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1 Introduction

The space of Quantum Field Theories (QFT) is vast and uncharted. The numerical S-matrix
Bootstrap is a nonperturbative approach to explore this space [1–14]. This recent approach
is a practical implementation of the decades old idea of S-matrix Theory (see for example
the book [15]). So far this method has only been applied to scattering amplitudes of scalar
particles.1 In this work, we develop the formalism to study 2 to 2 scattering amplitudes of
particles with spin in four dimensional QFTs.

The main idea of the numerical S-matrix Bootstrap [2, 3] is to write a generic analytic
and Lorentz invariant ansatz for the scattering amplitude and then impose the constraints
from crossing symmetry and unitarity. In the case of identical scalar particles of mass m,

1In fact, most recent papers studied two dimensional QFT where there is no spin.
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the interacting part of the scattering amplitude denoted by T (s, t, u), where s, t and u are
the Mandelstam variables, can be written as

T (s, t, u) =
∑
a

αi Fi(s, t, u) , (1.1)

where αi are undetermined real coefficients and Fi(s, t, u) are functions with appropriate
analyticity properties.2 Crossing symmetry

T (s, t, u) = T (t, s, u) = T (u, t, s) , (1.2)

imposes linear constraints on the coefficients αi in the ansatz (1.1). Finally, the unitarity
requirement can be cast as the following semidefinite positive condition3(

1 S∗` (s)
S`(s) 1

)
� 0, (1.3)

where ` = 0, 2, 4, . . . and s ≥ 4m2. The partial amplitudes S`(s) are defined as the projection
of the scattering amplitude onto definite spin via the Legendre Polynomials P`(cos θ) as

S`(s) ≡ 1 + i

√
s− 4m2

32π
√
s
×
∫ π

0
dθ sin θP`(cos θ)T (s, t(s, cos θ), u(s, cos θ)). (1.4)

The integration variable θ is the scattering angle and its precise relation to the Mandelstam
variables is given in (2.59). By keeping a finite number of terms in the ansatz (1.1) one can
numerically explore the space of consistent scattering amplitudes, namely the ones obey-
ing (1.2) and (1.3). In particular, extremizing any physical parameter linearly related to the
scattering amplitude translates into a numerical (primal semidefinite) optimization problem.

In the presence of spin, the expressions (1.2)–(1.4) immediately become more compli-
cated, see [16] for a review. The goal of section 2 is to setup the formalism which allows to
study crossing and unitarity for amplitudes with generic masses and spins. This section is
mostly a review of known results in a concise form.

Compared to the scalar case a generic scattering amplitude describing the process
12→ 34 has the form

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4), (1.5)

where pi are four-momenta and λi are helicities of scattering particles respectively. Given
the spins ji of four particles, helicities take values from the range λi = −ji, . . . + ji with
step one. There are thus

N4 ≡ (2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1) (1.6)

components describing the scattering process 12→ 34.4 We would then like to define N4
scattering amplitudes which depend only on the Mandelstam variables. This can be done

2In practice, we assume maximal analyticity of the scattering amplitude, i.e. the only non-analyticities
are the ones predicted by Landau diagrams.

3This is equivalent to requiring non-negativity of the determinant of the matrix which leads to the
unitarity constraint in a more recognizable form |S`(s)|2 ≤ 1.

4When the scattering process is parity and/or time-reversal invariant, when it contains identical and/or
massless particles, the counting of independent amplitudes becomes much more complicated. We discuss it
in section 2.4.
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in two different ways: using the center of mass frame or using tensor structures. We denote
these two options respectively by

T12→34
λ3,λ4
λ1,λ2

(s, t, u) and T I12→34(s, t, u), (1.7)

where I = 1, . . . N4. The two sets of amplitudes in (1.7) are related by a linear transformation
which depends on the Mandelstam variables only. This relation is completely fixed once the
basis of tensor structures is chosen. Both options have their advantages and disadvantages.
In the center of mass frame one can derive crossing equations once and for all spins and
masses as summarized in section 2.3 (see appendix E for details).5 However, the analyticity
properties of the center of mass amplitudes are subtle and one is forced to deal with the
issue of kinematic singularities discussed in section 2.7. Analyticity is more straightforward
when using tensor structures, however one needs to study crossing case by case due to
non-trivial linear relations between covariant tensor structures. As a result we cannot give
it a completely general treatment in section 2 and instead employ it only in the particular
example of identical neutral spin 1

2 particles in section 3.4. In addition, the construction of
general spin tensor structures is discussed to some extent in appendix H.

The key element for imposing unitarity constraints are the partial amplitudes (1.4). In
the case of generic spin, (1.4) remains valid for center of mass amplitudes, if the Legendre
polynomial is replaced by the small Wigner d-matrix given in (2.9) in full generality. This
is explained in detail in section 2.5. Finally, the unitarity constraints for generic spin are
given in section 2.6.

In section 3, we specialize to the case of scattering of neutral spin 1
2 massive fermions,

also known as Majorana fermions [18]. This section should be seen as the simplest application
of the formalism given in section 2. In section 4 we write an ansatz for the scattering
of identical Majorana particles in a parity invariant QFT (assuming this is the lightest
particle). We then setup the optimization problem using crossing and unitarity constraints
derived in section 3. Finally, we present our numerical results for the allowed values of the
non-perturbative quartic and cubic (Yukawa) couplings defined from the physical scattering
amplitude in section 3.3. The universal bounds for the quartic coupling, given in (4.18),
and for the cubic couplings, shown in figures 5 and 6, are our main numerical results.

Our work opens the ground for many other interesting bootstrap studies in 4 dimensions.
For example, photon-photon, pion-nucleon or spinning glueball scattering. We conclude in
section 5 with a discussion of these examples and other open questions for the future. We
also include several appendices that fill in the details of the presentation in the main text.

2 Review: spinning S-matrix approach

In this paper we study quantum systems invariant under the restricted Poincaré symmetry
group. In addition, we consider special situations where parity and/or time-reversal sym-

5Generically, crossing equations relate physical amplitudes to the analytic continuation of other amplitudes
beyond their physical domain. There is no general proof (especially for particles with spin) that this
continuation exists and how big is the domain where crossing equations hold. For a review of results for
scalar amplitudes, see [17]. In this work we do not address this issue and simply assume that all the
amplitudes under consideration are maximally analytic.
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metries are also present. Scattering amplitudes are important physical observables in these
systems. They are constrained by many non-trivial consistency conditions. The program of
deriving and exploiting such theoretical constraints is referred to as the S-matrix bootstrap.

The S-matrix bootstrap program was extensively developed half a century ago. In this
section we review its kinematic aspects (the ones fixed by symmetries).6 Our goal is to
provide an updated and easy to use practical summary of the basic ingredients.

2.1 States

We work in Lorentzian metric with the mostly plus signature

ηµν = {−+ ++}. (2.1)

The unitary irreducible representations of the restricted Poincaré group were classified
by Wigner.7 Here we will work with a particular unitary representation which is positive
energy time-like. The basis for such a representation is formed by the states

|c, ~p; `, λ; γ〉 , (2.2)

where the 3-momentum ~p ∈ R3 and the helicity λ = −`,−`+ 1, . . . ,+`. The other labels
are fixed within the irreducible representation and serve to specify a given state. The label
c > 0 is a continuous real parameter related to the energy p0 > 0 as

c2 = −pµpµ = (p0)2 − (~p )2. (2.3)

It is defined as the eigenvalue of the first Casimir of the Poincaré group c2 = −P 2, where
Pµ are the generators of translations. Instead of c one can equivalently label the basis
of states (2.2) using the energy p0. We will often use both labels throughout the text
interchangeably. The spin label ` = 0, 1

2 , 1, . . . is a non-negative integer or half integer
related to the eigenvalue of the second Casimir of the Poincaré group W 2 = 4c2 `(`+ 1),
where Wµ is the Pauli-Lubanski pseudovector.8 The helicity label λ is the projection of
the spin vector along ~p. Finally the label γ stands for any other additional (discrete or
continuous) labels which might be required to fully specify the state. We will see one
particular case of their importance in section 2.1.2.

We will often need to use spherical coordinates in which case the three momentum is
parametrized as

~p = (p sin θ cosφ, p sin θ sinφ, p cos θ), p ≡ |~p|, 0 ≤ φ < 2π, 0 ≤ θ ≤ π. (2.4)

The helicity basis states (2.2) with non-zero three momentum ~p are defined as follows

|c, ~p; `, λ; γ〉 = e−iφJ3e−iθJ2e+iφJ3e−iηK3 |c,~0; `, λ; γ〉, (2.5)
6For other sources covering this topic see for example [19].
7For a textbook discussion see for example [19, 20].
8In our convention Wµ ≡ εµνρσMνρPσ, where Mνρ are the generators of the Lorentz group.
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where Ja and Ka with a = 1, 2, 3 are the generators of spatial rotations and boosts
respectively. The rapidity parameter η is related to the energy and momentum of the states as

cosh η = p0

c
, sinh η = p

c
. (2.6)

Lastly the helicity λ in the zero three momentum state |c,~0; j, λ; γ〉 is a projection of the
spin ` onto the z axis. In other words these states are eigenstates of the J3 generators.
Given a generic 3d rotation characterized by the three Euler angles (α, β, γ) (where α and
γ parametrize rotations around the z-axis and β parametrizes rotations around the y-axis)
we have the following transformation property

R(α, β, γ)|c,~0; `, λ; γ〉 =
∑
λ′

D
(`)
λ′λ(α, β, γ)|c,~0; `, λ′; γ〉, R(~a) ≡ e−iαJ3e−iβJ2e−iγJ3 . (2.7)

The object D
(`)
λ′λ is known as the large Wigner D matrix and reads as

D
(`)
λ′λ(α, β, γ) = e−iαλ

′
d

(`)
λ′λ(β)e−iγλ. (2.8)

Here the object d(`)
λ′λ is the small Wigner d matrix, its explicit expression reads9

d
(`)
λ′λ(β) =

√
(`+ λ)!(`− λ)!(`+ λ′)!(`− λ′)!

×
2j∑
ν=0

(−1)ν (cos(β/2))2j+λ−λ′−2ν (− sin(β/2))λ
′−λ+2ν

ν!(`− λ′ − ν)!(`+ λ− ν)!(ν + λ′ − λ)! . (2.9)

In case both helicities λ and λ′ are equal to zero, the small Wigner d matrix reduces to
the usual Legendre polynomial

d
(`)
00 (β) = P`(cosβ). (2.10)

The Wigner D matrices satisfy orthogonality. They also obey various useful relations, see
for example appendix A.2 in [16].

Consider now a generic Poincaré transformation which consists of a translation fixed by
four Lie parameters aµ and the Lorentz transformation Λµν fixed by six Lie parameters ρ[µν].
It transforms the 4-momentum pµ into p′µ = Λµ

νp
ν . Under the Poincaré transformation

(a, ρ) the states (2.2) transform according to

U(a, ρ)|c, ~p; `, λ; γ〉 = eia·p
′ ×

∑
λ′

D
(`)
λ′λ(α, β, γ)|c, ~p ′; `, λ′; γ〉, (2.11)

where the three Wigner angles (α, β, γ) can be expressed in terms of the six Lie parameters
ρ[µν]. We provide an example of a Wigner angles computation in appendix A.4. For the
special case of pure 3d rotations, the Wigner D matrix reduces to a phase and therefore the
helicity of the state remains unchanged10

R(~a)|c, ~p; `, λ; γ〉 = e−iλ ξ(~a,φ,θ)|c, ~p ′; `, λ; γ〉, (2.12)

where the phase ξ has a complicated dependence on its arguments.
9Note that Mathematica implements the small Wigner d matrices (2.9) with indices λ and λ′ flipped. In

other words d(`)
λ′λ(β) is generated by the command WignerD[{`, λ, λ′}, β].

10Notice that this is compatible with (2.7) because the limit ~p → 0 of |c, ~p; j, λ; γ〉 is only equal to
|c,~0; j, λ; γ〉 if ~p is parallel to the z-axis.
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Particles. So far we discussed states and their properties in a generic Poincaré invariant
quantum theory. The related notion of particle does not exist in every QFT. The simplest
context where particles are well defined is in free QFTs. A free theory is described by a
set of one particle states (describing freely propagating particles with a given mass and
spin). Taking tensor products of these states we form a complete basis of states spanning
the Hilbert space of the theory. In interacting QFTs, particles can still be defined in the
asymptotic far past and future if interactions decay sufficiently fast with distance. This
is the case for theories with a mass gap and massless theories with soft interactions like
Goldstone bosons or photons (in the absence of charged particles in the asymptotic states).
In this paper, we will only consider those theories where particles do exist. Then, one can
define two types of asymptotic states: the in states (far past) and the out states (far future).
Both the in states and the out states span the full Hilbert space of the theory. A natural
basis of in/out states is given by the tensor product of one particle in/out states.

2.1.1 One particle states (1PS)

One particle states (1PS) are special cases of (2.2) where c takes only discrete values
corresponding to the masses of stable particles in the theory. For this reason, we will set
c = m from now on. If global symmetries are present, the label γ describes the charge or
more generically the representation under the global symmetry group. For simplicity, in
this section we ignore global symmetries, thus the 1PS will not carry any extra labels γ.
We introduce a shorthand notation for one particle states

|κ〉 ≡ |m, ~p; j, λ〉. (2.13)

For indicating spin we use the label j instead of ` here to ease the visual distinction between
the 1PS and generic irreps. We normalize 1PS as follows

〈m′, ~p ′; j′, λ′|m, ~p; j, λ〉 = (2π)3 2p0 δ3(~p ′ − ~p) δm′mδj′jδλ′λ
≡ δ(κ′ − κ), (2.14)

where in accordance with (2.3) the energy of the states is

p0 =
√
m2 + p2. (2.15)

In the second line of (2.14) we have introduced the shorthand notation δ(κ′ − κ) for the set
of Kronecker and Dirac delta functions. The transformation rule for a one particle state
under a Poincare transformation remains the same as in (2.11).

The case of massless particles should be treated separately since c 6= 0 in (2.2). Skipping
details, the following statement holds: massless particles can be described by the states (2.13)
with m = 0 and the range of helicities restricted to only two values λ = −j and λ = +j.

Finally we state the transformation properties of 1PS under parity and time-reversal.
For further details see appendix B. One has

P|m, ~p; j, λ〉 = η(−1)j−λ exp(2iφλ)|m,−~p; j,−λ〉, (2.16)
T |m, ~p; j, λ〉 = ε(−1)2j exp(−2iφλ)|m,−~p; j, λ〉, (2.17)
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where φ is the spherical angle defined in (2.4), see also (2.27), η and ε are pure phases.
Their values are yet other quantities characterizing the state. Let us briefly discuss the
phase η called intrinsic parity. One can argue as in section 3.3 of [19], that one can always
define P in such a way that P2 = +1 or P2 = −1. As a result one has

η = ±1 or η = ±i. (2.18)

The imaginary values of intrinsic parities are only possible for fermions, however no such
fermions have been discovered so far in the nature.

