(Q5+Q6)

}
.

Where the two cross ratios ξ and c ≡ cosφ are defined as [28]

ξ = − P1 · P2

2(P1 ◦P1)
1
2 (P2 ◦P2)

1
2

, cosφ =
P1 ◦P2

(P1 ◦P1)
1
2 (P2 ◦P2)

1
2

. (5.5)

We recall that the structures Qk are defined as follows

Q1 = V •
1 V •

2 , Q2 = V •
1 V ◦

2 , Q3 = V ◦
1 V •

2 , Q4 = V ◦
1 V ◦

2 , Q5 = H •
12, Q6 = H ◦

12 , (5.6)

in accordance with the discussion in section 3.

Bulk channel. The bulk OPE is constrained by charge conservation, and since Oµ has

unit charge, the only contributing primaries have charge 2. Wick theorem restricts the

choice to primaries built out of ϕmϕ̄m+2, with m = 0, 1, 2. Their one-point functions

are proportional to λmλ̄m+2. We learn from eq. (5.4) that operators with m = 2 are

not exchanged. As we shall see, this is enforced by the structure of the defect channel.

The exchanged operators are either symmetric traceless tensors with even spin or mixed

symmetric tensors with labels (l, 2): this is presented in table (4.7), and it is easily verified

using eqs. (2.32). Let us first consider the symmetric and traceless tensors O of even spin

l = 2m and conformal dimensions ∆ = l + 2n + 2 (n ∈ N). It is immediate to derive the

following table for the one-point functions of O:

∆− l = 2, aO ∝ λ̄2

∆− l ∈ 2N+ 4, aO ∝ λλ̄3 .
(5.7)

As it turns out, only the subset of operators with ∆ − l ∈ 4N + 4 is exchanged in the

correlator (5.4). Moreover, no SO(d) representation with labels (l, 2) is exchanged. It

can be checked that primaries in this representation exist in the spectrum of theory, with

the right quantum numbers to be exchanged in the OPE of Oµ with itself.15 A direct

computation for a low lying example shows that they also acquire a one-point function. The

resolution is that their three-point function with the external operators vanishes. Therefore,

we only compute the partial waves for symmetric traceless exchanges in appendix B, and

in particular we use the basis G
OO,(p)
∆,l for equal external operators defined in (B.20).

15One can use the conformal characters [49], see e.g. [50] for the explicit computation relevant here.
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The decomposition reads

〈O(P1, Z1)O(P2, Z2)〉 =
λ̄2

45

∑

l=2N

αl

(
G

OO,(4)
∆=2+l,l +

1

3
G

OO,(3)
∆=2+l,l

)
+

+
λ̄3λ

45

∑

l=2N

∑

∆=4+4N+l

β∆,l

(
G

OO,(4)
∆,l − 1

6
G

OO,(3)
∆,l

)
, (5.8)

where we factored some powers of 4 for convenience. It is interesting to notice that only

the structures p = 3, 4 appear, out of the four possible.

All the exchanged operators of twist ∆ − l = 2 appear in the CBs decomposition

weighted by coefficients αl which take the following form

αl = 3

(
1
2

)2
l/2

( l2)!
(
l+1
2

)
l
2

. (5.9)

We could not guess a general form for the coefficients β∆,l, associated to the exchange of

operators with twist ∆− l = 4+ 4n. We propose a closed form result for n = 0, 1 which is

compatible with the conformal block expansion up to values of ∆ ≤ 22,

β∆=4+l,l = 3
(l + 1)!

2l
(
3
2

)
l

, β∆=8+l,l =
(l + 2)(l + 5)(l + 2)!

2l+7(l + 4)
(
3
2

)
l+2

. (5.10)

For completeness we also report the firsts few coefficients for higher twist operators ∆− l =

4 + 4n (with n ≥ 3),

l 0 2 4 6 8 10 ≥ 12

β∆=12+l,l
3

89600
243

20384000
3

833000
5

4874716
243

857376520
1

13006500 . . .

β∆=16+l,l
1

8830976
1

24630144
625

50871389184
25

7147812672 . . .

β∆=20+l,l
1

2530344960
25

175352905728 . . .

.

Defect channel. As summarized in table (4.8), this correlator can exchange defect op-

erators in representations labeled by (∆̂, l̂ = 0, s), (∆̂, l̂ = 0, (s, 1)) or (∆̂, l̂ = 1, s). For

a line defect, l̂ is in fact only defined mod2, and measures parity under the reflection of

the coordinate parallel to the defect. Again, the U(1) charge imposes selection rules. Let

us promote λ and λ̄ to background fields with the appropriate charge, so that U(1) is

conserved. Oµ couples to defect operators with unit charge. Since Oµ ∼ ϕϕ̄2, Wick theo-

rem leaves four possibilities: λλ̄2, λ̄2ϕ, λλ̄ϕ̄, λ̄ϕϕ̄, which can be decorated by derivatives.

We already disregarded operators that appear in the defect OPE of Oµ, but cannot be

exchanged in the two-point function (5.4), e.g. operators of the form ∼ ϕϕ̄2. The operator

λλ̄2 is the identity, which is not present in the defect OPE of a vector. The operators with

one power of ϕ only contribute to the l̂ = 0 spectrum, since ∂‖ϕ is a descendant. Further-

more, all the operators of the kind (∂i∂
i)nϕ, where i, j are indices orthogonal to the defect,
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are descendants up to the equations of motion. Finally, in order to anti-symmetrize the

derivatives in transverse directions we need to apply them to ϕϕ̄, e.g. ∂[iϕ∂j]ϕ̄. All in all,

we find the exchanged spectrum, and the powers of the couplings in the CFT data:

(∆̂, l̂ = 0, s) : ∆̂− s = 1, bÔ b̄Ô ∝ λ̄3λ

∆̂− s ∈ 2N+ 2, bÔ b̄Ô ∝ λ̄2

(∆̂, l̂ = 1, s) : ∆̂− s ∈ 2N+ 3, bÔ b̄Ô ∝ λ̄2

(∆̂, l̂ = 0, (s, 1)) : ∆̂− (s+ 1) ∈ 2N+ 2, bÔ b̄Ô ∝ λ̄2 ,

(5.11)

with s = 0, 1, . . . except for the last line where s = 0 is excluded. Let us check that this is

indeed what happens.

In accordance with the discussion above, three families of defect partial waves con-

tribute to (5.4), for a total of six partial waves, as presented in the table (4.8). Their

explicit form can be found in appendix F. There are two defect OPE structures associated

to the exchange of a spin s primary with l̂ = 0 and correspondingly four defect partial

waves, Ĝ
(p,q)

∆̂0s
with p, q = 1, 2. There is a unique defect OPE structure associated to the

exchange of a mixed symmetric representation (s, 1) and therefore a unique partial wave

associated to it: the seed block Ĝ∆̂0(s,1). Similarly, when l̂ = 1 there is a unique defect

OPE structure and its associated partial wave is the seed Ĝ∆̂1s.

The conformal block decomposition precisely obeys table (5.11):

〈O(P1, Z1)O(P2, Z2)〉 =
2∑

p,q=1

∞∑

s=0

α(p,q)
s Ĝ

(p,q)

∆̂=s+1,l̂=0,s
+

2∑

p,q=1

∞∑

s=0

∑

∆̂=2N+2+s

β
(p,q)

∆̂,s
Ĝ

(p,q)

∆̂,l̂=0,s

+
∞∑

s=0

∑

∆̂=2N+3+s

γ∆̂,sĜ∆̂,l̂=1,s

+
∞∑

s=1

∑

∆̂=2N+3+s

δ∆̂,sĜ∆̂,l̂=0,(s,1) . (5.12)

The equality of the external operators implies at the level of defect OPE structures that

α
(1,2)
s = α

(2,1)
s and similarly β

(1,2)

∆̂,s
= β

(2,1)

∆̂,s
. In the transverse twist ∆̂ − s = 1 sector, the

coefficients take the following form

α(1,1)
s = −λ̄3λ 2s−1 (s+ 1)2, α(1,2)

s = λ̄3λ 2s−1s(s+ 1), α(2,2)
s = −λ̄3λ 2s−1s2. (5.13)

In the even transverse twist sector (∆̂− s = 2N+ 2), we find

β
(1,1)

∆̂,s
=

λ̄2

24−s
∆̂
(
(∆̂− 1)∆̂− 3s(s+ 1)

) (s+ 1)∆̂−s−2(
s+ 3

2

)
∆̂−s−2

,

β
(1,2)

∆̂,s
=

λ̄2

23−s

(s)∆̂−s+1(
s+ 3

2

)
∆̂−s−2

,

β
(2,2)

∆̂,s
=

λ̄2

24−s
s
(
s(s+ 1)− 3(∆̂− 1)∆̂

) (s+ 2)∆̂−s−2(
s+ 3

2

)
∆̂−s−2

.

(5.14)
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Finally, as expected the seed blocks only contribute to the transverse twist ∆̂− s ∈ 2N+3

sector, as follows:

γ∆̂,s =
3λ̄2

24−s
∆̂(−∆̂ + s+ 1)(∆̂ + s)

(s+ 1)∆̂−s−2(
s+ 3

2

)
∆̂−s−2

, δ∆̂,s =
∆̂− 1

∆̂
γ∆̂,s. (5.15)

5.2 Decomposition of 〈JJ〉

Let us turn to the 2-point function of the current (5.2):

〈J(P1, Z1)J(P2, Z2)〉 =
1

(P1◦P1)3/2(P2◦P2)3/2
1

64 ξ3
(5.16)

×
{
(8cλλ̄ξ + c+ 8λλ̄ξ2)Q1 + (8cλλ̄ξ + c)(Q2 +Q3)

+
c
(
8cλλ̄ξ + c+ 8λλ̄ξ2 + 2ξ

)

(2ξ + c)
Q4 + (4λλ̄ξ + 1)(Q5 +Q6)

}
,

where we the structures Qk are defined in (5.6) and the cross ratios ξ, c ≡ cosφ in (5.5).