2.1.2 Two particle states (2PS)

We define the two particle states (2PS) by taking the ordered tensor product of two 1PS

|κ1, κ2〉 ≡ |m1, ~p1; j1, λ1〉 ⊗ |m2, ~p2; j2, λ2〉. (2.19)

The normalization of the 2PS defined above follows from that of the 1PS:

〈κ1, κ2|κ3, κ4〉 = δ(κ1 − κ3)δ(κ2 − κ4). (2.20)

Two particle states do not form an irreducible representation of the restricted Poincaré
group. However, they can be decomposed into a direct sum of states (2.2) transforming in
irreducible representations. This is done by injecting the completeness relation into 2PS

|κ1, κ2〉 =
∫

d4p

(2π)4 θ(p
0)θ(−p2)

∑
γ

∑
`,λ

|c, ~p; `, λ; γ〉 〈c, ~p; `, λ; γ|κ1, κ2〉, (2.21)

where we normalize the states (2.2) as follows11

〈c′, ~p ′; `′, λ′; γ′|c, ~p; `, λ; γ〉 = (2π)4δ4(p′µ − pµ) δ`′` δλ′λ δγ′γ , (2.22)

where pµ = (p0, ~p) is the 4-momentum and the symbolic expression δγ′γ will be properly
specified when the additional labels γ and γ′ are defined. We use the normalization (2.22) for
all irreducible Poincaré representations, with the exception of 1PS which are the only states
where the label c takes particular discrete values. Looking at the right-hand side of (2.21),
we see that the Clebsch-Gordon coefficients of this decomposition (due to translation
invariance) obey

〈c, ~p; `, λ; γ|κ1, κ2〉 ∝ (2π)4δ4(pµ − pµ1 − p
µ
2 ). (2.23)

This delta function completely removes the integration over p in (2.21). The label γ is the
multiplicity label. In the case of 2PS decomposition the multiplicity label γ consists of only
discrete parameters12 and reads as

γ = (m1, j1, λ1; m2, j2, λ2). (2.24)
11The Kronecker deltas follow from the fact that the states here are simultaneous eigenstates of the two

Casimirs (A.34) and the helicity operator (A.54).
12This is no longer the case for the decompositions of three or more particle states. In these cases the

multiplicity label γ would also contain continuous parameters associated with the relative momenta of the
component particles.
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Thus the label γ keeps track of which particles and what helicities were used to make the
two particle state. In what follows we will almost always drop the explicit mass and spin
labels in order to simplify the formulas. However, when dealing with particles of different
masses and spins, the mass and spin labels are important. Finally we choose to normalize
the states appearing in (2.21) according to (2.22) with

δγ′γ = δm′1m1δm′2m2δj′1j1δj′2j2 × δλ′1λ1δλ′2λ2 . (2.25)

COM two particle states. We can always use Lorentz invariance to go to the frame
where the total momentum of the two particles is 0. This frame is called the centre of mass
(COM) frame. Therefore, we do not need to know the most general decomposition (2.21),
and instead it is enough to focus on the special case of 2PS in the center of mass (COM)
frame, namely the states (2.19) obeying the constraint ~p1 = −~p2. We give a special label to
such two particles states

|(p, θ, φ);λ1, λ2〉 ≡ |m1,+~p; j1, λ1〉 ⊗ |m2,−~p; j2, λ2〉, (2.26)

where the three-momenta have the following spherical coordinates13

+ ~p = (p, θ, φ), −~p = (p, π − θ, π + φ), θ ∈ [0, π], φ ∈ [0, 2π]. (2.27)

The states (2.26) are normalized according to (2.20). By performing a change of variables
we can rewrite the normalization in terms of spherical coordinates as

〈(p, θ, φ);λ1, λ2|(p′, 0, 0);λ′1, λ′2〉 = (2π)4δ4(0)× 16π2√s√
pp′

δ(θ)δ(φ)
sin θ ×

δm′1m1δm′2m2δj′1j1δj′2j2 × δλ1λ′1
δλ2λ′2

, (2.28)

where s = (p0
1 + p0

2)2 is the square of the COM energy. In appendix A.2.4, we compute the
Clebsch-Gordon coefficients (2.23) for the COM states (2.26). Here we present only the
result which reads as

|(p, θ, φ);λ1, λ2〉 =
∑
`,λ

C`(p) eiφ(λ1+λ2−λ)d
(`)
λλ12

(θ)|c, 0; `, λ; γ〉, (2.29)

where we have
λ12 ≡ λ1 − λ2, c =

√
s =

√
m2

1 + p2 +
√
m2

2 + p2, (2.30)

13Notice that given the vector +~p in spherical coordinates, the vector opposite to it is defined as
−~p = (p, π − θ, π + φ) for φ ∈ [0, π] and −~p = (p, π − θ, −π + φ) for φ ∈ (π, 2π]. In other words in order
to describe the vector −~p in spherical coordinates one needs two different descriptions, one for φ ∈ [0, π]
and one for φ ∈ (π, 2π]. We do not indicate it in the main text, since all the consequent formulas remain
uniform in the whole range φ ∈ [0, 2π]. The reason for that is the choice of the helicity basis (2.5) and the
fact that R(φ, θ,−φ) is 2π periodic, see footnote 42. Notice also that there is a special case when θ = π. For
this particular point, we choose the spherical angles of the first state to be +~p = (p, θ = π, φ = π), whereas
the spherical angles of the second state are −~p = (p, θ = 0, φ = 0).
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with the multiplicity labels γ given in (2.24) and d
(`)
λλ12

(θ) given by (2.9). Using the
orthogonality of the small Wigner d matrix and the exponential function, we can invert
equation (2.29) as follows

|c, 0; `, λ; γ〉 = 2`+ 1
4πC`(p)

∫ 2π

0
dφ

∫ π

0
dθ sin θ e−iφ(λ1+λ2−λ)d

(`)
λλ12

(θ)|(p, θ, φ);λ1, λ2〉. (2.31)

The coefficient C` is completely fixed by the consistency requirement that the left-hand side
of (2.29) satisfies the normalization condition (2.20) and the state in the right-hand side
of (2.29) satisfies the normalization condition (2.22). For non-identical particles it reads as

C`(p)2 = 4π (2`+ 1)× c

p
. (2.32)

Identical particles. The discussion presented above should be slightly modified when
the two particle state is composed of identical particles. In the latter case it must satisfy

|κ1, κ2〉id = (−1)2j |κ2, κ1〉id. (2.33)

We have added the subscript id to explicitly indicate that the state describes a system of
two identical particles. In order to incorporate (2.33), we have (instead of simply taking an
ordered product) to take either symmetrized (in case of bosons) or anti-symmetrized (in
case of fermions) tensor product. Such a state will thus have the following form

|κ1,κ2〉id≡
1√
2

(
|m,~p1;j,λ1〉⊗|m,~p2;j,λ2〉+(−1)2j |m,~p2;j,λ2〉⊗|m,~p1;j,λ1〉

)
. (2.34)

The normalization of the state (2.34) follows from (2.14)

id〈κ1, κ2|κ3, κ4〉id = δ(κ1 − κ3)δ(κ2 − κ4) + (−1)2jδ(κ1 − κ4)δ(κ2 − κ3). (2.35)

As before we need to define the identical 2PS in the center of momentum. Adapting (2.26)
to the case of identical particles we get

|(p, θ, φ);λ1, λ2〉id ≡
1√
2

(
|m,+~p; j, λ1〉 ⊗ |m,−~p; j, λ2〉+ (−1)2j |m,−~p; j, λ2〉 ⊗ |m, ~p; j, λ1〉

)
. (2.36)

The normalization of the identical COM states (2.36) is fixed by (2.35). It is still given
by (2.22) but with

δγ′γ = 1
2
(
δλ1λ′1

δλ2λ′2
+ (−1)`+λ1−λ2δλ1λ′2

δλ2λ′1

)
. (2.37)

We would now like to decompose the identical two particle state (2.36) into irreducible
representations

|c, 0, `, λ;λ1, λ2〉id ≡
1
2
(
|c, 0, `, λ;λ1, λ2〉+ (−1)`+λ1−λ2 |c, 0, `, λ;λ2, λ1〉

)
. (2.38)

The decomposition of identical 2PS is obtained straightforwardly by applying (2.29) to
both terms in the right-hand side of (2.36) which leads to

|(p, θ, φ);λ1, λ2〉id =
√

2
∑
`,λ

C`(p)ei(λ1+λ2−λ)φd
(`)
λλ12

(θ)|c, 0; `, λ;λ1, λ2〉id, (2.39)

where the coefficient C` is given by (2.32). For the detailed derivation of these equations
see appendix C.
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2.2 S-matrix elements

Given a generic state in the reference frame at t = 0, an observer in another reference
frame in the far past (t = −∞) or far future (t = +∞) will see the same state as a
(linear combination of) tensor product of one particle states which we refer to as in or out
asymptotic states respectively. Asymptotic states have a complicated time evolution. One
can however establish a formal one to one map between these states and those of some free
theory (which evolve trivially with time) by means of a pair of unitary operators Ω− and Ω+
called the Møller operators. See section 2.1 in [12] for a recent discussion. In their notation

|κ〉in = Ω−|κ〉free, |κ〉out = Ω+|κ〉free. (2.40)

Let us now discuss inner products between asymptotic states. Since the Møller operators
are unitary, the inner products of only in states or only out states are fixed by the
normalization conditions (2.22) and (2.14). This means that the only non-trivial matrix
elements must include both in and out states.

Four-particle amplitudes. We start with the most important object for our work

out〈κ3, κ4|κ1, κ2〉in = free〈κ3, κ4|S|κ1, κ2〉free, (2.41)

where the scattering operator S is defined via (2.40) as

S ≡ Ω†+Ω−. (2.42)

Møller operators are isometric14 which implies the unitarity of the scattering operator15

S†S = 1. (2.43)

Poincaré invariance implies that16

U(a, ρ)S U−1(a, ρ) = S, (2.44)

where U represents a generic Poincaré transformation in the Hilbert space. Finally it is
convenient to split the scattering operator into the trivial part (identity operator) and the
interacting part as

S = 1 + iT. (2.45)

If T = 0 we simply recover the free theory. The matrix element (2.41) describes scattering
of two particles. Factoring out the overall delta function due to translation invariance we
can define the two to two scattering amplitude as

(2π)4δ(4)(pµ1 +pµ2−p
µ
3−p

µ
4 )×S12→34

λ3,λ4
λ1,λ2

(p1,p2,p3,p4)≡ free〈κ3,κ4|S|κ1,κ2〉free. (2.46)

14Recall that an isometric operator O on a Hilbert space preserves distances. This implies that O†O = 1,
however the operator need not be surjective and OO† 6= 1 generically. A surjective isometric operator
is unitary.

15This is a non-trivial statement, see [21] for details.
16See the discussion around (2.11).
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Equivalently we define the interacting part of the two to two scattering amplitude

(2π)4δ(4)(pµ1 +pµ2−p
µ
3−p

µ
4 )×T12→34

λ3,λ4
λ1,λ2

(p1,p2,p3,p4)≡ free〈κ3,κ4|T |κ1,κ2〉free. (2.47)

Since the (interacting) scattering amplitude is defined via the one particle states, all the
4-momenta are on-shell

p2
i = −m2

i . (2.48)

We study these amplitudes and their properties in depth in section 2.3. We sometimes drop
the subscript 12→ 34 when it is clear from the context which scattering process we describe.
However, it is necessary to keep this subscript when relating amplitudes describing different
processes. Using (2.45) we can relate the scattering amplitude (2.46) with its interacting
part (2.47) as

S12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) =[
free〈κ3, κ4|κ1, κ2〉free

(2π)4δ(4)(pµ1 + pµ2 − p
µ
3 − p

µ
4 )

]
+ iT12→34

λ3,λ4
λ1,λ2

(p1, p2, p3, p4), (2.49)

where the first term [. . .] is a schematic expression which can be evaluated straightforwardly.17

This piece is not a function but a distribution. Due to the relation (2.49), in practice we
will never need to discuss the full amplitude S and instead we will only need the interacting
T amplitude.

Partial amplitudes. The second matrix element we need is between the in and out

states in the irreducible representation

out〈c′, ~p ′; `′, λ′; γ′|c, ~p; `, λ; γ〉in = free〈c′, ~p ′; `′, λ′; γ′|S|c, ~p; `, λ; γ〉free. (2.50)

Again factoring out the overall delta function due to translational invariance we can define
the partial amplitude with a definite spin ` as

(2π)4δ(4)(pµ − p′µ)δ``′δλλ′ × S`γ
′
γ (c) = free〈c′, ~p ′; `′, λ′; γ′|S|c, ~p; `, λ; γ〉free. (2.51)

Equivalently we can define the interacting part of the partial amplitude as

(2π)4δ(4)(pµ − p′µ)δ``′δλλ′ × T`γ
′
γ (c) = free〈c′, ~p ′; `′, λ′; γ′|T |c, ~p; `, λ; γ〉free. (2.52)

17For example in the COM frame defined in (2.57) using the normalization condition in spherical
coordinates (2.28) it is straightforward to write[

free〈κ3, κ4|κ1, κ2〉free

(2π)4δ(4)(pµ1 + pµ2 − p
µ
3 − p

µ
4 )

]
com

= 8π
√
s√

pp′
× δ(θ)δ(φ)

sin θ δm1m3δm2m4δj1j3δj2j4 × δλ1λ3δλ2λ4 .

Similarly in case of identical particles with mass m and spin j using (C.6) we have[
free〈κ3,κ4|κ1,κ2〉free

(2π)4δ(4)(pµ1 +pµ2−p
µ
3−p

µ
4 )

]
com

= 32π2√s√
s−4m2

×
(
δ(θ)δ(φ)

sinθ δλ1λ3δλ2λ4 +(−1)2j δ(π−θ)δ(φ+π)
sin(π−θ) δλ1λ4δλ2λ3

)
.
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We prove that the left-hand side of (2.51) and (2.52) must contain δ``′δλλ′ factor in
appendix D.1. In a generic situation due to (2.22) the two partial amplitudes are simply
related as

S`
γ′
γ (c) = δγ′γ + iT`

γ′
γ (c). (2.53)

In practice we will only need to consider partial amplitudes where the irreps come from the
decomposition of COM two particle states (2.29). In that case the additional labels γ are
multiplicities given by (2.24). The Kronecker delta for distinct particles is given by (2.25)
and for identical particles by (2.37). We examine partial amplitudes and their properties in
detail in section 2.5. In addition, we also derive the relation between partial and scattering
amplitudes.

2.3 Scattering amplitudes and crossing

In this section we carefully study various aspects of the scattering amplitudes (2.46) and
its interacting part (2.47).

We start with the transformation property under the Poincaré group. It directly follows
from the transformation property of each state given by (2.11). In the most generic case it
reads as

T λ3,λ4
λ1,λ2

(p1, p2, p3, p4) =
∑
λ′i

D
(j1)
λ′1λ1

(~ω1)D (j2)
λ′2λ2

(~ω2)D∗(j3)
λ′3λ3

(~ω3)D∗(j4)
λ′4λ4

(~ω4)T λ
′
3,λ
′
4

λ′1,λ
′
2

(p′1, p′2, p′3, p′4),

(2.54)

where ~ωi ≡ (αi, βi, γi) are the Wigner angles for each one particle state defining the
(interacting) scattering amplitude.

Let us now introduce the Mandelstam variables which are invariant quantities under
Lorentz transformations

s ≡ −(p1 + p2)2, t ≡ −(p1 − p3)2, u ≡ −(p1 − p4)2, s+ t+ u =
4∑
i=1

m2
i . (2.55)

Using these variables one can split the scattering amplitude (2.47) into parts invariant
under Lorentz transformation and parts transforming non-trivially,

T λ3,λ4
λ1,λ2

(p1, p2, p3, p4) =
(2j1+1)...(2j4+1)∑

I=1
TI(s, t, u)× TIλ3,λ4

λ1,λ2
(p1, p2, p3, p4). (2.56)

We refer to the quantities TI(s, t, u) as the scalar components of the scattering amplitudes
and TI are called tensor structures. The latter ensures the correct transformation property
of the amplitude as dictated by (2.54). We abuse notation and call both the full amplitude
and its scalar components by the same symbol T . It should be clear which is which by the
presence of indices and arguments. We construct tensor structures explicitly for a particular
example in section 3.4.1. For a general approach see appendix H.

Instead of defining tensor structures and scalar components of the amplitude as in (2.56)
one can evaluate the full amplitude in a particular frame. The standard choice for this
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frame is the center of mass (COM) defined as

pcom
1 = (E1, 0, 0,+p),
pcom

2 = (E2, 0, 0,−p),
pcom

3 = (E3,+p′ sin θ, 0,+p′ cos θ),
pcom

4 = (E4,−p′ sin θ, 0,−p′ cos θ).

(2.57)

Here the angle θ ∈ [0, π]. All the parameters in (2.57) can be expressed in terms of the
Mandelstam variables. In the simplest case where all four particles have the same mass m
we have

Ei =
√
s

2 , p = p′ =
√
s

4 −m
2, sin θ = 2

√
tu

s− 4m2 , cos θ = t− u
s− 4m2 . (2.58)

Instead of using (s, t, u) variables to characterize the scattering process one can also use
(s, θ) by using the relations

t = −s− 4m2

2 (1− cos θ), u = −s− 4m2

2 (1 + cos θ). (2.59)

From these expressions it is clear that the physical range of the Mandelstam variables is

s ≥ 4m2, t ∈ [4m2 − s, 0], u ∈ [4m2 − s, 0]. (2.60)

For the definition of the center of mass frame for the most generic case see appendix D.3.
Using the COM frame we can define the scalar components of the interacting scattering

amplitude in either of the two equivalent ways18

T λ3,λ4
λ1,λ2

(s, t, u) ≡ T λ3,λ4
λ1,λ2

(pcom
1 , pcom

2 , pcom
3 , pcom

4 ),

T λ3,λ4
λ1,λ2

(s, t, u)× (2π)4δ(4)(0) ≡ free〈(p′, θ, 0);λ3, λ4|T |(p, 0, 0);λ1, λ2〉free,
(2.61)

As in (2.56) we abuse notation and call the full (interacting) amplitude in a generic frame
and its particular form in the COM frame by the same symbol. The difference should
always be clear from the arguments. Given the interacting scattering amplitude in the
COM frame one can unambiguously obtain the interacting scattering amplitude in a generic
frame by using (2.54). As an example, let us apply a rotation by an angle φ around the z
axis to (2.61). One gets the following relation

ei(λ1−λ2−λ3−λ4)φT λ3,λ4
λ1,λ2

(s, t, u)× (2π)4δ(4)(0) =

free〈(p′, θ, φ);λ3, λ4|T |(p, 0, 0);λ1, λ2〉free (2.62)

This result will be useful when we compute the partial wave decomposition of the scattering
amplitude in section 2.5.

We note that the scalar components of the scattering amplitude defined in (2.56) and
the COM frame amplitude defined in (2.61) are simply related by a linear transformation
which depends only on s, t and u variables. This relation can be found by evaluating (2.56)
in the center of mass frame and comparing with (2.61). We will see an explicit example of
this in section 3.4.1.

18In order to see the equivalence of two definitions simply compare (2.47) evaluated in the COM frame (2.57)
with (2.26).
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Parity and time-reversal. Let us now discuss additional constraints which appear if
the system is parity or time-reversal invariant. In terms of the S operator (and hence also
the T operator), the following must hold

PSP† = S, T ST † = S†. (2.63)

At the level of COM amplitudes these translate into the following conditions

T12→34
λ3,λ4
λ1,λ2

(s, t, u) = η1η2η
∗
3η
∗
4(−1)j1+j2+j3+j4(−1)λ1+λ2+λ3+λ4T12→34

−λ3,−λ4
−λ1,−λ2

(s, t, u),
(2.64)

T12→34
λ3,λ4
λ1,λ2

(s, t, u) = ε∗1ε
∗
2ε3ε4(−1)λ1−λ2−λ3+λ4T34→12

λ1,λ2
λ3,λ4

(s, t, u). (2.65)

We derive them in appendix B.

Crossing. Our goal now is to formulate crossing equations. The case of particles with
generic spin was first addressed in [22]. It was further discussed in [16, 23, 24]. For a recent
discussion see also [25]. All the results presented below are carefully derived in appendix E.
Consider the scattering process of four particles. We denote it schematically by

12→ 34. (2.66)

Each particle is characterized by its mass, spin, helicity and 3-momentum, for instance
1 = (m1, j1, λ1; ~p1). There exist five other related process

4̄2→ 31̄, 3̄2→ 1̄4,
13̄→ 2̄4, 14̄→ 32̄.

(2.67)

together with 3̄4̄ → 1̄2̄. Here if particle i has a charge (or more generally transforms in
some representation of a global group) then particle ī has the opposite charge (transforms
in the conjugate representation). In other words ī is the antiparticle of particle i. The
scattering process (2.66) is described by the following interacting part of the amplitude

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4), (2.68)

whereas the scattering processes in (2.67) are described by

T4̄2→31̄
λ3,λ1
λ4,λ2

(p4, p2, p3, p1), T3̄2→1̄4
λ1,λ4
λ3,λ2

(p3, p2, p1, p4),

T13̄→2̄4
λ2,λ4
λ1,λ3

(p1, p3, p2, p4), T14̄→32̄
λ3,λ2
λ1,λ4

(p1, p4, p3, p2).
(2.69)

Here all 4-momenta have positive energies p0
i > 0 and are on-shell (2.48).

Under the assumption that the amplitudes in (2.68) and (2.69) can be analytically
continued in pi and defined in some common domain of pi values, one can write a set of
crossing equations

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = ε14T4̄2→31̄
+λ3,−λ1
−λ4,+λ2

(−p4, p2, p3,−p1), (2.70)

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = ε23T13̄→2̄4
−λ2,+λ4
+λ1,−λ3

(p1,−p3,−p2, p4), (2.71)
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which are referred to as the s− t crossing equations and

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = ε13T3̄2→1̄4
−λ1,+λ4
−λ3,+λ2

(−p3, p2,−p1, p4), (2.72)

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = ε24T14̄→32̄
+λ3,−λ2
+λ1,−λ4

(p1,−p4, p3,−p2), (2.73)

which are referred to as the s− u crossing equations. Here ε14, ε23, ε13 and ε24 are some
phases which can be fixed in principle using the LSZ procedure. Finally the amplitude for
the process 3̄4̄→ 1̄2̄ can be related to that of the 12→ 34 process by using (2.72) and (2.73)
one after the other. There are two distinct ways for the analytic continuation of amplitudes
discussed in section E.1. In writing (2.70)–(2.73) we have made a particular choice, more
precisely the one given by (E.11).

Let us now focus on the 23- and 24-crossing equations given by (2.71) and (2.73)
respectively and evaluate them in the standard COM (2.57). We can then use the definition
of the center of mass amplitude (2.61) in the left-hand side of (2.71) and (2.73) but not in
the right-hand side. The right-hand side is not in the center of mass frame of particles 13
and 14 respectively. In order to bring them to this frame we need to perform a Lorentz
transformation. The 23-crossing equation then reads

T12→34
λ3,λ4
λ1,λ2

(s, t,u) = ε′23
∑
λ′i

eiπ(λ′1+λ′4)

×d(j1)
λ′1λ1

(α1)d(j2)
λ′2λ2

(α2)d(j3)
λ′3λ3

(α3)d(j4)
λ′4λ4

(α4)T13̄→2̄4
λ′2,λ

′
4

λ′1,λ
′
3
(t,s,u), (2.74)

where the angles αi in the equal mass case are given by

+ cosα1 = − cosα2 = − cosα3 = + cosα4 = + st√
s(s− 4m2)

√
t(t− 4m2)

,

+ sinα1 = − sinα2 = + sinα3 = − sinα4 = − 2m
√
stu√

s(s− 4m2)
√
t(t− 4m2)

.

(2.75)

For the most general case see (E.77) and (E.78). Similarly the 24-crossing reads

T12→34
λ3,λ4
λ1,λ2

(s, t,u) = ε′24
∑
λ′i

eiπ(λ′1+λ′3)

×d(j1)
λ′1λ1

(β1)d(j2)
λ′2λ2

(β2)d(j3)
λ′3λ3

(β3)d(j4)
λ′4λ4

(β4)T14̄→32̄
λ′3,λ

′
2

λ′1,λ
′
4
(u,t,s), (2.76)

where the angles βi in the equal mass case are given by

+ cosβ1 = − cosβ2 = + cos β3 = − cosβ4 = + su√
s(s− 4m2)

√
u(u− 4m2)

,

+ sin β1 = − sin β2 = − sin β3 = + sin β4 = + 2m
√
stu√

s(s− 4m2)
√
u(u− 4m2)

.

(2.77)

For the most general case see (E.92) and (E.93). Notice that small Wigner d-matrices are
4π periodic. As a result the angles αi and βi are not completely fixed by the equations (2.75)
and (2.77) since sines and cosines are 2π periodic. Different choices of αi and βi in the
crossing equations satisfying (2.75) and (2.77) lead to different additional phases which we
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combine with ε23 and ε24 introduced in (2.71) and (2.73) and denote by ε′23 and ε′24. For
each scattering process these phases can be computed at the leading order in perturbation
theory and since the phases are purely kinematic in nature, the result can then be used non-
perturbatively. We also notice that the form of crossing equations in a general frame, (2.71)
and (2.73), depends on the choice of the analytic continuation, however both analytic
continuations lead to the same expressions in the center of mass frame (2.74) and (2.76).

It is interesting to consider the case when all four particles are massless. Assuming the
physical domain (2.60) of the Mandelstam variables for the process 12→ 34 in the limit
m→ 0 the expressions (2.75) and (2.77) lead to

α1 = π, α2 = 0, α3 = 0, α4 = π, (2.78)
β1 = π, β2 = 0, β3 = π, β4 = 0. (2.79)

Using the following properties of the small Wigner d-matrices

d
(j)
λ′λ(0) = δλ′,λ, d

(j)
λ′λ(π) = (−1)j−λδλ′,−λ (2.80)

we get the following crossing equations

T12→34
λ3,λ4
λ1,λ2

(s, t, u) = ε′′23T13̄→2̄4
+λ2,−λ4
−λ1,+λ3

(t, s, u), (2.81)

T12→34
λ3,λ4
λ1,λ2

(s, t, u) = ε′′24T14̄→32̄
−λ3,+λ2
−λ1,+λ4

(u, t, s), (2.82)

where ε′′23 and ε′′24 are some new phases.

Neutral identical particles. In some practical applications one is required to study
scattering processes of identical neutral particles with mass m and spin j. We discuss this
case in great detail in appendix C. Here we state only the most important results.

We define the scattering amplitude of identical neutral particles in a generic and in the
center of mass frames as

T λ3,λ4
λ1,λ2

(p1, p2, p3, p4)× (2π)4δ(4)(pµ1 + pµ2 − p
µ
3 − p

µ
4 ) ≡ id free〈κ3, κ4|T |κ1, κ2〉id free,

T λ3,λ4
λ1,λ2

(s, t, u)× (2π)4δ(4)(0) ≡ id free〈(p′, θ, 0);λ3, λ4|T |(p, 0, 0);λ1, λ2〉id free.
(2.83)

In comparison with (2.46) we drop the subscript 12→ 34 since it does not carry any useful
information anymore. The two particle states formed from identical particles were defined
in (2.34). According to (2.33) they are (anti)symmetric under the exchange of particles 12
and 34. Due to this condition the following equations hold

T λ3,λ4
λ1,λ2

(s, t, u) = (−1)−λ1+λ2−λ3+λ4T λ3,λ4
λ2,λ1

(s, u, t), (2.84)

T λ3,λ4
λ1,λ2

(s, t, u) = (−1)+λ1−λ2−λ3+λ4T λ4,λ3
λ1,λ2

(s, u, t). (2.85)

See appendix C.3 for details. Since the variables t and u are flipped in the left- and
right-hand side we refer to them as the t-u crossing equations. Applying them twice we get
the following kinematic constraint

T λ3,λ4
λ1,λ2

(s, t, u) = T+λ4,+λ3
+λ2,+λ1

(s, t, u). (2.86)
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In the case of distinct particles the crossing equations (2.74) and (2.76) establish
relations between different amplitudes. When particles are identical there is only a single
amplitude (2.83) and the crossing equations become constraints on this single amplitude.

One can also combine together (2.72), (2.73) and (2.70), (2.71) to obtain

T λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T−λ1,−λ2
−λ3,−λ4

(−p3,−p4,−p1,−p2), (2.87)

T λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T−λ2,−λ1
−λ4,−λ3

(−p4,−p3,−p2,−p1). (2.88)

Using the techniques of appendix E.4 one can bring both sides of these two equations to
the center of mass frame and show that

T λ3,λ4
λ1,λ2

(s, t, u) = T−λ1,−λ2
−λ3,−λ4

(s, t, u), (2.89)

T λ3,λ4
λ1,λ2

(s, t, u) = T−λ2,−λ1
−λ4,−λ3

(s, t, u). (2.90)

We refer to the conditions (2.86), (2.89) and (2.90) as the kinematic constraints associated
to the simultaneous permutation of particles (12)(34), (13)(24) and (14)(23) respectively.

As presented, the transition from (2.87), (2.88) to (2.89), (2.90) is very difficult. Strictly
speaking the equations (2.89) and (2.90) might have some overall helicity independent
phase which we have little control over. There is a much simpler way of deriving (2.89)
however. As discussed in appendix B.3 one can use the CPT theorem to obtain (2.89). The
constraint (2.90) follows from combining (2.89) with (2.86). This discussion indicates (but
not proves) that CPT transformation is equivalent to using crossing twice.

2.4 Counting scattering amplitudes

It is useful to count kinematically independent amplitudes in various cases. Looking at
the definition of the center of mass amplitude (2.61) it is obvious that the number of all
possible amplitudes N4 for four different massive particles is

N4 = (2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1), (2.91)

since there are no restrictions on the helicity values. Using (2.64) we can further split the
amplitudes into parity even and parity odd ones. This is done by taking appropriate linear
combinations of

T λ3,λ4
λ1,λ2

and T−λ3,−λ4
−λ1,−λ2

. (2.92)

Since the scattering amplitude must always contain an even number of fermions and due
to (2.18) and the comment below, the product of intrinsic parities

η1η2η
∗
3η
∗
4 (2.93)

entering (2.64) is either +1 or −1.19 Let us assume for concreteness that the product
in (2.93) is +1. (In the other case when (2.93) is −1 the role of parity even and odd
amplitudes constructed from (2.92) simply flips.) Having constructed the appropriate linear
combination from (2.92) the counting follows straightforwardly. In the case when there are

19Parity invariance implies that η1η2 = ±η3η4.
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two or four fermions we have the same number of parity even N+
4 and parity odd amplitudes

N−4 which read
N±4 = 1

2(2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1). (2.94)

In case all particles are bosons we get

N±4 = 1
2 ((2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1)± 1) . (2.95)

The difference between (2.94) and (2.94) arises due to the fact that when all particles are
bosons there is always a parity even amplitude with all the zero helicities T 00

00. The latter is
no longer true in the presence of fermions. Clearly, the following is obeyed

N4 = N+
4 +N−4 . (2.96)

If we impose parity as symmetry of our system only parity even amplitudes will survive.
It is more difficult to perform general counting when particles are identical since we need

to take into account the relations (2.86)–(2.90). However it easy to do for any particular case
of interest by forming a linear system of all the constraints (due presence of parity, identical
and massless particles), solving it and counting the number of independent amplitudes. For
example in the case of identical massive Majorana particles and identical massive spin one
particles we have

identical Majorana fermions: N+
4 = 5, N−4 = 2, (2.97)

identical spin one bosons: N+
4 = 17, N−4 = 10. (2.98)

Time-reversal does not further reduce these numbers. This can be intuitively understood
by noticing that P implies T invariance for neutral particles due to the CPT symmetry.