As a first simple check, it is easy to verify that setting to zero the couplings λ, λ̄, and

adjusting the normalization, one obtains the correct central charge CJ , see e.g. [51].

Bulk channel. The fusion rule of the U(1) current involves higher twist operators. How-

ever, the bulk channel decomposition only includes, besides the identity, primaries with

l = 2m and ∆ = 2 + 2m (m ∈ N), i.e. twist two. This is enforced by crossing. As we shall

point out, it is clear from the defect channel that the coupling to the defect is proportional

to λλ̄, and it is easy to see that only the one-point functions of operators of with twist

two are compatible with the requirement. We write this decomposition in terms of the

conserved blocks, GJJ,a
∆,l presented in appendix B.3. We find

〈J(P1, Z1)J(P2, Z2)〉 = αIdG
JJ,1
0,0 + λλ

∑

l=2N

αl

(
GJJ,1

∆=2+l,l +GJJ,2
∆=2+l,l

)
, (5.17)

with coefficients

αl =
(l − 1)

(
1
2

)2
l
2
−1

213( l2)!
(
l−1
2

)
l
2
+1

, αId =
1

3× 211
. (5.18)

Defect channel. The spectrum exchanged in the defect channel can be guessed in a way

analogous to the previous subsection. Part of the spectrum just coincides with the one of

a trivial defect: it consists of the Taylor expansion of Jµ evaluated on the defect, and its

purpose in life is to decompose the bulk channel identity [8]. The coupling to the defect

happens through the operators λϕ̄ and λ̄ϕ, which form a sector with ∆̂− s = 1 and OPE

coefficients proportional to λλ̄.

Conservation reduces the number of independent OPE coefficients and, as a conse-

quence, not all the blocks involved in the decomposition of (5.4) are separately consistent

with the conservation in the bulk. As argued in section 4.2.1 the seed blocks Ĝ∆̂,l̂=1,s and

Ĝ∆̂,l̂=0,(s,1) are always separately conserved and are therefore generically exchanged in the
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defect decomposition of (5.16). On the other hand, only a precise combination of blocks

associated to l̂ = 0 defect primaries of transverse spin s is consistent with conservation.

This is denoted as ĜJJ
∆̂,l̂=0,s

and its form can be found in E.2. The decomposition in terms

of the defect channel conserved blocks presented in F reads

〈J(P1, Z1)J(P2, Z2)〉 =
∞∑

s=0

αsĜ
JJ
∆̂=s+1,l̂=0,s

+
∞∑

s=0

∑

∆̂=2N+2+s

β∆̂,sĜ
JJ
∆̂,l̂=0,s

(5.19)

+

∞∑

s=0

∑

∆̂=2N+3+s

γ∆̂,sĜ∆̂,l̂=1,s

+

∞∑

s=1

∑

∆̂=2N+3+s

δ∆̂,sĜ∆̂,l̂=0,(s,1), (5.20)

As anticipated, the only coefficients that depend on the couplings are those with ∆̂−s = 1:

αs = λλ 2s−1(s+ 1)2 . (5.21)

Notice in particular the presence of a primary with (∆̂, s) = (1, 0): this operator is in fact

protected, and required when the defect breaks a global symmetry, see e.g. [18, 52]. The

coefficients β∆̂,s are in correspondence of primaries with ∆̂ − s = 2, 4, 6, . . . . We present

them in closed form:

β∆̂,s =
2s−2(s+ 1)

3(∆̂− 1)

(s)∆−s+1(
s+ 3

2

)
∆−s−2

. (5.22)

Finally, γ∆̂,s and δ∆̂,s receive contribution from the odd transverse twist sector ∆̂ −
s = 3, 5, 7, . . . ,

γ∆̂,s =
2s−2(∆̂− s− 1)(∆̂ + s)

3(∆̂− 1)

(s+ 1)∆−s(
s+ 3

2

)
∆−s−2

, δ∆̂,s =
(∆̂− 1)

∆̂
γ∆̂,s . (5.23)

6 Conclusions

In this work, we studied correlation functions involving local operators which transform in

mixed symmetry representations of SO(d). Firstly, we described a constructive procedure

to obtain the tensor structures that appear in any correlation function of bosonic operators

in a CFT. The procedure associates to each local operator the tensors (2.24). In the defect

CFT scenario, the additional building blocks are the tensors (3.7), which take care of

the quantum numbers of defect operators associated to the transverse rotations, and the

projectors (3.1)–(3.2) onto the spaces parallel and transverse to the defect.

These ingredients allowed us to define explicitly all the tensor structures relevant to

the conformal block decomposition of a two-point function of symmetric traceless primaries

in the presence of a defect. In the second part of the paper we precisely focused on this

decomposition. We explained how to generate the bulk channel conformal blocks in a radial

expansion, adapting various techniques present in the literature, with special emphasis

on the Zamolodchikov recurrence relation and on the differential operators first defined
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in [32]. For the defect channel, on the other hand, we proposed a complete solution:

the seed blocks can be found in closed form performing an analytic continuation of the

projectors onto representations of the orthogonal group. The generic block is then obtained

by application of a set of differential operators. The structure of the radial expansion and

of the Zamolodchikov recurrence relation are also explained in the defect channel, and used

to check the closed form of the bocks.

With the toolbox provided here, the kinematics of a two-point function of bosonic op-

erators with a conformal defect is tamed. Hopefully, this will be useful in all the situations

in which such a correlator must be computed, whatever the technique employed.
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A Polynomials from projectors

This appendix is dedicated to an example of the polynomials P • d
l1,...,lk

which appear in the

one-point function of primaries — equation (3.14) — and in the bulk channel blocks —

equation (4.21). The polynomials may of course be constructed using the definition (3.15)

in terms of explicit projectors, but the alternative method presented here directly yields

expressions analytic in the label l1.

In order to obtain the polynomial P • d
j,2 in closed form, we define the following ansatz

P • d
j,2 (X1, X2) = (X1 ·X1)

j/2
5∑

i=1

ai Fi

(√
X1 •X1

X1 ·X1

)
Ti ,
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where

T1 ≡ X2 •X2 , T2 ≡ X2 ◦X2, , T3 ≡ (X1 •X2)2

X1·X1
, T4 ≡ X1 ◦X2X1 •X2

X1·X1
, T5 ≡ (X1 ◦X2)2

X1·X1
,

and Fi are functions of the ratio X1 •X1
X1·X1

. We introduced coefficients ai (which could be

absorbed in the definition of Fi) for convenience. We then require this ansatz to be com-

patible with the definition (3.15), i.e. to satisfy the properties of scaling, mixed symmetry

and traceleness (2.2), (2.3), (2.4). These properties imply

a1≡− 1

2p(p+1)(p+3)
a4 , a2≡

(p+1)

2(q−2)(q−1)
a4 , a3≡−(j+p+1)(j+q−3)

2p(p+3)
a4 ,

a4≡− 2(−1)j/2jp(q−2)

(j−1)(p+q−2)(j+p+q−3)

(
p+3
2

)
j−2
2(

j+p+q
2

)
j−2
2

, a5≡ (1−q)a2 ,

F1(η)≡ p(p+1)(p+3)fj+2,−4,1(η)−η2(j+p+1)(j+q−3)fj,0,5(η) ,

F2(η)≡ (q−2)fj+2,−4,1(η)−
(
η2−1

)
fj,0,1(η) ,

F3(η)≡ fj,0,5(η) , F4(η)≡ fj,0,3(η) , F5(η)≡ fj,0,1(η) ,

(A.1)

where we defined

fj,m,n(η) ≡ 2F1

(
−j − 2

2
,
d+ j +m

2
;
n+ p

2
; η2
)

. (A.2)

Note that the explicit form of this projector can be also obtained studying the analytic

structure in ∆ of the bulk blocks for two external vectors (B.18). Indeed, as we explain

in 4.1.2, the latter exhibit a I2-type pole at n = 2 (which corresponds to ∆ = ∆⋆
A = 2)

with residue proportional to P • d
l,2 . This is a consistency check of our results. Notice that,

since (B.18) are computed as differential operators acting on the scalar bulk conformal

blocks, this procedure gives the projector P • d
l,2 as a combination of derivative acting on the

symmetric and traceless projector P • d
l .

B Spinning differential operators — bulk channel

B.1 Recurrence relation for the differential basis

Following the same logic as [31], we now derive a set of recurrence relations which allow to

build generic three-point functions in terms of the action of differential operators on seed

three-point functions.
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The list of the relevant tensor structures was presented in equations (2.32) and (2.33).

For convenience, in this appendix we denote them as follows:




∆1 ∆2 ∆3

n1 n2 n3

n12 n13 n23

k1 k2 k




≡
∏3

i=1(Vi)
ni
∏

i<j(Hij)
nij (T 3,21

3,12 )
k1(T 3,21

3,21 )
k2(T 4,22

3,12 )
k

P∆123
12 P∆132

13 P∆231
23 [−2(P1 · P2)(P2 · P3)(P1 · P3)]

k1+k2+k
2

, (B.1)

where ∆ijk = 1
2(∆i +∆j −∆k) and the integers satisfy the condition (2.34). From (2.34)

we obtain that the seed three-point functions take the form (2.38),




∆1 ∆2 ∆3

0 0 l
(1)
3 − l

(2)
3

0 0 0

l1 − l
(3)
3 l2 − l

(3)
3 l

(3)
3




. (B.2)

Notice that for a given operator O3 (which we want to think of as the exchanged operator

in the OPE), there are many possible seed three-point functions. In fact, from the con-

ditions (2.36) and (2.38), they are labelled by the choices of l1 ≥ l
(3)
3 and l2 ≥ l

(3)
3 such

that l1 + l2 = l
(2)
3 + l

(3)
3 . Their total number is therefore l

(2)
3 − l

(3)
3 + 1. For example, if O3

has spin l
(2)
3 = 4, l

(3)
3 = 1 there are four possible seeds which correspond to the following

choices of spin for the external operators (l1, l2) = (4, 1), (3, 2), (2, 3), (1, 4).

There exist two spin transfer differential operators D
(T )
12 , D

(T )
21 , first defined in equation

(D.7) of [34] and reviewed in the following subsection, which map seed three-point functions
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in seed three-point functions as follows,

D
(T )
12




∆1 ∆2 ∆3

0 0 n3

0 0 0

k1 k2 k




= k2

(
d

2
+k2−3+k

)
(∆2−d−k2+4−k)




∆1 ∆2 ∆3

0 0 n3

0 0 0

k1+1 k2−1 k




, (B.3)

D
(T )
21




∆1 ∆2 ∆3

0 0 n3

0 0 0

k1 k2 k




= k1

(
d

2
+k1−3+k

)
(∆1−d−k1+4−k)




∆1 ∆2 ∆3

0 0 n3

0 0 0

k1−1 k2+1 k




. (B.4)

The existence of such operators allows us to obtain all the l
(2)
3 − l

(3)
3 + 1 seed three-point

functions associated to a fixed operator O3, just by knowing one representative. This can

be in turn used to compute all the seed conformal blocks for the exchanged operator just

by knowing one of them. A natural choice for the representative is the three-point function

l1 = l
(2)
3 , l2 = l

(3)
3 and generic l

(1)
3 .

In the following, we generalize the computation of [31] by writing the action of the

differential operators (4.33) on the basis (B.1),

D11




∆1 ∆2 ∆3

n1 n2 n3

n12 n13 n23

k1 k2 k




=
n2

2




∆1 − 1 ∆2 ∆3

n1 n2 − 1 n3

n12 + 1 n13 n23

k1 k2 k




+
k2 + n3

2




∆1 − 1 ∆2 ∆3

n1 n2 n3 − 1

n12 n13 + 1 n23

k1 k2 k




+
∆−∆12 + l

(2)
3 +

∑3
i=1 ni − 1

2




∆1 − 1 ∆2 ∆3

n1 + 1 n2 n3

n12 n13 n23

k1 k2 k
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− n23




∆1 − 1 ∆2 ∆3

n1 n2 n3 + 1

n12 + 1 n13 n23 − 1

k1 k2 k




− n23




∆1 − 1 ∆2 ∆3

n1 n2 + 1 n3

n12 n13 + 1 n23 − 1

k1 k2 k




− 2n23




∆1 − 1 ∆2 ∆3

n1 + 1 n2 + 1 n3 + 1

n12 n13 n23 − 1

k1 k2 k




+
k2
2




∆1 − 1 ∆2 ∆3

n1 n2 n3 − 1

n12 n13 n23 + 1

k1 + 1 k2 − 1 k




+ k2




∆1 − 1 ∆2 ∆3

n1 n2 + 1 n3

n12 n13 n23

k1 + 1 k2 − 1 k




, (B.5)

D21




∆1 ∆2 ∆3

n1 n2 n3

n12 n13 n23

k1 k2 k




= −n1

2




∆1 − 1 ∆2 ∆3

n1 − 1 n2 n3

n12 + 1 n13 n23

k1 k2 k




+
k1 + n3

2




∆1 − 1 ∆2 ∆3

n1 n2 n3 − 1

n12 n13 n23 + 1

k1 k2 k




+
k1
2




∆1 − 1 ∆2 ∆3

n1 n2 n3 − 1

n12 n13 + 1 n23

k1 − 1 k2 + 1 k




+
−∆+∆12 + k1 − k2 − k − n1 − n2 + n3 − 2n23 + 1

2
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×




∆1 − 1 ∆2 ∆3

n1 n2 + 1 n3

n12 n13 n23

k1 k2 k




, (B.6)

where we used k1 + k2 + k = l
(2)
3 from (2.34). Similarly we can apply the operators D21

and D22 which give analogous results (their action is the same as the one of D12 and D11

once we replace 1 and 2). Finally, of course, the multiplication by H12 increases the label

n12 of (B.1) by one. As expected all the differential operators (4.33) act internally to the

basis (B.1).

From the previous formulae one can easily see that acting with (4.33) on the set of seed

three-point functions (B.2) it is possible to generate all the possible three-point functions.

Moreover, by using the operator D(T ) we can obtain all the three-point functions just by

acting on the seed representative defined by l1 = l
(2)
3 and l2 = l

(3)
3 ,





∆1 ∆2 ∆3

n1 n2 n3

n12 n13 n23

k1 k2 k





≡Hn12
12 Dn13

12 Dn23
21 Dn1

11D
n2
22D

(T )k2
12 Σn1+n23,n2+n13




∆1 ∆2 ∆3

0 0 l
(1)
3 − l

(2)
3

0 0 0

l
(2)
3 − l

(3)
3 0 l

(3)
3




,

(B.7)

where the integers ni, nij satisfy (2.34) and Σa1,a2 shifts the external dimensions as ∆i →
∆i + ai. The curly bracket basis on left hand side of (B.7) is the differential basis defined

in (4.35). The basis (B.1) and (B.7) are related by an invertible linear map. In appendix B.3

we explicitly compute this change of basis in few examples.

B.2 Spin transfer operators

Here we define the spin transfer operators D
(T )
ij which act by transferring one unit of spin

from the operator j to the operator i . By this we mean that D
(T )
ij has homogeneity −1 in

Zi and +1 in Zj . The spin transfer operators are defined as [34]

D
(T )
ij =

(Pi · Zj)Pj M − (Pi · Pj)Zj M

Pi · Pj
DM

Zi,Pi
, (B.8)

where

DM
X,Y ≡ d00(X,Y )∂M

X + d−11(X,Y )∂M
Y +XMd−20(X,Y ) + Y Md−1−1(X,Y ) , (B.9)
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and dmn(X,Y ) are differential operators with weight m in the variable X and n in the

variable Y . They are defined as follows

d00(X,Y )≡−d

2

[
(d−1)+3(X ·∂X)+(Y ·∂Y )

]
−(X ·∂X)(Y ·∂Y )−XM (X ·∂X)∂XM ,

d−20(X,Y )≡ 1

2

[
d+(Y ·∂Y )+(X ·∂X)

]
(∂X ·∂X) ,

d−11(X,Y )≡−d(Y ·∂X)−(Y ·∂X)(Y ·∂Y )−(X ·∂X)(Y ·∂X) , (B.10)

d−1−1(X,Y )≡
[
d

2
+(X ·∂X)

]
(∂X ·∂Y )+

1

2

[
(Y ·∂X)(∂Y ·∂Y )−(X ·∂Y )(∂X ·∂X)

]
.

The main property of DM
X,Y is that it acts as a derivative in Y while preserving the con-

ditions X2 = Y 2 = X · Y = 0. These differential operators can in fact be used to write

projectors into SO(n) representations labelled by Young tableaux with two rows [34].

B.3 Examples

In this section we exemplify how to use the spinning differential operators (B.7). We will

consider simple cases in which we act on the scalar partial wave GO. This can be computed

as an expansion in radial coordinates, as explained in [28].

Vector-scalar. We consider the case of the bulk two-point function of one vector operator

O1 and one scalar operator O2. In this case there are two independent conformal partial

waves G
(p)
O with p = 1, 2 associated to the exchange of the symmetric traceless operator O

with dimension ∆ and spin l. The label p is associated to the OPE tensor structures Q(p)

defined in (2.33), which we choose as follows

Q(1) = H13V
l−1
3 , Q(2) = V1V

l
3 . (B.11)

The conformal partial waves are conveniently computed using the differential operators

of (4.35)

G
(1̄)
O = D(1̄)GO ≡ D11Σ

1,0GO , G
(2̄)
O = D(2̄)GO ≡ D12Σ

0,1GO , (B.12)

where GO is the scalar partial wave [28]. As we already mentioned, the partial waves G
(p̄)
O

are in a different basis with respect to G
(p)
O . The two bases are related by an invertible

linear map

G
(p)
O =

2∑

p̄=1

(app̄)
−1G

(p̄)
O . (B.13)

The matrix app̄ is obtained performing the following computation

D(p̄) V l
3

(−2P1 · P2)
− 1

2
(∆−∆1−∆2)(−2P1 · P3)

1
2
(∆+∆12)(−2P2 · P3)

1
2
(∆−∆12)

=

=
∑

p

ap̄p
Q(p)

(−2P1 · P2)
− 1

2
(∆−∆1−∆2)(−2P1 · P3)

1
2
(∆+∆12)(−2P2 · P3)

1
2
(∆−∆12)

, (B.14)

– 49 –



J
H
E
P
0
8
(
2
0
1
9
)
0
6
6

which gives

(app̄)
−1 =

1

l(∆− 1)




l l

−l +∆+∆12 − 1 −l −∆+∆12 + 1


 . (B.15)

Vector-vector. Let us now consider the case of the two-point function of vector operators

Oi with dimensions ∆i. The two vectors exchange symmetric traceless primaries and an

additional seed block — see table 4.7. Here we take care of the first class of operators, which

have dimension ∆ and spin l. There are five possible partial waves G
(p)
O labelled by the OPE

index p = 1, . . . , 5. The index p is related to the following choice of OPE tensor structures:

Q(p) = {H12V
l
3 , V1V2V

l
3 , H23V1V

l−1
3 , H13V2V

l−1
3 , H13H23V

l−2
3 } . (B.16)

We can compute the partial waves by acting with differential operators on the scalar

partial wave as shown in (4.35)

G
(1̄)
O = D11D22Σ

1,1GO, G
(2̄)
O = D21D11Σ

2,0GO,

G
(3̄)
O = D12D22Σ

0,2GO, G
(4̄)
O = D12D21Σ

1,1GO,

G
(5̄)
O = H12GO.