In case a particle with spin j is massless its helicity can only take two values +j and −j.
As a result if all four particles in the scattering process are massless and carry a non-zero
spin we always have, independently of the precise values of spin,

four different massless particles: N4 = 24 = 16. (2.99)

In the case when all particles are identical, massless and carry a non-zero spin we have

identical massless particles: N+
4 = 5, N−4 = 2. (2.100)

It was proposed in section 6 of [26] that the number of scattering amplitudes in d

dimensions should be equal to the number of tensor structures of four-point functions in
d− 1 conformal field theories, where massless particles correspond to conserved operators.
This correspondence got an explanation in [27] where it was noted that the conformal frame
analysis of four point function is equivalent group theoretically to the center of mass analysis
of scattering amplitudes. When parity is involved or particles are identical or massless the
matching of CFT and amplitude counting is more difficult to confirm. Here we explicitly
verify this correspondence on some particular examples. For instance (2.94) and (2.95) are
in a perfect agreement with the formulas (4.47) and (4.49) in [27], results (2.97) and (2.98)
match (2.40) and (4.58) in [27], finally the very special case (2.100) matches (3.24) in [27].20

20The number of parity even conserved tensor structures in conformal field theories was first computed
in [28], see table 1. In d = 3 it is 5 as expected.
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2.5 Partial amplitudes

As we explained in section 2.1.2, the two particle states are in a reducible representation
of the Poincaré group and can be expressed as a direct sum of Poincaré irreps according
to (2.21) or (2.29) (in the special case of COM states). This leads to a decomposition
(often referred to as the partial wave decomposition) of scattering amplitudes into partial
amplitudes.

We start from the definition of the center of mass amplitude (2.62) and decompose the
two particle states there according to (2.29). As a result we get

ei(λ1−λ2−λ3−λ4)φT λ3,λ4
λ1,λ2

(s, t, u)× (2π)4δ(4)(0) =∑
`,`′,λ,λ′

C`′(p′)C`(p) e−i(λ3+λ4−λ)φd
(`′)
λ′λ34

(θ) d(`)
λλ12

(0)〈c, 0, `′, λ′;λ3, λ4|T |c, 0, `, λ;λ1, λ2〉,

(2.101)

where we have defined
λ12 ≡ λ1 − λ2, λ34 ≡ λ3 − λ4. (2.102)

The coefficient C`(p) was computed in (2.32). Using it we can write

C`(p′)C`(p) = 4π(2`+ 1)
√
s√

pp′
. (2.103)

Due to the standard property of the small Wigner d-matrix

d
(`)
λλ12

(0) = δλλ12 (2.104)

the dependence on the azimuthal angle φ in (2.101) cancels out on both sides and we obtain

T λ3,λ4
λ1,λ2

(s, t,u)×(2π)4δ(4)(0) =
∑
`,`′,λ′

C`′(p′)C`(p)d(`′)
λ′λ34

(θ)〈c,0, `′,λ′;λ3,λ4|T |c,0, `,λ12;λ1,λ2〉.

Using the definition of the partial amplitudes (2.52) the above can be written in its final form

T λ3,λ4
λ1,λ2

(s, t, u) =
∑
`

C`(p′)C`(p)d(`)
λ12λ34

(θ)T`λ3,λ4
λ1,λ2

(s). (2.105)

By using orthogonality of the small Wigner d matrix the decompositions (2.105) can be
inverted and leads to

T`
λ3,λ4
λ1,λ2

(s) = 2`+ 1
2C`(p′)C`(p) ×

∫ π

0
dθ sin θd(`)

λ12λ34
(θ)T λ3,λ4

λ1,λ2
(s, t, u). (2.106)

Note that t and u are functions of s and θ. In the equal mass case one has for instance (2.59).
Analogously to (2.106) one can also write the decomposition of the full amplitude

S`
λ3,λ4
λ1,λ2

(s) = 2`+ 1
2C`(p′)C`(p) ×

∫ 2π

0

dφ

2π

∫ π

0
dθ sin θd(`)

λ12λ34
(θ)Sλ3,λ4

λ1,λ2
(s, t, u). (2.107)
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We need to introduce the integration over the azimuthal angle φ because the disconnected
part of the scattering amplitude depends on it, see (2.49) and footnote 17. A simple relation
between (2.106) and (2.107) partial amplitudes follows from (2.53) and (2.25). It reads21

S`
λ3,λ4
λ1,λ2

(s) = δm1m3δm2m4δj1j3δj2j4δλ1λ3δλ2λ4 + iT`
λ3,λ4
λ1,λ2

(s). (2.108)

As a consistency check one can obtain this relation in a different way. One can plug (2.49)
evaluated in the COM frame together with the very first equation in the footnote 17
into (2.107). The delta functions cancel all the integrals in (2.107) and we simply arrive
at (2.108).

Identical particles. In case either the incoming particles or the outgoing particles are
identical we also have relations between the partial amplitudes due to (2.38). If the incoming
particles 1 and 2 are identical we get

S`
λ3,λ4
λ1,λ2

(s) = (−1)λ2−λ1−`S`
λ3,λ4
λ2,λ1

(s). (2.109)

Similarly if the outgoing particles 3 and 4 are identical we get

S`
λ3,λ4
λ1,λ2

(s) = (−1)λ4−λ3−`S`
λ4,λ3
λ1,λ2

(s). (2.110)

For the case of all four particles being identical, we get
√

pp′ =
√
s/4−m2 due to (2.58),

and thus

S`
λ3,λ4
λ1,λ2

(s) =
√
s− 4m2

32π
√
s
×
∫ 2π

0

dφ

2π

∫ π

0
dθ sin θd(`)

λ12λ34
(θ)Sλ3,λ4

λ1,λ2
(s, t, u), (2.111)

T`
λ3,λ4
λ1,λ2

(s) =
√
s− 4m2

32π
√
s
×
∫ π

0
dθ sin θd(`)

λ12λ34
(θ)T λ3,λ4

λ1,λ2
(s, t, u). (2.112)

Notice that we have used here (2.39) which contains an additional
√

2 factor compared to a
non-identical particle case. Analogously to (2.108) there is a simple relation between the S
and T partial amplitudes that follows from (2.53) and (2.37). It reads22

S`
λ3,λ4
λ1,λ2

(s) = 1
2
(
δλ1λ3δλ2λ4 + (−1)`−λ34δλ1λ4δλ2λ3

)
+ iT`

λ3,λ4
λ1,λ2

(s). (2.113)

This result can also be obtained by plugging (2.49) evaluated in the COM frame together
with the second equation in the footnote 17 into (2.111). We also notice that in the case of
identical scalar particles we recover the standard result, see for example equation (10) in [3].

Parity and time reversal. As usual parity and time reversal invariance lead to additional
constraints. The parity constraint follows directly from (B.28) and reads

S`
λ3,λ4
λ1,λ2

(s) = η1η2η
∗
3η
∗
4(−1)j1−j2+j3−j4−2`S`

−λ3,−λ4
−λ1,−λ2

(s). (2.114)

Similarly the time reversal constraint follows from (B.53) and reads

S12→34 `
λ3,λ4
λ1,λ2

(s) = ε∗1ε
∗
2ε3ε4S34→12 `

λ1,λ2
λ3,λ4

(s). (2.115)

Note that we reintroduced the subscripts 12→ 34 and 34→ 12 since Time Reversal is a
relation between these two distinct processes.

21Here we have used a simple fact that δλiλkδλjλlδλijλkl = δλiλkδλjλl .
22See footnote 21.

– 20 –



J
H
E
P
0
1
(
2
0
2
2
)
0
6
0

2.6 Unitarity

Unitarity of a quantum theory implies that the norm of any state must be non-negative,
i.e. ∀ |ψ〉 one has 〈ψ|ψ〉 ≥ 0. Now suppose we are given some set of N states |ψa〉 with
a = 1, . . . , N . Unitarity then requires that the N ×N hermitian matrix with components
〈ψa|ψb〉 is positive semi-definite, namely (〈ψa|ψb〉) � 0. This formulation allows us to impose
unitarity constraints on the partial amplitudes straightforwardly.

We start by considering the incoming two particles state (formed from particles 1
and 2) together with the outgoing two particle state (formed from particles 3 and 4). We
decompose each of these states into irreducible representations according to (2.21). We then
have the following N = Nin +Nout independent states transforming in the spin ` irreducible
representation of the Poincaré group

|1〉in ≡ |c, ~p, `, λ; j1, j2〉in, |1〉out ≡ |c, ~p, `, λ; j3, j4〉out,

|2〉in ≡ |c, ~p, `, λ; j1, j2 − 1〉in, |2〉out ≡ |c, ~p, `, λ; j3, j4 − 1〉out,

...
...

|Nin〉in ≡ |c, ~p, `, λ;−j1,−j2〉in, |Nout〉out ≡ |c, ~p, `, λ;−j3,−j4〉out, (2.116)

where the number of incoming and outgoing irreducible states is

Nin ≡ (2j1 + 1)(2j2 + 1), Nout ≡ (2j3 + 1)(2j4 + 1). (2.117)

Thus for each spin ` we can construct the following hermitian N ×N matrix

H`(s)× (2π)4δ4(p′ − p)δ`′`δλ′λ =
(

in〈a′|b〉in in〈a′|b〉out

out〈a′|b〉in out〈a′|b〉out,

)
(2.118)

where s = c2 is the square of the COM frame total energy and the primes indicate that
the conjugated states to (2.116) have all the labels c, p, ` and λ primed. In defining the
matrix H`(s) we have also explicitly factored out the overall delta function appearing due
to translation invariance. According to the discussion above, unitarity then implies that

H`(s) � 0, ∀` and s ≥ max(m1 +m2,m3 +m4)2. (2.119)

Let us now discuss the components of the matrix (2.118). Since the Møller operators
introduced in section 2.2 to define the incoming and outgoing states are unitary, the elements
in〈a′|b〉in and out〈a′|b〉out are simply fixed by the normalization condition (2.22)

in〈c′1, ~p ′;`′,λ′;λ′1,λ′2|c1, ~p;`,λ;λ1,λ2〉in = (2π)4δ(4)(p′µ−pµ)δ`′` δλ′λ δλ′1λ1 δλ′2λ2 , (2.120)

out〈c′1, ~p ′;`′,λ′;λ′3,λ′4|c1, ~p;`,λ;λ3,λ4〉out = (2π)4δ(4)(p′µ−pµ)δ`′` δλ′λ δλ′3λ3 δλ′4λ4 . (2.121)

On the other hand, the matrix elements out〈a′|b〉in and in〈a′|b〉out form partial amplitudes
according to (2.51)

out〈c′1, ~p ′;`′,λ′;λ3,λ4|c1, ~p;`,λ;λ1,λ2〉in = (2π)4δ(4)(pµ−p′µ)δ``′δλλ′ S`λ3,λ4
λ1,λ2

(s), (2.122)

in〈c′1, ~p′;`′,λ′;λ1,λ2|c1, ~p;`,λ;λ3,λ4〉out = (2π)4δ(4)(pµ−p′µ)δ``′δλλ′ S∗`
λ3,λ4
λ1,λ2

(s). (2.123)
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Plugging these to (2.118) we can schematically write the unitarity condition (2.119) as(
δab S†` ab
S`ab δab

)
� 0. (2.124)

Identical particles. In case either the incoming particles 1 and 2 or outgoing particles
3 and 4 are identical there exist relations (2.109) and (2.110) between the partial ampli-
tudes. This introduces redundancies into the condition (2.124). In order to remove these
redundancies we restrict our attention to states with λ1 ≥ λ2 (in case of identical incoming
particles) and λ3 ≥ λ4 (in case of identical outgoing particles).

Parity invariance. In the presence of parity invariance various partial amplitudes enter-
ing (2.124) are related according to (2.114). As a consequence the condition (2.124) again
becomes redundant. One can reformulate the condition (2.124) in an equivalent but less
redundant way by considering parity eigenstates. One then repeats the procedure above
taking into account the fact that Parity invariance forbids transitions between parity even
and parity odd states. As a result we get two separate positivity conditions for parity even
and parity odd states

H+
` (s) � 0, H−` (s) � 0. (2.125)

We will see an explicit example of this in section 3.2.

Time reversal invariance. Time reversal invariance relates the scattering amplitudes
for the process 12→ 34 to the scattering amplitudes for the process 34→ 12. Therefore in
general time reversal does not have any implications for the matrix H` since all its elements
are scattering amplitudes for the 12→ 34. However in the special case of elastic scattering
i.e 12→ 12, time reversal invariance (2.115) implies that the sub-matrix Sij is symmetric23

S`
λ3,λ4
λ1,λ2

(s) = S`
λ1,λ2
λ3,λ4

(s) (2.126)

2.7 Kinematic non-analyticities and constraints

This section is devoted to the study of the behaviour of COM interacting scattering
amplitudes defined in (2.61) at some very particular values of the Mandelstam variables s,
t and u. For simplicity we focus on the case of identical particles with mass m and spin j.

Using (2.58) the center of mass frame (2.57) can be written in the following way

pcom
1 =

(√
s

2 , 0, 0,+
√
s

4 −m
2

)
,

pcom
2 =

(√
s

2 , 0, 0,−
√
s

4 −m
2

)
,

pcom
3 =

(√
s

2 ,+
√
tu√

s− 4m2
, 0,+ t− u

2
√
s− 4m2

)
,

pcom
4 =

(√
s

2 ,−
√
tu√

s− 4m2
, 0,− t− u

2
√
s− 4m2

)
.

(2.127)

23Note that |ε1ε2|2 = 1.
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The center of mass amplitude (2.61) is strictly defined in the physical domain of the
Mandelstam variables (2.60). If one attempts however to analytically continue the COM
frame amplitudes to arbitrary complex values of s, t and u, as can be already expected
from (2.127), one will encounter non-analyticities (poles and branch points) at

s = 4m2, s = 0, t = 0, u = 0. (2.128)

Some of these non-analyticities have a purely kinematic nature and have nothing to do
with the dynamics of the theory. Our goal here is to isolate them. In what follows we will
formulate the problem of kinematic non-analyticities precisely and then discuss each of the
special points (2.128) in detail. (A concrete example will be presented in section 3.1.) For
more details on the subject see chapter 7.3 in [16] and references therein.

Recall the definition of helicity states (2.5), two particle center of mass states (2.26) and
center of mass amplitudes (2.61). Using them we can write explicitly the 1PS describing
the center of mass scattering process as

|m,+~pz; j, λ1〉 ≡ e−iηK3 |m,~0; j, λ1〉,

|m,−~pz; j, λ2〉 ≡ e−iπJ3e−i(π−0)J2e+iπJ3e−iηK3 |m,~0; j, λ2〉,
|m,+~pθ; j, λ3〉 ≡ e−iθJ2e−iηK3 |m,~0; j, λ3〉,

|m,−~pθ; j, λ4〉 ≡ e−iπJ3e−i(π−θ)J2e+iπJ3e−iηK3 |m,~0; j, λ4〉,

(2.129)

where ~pz is the 3-momentum in the positive z-direction, ~pθ is the 3-momentum in the x-z
plane, J2 is the generator of rotations around the y-axis, K3 is the boost in the z-direction.
In the center of mass frame due to (2.58) the angle θ and the rapidity η defined in (2.6)
can be related to the Mandelstam variables as follows

cos θ = t− u
s− 4m2 , sin θ = 2

√
tu

s− 4m2 , sinh η =
√
s− 4m2

2m , cosh η =
√
s

2m. (2.130)

The non-analyticities at s = 4m2, s = 0, t = 0 and u = 0 of these expressions enter the
center of mass amplitude (2.61) via (2.129).

The phenomena of kinematic non-analyticities is closely related to the phenomena of
kinematic constraints. When defining the COM scattering amplitudes (2.61) we have used
up all of the Lorentz symmetry to bring the scattering particles to the x-z plane. However
at the special points (2.128) we get an enhancement of symmetry. For instance at s = 4m2

the system is SO(3) symmetric, at s = 0 the system is SO(1, 1) symmetric and at t = 0
and u = 0 the system is SO(2) symmetric. This is straightforward to see from (2.127).24

As a consequence of the enhanced symmetry the amplitudes rearrange themselves into
irreducible representations of the enhanced symmetry. Only the amplitudes transforming in
the trivial representations are allowed to be present, while the rest must vanish. The latter
requirement leads to kinematic constraints.25

24Notice that for the physical range of Mandelstam values t = O(s− 4m2) and u = O(s− 4m2) which
means that cos θ and sin θ are finite. This is not the case anymore once we promote s and t to independent
complex variables during the analytic continuation process.

25Kinematic constraints have recently appeared in a similar context in conformal field theories when
studying four point correlation functions of local primary operators. They received a proper group theoretic
treatment in appendix A of [27] (see also appendix D of [29]).
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Special point: s = 4m2. In order to isolate the singular behavior of the COM amplitudes
at s = 4m2 we perform a simple rewriting of the states (2.129) as follows26

|m,+~pz; j, λ1〉 = e−i
θ
2J2X+e

+i θ2J2 |m,~0; j, λ1〉,

|m,−~pz; j, λ2〉 = e−i
θ
2J2e+iπJ2X+e

+i θ2J2 |m,~0; j, λ2〉,

|m,+~pθ; j, λ3〉 = e−i
θ
2J2X−e

−i θ2J2 |m,~0; j, λ3〉,

|m,−~pθ; j, λ4〉 = e−i
θ
2J2e+iπJ2X−e

−i θ2J2 |m,~0; j, λ4〉,

(2.131)

where the operators X± are defined as

X± ≡ e±i
θ
2J2e−iηK3e∓i

θ
2J2 = e−i(K3 cos θ2∓K1 sin θ

2 )η. (2.132)

In (2.132) we have used the commutation properties of the Lorentz generators (A.39).
Writing

cos θ2 =
√

−u
s− 4m2 , sin θ2 =

√
−t

s− 4m2 , (2.133)

we notice that the operators X± are completely regular at s = 4m2 since

η cos θ2 =
√
−u

2m +O(s− 4m2), η sin θ2 =
√
−t

2m +O(s− 4m2). (2.134)

Plugging the states (2.131) into the definition of the COM amplitudes (2.61) and using
the fact that the scattering operator is invariant under the Poincaré transformations27 (2.44)
and the transformation property (2.7) we can write

T λ3,λ4
λ1,λ2

(s, t,u) =
∑
λ′

d
(j)
λ′1λ1

(
−θ2

)
d

(j)
λ′2λ2

(
−θ2

)
d

(j)
λ′3λ3

(
θ

2

)
d

(j)
λ′4λ4

(
θ

2

)
A
λ′3,λ

′
4

λ′1,λ
′
2
(s, t,u), (2.135)

where the new scattering amplitude A is defined as

Aλ3,λ4
λ1,λ2

(s, t,u)≡
(
〈~0,λ3|X†−⊗〈~0,λ4|X†−e−iπJ2

)
T
(
X+|~0,λ1〉⊗e+iπJ2X+|~0,λ2〉

)
. (2.136)

From this explicit expression we see that at s = 4m2 the amplitude A is completely regular
due to (2.134), more precisely

Aλ3,λ4
λ1,λ2

(s, t, u) = O
(
(s− 4m2)0

)
. (2.137)

As a result the non-analytic behavior (2.133) at s = 4m2 enters the amplitude T only
through the Wigner d-matrices in (2.135). Now in order to extract the precise behaviour
of the poles in the COM amplitude in practice we simply need to expand (2.135) around
s = 4m2 to the leading order using the explicit expression of the Wigner d matrices (2.9),
taking into account (2.133) and the fact that the functions A are regular at s = 4m2.

The expression (2.135) together with (2.136) can also be used to address kinematic
constraints. Expanding (2.135) to the next to leading order one finds that some linear
combinations should vanish as O

(
(s− 4m2)1) instead of O

(
(s− 4m2)0) or O((s− 4m2)−1).

For simple examples as in section 3.1 such linear combinations can be found manually. For
more complicated cases one can invoke group theoretic arguments similar to ones in [27].

26The relation e−iχJ2eiπJ3 = eiπJ3e+iχJ2 is used for the states 2 and 4.
27The same property holds obviously true for the T operators because of (2.45). The invariance we use

here is ei θ2 J2Te−i
θ
2 J2 = T .
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Special points: t = 0 and u = 0. Kinematic branch points
√
t and

√
u enter the center

of mass scattering amplitudes via sin θ given (2.130). Their presence can be deduced by
looking at the partial wave decomposition (2.105) and noticing that the Wigner d matrix
there can be written in the form

d
(`)
λ′λ(θ) =

(
cos θ2

)|λ+λ′| (
sin θ2

)|λ−λ′|
P `λ′λ(cos θ), (2.138)

where P `λ′λ is a polynomial whose precise definition is irrelevant here but can be deduced
from (4.1.19) and (4.1.23) in [30]. The important point is that the polynomial P `λ′λ depends
only on cos θ and therefore does not have any branch points as can be seen from (2.130).
Using the above, (2.133) and (2.105) we conclude that

T λ3,λ4
λ1,λ2

(s, t, u) ∼ d(`)
λ12λ34

(θ) ∼
(√
−u
)|λ12+λ34| (√−t)|λ12−λ34|

. (2.139)

The SO(2) enhancement of symmetry at t = 0 (θ = 0) and u = 0 (θ = π), see (2.127),
leads to kinematic constraints at these two points. This is the simplest case among all
the special points and can be easily addressed in full generality. In order to deduce the
implications of this SO(2) invariance we inject the identity in the form 1 = e−iγJ3e+iγJ3

to the left and to the right of the T operator in (2.61), where γ is some angle. Using the
invariance of the T operator (2.44) and the fact that the 1PS states along the z-direction
are the eigenstates of J3, we arrive at

T λ3,λ4
λ1,λ2

(s, t = 0) = eiγ(λ1−λ2−λ3+λ4)T λ3,λ4
λ1,λ2

(s, t = 0), (2.140)

T λ3,λ4
λ1,λ2

(s, u = 0) = eiγ(λ1−λ2+λ3−λ4)T λ3,λ4
λ1,λ2

(s, u = 0). (2.141)

These constraints should be satisfied for any value of the angle γ. Thus, the amplitudes
must vanish unless λ1 − λ2 − λ3 + λ4 = 0 in the first case and λ1 − λ2 + λ3 − λ4 = 0 in the
second case. This is just conservation of angular momentum along the z-axis.

Special point: s = 0. Finally let us address the most complicated s = 0 case. In the
vicinity of s = 0, the rapidity parameter η can be written as

η = iπ

2 −
i
√
s

2m +O(s3/2). (2.142)

Let us now define the new rapidity ξ as

ξ ≡ η − iπ

2 = − i
√
s

2m +O(s3/2). (2.143)

By using (A.44)–(A.46) and the following property of the small Wigner d-matrix

d
(j)
λ′λ(−π) = (−1)j+λδλ′,−λ, (2.144)

we can rewrite the states (2.129) in the following way

|m,+~pz; j, λ1〉 = e+π
2K3

(
e−iξK3 |m,~0; j, λ1〉

)
,

|m,−~pz; j, λ2〉 = (−1)j+λ2e−
π
2K3

(
e+iξK3 |m,~0; j,−λ2〉

)
,

|m,+~pθ; j, λ3〉 = e−iθJ2e+π
2K3

(
e−iξK3 |m,~0; j, λ3〉

)
,

|m,−~pθ; j, λ4〉 = (−1)j+λ4e−iθJ2e−
π
2K3

(
e+iξK3 |m,~0; j,−λ4〉

)
.

(2.145)
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These can be further rewritten as28

|m,+~pz; j, λ1〉 = e+π
2K1e+π

2K3e−iξK1
(
e−i

π
2 J2 |m,~0; j, λ1〉

)
,

|m,−~pz; j, λ2〉 = e+π
2K1e−

π
2K3e−iξK1

(
(−1)j+λ2e+iπ2 J2 |m,~0; j,−λ2〉

)
,

|m,+~pθ; j, λ3〉 = e+π
2K1e−(θ−π2 )K3e−iξK1

(
e−i

π
2 J2 |m,~0; j, λ3〉

)
,

|m,−~pθ; j, λ4〉 = e+π
2K1e−(θ+π

2 )K3e−iξK1
(
(−1)j+λ4e+iπ2 J2 |m,~0; j,−λ4〉

)
.

(2.146)

We use now invariance of the scattering operator under boosts and the action of rotations
on the center of mass states (2.7), which for the second and fourth particles become

(−1)j+λe+iπ2 J2 |m,~0; j,−λ〉 = (−1)j+λ
∑
λ′

djλ′,−λ

(
−π2

)
|m,~0; j, λ′〉

= (−1)2j∑
λ′

djλ′,λ

(
+π

2

)
|m,~0; j, λ′〉,

(2.147)

to obtain the final expression

T λ3,λ4
λ1,λ2

(s, t, u) =
∑
λ′

d
(j)
λ′1λ1

(
π

2

)
d

(j)
λ′2λ2

(
π

2

)
d

(j)
λ′3λ3

(
π

2

)
d

(j)
λ′4λ4

(
π

2

)
B
λ′3,λ

′
4

λ′1,λ
′
2
(s, t, u), (2.148)

where the amplitude B is defined as

Bλ3,λ4
λ1,λ2

(s, t, u) ≡
(
〈m,~0; j, λ3|e+iξK1e+π

2K3 ⊗ 〈m,~0; j, λ4|e+iξK1e−
π
2K3

)
e−θK3T(

e+π
2K3e−iξK1 |m,~0; j, λ1〉 ⊗ e−

π
2K3e−iξK1 |m,~0; j, λ2〉

)
. (2.149)

Let us inspect the structure of this amplitude. We expand it around ξ = 0 or equivalently
around s = 0 according to (2.143). Schematically speaking, each term in this expansion
will contain (ξK1)n with some non-negative integer n. We then notice that (ξK1)n are the
only operators which change helicities of particles.29 Now, the only non-zero terms will be

28The steps involved here are as follows. First, we inject the identity operators I = e±i
π
2 J2e∓i

π
2 J2 to the

left and right of the e±iξK3 operator and use the following relations

e−iJ2 π2 e±iξK3e+iJ2 π2 = e±iξK1 , e+iJ2 π2 e±iξK3e−iJ2 π2 = e∓iξK1 .

Second, we use the following relations

e±
π
2 K3e+iJ2 π2 = e+iJ2 π2 e±

π
2 K1 , e±

π
2 K3e−iJ2 π2 = e−iJ2 π2 e∓

π
2 K1

to bring all the exponents containing J2 to the left. Finally, we use

e−iθJ2e
π
2 K1 = e

π
2 K1e−θK3 .

29One can define the following operators

K± ≡ K1 ± iK2 ⇒ K1 = 1
2 (K+ +K−).

According to (A.39) these operators rise and lower helicities of the center of mass states as

J3K±|m,~0; j, λ〉 = (λ± 1)K±|m,~0; j, λ〉.
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the ones with equal total helicity of the states to the left and to the right of the scattering
operator T . Given a set of helicities λi, the leading term in the ξ = 0 expansion will contain
(ξK1)n with n = |λ1 + λ2 − λ3 − λ4|. Using (2.143) we conclude that

Bλ3,λ4
λ1,λ2

(s, t, u) =
(√
s
)|λ1+λ2−λ3−λ4| ×O(s0). (2.150)

From (2.148) and (2.150) it follows that the COM amplitudes T get a
√
s branch point

only for odd values of |λ1 +λ2−λ3−λ4|. The relations (2.148) and (2.150) can be also used
to address kinematic singularities. Expanding (2.148) around s = 0 at the leading order
one can find linear combinations of the amplitudes which behave as O(s1) instead of O(s0).

3 Application: identical Majorana fermions

We will now use the machinery set up in the previous section to study the two to two
scattering of identical neutral30 spin 1

2 fermions also known as Majorana fermions. We will
require invariance under parity. As a result we need to specify the intrinsic parity η defined
in (2.16). In the two to two scattering of identical particles we are sensitive only to the
value of η2. According to (2.18) there are two possibilities

η2 = −1 or η2 = +1. (3.1)

For concreteness we assume the former in this section. In the latter situation everything
in this section still remains valid except that the meaning of parity even and odd states
in section 3.2 is flipped and the role of scalar and pseudoscalar particles is exchanged in
section 3.3. Helicity of a spin 1

2 particle takes only two values: +1
2 and −1

2 . Thus a priori,
we have 24 = 16 helicity amplitudes. However due to the fact that the particles are all
identical these amplitudes are related according to (2.86)–(2.90). As a result we can write
the following 9 relations

T−−−− = T++
++ , T+−

−− = T−+
−− , T−−−+ = T+−

++ , T−+
−+ = T+−

+− , T+−
−+ = T−+

+− ,

T++
−+ = T−+

−− , T−−+− = T+−
++ , T++

+− = T−+
−− , T−+

++ = T+−
++ , (3.2)

where + and − stand for +1
2 and −1

2 helicities respectively. Hence out of the 16 amplitudes
we are left with 7 independent ones. Requiring parity invariance and noticing that due
to (3.1) the product of intrinsic parities η1η2η

∗
3η
∗
4 = +1, due to (2.64) we get in addition

the following 2 constraints

T−+
−− = −T+−

++ , T++
−− = +T−−++ . (3.3)

30By neutral we mean particles not carrying any U(1) charge and in general not transforming in any
non-trivial representation of the global group. In common words it means that the particle is its own
antiparticle.
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As a result out of the 16 helicity amplitudes we are left with only 5 independent ones, in
agreement with (2.97), which we denote as

Φ1(s, t, u) ≡ T++
++ (s, t, u),

Φ2(s, t, u) ≡ T−−++ (s, t, u),
Φ3(s, t, u) ≡ T+−

+− (s, t, u),
Φ4(s, t, u) ≡ T−+

+− (s, t, u),
Φ5(s, t, u) ≡ T+−

++ (s, t, u).

(3.4)

It is interesting to note that the scattering of identical neutral fermions preserving parity
is automatically time-reversal invariant, this can be intuitively understood from the CPT
symmetry since charge conjugation is trivial for neutral particles, see appendix B.3.