(B.17)

The partial waves G
(p)
O are obtained after the following change of basis:

G
(p)
O =

5∑

p̄=1

(ap̄p)
−1G

(p̄)
O , (B.18)

where the matrix (ap̄p)
−1, obtained similarly to the previous case, is

(ap̄p)
−1 = − 1

∆(∆− 1)




0 0 0 0 2(∆− 1)∆

1 1 1 1 2− 2∆

∆
l − 1 − l+∆

l
∆
l − 1 − l+∆

l 2(∆− 1)

∆
l − 1 ∆

l − 1 − l+∆
l − l+∆

l 2(∆− 1)

(l−∆)2

(l−1)l
(l−∆)(l+∆)

(l−1)l
(l−∆)(l+∆)

(l−1)l
(l+∆)2−4∆

(l−1)l
2(∆−1)(∆−l)

l−1




(B.19)

Identical vectors. When the external vector operators Oi are equal, we must impose the

symmetry under the exchange of O1 ↔ O2 in the set of structures (B.16), or equivalently

in the differential basis (B.17). For the exchange of an operator with spin l, only four of

the five possible conformal blocks survive (for more details see for example [10]),

G
OO,(1)
∆l ≡ G

(1̄)
∆l , G

OO,(2)
∆l ≡ G

(2̄)
∆l +G

(3̄)
∆l , G

OO,(3)
∆l ≡ G

(4̄)
∆l , G

OO,(4)
∆l ≡ G

(5̄)
∆l .

(B.20)
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Identical conserved currents. We shall now focus on the case when the external op-

erators Oi are conserved currents. It is easy to see that only two combinations of the five

tensor structures (B.16) are conserved. As a consequence, there are only two conserved

bulk blocks (see for example [10]),

G
JJ,(1)
∆l ≡

5∑

p=1

αp G
(p)
∆l , G

JJ,(2)
∆l ≡

5∑

p=1

βp G
(p)
∆l , (B.21)

where l must be even. Here the G
(p)
∆l are associated to the basis (B.16) (of course one can

rewrite this relation in the differential basis using (B.18)). The coefficients are defined as

follows,

α1 = −2(l − 1)(d−∆− 1)(2d−∆+ l − 4) β1 = 0

α2 = − (∆ + l)

d−∆− 1
α1 β2 =

(2d−∆+ l − 2)

d−∆− 1
β3

α3 = α4 = 0 β3 = β4 = lα1

α5 =
l

2d−∆+ l − 4
α1 β5 = (d−∆− 2)α5

. (B.22)

As a last remark, we mention that for l = 0 only the block G
JJ,(1)
∆l survives: G

JJ,(2)
∆l

identically vanishes.

C Conformal blocks in the radial frame

C.1 Two-point function in the radial frame

In the main text we explained that a two-point function of bulk operators can be decom-

posed in the tensor structures (3.19). In this appendix, we explain how to decompose the

same two-point functions in terms of tensor structures directly in the bulk or defect radial

frames. Two sets of tensor structures will naturally appear, depending on the choice of

frame. We shall see that two linear maps exist, which relate the embedding space struc-

tures (3.19) to both the bulk and defect radial frames structures.

Bulk radial frame. The partial waves in the bulk radial frame, as defined in (4.12), are

obtained by evaluating Pi and Zi as in (3.33) and (3.35). In the bulk radial frame it is

convenient to expand the two-point function in terms of a set of tensor structures Qk,

G∆l(r, η, n · zi, n • zi, zi · zj , zi • zj) =
kmax∑

k=1

Fk(r, η)Qk(n · zi, n • zi, zi · zj , zi • zj) . (C.1)

The coefficient of each tensor structure is a function Fk of the radial coordinates. The

index k runs over a finite range which depends on the choice of the two external operators.

The tensor structures Qk are polynomials in the eight variables

n · z1, n · z2, n • z1, n • z2, z1 · z2, z1 • z2, z1 • z1, z2 • z2 . (C.2)
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The Qk have degree li in each polarization zi. For instance, for one external vector the

decomposition (C.1) takes the form

G∆l = (n · z1)F1(r, η) + (n • z1)F2(r, η) . (C.3)

Notice that the first four structures in (C.2) have weight 1 either in z1 or in z2 and the last

three have weight 2 (two of them in the same zi and two of them in both z1 and z2). The

number of building blocks and their weights match the embedding space definitions (3.16).

In fact, there is a map between the building blocks (3.16) and (C.2), which is obtained by

projecting (3.16) onto the bulk radial frame. For instance,

V •
1 −→

b.r.f.
−

√
2
(
r2 + 1

)
√
(r2 + 1)4 − 16η4r4

[
r2
(
2η2 − 1

)
n • z1 − n • z1 + 2η2r2n ◦ z1

]
. (C.4)

It is important to notice that with the definitions (3.16)–(3.17), the small r limit of the

tensor structures is regular and non-degenerate,

V ⋆
1 −→

b.r.f.

√
2n ⋆ z1 +O(r2) , H⋆

12 −→
b.r.f.

z1 ⋆ z2 +O(r2) ,

V ⋆
2 −→

b.r.f.
−
√
2n ⋆ z2 +O(r2) , H •

ii −→
b.r.f.

zi • zi +O(r2) .
(C.5)

Therefore there exists a linear map between the structures Qk and Qk of (3.19), which is

invertible also in the leading bulk OPE limit (when r = 0).

Defect radial frame. Similarly, one can define the two-point function in the defect

radial frame (4.55) via equations (3.36) and (3.38). Therefore, we can expand ĜÔ in a

basis of tensor structures

ĜÔ =

kmax∑

k=1

F̂k(r̂, η) Q̂k(n ◦ zi, n′ ◦ zi, zi ◦ zj , zi · zj) . (C.6)

As in the bulk case, the tensor structures Q̂k are generated by 8 building blocks:

n ◦ z1 , n ◦ z2 , n′ ◦ z1 , n′ ◦ z2 , z1 ◦ z1 , z1 ◦ z2 , z2 ◦ z2 , z1 · z2 . (C.7)

For instance, for one external vector we have

ĜÔ = (n ◦ z1)F̂1(r̂, η) + (n′ ◦ z1)F̂2(r, η) . (C.8)

Again, we can map the building blocks (C.7) to the ones defined in (3.16) by projecting

the latter onto the defect radial frame. For instance,

V •
1 −→

d.r.f.

(
1− r̂2

)
n ◦ z1

(r̂2 + 1)
√
1− 2η̂r̂

r̂2+1

, V ◦
1 −→

d.r.f.

n ◦ z1 − η̂−1n′ ◦ z1√
1− 2η̂r̂

r̂2+1

. (C.9)
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The normalization of the structures (3.16) was chosen such that this map is also in-

vertible at r̂ = 0,

V •
1 −→

d.r.f.
n ◦ z1 +O(r̂) , H •

12 −→
d.r.f.

z1 • z2 +O(r̂) ,

V •
2 −→

d.r.f.
−n′ ◦ z2 +O(r̂) , H ◦

12 −→
d.r.f.

z1 ◦ z2 − η̂−1 n ◦ z2 n′ ◦ z1 +O(r̂) ,

V ◦
1 −→

d.r.f.
n ◦ z1 − η̂−1 n′ ◦ z1 +O(r̂) , H •

11 −→
d.r.f.

z1 • z1 + (n ◦ z1)2 +O(r̂) ,

V ◦
2 −→

d.r.f.
n′ ◦ z2 − η̂−1 n ◦ z2 +O(r̂) , H •

22 −→
d.r.f.

z2 • z2 + (n′ ◦ z2)2 +O(r̂) .

(C.10)

In turns, these relations imply the existence of an invertible and non-degenerate linear map

between the structures Q̂k and the Qk of (3.19).

C.2 Examples — defect channel

Here we present two explicit examples of application of the Casimir recurrence relation,

mentioned in subsection 4.2.3, to the computation of defect channel conformal blocks.

Vector-scalar. Consider the two-point function of a vector O1 and a scalar O2. The

tensor structures are written in (4.59). We therefore get that formula (4.60) reduces to

G∆̂0s = (z1 ◦n)Cs(η̂)W(1)(r̂) + (z1 ◦∇n)Cs(η̂)W(2)(r̂) , (C.11)

where we dropped the index ̂, since it can only take the value ̂ = 0. The function Cs is

written in terms of a Gegenbauer polynomial as follows

Cs(η̂) ≡ Pq
s(n;n

′) =
s!