As discussed in section 2.3, in the case of scattering of uncharged identical particles, the
crossing equations (2.74) and (2.76) form highly non-trivial constraints on the scattering
amplitudes. For instance, in the case of identical Majorana particles these crossing equations
give rise to two sets of 16 linear equations. Taking into account the relations (3.2) and (3.3)
we simply obtain two sets of 5 linear equations on the independent amplitudes (3.4). They
read as

ΦI(s, t, u) =
5∑

J=1
CIJst (s, t, u)ΦJ(t, s, u), (3.5)

ΦI(s, t, u) =
5∑

J=1
CIJsu (s, t, u)ΦJ(u, t, s), (3.6)

where the s− t crossing matrix Cst is given by

Cst =−ε
′
23
2


−sin2α sin2α −sin2α 1+cos2α 4cosαsinα
sin2α 1+cos2α sin2α sin2α −4cosαsinα
−sin2α sin2α 1+cos2α −sin2α 4cosαsinα

1+cos2α sin2α −sin2α −sin2α 4cosαsinα
cosαsinα −cosαsinα cosαsinα cosαsinα 2(sin2α−cos2α)

 , (3.7)

and the s− u crossing matrix Csu is given by

Csu =−ε
′
24
2


−sin2β sin2β 1+cos2β −sin2β 4cosβ sinβ
sin2β 1+cos2β sin2β sin2β −4cosβ sinβ

1+cos2β sin2β −sin2β −sin2β 4cosβ sinβ
−sin2β sin2β −sin2β 1+cos2β 4cosβ sinβ

cosβ sinβ −cosβ sinβ cosβ sinβ cosβ sinβ 2(sin2β−cos2β)

 . (3.8)

The angles α and β are defined as follows. Looking at the expressions (2.75) and (2.77) we
can make the following choice of Wigner angles

α1 = α, α2 = π + α, α3 = π − α, α4 = −α. (3.9)
β1 = β, β2 = π + β, β3 = −β, β4 = π − β, (3.10)
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where the angles α and β obey

cosα = st√
s(s− 4m2)

√
t(t− 4m2)

, sinα = − 2m
√
stu√

s(s− 4m2)
√
t(t− 4m2)

, (3.11)

cosβ = su√
s(s− 4m2)

√
u(u− 4m2)

, sin = + 2m
√
stu√

s(s− 4m2)
√
u(u− 4m2)

. (3.12)

The correct choice of the phases at (3.7) and (3.8) will be explained at the end of section 3.1.
Here we simply state the correct result, which is

ε′23 = ε′24 = −1. (3.13)

There are two non-trivial consistency checks our matrices (3.7) and (3.8) pass. First, these
matrices are involutory, namely they satisfy the following conditions31

(
Cst(s, t, u)

)2 = 1,
(
Csu(s, t, u)

)2 = 1. (3.14)

Second, we can obtain the crossing matrix appearing in the t− u crossing equations as

Ctu(s, t, u) = Cst(s, t, u)Csu(t, s, u)Cst(u, s, t). (3.15)

In our case it reads as

Ctu(s, t, u) =


1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 −1

 . (3.16)

This is in perfect agreement with the result (2.85).

3.1 Improved amplitudes

It is important to study the analytic structure (presence of poles and branch cuts) of
helicty amplitudes when all the Mandelstam variables s, t and u are promoted to the full
complex plane. As explained in section 2.7 in the case of scattering of spinning particles
such amplitudes develop non-analytic behaviour purely due to kinematic reasons. In this
section we show how to isolate such kinematic features in the case of Majorana fermions
and define improved amplitudes which do not have them.

31More accurately one should write

Cst(s, t, u)Cst(t, s, u) = 1, Csu(s, t, u)Csu(u, t, s) = 1.

However, these conditions reduce to (3.14) by noticing that the matrices Cst(s, t, u) and Cst(u, t, s) are
symmetric in the exchange of s↔ t and s↔ u respectively. This follows from the fact that the expressions
for the angles α and β given by (3.11) and (3.12) obey the symmetry s↔ t and s↔ u respectively.
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Due to (2.135) all the amplitudes have a pole at s = 4m2. Expanding (2.135) around
this point we get

Φ1 = a1
s− 4m2 + b1 +O(s− 4m2),

Φ2 = a2
s− 4m2 + b2 +O(s− 4m2),

Φ3 = a3
s− 4m2 + b3 +O(s− 4m2),

Φ4 = a4
s− 4m2 + b4 +O(s− 4m2),

Φ5 = a5
s− 4m2 + b5 +O(s− 4m2),

(3.17)

where ai and bi are some factors which are regular at s = 4m2. We do not write them
explicitly, their form can be obtained straightforwardly using computer algebra.32 We only
notice that

a1 = −a2 = a3 = a4 = −ia5. (3.18)

Using (3.17) we can verify the following kinematic relation at the singular point33

Φ1 − Φ2 + Φ3 + Φ4 + 4iΦ5 = 0 +O(s− 4m2). (3.19)

Now due to (2.148) the amplitude Φ5 also develops a branch point at s = 0 as

Φ5 ∼
√
s, (3.20)

whereas all the other amplitudes are regular at s = 0. Expanding (2.148) to the leading
order we can verify the following kinematical constraint

Φ1 + Φ2 − Φ3 − Φ4 = 0 +O(s). (3.21)

Finally we consider the behavior of the amplitudes at t = 0 and u = 0 points. Due
to (2.139) the amplitudes Φ1, Φ2, Φ3 and Φ4 are all analytic at these points. In contrast
the amplitude Φ5 develops a branch point both at t = 0 and u = 0 as

Φ5 ∼
√
tu. (3.22)

In addition due to (2.140) and (2.141) we have the following constraints

Φ4 = 0 +O(t), Φ5 = 0 +O(t),
Φ3 = 0 +O(u), Φ5 = 0 +O(u).

(3.23)

32Notice that identical particles and parity imply constraints on the amplitudes T according to (3.2)
and (3.3). In order to proceed with the expansion one needs to deduce the analogues of these expressions on
the regular A(s, t, u) amplitudes entering (2.135) by solving an appropriate system of linear equations.

33We expand around s = 4m2 keeping t independent. Then in the right-hand side of (3.19) the leading
and the next to leading order terms appear to be proportional to the following expression

t− u− 2i
√
tu = 2t+ (s− 4m2)− 2i

√
t(4m2 − s− t) = 0 +O(s− 4m2).

In the last equality we have used the domain where t < 0 and s has a small positive imaginary part.
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Now that we know precisely the non-analytic behaviour of the amplitudes, we can define
new improved amplitudes which are free of the kinematic pole at s = 4m2 and kinematic
branch points

√
s,
√
t and

√
u. We denote such improved amplitudes by HI(s, t, u). The

old amplitudes and the new improved amplitudes can be related as

ΦI(s, t, u) =
5∑

J=1
M−1
IJ (s, t, u)HJ(s, t, u), (3.24)

where M(s, t, u) is some matrix to be determined. It is constructed by requiring that

ΦI ∼
1

s− 4m2 , Φ5 ∼
√
stu (3.25)

and that the relations (3.17) along with (3.18), (3.19), (3.21) and (3.23) are fulfilled. These
requirements do not fix the matrix MIJ(s, t, u) completely. One possible choice is

MIJ(s, t, u) =



4
s−4m2

−4
s−4m2

2 (1−t/u)
s−4m2

2(1−u/t)
s−4m2

s+4m2

s−4m2 × 2(t−u)
m
√
stu

0 0 2
u −2

t − 8m√
stu

0 0 2
u −2

t − 2s
m
√
stu

0 0 2
u

2
t 0

−4
s −4

s
2
u + 4

s
2
t + 4

s
2(t−u)
m
√
stu


. (3.26)

We motivate this choice in section 3.4.1.
Having established the relation (3.24) we can write the crossing equations (3.5) and (3.6)

directly in terms of the improved amplitudes as

HI(s, t, u) =
5∑

J=1
C̃IJst (s, t, u)HJ(t, s, u), (3.27)

HI(s, t, u) =
5∑

J=1
C̃IJsu (s, t, u)HJ(u, t, s), (3.28)

where the crossing matrices C̃st and C̃su read as

C̃st ≡M(s, t, u)Cst(s, t, u)M−1(t, s, u), (3.29)
C̃su ≡M(s, t, u)Csu(s, t, u)M−1(u, t, s). (3.30)

Plugging here the explicit expressions (3.7), (3.8) and (3.26) we get

C̃st =


−1

4 −1 3
2 1 −1

4
−1

4
1
2 0 1

2
1
4

1
4 0 1

2 0 1
4

1
4

1
2 0 1

2 −
1
4

−1
4 1 3

2 −1 −1
4

 , C̃su =


−1

4 1 −3
2 1 −1

4
1
4

1
2 0 −1

2 −
1
4

−1
4 0 1

2 0 −1
4

1
4 −

1
2 0 1

2 −
1
4

−1
4 −1 −3

2 −1 −1
4

 . (3.31)

It is remarkable that both matrices turn out to be purely numerical! Just like the original
matrices Cst and Csu, the matrices C̃st and C̃su are also involutory, i.e C̃2

st = 1 and C̃2
su = 1.
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This follows from the definitions (3.29), (3.30) and the condition (3.14). Note that similar
to (3.15) we can compute the tu crossing matrix C̃tu = C̃stC̃suC̃st, it reads as

C̃tu =


1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 1

 . (3.32)

It says that the improved amplitudes defined via (3.24) are all eigenfunctions of tu crossing.
The overall sign of the crossing matrices (3.31) depends on the choice of phases in (3.13).

The choice made in (3.13) is the only correct one. In order to see that we can take the
Fermi lagrangian and compute the scattering of Majorana fermions to the leading order.
We do it in appendix F.1, the final result for the improved amplitudes is given in (F.8).
It automatically satisfies the crossing equations (3.27) and (3.28). Any other choice of
phases (3.13) leads to crossing equations which are inconsistent with the perturbative
computation of appendix F.1. This phase choice is independent of any particular model
and holds non-perturbatively.

3.2 Unitarity

The general strategy for imposing unitarity constraints on scattering amplitudes was
provided in section 2.6. Here we apply that strategy to the case of Majorana fermions.
According to section 2.6 one needs to consider all possible states transforming in the
irreducible representations which appear in the decomposition of the two particle state
formed from two (identical) Majorana particles. These are

|c, ~p, `, λ;λ1, λ2〉id, (3.33)

where λi = ±1
2 . Since the particles are identical we can further restrict our attention to the

states with λ1 ≥ λ2. As a result we are left with only three states of the form

|c, ~p, `, λ; +,+〉id, |c, ~p, `, λ;−,−〉id, |c, ~p, `, λ; +,−〉id. (3.34)

We further notice that due to (2.38), the first two states in (3.34) exist only for even spins
`, whereas the last state in (3.34) exists for both even and odd spins `. Using (B.28) we
can form the following three parity eigenstates out of the states (3.34)

|1〉 ≡ 1√
2

(|c, ~p, `, λ; +,+〉id + |c, ~p, `, λ;−,−〉id) , ` ≥ 0 (` even), (3.35)

|2〉 ≡ 1√
2

(|c, ~p, `, λ; +,+〉id − |c, ~p, `, λ;−,−〉id) , ` ≥ 0 (` even), (3.36)

|3〉 ≡
√

2 |c, ~p, `, λ; +,−〉id, ` ≥ 1. (3.37)

The state |1〉 is parity odd while the states |2〉 and |3〉 are parity even. The states (3.35)–
(3.37) can either be in or out asymptotic states. We now form all possible inner products
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between such states taking into account that parity eigenstates do not mix since we assumed
parity invariance. The states (3.35) lead to

` ≥ 0 (even) : H−` (s)× δ``′δλλ′(2π)4δ(4)(p− p′) ≡
(

in〈1′|1〉in in〈1′|1〉out

out〈1′|1〉in out〈1′|1〉out

)
, (3.38)

where the primed states have the labels c′, ~p ′, `′ and λ′. Analogously the states (3.36) for
` = 0 and the states (3.37) for odd ` ≥ 1 lead to

` = 0 : H+
` (s)× δ``′δλλ′(2π)4δ(4)(p− p′) ≡

(
in〈2′|2〉in in〈2′|2〉out

out〈2′|2〉in out〈2′|2〉out

)
, (3.39)

` ≥ 1 (odd) : H+
` (s)× δ``′δλλ′(2π)4δ(4)(p− p′) ≡

(
in〈3′|3〉in in〈3′|3〉out

out〈3′|3〉in out〈3′|3〉out

)
. (3.40)

Finally for even ` ≥ 2, the states (3.36) and (3.37) can mix. They lead to

H+
`≥2(s)× δ``′δλλ′(2π)4δ(4)(p− p′) ≡


in〈2′|2〉in in〈2′|3〉in in〈2′|2〉out in〈2′|3〉out

in〈3′|2〉in in〈3′|3〉in in〈3′|2〉out in〈3′|3〉out

out〈2′|2〉in out〈2′|3〉in out〈2′|2〉out out〈2′|3〉out

out〈3′|2〉in out〈3′|3〉in out〈3′|2〉out out〈3′|3〉out

 .
(3.41)

Let us write explicitly the components of these matrices. The inner product of only in or
out states are fixed by our normalization conventions, which read

in〈a′|b〉in = out〈a′|b〉out = δab × δ``′δλλ′(2π)4δ(4)(p− p′). (3.42)

The inner products between in and out states lead to partial amplitudes, we have

out〈1′|1〉in = δ``′δλλ′(2π)4δ(4)(p− p′)×
(
1 + i

(
T`

++
++(s) + T`

−−
++(s)

))
,

out〈2′|2〉in = δ``′δλλ′(2π)4δ(4)(p− p′)×
(
1 + i

(
T`

++
++(s)− T`−−++(s)

))
,

out〈3′|3〉in = δ``′δλλ′(2π)4δ(4)(p− p′)×
(
1 + 2i T`+−+−(s)

)
,

out〈3′|2〉in = out〈2′|3〉in = δ``′δλλ′(2π)4δ(4)(p− p′)×
(
2i T`+−++(s)

)
.

(3.43)

The partial amplitudes entering these expressions are related to scattering amplitudes
via (2.112). We write here that expression again for the reader’s convenience

T`
λ3,λ4
λ1,λ2

(s) =
√
s− 4m2

32π
√
s
×
∫ π

0
dθ sin θd(`)

λ12λ34
(θ)T λ3,λ4

λ1,λ2
(s, t, u), λij ≡ λi − λj . (3.44)

In (3.43) we used relations (3.2), (3.3) and properties of the Wigner d matrices. As discussed
in section 2.6 unitarity requires the matrices H−` (s) and H+

` (s) to be positive semi-definite
for all s ≥ 4m2 and `. In what follows we will write these conditions in the final form.
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In (3.4) we denoted the five independent amplitudes by ΦI(s, t, u). In accordance we
define the five partial amplitudes as

Φ`
1(s) ≡ T`++

++(s),
Φ`

2(s) ≡ T`−−++(s),
Φ`

3(s) ≡ T`+−+−(s),
Φ`

4(s) ≡ T`−+
+−(s),

Φ`
5(s) ≡ T`+−++(s).