2s
( q
2 − 1

)
s

C
q
2
−1

s (η̂). (C.12)

Using the identity

∇µ
n f(η̂) = (n′µ − η̂ nµ)∂η̂f(η̂), (C.13)

where f is a generic function, we can rewrite (C.11) in the basis of the two structures

(z1 ◦ n) and (z1 ◦ n′) to match (C.8),

G∆̂0s =
[
(z1 ◦ n)

(
W(1)(r̂)−W(2)(r̂) η̂∂η̂

)
+ (z1 ◦ n′)W(2)(r̂)∂η̂

]
Cs(η̂) . (C.14)

The basis of (z1 ◦ n) and (z1 ◦ n′) can be mapped to the usual H and V basis by a

linear transformation. It is therefore trivial to write the Casimir equation as a differential

equation for the functions W(p)(r̂). The transverse part of the Casimir is solved by the

ansatz (C.14). On the other hand, the parallel part of the Casimir acts on the functions

W(p)(r̂) ≡ ∑∞
m=0w

(p)(m)r̂∆̂+m and implies recurrence relations for the coefficients w(p).

Notice that using this basis of functions the recurrence relations decouple. For w(1) we get

0 = −2
(
m2 + ∆̂(2m+ p− 4)− 4m+ 2p+ 4

)
w(1)(m− 2)

+ (2∆̂ +m− 4)(m+ p− 4)w(1)(m− 4) +m(2∆̂ +m− p)w(1)(m) ,
(C.15)
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while for w(2) we get the same recurrence relation of the scalar conformal block [28] and

therefore the solution is

w(2)(2m) =

(p
2

)
m
(∆̂)m

m!
(
−p

2 + ∆̂ + 1
)
m

, w(2)(2m+ 1) = 0. (C.16)

The recurrence relation for w(1) in slightly more involved and it can be solved to find

w(1)(2m) = w(1)(0)
(∆̂ + 2m)

(p
2

)
m
(∆̂ + 1)m−1

m!
(
−p

2 + ∆̂ + 1
)
m

, w(1)(2m+ 1) = 0 , (C.17)

in terms of the initial condition w(1)(0). It is then straightforward to resum the series in r̂

obtaining

W(1)(r̂)=w(1)(0)



2pr̂2 2F1

(
p
2 +1,∆̂+1;−p

2 +∆̂+2; r̂2
)

2∆̂−p+2
+ 2F1

(p
2
,∆̂;−p

2
+∆̂+1; r̂2

)

 ,

W(2)(r̂)=w(2)(0)2F1

(p
2
,∆̂;∆̂− p

2
+1; r̂2

)
. (C.18)

The coefficients w(p)(0) set the normalization of the conformal blocks. They can be fixed

to reproduce the defect OPE limit.

Vector-vector. We repeat the previous exercise for two external vectors. In this case ̂

can be either 0 or 1. When ̂ = 0 we have the structures (4.59) for both the left and the

right overlaps (of course for the right overlap we need to replace z1 → z2 and n → n′).
When ̂ = 1 there is a unique structure given by (z1 • z2). If the exchanged operator is in

a traceless and symmetric representation of SO(q), the decomposition (C.1) becomes

G∆̂l̂s =
[
(z1 ◦n)(z2 ◦n′)W(1,1)

0 (r̂) + (z1 ◦n)(z2 ◦∇′
n)W(1,2)

0 (r̂)

+(z1 ◦∇n)(z2 ◦n′)W(2,1)
0 (r̂) + (z1 ◦∇n)(z2 ◦∇n′)W(2,2)

0 (r̂)

+(z1 • z2)W1(r̂)
]
Cs(η̂) , (C.19)

where we dropped the indices (p, q) of W1(r̂) since there is a single tensor structure in

this case. We remind that the transverse part of these functions is already solved by the

ansatz (C.19), we only need to find W(p,q)
0 (r̂) and W1(r̂). To do so we make use of the

parallel Casimir equation.

In this case, according to formula (3.19), the tensor structures in the bulk two-point

function are six, matching the six radial frame structures:

(z1 ◦ n)(z2 ◦ n′), (z1 ◦ n)(z2 ◦ n), (z1 ◦ z2),
(z1 ◦ n′)(z2 ◦ n), (z1 ◦ n′)(z2 ◦ n′), (z1 • z2). (C.20)

The Casimir equation gives a set of six coupled differential equations which simplify using

the ansatz (C.19). Firstly, we obtain that one of the equations can be dropped, since
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it is linearly dependent from the other ones (there are six differential equations for five

functions). Secondly, three of the five remaining equations can be decoupled, so that only

W(1,1)
0 and W1 are still coupled. Finally, the resulting set of equations can be solved exactly

for the five functions. In particular, when l̂ = 0 there are only four linearly independent

conformal blocks labelled by the constants w
(p,q)
0 (0) (for p, q = 1, 2) which parametrize the

leading behaviour of W(p,q)
0 for r̂ = 0 according to (4.61),

W(1,1)
0 (r̂) = w

(1,1)
0 (0) ∆̂−2 r̂∂r̂r̂∂r̂f(r̂) , W(2,1)

0 (r̂) = w
(2,1)
0 (0) ∆̂−1 r̂∂r̂f(r̂) ,

W(1,2)
0 (r̂) = w

(1,2)
0 (0) ∆̂−1 r̂∂r̂f(r̂) , W(2,2)

0 (r̂) = w
(2,2)
0 (0) f(r̂) ,

W1(r̂) = −2 r̂ w
(1,1)
0 (0) ∆̂−1g(r̂) ,

(C.21)

where

f(r̂) = r̂∆̂ 2F1

(
p/2, ∆̂;−p/2 + ∆̂ + 1; r̂2

)
,

g(r̂) = r̂∆̂ 2F1

(
p/2 + 1, ∆̂ + 1;−p/2 + ∆̂ + 1; r̂2

)
.

(C.22)

The extra constant w1(0), associated to the leading behaviour W1 = r̂∆̂(w1(0) + O(r̂)),

does not appear since it is forced to vanish by consistency with the Casimir equation.

Similarly when l̂ = 1 the Casimir equation forces w
(p,q)
0 (0) = 0, therefore we obtain a single

conformal block labeled by the constant w1(0),

W(1,1)
0 (r̂) = w1(0)

2p r̂

(−1 + p− ∆̂)
g(r̂)

W1(r̂) = w1(0)

[(p− ∆̂)
(
(∆̂− 1)r̂2 − (∆̂ + 1)

)

∆̂ (r̂2 − 1) (−∆̂ + p− 1)
r̂f(r̂)

+
p
(
r̂2 + 1

)

∆̂ (r̂2 − 1) (−∆̂ + p− 1)
2F1

(
p+ 2

2
, ∆̂;−p

2
+ ∆̂ + 1; r̂2

)]
,

and all the other functions vanish.

There is another conformal block, for the exchange of a defect primary in the transverse

representation (s, 1),

G∆̂,l̂=0,(s,1) = W0(r̂)P
q
s,1(n, z1;n

′, z2) . (C.23)

It easy to check that the transverse Casimir is automatically satisfied and that the parallel

Casimir fixes the form of W0(r̂) to be equal to the scalar one of [28] (see also eq. (E.6)).

In appendix F we present explicit expressions for the previous conformal blocks in the

bulk-to-bulk basis (4.6).

D Zamolodchikov recurrence relation — defect channel

In this appendix, we show explicit examples of the Zamolodchikov recurrence relation

for the defect conformal blocks explained in section 4.1.2. We only focus on the case of

external operators in a traceless and symmetric representation, but the generalization to

more complicated SO(d) representations can be obtained following [47].
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Before we go to the examples, let us stress that most of the results presented in [47]

and reviewed in [28] still apply to the defect case. In particular it is convenient to define

defect primary states as

|∆̂, l̂, s ; z〉 ≡ za1 . . . zal̂Ô
a1...al̂
∆̂ l̂ s

(0)|0〉 , (D.1)

where the orthogonal indices are left implicit. We then define the following descendant

states

|∆̂A, l̂A, s ; z〉 = D̂A|∆̂, l̂, s ; z〉 , (D.2)

with A = T, n and types T = I, II, III with n = 1, 2 . . . . The operators D̂A are the same

of [47] after we replace d → p, l → l̂ and the scalar product with the parallel one • (for a

flat defect)

DI,n|∆̂, l̂, s ; z〉 ≡ (z •P )n|∆̂, l ; z〉 ,

DII,n|∆̂, l̂, s ; z〉 ≡ (Dz •P )n

(2− p/2− l̂)n(−l̂)n
|∆̂, l̂, s ; z〉 ,

DIII,n|∆̂, l̂, s ; z〉 ≡ V0 • V1 • . . . • Vn−1|∆̂, l̂, s ; z〉 ,

(D.3)

where Pµ is the generator of translations and

Vj ≡ P •P − 2
(P • z)(P •Dz)

(p/2 + l̂ + j − 1)(p/2 + l̂ − j − 2)
. (D.4)

The descendant states in (D.2) become primaries when ∆̂ = ∆̂⋆
A with

∆̂⋆
I,n ≡ 1− l̂ − n n = 1, 2, . . . ,

∆̂⋆
II,n ≡ l̂ + p− 1− n n = 1, 2, . . . , l̂ ,

∆̂⋆
III,n ≡ p

2
− n n = 1, 2, . . . .