(3.45)

Plugging (3.42) and (3.43) into (3.38)–(3.41) we can write the semi-definite positivity
conditions on the matrices H−` (s) and H+

` (s) as

` ≥ 0 (even) :
(

1 1
1 1

)
+ i

(
0 −Φ`∗

1 (s)− Φ`∗
2 (s)

Φ`
1(s) + Φ`

2(s) 0

)
� 0, (3.46)

` = 0 :
(

1 1
1 1

)
+ i

(
0 −Φ`∗

1 (s) + Φ`∗
2 (s)

Φ`
1(s)− Φ`

2(s) 0

)
� 0, (3.47)

` ≥ 1 (odd) :
(

1 1
1 1

)
+ 2i

(
0 −Φ`∗

3 (s)
Φ`

3(s) 0

)
� 0. (3.48)

Finally, the matrix (3.41) leads to the following condition

` ≥ 2 (even) :
(

I2×2 S`†2×2(s)
S`2×2(s) I2×2

)
� 0, (3.49)

where we have defined

I2×2 ≡
(

1 0
0 1

)
, S`2×2(s) ≡

(
1 0
0 1

)
+ i

(
Φ`

1(s)− Φ`
2(s) 2Φ`

5(s)
2Φ`

5(s) 2Φ`
3(s)

)
. (3.50)

It is interesting to note that the equations above do not contain the partial amplitude
Φ`

4(s) at all. This is because due to the t− u crossing equations, see (3.16), one has

Φ4(s, t, u) = Φ3(s, u, t) (3.51)

Using this inside (3.44) we get the following relation among the partial amplitudes34

Φ`
4(s) = (−1)`+1Φ`

3(s). (3.52)

3.3 Non-perturbative couplings

We can use the Majorana fermion scattering amplitude to define several non-perturbative
coupling constants. These are useful parameters to describe the allowed space of QFTs.

34In order to show this, we use (2.59) and change the integration variable in (3.44) as θ → π − θ. Using
the properties of the small Wigner d matrix we get then T`−,++,−(s) = (−1)`+1T`

+,−
+,−(s).
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Quartic coupling. We begin by considering the value of the amplitude at the crossing
symmetric point

s = t = u = 4m2

3 . (3.53)

At this point, the improved amplitudes HI must be invariant under both the s-t (3.27) and
the s-u (3.28) crossing equations

HI

(
4m2

3 ,
4m2

3 ,
4m2

3

)
=

5∑
J=1

C̃IJst HJ

(
4m2

3 ,
4m2

3 ,
4m2

3

)
,

HI

(
4m2

3 ,
4m2

3 ,
4m2

3

)
=

5∑
J=1

C̃IJsuHJ

(
4m2

3 ,
4m2

3 ,
4m2

3

)
.

(3.54)

The most general solution reads

~H(4m2/3, 4m2/3, 4m2/3) = λ

m2 ×


1
0
0
1
−1

 , (3.55)

where ~H represents the five amplitudes collectively and λ is some parameter. We refer to
λ as the non-perturbative quartic coupling. By comparing (3.55) with the perturbative
result (F.8) we see that λ can be identified with the coupling in front of the (ΨΨ)(ΨΨ)
interaction term in the Fermi theory.

Cubic (Yukawa) couplings. Suppose now that our theory is described not only by the
Majorana asymptotic state but also by a scalar (spin zero) asymptotic state with mass M .
We restrict our attention to the values of M in the range (m, 2m), where m is the mass
of the Majorana asymptotic state. This ensures that the Majorana fermion is the lightest
particle in the theory and that the scalar boson is stable.

From general principles we expect such a scalar asymptotic state to manifest itself as a
simple pole in the improved scattering amplitudes of Majorana fermions. In full generality
one can then write

~Hbound(s, t, u) =



g2
1

s−M2
g2

2
s−M2
g2

3
s−M2
g2

4
s−M2
g2

5
s−M2


+



g′21
t−M2
g′22

t−M2
g′23

t−M2
g′24

t−M2
g′25

t−M2


+



g′′21
u−M2
g′′22

u−M2
g′′23

u−M2
g′′24

u−M2
g′′25

u−M2


+ regular, (3.56)

where gI , g′I and g′′I are 15 arbitrary parameters. In (3.56) we have written only the poles
and omitted all the regular terms at s, t, u = M2. Due to the crossing equations (3.27)
and (3.28), the values of g′I and g′′I get fixed in terms of gI . As a result we are left with 5
undetermined parameters gI . We further require that the s = M2 poles contribute only to

– 35 –



J
H
E
P
0
1
(
2
0
2
2
)
0
6
0

the zero spin partial amplitudes. This enforces the fact that the particle generating the
poles is a scalar. This leads to the following three additional constraints

g2 = g3 = g4 = 0. (3.57)

Thus we are left with only two parameters g1 and g5.
According to the discussion of section 3.2, more precisely due to the formulas (3.46)

and (3.47) one can take combinations of components of partial amplitudes to form parity
odd (-) and parity even (+) partial amplitudes which read as

Φ`
−(s) ≡ Φ`

1 + Φ`
2, Φ`

+(s) ≡ Φ`
1 − Φ`

2. (3.58)

The s = M2 poles with the parameter g1 contribute only to the parity even partial amplitude
Φ`=0

+ . We thus interpret g1 as the non-perturbative coupling describing the interaction
between two Majorana particles and a scalar parity even particle. The corresponding pole
structure of the amplitude reads as

~Hscalar(s, t, u) = 1
2 g

2 × ~Pscalar(s, t, u) + regular, (3.59)

where g ≡ g1 and we have defined

~Pscalar(s, t, u) ≡


− 4
s−M2 + 1

t−M2 + 1
u−M2

1
t−M2 − 1

u−M2

− 1
t−M2 + 1

u−M2

− 1
t−M2 − 1

u−M2
1

t−M2 + 1
u−M2

 (3.60)

The s = M2 poles with the parameter g5 instead contribute only to the parity odd
partial amplitude Φ`=0

− . Thus, the second parameter g5 describes non-perturbatively the
interaction between two Majorana particles and a scalar parity odd (pseudoscalar) particle.
The corresponding pole structure of the amplitude reads as

~Hpseudoscalar(s, t, u) = 1
2 g̃

2 × ~Ppseudoscalar(s, t, u) + regular, (3.61)

where g̃ ≡ g5 and we have defined

~Ppseudoscalar(s, t, u) ≡



1
t−M2 + 1

u−M2

− 1
t−M2 + 1

u−M2

− 1
t−M2 + 1

u−M2
1

t−M2 + 1
u−M2

− 4
s−M2 + 1

t−M2 + 1
u−M2

 . (3.62)

The cubic couplings g ≡ g1 and g̃ ≡ g5 can also be called the non-perturbative Yukawa
coupling constants. We also remark that the masses M in (3.60) and (3.62) do not have to
be the same.

In the discussion above we fixed the overall sign in (3.59) and (3.61) so that the
residue at s = M2 has the appropriate sign in the unitarity equations (3.46) and (3.47).
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Alternatively one can compare (3.59) and (3.61) to the perturbative results (F.12) and (F.16).
This comparison not only fixes the correct signs but also shows that g and g̃ here can be
identified with the couplings appearing in front of the ϕΨΨ and ϕ̃Ψγ5Ψ Yukawa interactions
respectively in (F.9) and (F.13).

3.4 An alternative approach to crossing equations

We have so far carefully discussed the construction of crossing equations in the COM
frame and explicitly showed it in the case of Majorana particle scattering. There is an
alternative way of approaching this topic, namely using the fully covariant language based
on constructing tensor structures. This relies on the most general representation of a
scattering amplitude given in (2.56).

In what follows we will construct tensor structures in the particular example of Majorana
particle scattering and re-derive the crossing equations. We will describe a general procedure
of constructing tensor structures for particles with spin in appendix H.

3.4.1 Tensor structures

As we know from the COM analysis, there are 5 independent amplitudes in the case
of identical Majorana particles. As a result there will be 5 linearly independent tensor
structures. A particular choice of these tensor structures was made in [31]. It reads

TIλ3,λ4
λ1,λ2

(p1, p2, p3, p4) = −1
2 [ūλ4(p4)OIvλ3(p3)] · [v̄λ2(p2)OIuλ1(p1)], (3.63)

where the five 4× 4 matrices OI are given by

O1 ≡ 14×4, O2 ≡ γµ, O3 ≡
√

2σµν , O4 ≡ i γ5γµ, O5 ≡ γ5. (3.64)

The symbol “·” in (3.63) means contraction of all the Lorentz indices among OI matrices.
Notice also that there is no summation over the repeated index I in (3.63). For the readers
convenience we also write (3.63) explicitly

T1
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = −1
2[ūλ4(p4)vλ3(p3)][v̄λ2(p2)uλ1(p1)],

T2
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = −1
2[ūλ4(p4)γµvλ3(p3)][v̄λ2(p2)γµuλ1(p1)],

T3
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = −[ūλ4(p4)σµνvλ3(p3)][v̄λ2(p2)σµνuλ1(p1)],

T4
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = +1
2[ūλ4(p4)γ5γµvλ3(p3)][v̄λ2(p2)γ5γ

µuλ1(p1)],

T5
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = −1
2[ūλ4(p4)γ5vλ3(p3)][v̄λ2(p2)γ5uλ1(p1)].

(3.65)

The objects uλ(p) and vλ(p) are the usual 4-spinor solutions to the Dirac equation and

ūλ(p) ≡ u†λ(p)γ0, v̄λ(p) ≡ v†λ(p)γ0. (3.66)

We use the Weyl (also known as chiral) basis for the Dirac γµ matrices given in (A.100)
and the helicity basis of states. With these conventions the spinor solutions to the Dirac
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equation read

u 1
2
(p) = 1√

2


√
p0−p cos θ2√
p0−p sin θ

2 e+iφ√
p0+p cos θ2√
p0+p sin θ

2 e+iφ

 , u− 1
2
(p) = 1√

2


−
√
p0+p sin θ

2 e
−iφ√

p0+p cos θ2
−
√
p0−p sin θ

2 e
−iφ√

p0−p cos θ2

 ,

v 1
2
(p) = 1√

2


−
√
p0+p sin θ

2 e−iφ√
p0+p cos θ2√
p0−p sin θ

2 e−iφ

−
√
p0−p cos θ2

 , v− 1
2
(p) = 1√

2


−
√
p0−p cos θ2

−
√
p0−p sin θ

2 e+iφ√
p0+p cos θ2√
p0+p sin θ

2 e+iφ

 .
(3.67)

We notice that the objects uλ(p) and v̄λ(p) transform in the spin-1/2 representation, namely
they get rotated by D(1/2)

λ′λ , whereas the objects vλ(p) and ūλ(p) transform in the conjugate
spin-1/2 representation, namely they get rotated by D∗(1/2)

λ′λ . The tensor structures (3.65)
are constructed in such a way that all the Lorentz indices are contracted. They depend only
on the helicity labels and thus transform only in the Little group induced representation.

The choice of tensor structures (3.65) is very convenient because of the following reason.
Plugging (3.65) into (2.56) and evaluating the amplitudes in the COM frame we get

T λ3,λ4
λ1,λ2

(s, t, u) =
5∑
I=1

HI(s, t, u)TIλ3,λ4
λ1,λ2

(pcom
1 , pcom

2 , pcom
3 , pcom

4 ). (3.68)

In the left-hand side of (3.68) we get the 16 COM amplitudes. They are related by (3.2)
and (3.3). The 5 independent amplitudes were chosen in (3.4) and given special names
ΦI(s, t, u). For the five independent amplitudes ΦI(s, t, u) the right-hand side of (3.68)
simply becomes (3.24). In other words the functions HI(s, t, u) appearing in (3.68) are
precisely the kinematic singularity free amplitudes found in section 3.1. This means that
all the kinematic singularities and constraints are taken care of by the tensor structures!
Having established this we can write (2.56) explicitly in the case of identical Majorana
fermions. It reads

T λ3,λ4
λ1,λ2

(p1, p2, p3, p4) =
5∑
I=1

HI(s, t, u) TIλ3,λ4
λ1,λ2

(p1, p2, p3, p4), (3.69)

where the basis of tensor structures is given by (3.65) and the functions HI(s, t, u) in this
basis are precisely the improved amplitudes defined in section 3.1.

3.4.2 Verification of crossing matrices

In this section we will re-derive the crossing equations (3.27) and (3.28).
The amplitude (3.69) is defined for p0

i ≥ 0 (i = 1, 2, 3, 4) as usual. It can however be
analytically continued to p0

i < 0 domain. There are several options for such an analytic
continuation. Throughout this paper we use option (E.11). Let us now analytically continue
both sides of (3.69) in p2 and p3 to their negative values, we obtain

T λ3,λ4
λ1,λ2

(p1,−p2,−p3, p4) =
5∑
I=1

HI(s, t, u) TIλ3,λ4
λ1,λ2

(p1,−p2,−p3, p4). (3.70)
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Exchanging the role of labels 2 and 3 we get then

T λ2,λ1
λ1,λ3

(p1,−p3,−p2, p4) =
5∑
I=1

HI(t, s, u) TIλ2,λ4
λ1,λ3

(p1,−p3,−p2, p4). (3.71)

Plugging (3.69) and (3.71) into the crossing equation (2.71) taken with the positive sign for
fermions, see (E.50) for details, one gets

5∑
I=1

HI(s, t, u) TIλ3,λ4
λ1,λ2

(p1, p2, p3, p4) =
5∑
I=1

HI(t, s, u) TI−λ2,+λ4
+λ1,−λ3

(p1,−p3,−p2, p4). (3.72)

The analytic continuations of u and v objects are given in (E.48). Using these and the
explicit form of tensor structures (3.63) one gets

TI−λ2,+λ4
+λ1,−λ3

(p1,−p3,−p2, p4) = [ūλ4(p4)OIv−λ2(−p2)] · [v̄−λ3(−p3)OIuλ1(p1)]

= −[ūλ4(p4)OIuλ2(p2)] · [ūλ3(p3)OIuλ1(p1)]

=
5∑
I=1

C̃stIJTI
λ3,λ4
λ1,λ2

(p1, p2, p3, p4),

(3.73)

where the matrix C̃stIJ is precisely the crossing matrix (3.31). In the third line of (3.73) we
have used the Fierz identities, see for example [32]. Plugging (3.73) into (3.72) and using
the fact that the structures (3.63) form a basis, we obtain the final crossing equations

HI(s, t, u) =
5∑

J=1
C̃stIJHJ(t, s, u), (3.74)

which coincide with (3.27). Using identical arguments one can obtain the s− u crossing
equations (3.28).

At first glance, it might seem that the way of deriving crossing equations using tensor
structures is much simpler than the COM frame approach. This is not necessarily the case
especially if one works with higher spin particles. The main issue here is the construction
of a linearly independent basis of tensor structures. In practice there are many different
looking tensor structures one can write. They are however related via a complicated set of
Fierz-like identities. Luckily in the case of identical Majorana particles the problem was
already thoroughly studied and the set of linearly independent tensor structures (3.65) was
well known.

Once the linearly independent basis of structures is chosen the troubles are unfortunately
not over. In the process of deriving the crossing equations all allowed tensor structures
reappear and they need to be expressed back in terms of the chosen basis of structures via
the Fierz-like identities. In the case of identical Majorana fermions this is precisely the step
done in the last line of (3.73) which can be quite tedious for particles with general spin.

4 Numerical bounds

In this section we numerically estimate non-perturbative bounds on quantum field theories
where the scattering of Majorana particles can be defined.
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In sections 3.1 and 3.2 we carefully derived the crossing equations and the unitarity
constraints which any scattering amplitude of Majorana particles must satisfy. Our precise
goal here is to derive various bounds on the non-perturbative coupling constants that we
defined in section 3.3. In section 4.1 we explain the numerical setup which allows for this.
We present the numerical results in sections 4.2 and 4.3.