(D.5)

Finally, the inverse norm of the primary descendants have residues Q̂A predicted by

Q̂I,n = − n

2n(n!)2
,

Q̂II,n = − n(−l̂)n

(−2)n(n!)2(p+ l̂ − n− 2)n

(p/2 + l̂ − n− 1)

(p/2 + l̂ − 1)
,

Q̂III,n = − n

(−16)n(n!)2(p/2− n− 1)2n

(p/2 + l̂ − n− 1)

(p/2 + l̂ + n− 1)
.

(D.6)

The states also transform under transverse rotations, but the latter commute with the

conformal transformations on the defect. Hence, the operator D̂A in (D.2) is diagonal in

the transverse spin s, and consequently so is the recurrence relation (4.63).

D.1 Examples

Vector-scalar. We consider the two-point function of a vector O1 and a scalar O2. As

we showed in table (4.8), in this case there are two partial waves Ĝ
(1)

Ô and Ĝ
(2)

Ô which are
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both associated to the exchange of an operator Ô labelled by the conformal dimension ∆̂

and the transverse spin s (the only allowed parallel spin is l̂ = 0, so we will drop this label).

We associate the label p of Ĝ
(p)

Ô to the tensor structures Q(p) defined in (3.23)

Q(1) = V •
1,12(K

2
1 )

s , Q(2) = Y 2
1,1(K

2
1 )

s−1 . (D.7)

We also expand each partial wave Ĝ
(p)

Ô in conformal blocks ĝ
(p),k

Ô as defined in (4.6). The la-

bel k is associated to the choice of two-point function tensor structures Qk defined in (3.18),

Q1 = V •
1 , Q2 = V ◦

1 . (D.8)

From table (4.64) we see that the only type of poles which is allowed is the type III (this

is in fact the only type that does not change the parallel spin of the blocks at the residue).

Formula (4.63) therefore reduces to

ĥ
(p),k

∆̂s
(r̂, η̂) = ĥ(p),k∞s (r̂, η̂) +

∞∑

n=1

∑

p′=1,2

r̂2n
(RIII,n)pp′

∆̂− p
2 + n

ĥ
(p′),k
p
2
+n s

(r̂, η̂) , (D.9)

where p = 1, 2 and k = 1, 2. To compute the matrix RIII,n we use the prescription (RA)pp′ =

(M
(L)
A )pp′Q̂AM

(R)
A of formula (4.65). The coefficient Q̂A was defined in the beginning of

this appendix, while M
(R)
III,n is the same as the ones of the scalar blocks. To compute M (L)

we follow the recipe (4.66). We write the two bulk-defect tensor structures (D.7) in the

Poincaré section

〈O1(y, z1)Ô∆̂s(x,w2)〉(1) = −

(
w2 ◦ y√
y ◦ y

)s
[2(y ◦ y)(x • z1) + (y ◦ z1)(y ◦ y − x •x)]

(y ◦ y)
∆̂−∆1+1

2 (y ◦ y + x •x)∆1+1
,

〈O1(y, z1)Ô∆̂s(x,w2)〉(2) =

(
w2 ◦ y√
y ◦ y

)s−1
[(y ◦ y)(w2 ◦ z1)− (w2 ◦ y)(y ◦ z1)]

(y ◦ y)
∆̂−∆1

2
+1(y ◦ y + x •x)∆1

.

(D.10)

Here, without loss of generality, we placed the bulk primary O1 at the origin in the parallel

space, so that y only has transverse components.

We then use the definition (D.2) of the primary descendants Ô∆A l̂A s = D̂AÔ∆̂⋆
A l̂ s to

obtain the following equation which defines the matrix M
(L)
III,n,

(∂x • ∂x)n 〈O1(y, z1)Ô∆̂⋆
As(x,w2)〉(p) ≡

2∑

p′=1

(
M

(L)
III,n

)
pp′

〈O1(y, z1)Ô∆̂As(x,w2)〉(p
′) . (D.11)

Here, the differential operator D̂III,n reduces to (∂x • ∂x)n because l̂ = 0. The result is

(
M

(L)
III,n

)
pp′

= (−4)n
(p
2
− n

)
2n




p+2n
p−2n 0

0 1




pp′

. (D.12)
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As mentioned in subsection 4.2.4, the matrices RA are expected to be very sparse since

we can only couple conformal blocks which have exactly the same orthogonal part. In the

present case the two OPE tensor structures (D.7) cannot couple since they have a different

orthogonal structures, namely (K2
1 )

s 6= Y 2
1,1(K

2
1 )

s−1. We conclude that the recurrence

relations (D.9) for p = 1, 2 are decoupled.

From the Casimir equation of the defect channel, it is easy to compute the large ∆̂

limit of the conformal blocks. The boundary conditions are provided by the defect OPE

limit r̂ → 0. The result is

ĥ(1),1∞s (r̂, η̂) =
(
1− r̂2

)− p
2
−1√

(r̂2 + 1)(r̂2 − 2η̂r̂ + 1) Cs(η̂) ,

ĥ(2),2∞s (r̂, η̂) = −
(
1− r̂2

)− p
2

√
1− 2η̂r̂

r̂2 + 1
s−1 η̂ C′

s(η̂) , (D.13)

where Cs is defined in (C.12) and ĥ
(1),2
∞s (r̂, η̂) = ĥ

(2),1
∞s (r̂, η̂) = 0. We conclude that ĥ

(1),2

∆̂s
=

ĥ
(2),1

∆̂s
= 0, thus (D.9) becomes a simple set of two decoupled recurrence relation for ĥ

(1),1

∆̂s

and ĥ
(2),2

∆̂s
. One can use (D.9) to compute the conformal blocks efficiently in a radial expan-

sion. However a closed form solution for such blocks exist, as we show for example in (E.8).

Vector-vector. We now study the bulk two-point function of two vectors O1 and O2. As

shown in table (4.8) this case is more involved, since there are six different partial waves for

the exchange of operators Ô in three possible representations labelled by ∆̂, the parallel spin

l̂ and the transverse spin s. For l̂ = 0 there are four partial waves, Ĝ
(p,q)

∆̂0s
with p, q = 1, 2,

labelled by the same choice of OPE tensor structures Q(p) as defined in (D.7). When l̂ = 1

there is a single OPE tensor structure available, (H •
12)(K

2
1 )

s, which gives rise to the seed

block Ĝ∆̂1s. Finally we can build another seed block Ĝ∆̂0(s,1) when the exchanged operator

is in the mixed symmetric representation (s, 1) of the transverse spin. This case is com-

pletely decoupled from the previous ones since the exchanged operator lives in a different

transverse representation, therefore we will consider it separately in the end of this section.

Using (4.6) we write the six partial waves Ĝ
(p,q)

Ô in terms of conformal blocks ĝ
(p,q),k

Ô .

The index k is associated to the tensor structure Qk defined in formula (5.6). From ta-

ble (4.64) we see that in this case, beside infinitely many poles of type III, there are two

new allowed poles: the A = (I, 1) for Ĝ
(p,q)

∆̂0s
and the A = (II, 1) for Ĝ∆̂1s. Equation (4.63)

can be therefore written as the following set of recurrence relations

ĥ
(p,q),k

∆̂0s
(r̂, η̂) = ĥ

(p,q),k
∞0s (r̂, η̂) +

∞∑

n=1

2∑

p′,q′=1

r̂2n
(RIII,n)pp′qq′

∆̂− p
2 + n

ĥ
(p′,q′),k
p
2
+n 0 s

(r̂, η̂)

+ r̂
(RI,1)pq

∆̂
ĥk1 1 s(r̂, η̂) ,

ĥk
∆̂1s

(r̂, η̂) = ĥk∞1s(r̂, η̂) +
∞∑

n=1

r̂2n
(RIII,n)

∆̂− p
2 + n

ĥkp
2
+n 1 s(r̂, η̂)

+ r̂
2∑

p,q=1

(RII,1)pq

∆̂− p+ 1
ĥ
(p,q),k
p 0 s (r̂, η̂) .

(D.14)
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The coefficients (RIII,n)pp′qq′ = (M
(L)
III,n)pp′Q̂III,n(M

(L)
III,n)qq′ are obtained using M (L) = M (R)

equal to the matrix computed in (D.12). The coefficient (RI,1)pq = (MI,1)pQ̂I,1(MI,1)q is

fixed in terms of

(MI,n)1 = −2 , (MI,n)2 = 0 . (D.15)

In the recurrence relation for ĥk
∆̂1s

the residue of the type III can be computed as (RIII,n) =

(MIII,n)
2Q̂III,n, where

MIII,n =
(−4)n(p+ 2n)

(
−n+ p

2 − 1
)
2n

p− 2n
. (D.16)

Finally the matrix (RII,1)pq = (MII,1)pQ̂II,1(MII,1)q is obtained from

(MII,1)1 = −2p , (MII,1)2 = 0 . (D.17)

Since the second component in (D.15) and (D.17) vanishes, we find that ĥ
(1,1),k

∆̂0s
is the only

conformal block that couples to ĥk
∆̂1s

. This fact has a simple explanation: Ĝ
(1,1)

∆̂0s
and Ĝ∆̂1s

are the only partial waves with the same orthogonal part in the OPE tensor structure,

namely (K2
1 )

s. Moreover, since (D.12) is diagonal we obtain that all the ĥ
(p,q),k

∆̂0s
in (D.14)

are decoupled from each other. The pole structure of formula (D.14) is now explained.

The last missing ingredient is the large delta behaviour of the conformal blocks. Solving

the Casimir equation at large ∆̂ with initial conditions fixed by the leading OPE we find

ĥ
(1,1),1
∞0s (r̂, η̂) =

(
r̂2 + 1

) (
1− r̂2

)− p
2
−2 (

r̂2 − 2η̂r̂ + 1
)
Cs(η̂),

ĥ
(1,2),2
∞0s (r̂, η̂) = ĥ

(2,1),3
∞0s (r̂, η̂) = −s−1η̂

(
1− r̂2

)− p
2
−1 (

r̂2 − 2η̂r̂ + 1
)
C′
s(η̂),

ĥ
(2,2),4
∞0s (r̂, η̂) =

η̂
(
1− r̂2

)− p
2
(
r̂2 − 2η̂r̂ + 1

)

(r̂2 + 1) s2
(
C′
s(η̂) + η̂ C′′

s (η̂)
)
,

ĥ
(2,2),6
∞0s (r̂, η̂) = s−2

(
1− r̂2

)− p
2 C′

s(η̂),

ĥ1∞1s(r̂, η̂) = 2r̂
(
1− r̂2

)− p
2
−2 (

r̂2 − 2η̂r̂ + 1
)
Cs(η̂),

ĥ5∞1s(r̂, η̂) =
(
1− r̂2

)− p
2 Cs(η̂), (D.18)

where all the other functions are zero. We thus find that for most k the functions (D.14)

are strictly zero.

We can now move to the partial wave Ĝ∆̂0(s,1). This is actually a trivial case, since

the associated function ĥk
∆̂0(s,1)

has the same recurrence relation as the scalar defect block.

Indeed, all the dependence on the external spin is absorbed in the transverse piece of the

partial wave. The only difference is the large ∆̂ behaviour, which has to be replaced by

ĥ4∞0(s,1)(r̂, η̂) =
2−ss! (2−q)q

(s+1)(q+s−3)
( q
2 −1

)
s

η̂
(
1− r̂2

)− p
2
(
r̂2−2η̂r̂+1

)

(r̂2+1)
C
( q
2
+1)

s−2 (η̂), (D.19)

ĥ6∞0(s,1)(r̂, η̂) =
(q−2)2−ss!

(
1− r̂2

)− p
2

(s+1)(q+s−3)
( q
2 −1

)
s

[(
η̂2−1

)
qC

( q
2
+1)

s−2 (η̂)+ η̂(q−2)C
( q
2)

s−1(η̂)

]
.
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Seed blocks. In this paragraph, we show that all the seed blocks in even dimensions

have a finite number of poles in ∆̂. To see this, it is sufficient to check that only a finite

number of poles of type III contribute to the Zamolodchikov expansion (4.63), since type

I and II poles are always finitely many (see the comment to table (4.64)).

We focus on the case of external operators Oi in a traceless and symmetric represen-

tation of spin li. A seed partial wave appears when l1 = l2 = l̂+ s2 where l̂ and s = (s1, s2)

are respectively the parallel and transverse spin of the exchanged operator Ô. In this

case the partial wave has a unique OPE tensor structure proportional to (H •
12)

l̂ (times the

transverse part), which in the Poincaré section gives

〈O1(y, z1)Ô∆̂l̂s(x, z)〉 = b1Ô
(z1 • z − 2(z •x)(z1 •x+y ◦ z1)

(y ◦ y+x •x) )l̂

(y ◦ y)
∆1−∆̂

2 (y ◦ y + x •x)∆̂
× (transverse). (D.20)

In equation (D.20), the position vector y only has transverse components. We omitted the

transverse tensor structures since they are unimportant for this argument. One can easily

check that

D̂III,n〈O1(y, z1)Ô p
2
−n l̂ s(x, z)〉 = M seed

III,n〈O1(y, z1)Ô p
2
+n l̂ s(x, z)〉 (D.21)

for any l̂ ≥ 0 and n ≥ 1. The coefficient M seed
III,n reads

M seed
III,n=

(−4)n(2l̂+2n+p−2)
(
−n+ p

2 −1
)
2n

2l̂−2n+p−2
. (D.22)

When the dimension p of the defect is an even number, the right hand side of (D.22)

vanishes for all n ≥ p/2−1 (beside the case l̂ = 0, where the zero is at n ≥ p/2). Therefore,

for even p, any defect seed block has a finite number of poles in ∆̂ in the recurrence

relation (4.63). This is a clear indication of the simplicity of the defect conformal blocks

in even dimensions, which we expect to reduce to rational functions of r̂ multiplied by r̂∆̂

as explained in section 4.2.1.

E Spinning differential operators — defect channel

E.1 Recurrence relation

In this appendix, we check that the differential operators (4.51) are correct and can be

used to generate all the bulk-defect tensor structures of 〈OÔ〉 (and consequently all the

conformal blocks). We consider defect operators Ô with traceless and symmetric parallel

spin l̂ and transverse spin s = (s1, s2). The bulk operator O has conformal dimension ∆

and traceless and symmetric spin l.

The list of the relevant tensor structures was presented in equations (3.23) and (3.25).

In this appendix we will denote them as follows

[∆, ∆̂, l, l̂,m11, n1,m12, n2, s2] ≡
(H •

12)
l̂ (H •

11)
m11 (S2

1)
s2 (V •

1,12)
n1 (Y 2

1,1)
m12 (K2

1 )
n2

(−2P1•P2)∆̂(P1◦P1)
∆−∆̂

2

.

(E.1)
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We remind that the integers mij and ni need to satisfy the condition (3.26) which depends

on l, s1 and s2. The form of the operators D̂⋆
i can be fixed as in (4.49) by requiring that their

action closes on the span of (E.1). In other words, we require their action on any of the (E.1)

to be expressed as a linear combination of the (E.1). Using (4.49), we explicitly find

D̂•
1 [∆+1,∆̂, l, l̂,m11,n1,m12,n2,s2] = −(l̂+n1+∆̂)[∆,∆̂, l+1, l̂,m11,n1+1,m12,n2,s2]

−n1[∆,∆̂, l, l̂,m11+1,n1−1,m12,n2,s2] ,

D̂◦
1 [∆+1,∆̂, l, l̂,m11,n1,m12,n2,s2] = −n2[∆,∆̂, l+1, l̂,m11,n1,m12+1,n2−1,s2]

+m12[∆,∆̂, l+1, l̂,m11+1,n1,m12−1,n2+1,s2] ,

H •
11 [∆,∆̂, l, l̂,m11,n1,m12,n2,s2] = [∆,∆̂, l+2, l̂,m11+1,n1,m12,n2,s2] . (E.2)

From these equations it is clear that one can use the spinning operators to generate

recursively all the building blocks (E.1), if one knows all the bulk-defect seeds

[∆, ∆̂, l̂, l̂, 0, 0, 0, s1, s2] . (E.3)

Notice that in the seeds (E.3) the bulk and the defect operators have the same spin l̂ = l,

as required by (3.26). For example, the scalar conformal block (E.6) is associated to the

bulk-defect seed [∆, ∆̂, 0, 0, 0, 0, 0, s1, 0].

We can finally write the bulk-defect building blocks in the differential basis as follows

{∆, ∆̂, l, l̂,m11, n1,m12, n2, s2} ≡ (H •
11)

m11(D̂ •
1 )n1(D̂ ◦

1 )m12Σn1+m12
1 [∆, ∆̂, l̂, l̂, 0, 0, 0, s1, s2] ,

(E.4)

where Σk implements the shift ∆ → ∆ + k. Again the integers mij and ni satisfy the

condition (3.26). The basis (E.4) and the basis (E.1) are related by a linear change of basis

which can be obtained from (E.2).

E.2 Examples

In this subsection we exemplify how to compute defect channel blocks by acting with the

spinning differential operators (4.51) on seed blocks. We will focus on simple examples for

which there is a unique seed: the scalar one. In the following we denote its partial wave as

ĜÔ =
ĝÔ(r̂, η̂)

(P1 ◦P1)
∆1
2 (P2 ◦P2)

∆2
2

, (E.5)

where the exchanged operator Ô, has conformal dimension ∆̂, parallel spin l̂ = 0 and

transverse spin s. The associated conformal block is [20, 28]

ĝÔ(r̂, η̂) = r̂∆̂2F1

(p
2
, ∆̂, ∆̂− p

2
+ 1; r̂2

)
Cs(η̂) , (E.6)

where Cs is defined in (C.12).
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Vector-scalar. In the case of one external vector (say the first operator), we have two

independent conformal partial waves Ĝ
(p)

Ô , p = 1, 2 associated to the exchange of l̂ = 0

defect primaries. These can be obtained from the scalar conformal partial wave (E.5) as

follows

Ĝ
(1)

Ô = −∆̂−1D̂•
1Σ

1,0ĜÔ , Ĝ
(2)

Ô = s−1D̂◦
1Σ

1,0ĜÔ , (E.7)

where the normalization is fixed to recover blocks in the OPE basis (E.1). Each of the Ĝ
(p)

Ô
can be decomposed as in (4.6) with Qs given by (D.8). We find

ĝ
(1),1

Ô (r̂, η̂) = ∆̂−1 r̂

1− r̂2

√
(r̂2 + 1) (−2η̂r̂ + r̂2 + 1)∂r̂ĝÔ(r̂, η̂) ,

ĝ
(2),2

Ô (r̂, η̂) = −s−1η̂

√
1− 2η̂r̂

r̂2 + 1
∂η̂ ĝÔ(r̂, η̂) ,

(E.8)

where ĝÔ is defined in (E.6).

Vector-vector. There are six independent bulk-to-defect conformal partial waves asso-

ciated to the exchange of a defect primary Ô. The four of them Ĝ
(p,q)

Ô with l̂ = 0 (and

arbitrary transverse spin s) can be obtained by applying (4.51) to the scalar conformal

partial wave ĜÔ as follows

Ĝ
(1,1)

Ô = ∆̂−2D̂•
1D̂

•
2Σ

1,1ĜÔ , Ĝ
(1,2)

Ô = (∆̂s)−1D̂•
1D̂

◦
2Σ

1,1ĜÔ ,

Ĝ
(2,1)

Ô = (∆̂s)−1D̂◦
1D̂

•
2Σ

1,1ĜÔ , Ĝ
(2,2)

Ô = s−2D̂◦
1D̂

◦
2Σ

1,1ĜÔ ,
(E.9)

where we fixed the normalization consistently with (E.1). The remaining two conformal

partial waves are seeds and are obtained by different methods (see the appendix E.1 and

subsection 4.2.1). Their explicit expression is reported in appendix F.

Two currents. As reported in the third line of table (4.8), there is a total of six conformal

partial waves in the defect OPE of a two-point function of vector operators. In the following

we shall consider the case of the two-point function of conserved currents (which have pro-

tected dimension ∆ = d−1 and satisfy the conservation equation (∂P ·DZ)O∆,1(Z,P ) = 0).

In order to understand the constraint of conservation it is convenient to classify the

possible bulk-defect tensor structures (3.23). When the defect operator has parallel spin

l̂ = 0 and transverse spin s there are two independent tensor structures.

〈O∆,1(Z1, P1)Ô∆̂,0,s(P2,W2)〉 =
b
(1)

OÔ(K
2
1 )

s−1(Y 2
1,1) + b

(2)

OÔ(K
2
1 )

sV •
1,12

(−2P1•P2)∆̂(P1◦P1)
∆−∆̂

2

. (E.10)

It is easy to see that the expression (E.10) only satisfies conservation when the OPE

coefficients are related as follows

(q + s− 2)b
(1)

OÔ = −(∆̂− p)b
(2)

OÔ , (s > 0) . (E.11)

When s = 0 the coefficient b
(1)

OÔ is absent and conservation implies that the correlation

function vanishes, unless ∆̂ = p.16 The conserved structure corresponding to (E.11) can

16The presence of such a defect operator denotes the breaking of the global symmetry associated to the

conserved current by the defect, see e.g. [18, 52].
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be generated also in the differential basis (E.4)

D̂J
1 = D̂•

1 +
(p− ∆̂)

(q + s− 2)
D̂◦

1. (E.12)

Therefore, (E.12) can be used to build the single conserved block ĜJJ
∆̂,l̂=0,s

as follows

ĜJJ
∆̂,l̂=0,s

= Ĝ
(1,1)

∆̂,l̂=0,s
+

(p− ∆̂)

(q + s− 2)
Ĝ

(1,2)

∆̂,l̂=0,s
+

+
(p− ∆̂)

(q + s− 2)
Ĝ

(2,1)

∆̂,l̂=0,s
+

(
p− ∆̂

q + s− 2

)2

Ĝ
(2,2)

∆̂,l̂=0,s
. (E.13)

As we have shown in table (4.8), we can also build the two seed conformal blocks

Ĝ∆̂,l̂=1,s and Ĝ∆̂,l̂=0,(s,1). Since they are seed blocks, they are automatically conserved, as

we argued in subsection 4.2.1. As a check of this statement one can consider the bulk-defect

structure associated to the block Ĝ∆̂,l̂=1,s,

〈O∆,1(Z1, P1)Ô∆̂,l̂=1,s(P2, Z2,W2)〉 =
bOÔ(K

2
1 )

s−1H •
12

(−2P1•P2)∆̂(P1◦P1)
∆−∆̂

2

. (E.14)

It is easy to see that (E.14) is conserved. Ultimately, this is a trivial consequence of the fact

that the operator (∂µOµ
∆,1) is a scalar primary, which cannot couple to a defect primary

with l̂ = 1.

In sum, when the external operators are two conserved currents, there is a total of

three conformal blocks: ĜJJ
∆̂,l̂=0,s

, Ĝ∆̂,l̂=1,s and Ĝ∆̂,l̂=0,(s,1).

F The explicit vector-vector blocks in the defect channel

In this appendix we collect the results for the defect blocks for external vector operators,

which are relevant to the examples presented in section 5. These blocks are computed in a

closed form with various techniques. In subsection 4.2.1 it is explained how to obtain all

the seed blocks as projectors and how to get the most generic block by acting on a seed

with differential operators (as exemplified in appendix E.2). In appendix C.2 it is shown

how to obtain the same blocks by directly solving the Casimir equation taking advantage

of a suitable ansatz. Finally, in appendix D.1 an explicit recurrence relation for the radial

expansion of the blocks was derived (in this case however the resummation of the series

was not attempted). All the techniques give the same result.

Even if the blocks are already written in three different ways throughout the paper

we decided, for the sake of clarity, to report them here in their most transparent form,

as function of the cross ratios which multiply the basis of bulk-bulk tensor structures,

following the definition (4.6). In particular, for two external vectors, a conformal partial

wave is fixed in terms of five functions g
(p,q),k
O (r̂, η̂) (k = 1, . . . 5) which multiply the basis

of Qk defined in (5.6). The blocks associated to the exchange of a l̂ = 0 defect primary
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with spin s can be computed for example using (E.9),

ĝ
(1,1),1

∆̂0s
(r̂, η̂) =

1

∆̂2

r̂
(
−2η̂r̂ + r̂2 + 1

)

(r̂2 − 1)3

[
r̂
(
r̂4 − 1

)
∂2
r̂ ĝ∆̂,s(r̂, η̂) +

(
r̂4 − 4r̂2 − 1

)
∂r̂ĝ∆̂,s(r̂, η̂)

]
,

ĝ
(1,1),5

∆̂0s
(r̂, η̂) = − 2

∆̂2

r̂2

r̂2 − 1
∂r̂ĝ∆̂,s(r̂, η̂),

ĝ
(1,2),2

∆̂0s
(r̂, η̂) = ĝ

(2,1),3

∆̂0s
(r̂, η̂) = − 1

∆̂s

η̂r̂
(
2η̂r̂ − r̂2 − 1

)

r̂2 − 1
∂η̂∂r̂ĝ∆̂,s(r̂, η̂), (F.1)

ĝ
(2,2),4

∆̂0s
(r̂, η̂) = − 1

s2
η̂
(
2η̂r̂ − r̂2 − 1

)

r̂2 + 1

[
∂η̂ ĝ∆̂,s(r̂, η̂) + η̂∂2

η̂ ĝ∆̂,s(r̂, η̂)
]
,

ĝ
(2,2),6

∆̂0s
(r̂, η̂) = s−2∂η̂ ĝ∆̂,s(r̂, η̂),

where ĝ∆̂,s(r̂, η̂) is defined in (E.6). The seed block associated to the exchange of a l̂ =

0 defect primary with mixed symmetry (s, 1) has only Q4 and Q6 components in the

basis (5.6):

ĝ4
∆̂0(s,1)

(r̂, η̂)=
2−ss!q (2−q)

(s+1)(q+s−3)
( q
2 −1

)
s

η̂
(
r̂2−2η̂r̂+1

)

r̂2+1
C

( q
2
+1)

s−2 (η̂)F0,0(r̂), (F.2)

ĝ6
∆̂0(s,1)

(r̂, η̂)=
2−ss!(q−2)

(s+1)(q+s−3)
( q
2 −1

)
s

[(
η̂2−1

)
qC

( q
2
+1)

s−2 (η̂)+ η̂(q−2)C
( q
2
)

s−1(η̂)
]
F0,0(r̂) ,

where we introduced the auxiliary function

Fα,β(r̂) ≡ r̂∆̂ 2F1

(p
2
+ α, ∆̂ + β; ∆̂− p

2
+ 1; r̂2

)
. (F.3)

The seed block associated to the exchange of a l̂ = 1 defect primary with symmetric and

traceless transverse spin s has only Q1 and Q5 components in the basis (5.6):

ĝ1
∆̂1s

(r̂, η̂) =
2p

(∆̂ + 1− p)

(
r̂2 + 1

)
r̂
(
r̂2 − 2η̂r̂ + 1

)

(r̂2 − 1)2
Cs(η̂)F1,1(r̂)+

+
2r̂
(
r̂2 − 2η̂r̂ + 1

)

∆̂ (r̂2 − 1)3 (−∆̂ + p− 1)
Cs(η̂)×

×
[
(p− ∆̂)

(
−∆̂ + (∆̂− 1)r̂2 − 1

)
F0,0(r̂) + p

(
r̂2 + 1

)
F1,0(r̂)

]
,

ĝ5
∆̂1s

(r̂, η̂) =
Cs(η̂)

∆̂ (r̂2 − 1) (−∆̂ + p− 1)
×

×
[
(p− ∆̂)

(
−∆̂ + (∆̂− 1)r̂2 − 1

)
F0,0(r̂) + p

(
r̂2 + 1

)
F1,0(r̂)

]
. (F.4)
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