4.1 Setup

We use the numerical approach of [3]. The first step of this approach is to write the most
general ansatz for the scattering amplitude. Before addressing Majorana fermions let us
quickly recap the scalar case. The non-trivial part of the scattering of identical scalars with
mass m is described by a function of three Mandelstam variables T (s, t, u). To proceed it is
crucial to assume maximal analyticity, namely that the amplitude is an analytic function of
s, t and u complex variables independently modulo the standard branch cuts at

s ∈ [4m2,+∞], t ∈ [4m2,+∞], u ∈ [4m2,+∞], (4.1)

where m is the mass of the scalar particle. Given a z complex plane, to mimic the above
situation, one can define a function which is analytic in the whole complex plane modulo
z ∈ [4m2,+∞] branch cut. We choose35

r(z; z0) ≡
√

4m2 − z0 −
√

4m2 − z√
4m2 − z0 +

√
4m2 − z

. (4.2)

Here z0 < 4m2 is a free parameter which can be chosen at our will. We can then represent
the interacting part of the scalar amplitude as a simple power series in terms of the
functions (4.2) in the following way

T (s, t, u) =
∞∑
a=0

∞∑
b=0

∞∑
c=0

αabc r(s, s0)ar(t, t0)br(u, u0)c, (4.3)

where αabc are some real parameters. The ansatz (4.3) has a lot of redundancies due to the
condition s+ t+ u = 4m2. One can attempt to remove them in various ways. In this paper
we do it in a slightly drastic manner by imposing

αabc = 0 if abc 6= 0 . (4.4)

This choice is motivated by the Mandelstam representation [33], see appendix C in [3] for
further details. It is convenient to choose the values of s0, t0 and u0 to all be the crossing
symmetric point

s0 = t0 = u0 = 4
3 m

2. (4.5)

35The physical domain is defined via s+ iε with ε > 0. We can thus rotate the cuts using the identity√
4m2 − s = −i

√
s− 4m2.

– 40 –



J
H
E
P
0
1
(
2
0
2
2
)
0
6
0

The s− t and s− u crossing equations for the scalar amplitude are very simple. They read

T (s, t, u) = T (t, s, u) = T (u, t, s). (4.6)

Plugging here the ansatz (4.3) we see that the coefficients αabc must be fully symmetric
under the permutation of indices a, b and c. The scalar amplitude T (s, t, u) can also have
poles when other particles exist in the theory or if the asymptotic state is allowed to have
self-interactions. In this case one should extend the ansatz (4.3) to include such poles. We
will see how it works in the case of Majorana fermions and skip further discussion of the
scalar case.

In the case of Majorana fermions we defined five amplitudes ~Φ, where the vector
denotes the five components Φ1, Φ2, Φ3, Φ4 and Φ5 collectively. These amplitudes contain
kinematic non-analyticities. In order to remove them in section 3.1 we introduced a new set
of improved amplitudes denoted by ~H. Again the vector here denotes the five components
H1, H2, H3, H4 and H5 collectively. We assume now that these five improved amplitudes
are maximally analytic. Analogously to the scalar case, this allows us to write the following
most general ansatz

~H(s, t, u) = 1
2 g

2 × ~Pscalar(s, t, u) + 1
2 g̃

2 × ~Ppseudoscalar(s, t, u)

+
∞∑
a=0

∞∑
b=0

∞∑
c=0

~αabc r(s, s0)ar(t, t0)br(u, u0)c, (4.7)

where ~Pscalar and ~Ppseudoscalar are the terms containing poles defined in (3.60) and (3.62)
and ~αabc are some real parameters. In order to remove the redundancies in the ansatz (4.7)
as in the scalar case we require

~αabc = 0 if abc 6= 0 . (4.8)

The ansatz (4.7) has an infinite number of terms. In order to work with it one has to
introduce the following truncation

∞∑
a=0

∞∑
b=0

∞∑
c=0
−→

∑
a+b+c≤Nmax

, (4.9)

where Nmax is some cut-off parameter. In practice its value is taken to be around 20.
We now require the ansatz (4.7) to satisfy the crossing equations (3.27) and (3.28).

The pole terms have been already constructed to obey the crossing equations. However,
for the parameters ~αabc we get a non-trivial system of linear algebraic equations with
constant coefficients (independent of s, t and u variables). For a chosen Nmax we solve
this system with computer algebra and plug the solution into (4.7). As a result we get a
fully crossing invariant expression. From now on when we refer to (4.7) we assume that the
above procedure has been done and that (4.7) is fully crossing symmetric.

The second step is to compute the partial amplitudes. In order to do that we need to
obtain the amplitudes ~Φ(s, t, u) (containing all the kinematic non-analyticities) by plugging
the ansatz (4.7) into (3.24). We then compute the partial amplitudes ~Φ`(s) using (3.44),
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see also (3.4) and (3.45). In doing this one needs to perform a set of integrals which have
the following form ∫ π

0
dθ sin θ d(`)

ij (θ) r
(
t(s, θ), t0

)a
r
(
u(s, θ), u0

)b (4.10)

for the following set of indices in the d-matrix

(i, j) = {(0, 0), (1, 1), (1,−1), (0, 1)}. (4.11)

The integral (4.10) is hard to compute analytically. Hence, we perform the integration
numerically for some tabulated values a, b, ` and s. We do it with Mathematica requiring
between 20 and 30 digits of precision. The computed partial amplitudes can then be plugged
into the unitarity constraints (3.46)–(3.49). These become a set of numerical semi-definite
positivity conditions for different values of spin ` and s.

It is important to explain how we choose the values of ` and s. Let us start with the
former. In principle one needs to consider unitarity conditions for all the spins up to ` =∞.
However, realistically this is not possible and one needs to introduce another truncation,
namely we impose unitarity only for a finite set of spins

` = 0, 1, 2, . . . , Lmax. (4.12)

In the majority of computations we take the values of Lmax to be as follows

Lmax = Nmax + 20. (4.13)

In the next section we justify our choice by varying Lmax and Nmax separately. Let us
address the choice of s values now. The unitarity constraints (3.46)–(3.49) are imposed in
the region

s ∈ [4m2,+∞] (4.14)

slightly above the branch cut. We take 300 different values of s in the region (4.14). One
can spread these points differently, in practice we use the Chebyshev distribution.36

To summarize, we wrote the unitarity constraints in terms of the unknown real coeffi-
cients {g2, g̃2, ~αabc} originally appearing in the (crossing symmetric) ansatz (4.7). These
conditions were written in a positive semi-definite form. We can now look for these coeffi-
cients numerically using semi-definite programming. For this we employ SDPB [34, 35].37

In the following sections we define two different optimization problems and provide the
36More precisely, we define a variable φ(s) by r(s, s0) = eiφ(s). Notice that s ∈ [4m2,+∞] corresponds to

φ ∈ [0, π]. Then, we pick a grid φk = π
2

[
1− cos π(k−1/2)

n

]
with n = 300 and k = 1, . . . , n.

37SDPB works only with real matrices. The unitarity conditions (3.46)–(3.49) are formulated in terms of
the hermitian matrices. In order to recast those conditions into the form used by SDPB one needs to use
the equivalence

H � 0 ⇔
(
Re(H) −Im(H)
Im(H) Re(H)

)
� 0,

where H is some hermitian matrix.
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numerical results. All the optimization problems we consider below use the following
normalization

m = 1. (4.15)

This simply means that all the dimensionful quantities are measured in terms of the mass
of the Majorana asymptotic state.

A word about choosing various parameters of the setup such as the number of s values or
the precision of the numerical approximation for the integrals (4.10). When performing the
numerical analysis we made sure that our results do not depend on these parameters. This
is simply done by performing the same computation with two different sets of parameters
and confirming that the outcome is stable under such a change. The choice we made in this
work guarantees at least two digits of precision in the final answer.

In order to obtain the numerical results presented below we consumed 0.4 million CPU
Hours on the EPFL SCITAS cluster.

4.2 Quartic coupling

We now apply the strategy described in the previous section to bound the quartic coupling
defined in (3.55) in the absence of poles

g = g̃ = 0. (4.16)

At the crossing symmetric point (4.5) the r function vanishes and thus the ansatz (4.7)
depends only on the five coefficients ~α000. Crossing implies that only one of those coefficients
is really independent. By comparing the ansatz at the crossing symmetric point with (3.55)
we conclude that

α2
000 = α3

000 = 0, α1
000 = α4

000 = −α5
000 = λ, (4.17)

where λ is the non-perturbative quartic coupling.
Optimization problem: we search for the coefficients ~αabc such that the non-perturbative

quartic coupling λ has the smallest/largest value and the unitarity constraints (3.46)–(3.49)
are satisfied. By solving this problem numerically we conclude that the quartic coupling
must be in the following interval

λ

32π ∈ [−3.25, +1.74]. (4.18)

This is reasonably compatible with the expectation λ . (4π)2 from naive dimensional
analysis [36, 37].

Let us now discuss the details of this result. Among other parameters our numerical
setup depends on Nmax. In figures 1 and 2 we present the upper and lower bound on λ as a
function of N−1

max. The highest value we probe is Nmax = 24. One can see that the bounds
get weaker as we increase Nmax. Intuitively this is easy to understand: upon increasing
Nmax the ansatz becomes more general and thus a larger/smaller coupling is attainable.
We then perform an extrapolation of our results to Nmax =∞. The bound (4.18) already
includes this extrapolation.
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N
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3.0

λ

32π

Figure 1. Upper bound on the quartic coupling λ as a function of N−1
max. The numerical results

are indicated by the red dots. They correspond to Nmax = 10, 16, 18, 20, 22 and 24. The blue line
represents the linear fit of the three points Nmax = 20, 22 and 24. It is described by λ/(32π) =
1.74− 6.02N−1

max equation. The spin cut-off parameter used here is Lmax = Nmax + 20.

0.02 0.04 0.06 0.08
N
max

-1

-12

-10
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-6

-4

-2

λ

32π

Figure 2. Lower bound on the quartic coupling λ as a function of N−1
max. The numerical results

are indicated by the red dots. They correspond to Nmax = 10, 16, 18, 20, 22 and 24. The blue line
represents the linear fit of the three points Nmax = 20, 22 and 24. It is described by λ/(32π) =
−3.25 + 13.76N−1

max equation. The spin cut-off parameter used here is Lmax = Nmax + 20.
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Nmax=20
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Nmax=24

Figure 3. Upper bound on the quartic coupling λ as a function of L−1
max. The dots represent the

numerical results. The solid lines represent the linear extrapolation in L−1
max based on the last four

points for each Nmax. Different colours correspond to different values of Nmax indicated in the
right-hand side of the plot.

0.01 0.02 0.03
L
max

-1

-2.7
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λ

32 π

Nmax=16

Nmax=18

Nmax=20

Nmax=22

Nmax=24

Figure 4. Lower bound on the quartic coupling λ as a function of L−1
max. The dots represent the

numerical results. The solid lines represent the linear extrapolation in L−1
max based on the last four

points for each Nmax. Different colours correspond to different values of Nmax indicated in the
right-hand side of the plot.

In making figures 1 and 2 we have used the spin cut-off value Lmax = Nmax + 20 as
indicated in (4.13). Let us now relax that condition and see the dependence of the bounds
also on Lmax. In figures 3 and 4 we present the upper and lower bound on the quartic
coupling λ as a function of L−1

max for various values of Nmax. We also perform a linear
extrapolation to Lmax =∞.
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When constructing figures 1 and 2 one could have used the points extrapolated to
Lmax = ∞ and only then perform the extrapolation to Nmax = ∞. We have done this
exercise and found the bound [−3.34,+1.73] which is not too different from (4.18).38 The
reader may use the difference between these results as an indicator of the precision with
which we have estimated the optimal bounds for the quartic coupling λ.

4.3 Cubic Yukawa couplings

Let us now present the upper bound on the cubic (Yukawa) couplings. All the plots below
are made using (4.13) spin cut-off value. One should in principle perform the extrapolation
to Lmax =∞. However, we expect that this procedure will only make the bounds stronger
analogously to the previous section and thus skipping such an extrapolation makes our
bounds only more conservative.

We start with the situation where we have a scalar particle with mass M and no
pseudoscalar particles. In other words g̃ = 0. The bound on g as a function of M for various
values of Nmax is given in figure 5. As in the previous section the bound gets weaker when
the value of Nmax increases. For each M we perform a linear extrapolation to Nmax →∞
analogously to the previous section. The final extrapolated bound is also shown in figure 5.

Now consider the case where there is a pseudoscalar particle in the theory and no scalar
particle, namely g = 0. We can construct an upper bound on the g̃ coupling as a function
of the pseudoscalar mass M . The result for different Nmax is given in figure 6. In the figure
we also present the extrapolated bound to Nmax → ∞. It is interesting to note that the
bound gets stronger when we approach M2 = 4 point. At M2 = 4 we are forced to have
g̃ = 0. This situation is very different from figure 5. As a consistency check we compute
in appendix G an analytic expression for the upper bound in the vicinity of the threshold
M2 = 4. It is given by (G.12). In figure 6 it is indicated by the black solid line. We see
that our numerical result is in agreement with the analytic one.

Similarly to the case of the quartic coupling λ, the order of magnitude of our bounds
on Yukawa and pseudo-Yukawa couplings is compatible with the expectation g ∼ g̃ . 4π
from naive dimensional analysis [36, 37].

5 Conclusion

In this article, we setup the formalism for the numerical S-matrix bootstrap approach
to scattering amplitudes of spinning particles in 4d QFTs. We explain the general case
and perform the numerical analysis for the particular case of 2 to 2 scattering of identical
massive neutral spin 1

2 fermions, i.e. Majorana fermions. In principle, our nonperturbative
bound (4.18) on the quartic coupling applies to neutrinos but this is purely academic because
neutrinos are very weakly coupled with λ ∼ GFm

2
ν . 10−24. Our bound also applies to

Goldstinos. These are massless in QFTs with spontaneously broken supersymmetry and
naturally light if there is also a small explicit breaking. It would be interesting to study

38In the case of the lower bound the Lmax = ∞ results have a less clear pattern for the subsequent
extrapolation in Nmax. Figure 4 suggests that one should extrapolate in Nmax in steps of 4. In order to do
that more numerical data with higher Nmax is needed.
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Figure 5. Upper bound on the cubic Yukawa coupling g as a function of the scalar particle mass
M . The bound is constructed for Nmax = 12, 16, 20, 24 and Lmax = Nmax + 20. Using Nmax = 20
and Nmax = 24 we also perform a linear extrapolation of the bound to Nmax = ∞. The latter is
indicated by the dashed line.

1.5 2.0 2.5 3.0 3.5 4.0
M2
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35

g
˜

Nmax=12

Nmax=16

Nmax=20

Nmax=24

Nmax=∞

NR approximation

Figure 6. Upper bound on the cubic pseudo-Yukawa coupling g̃ as a function of the scalar particle
mass M . The bound is constructed for Nmax = 12, 16, 20, 24 and Lmax = Nmax + 20. Using
Nmax = 20 and Nmax = 24 we also perform a linear extrapolation of the bound to Nmax =∞. The
latter is indicated by the dashed line. The black line indicates an analytic prediction for the upper
bound in the vicinity of M2 = 4 computed in (G.12).

massless Majorana fermions and derive bounds on the low energy effective field theories for
massless Goldstinos [38, 39].

In the future, we would like to consider more realistic applications of our methods. For
example, the mixed system of 2 to 2 scattering amplitudes involving pions and nucleons
seems to be a feasible target. This would be a significant extension of the pion S-matrix
bootstrap analysis of [7] and it would give access to many more physical observables,
including the mass of the deuteron. It would be interesting to perform this analysis both in
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the theoretically cleaner case of massless pions and the more realistic case of massive pions.
In the first case, one should be able to obtain bounds on the Wilson coefficients of the chiral
lagrangian including nucleons [40]. Notice that the results of this paper do not apply to
nucleons because we assumed that the fermion was the lightest particle. The existence of a
lighter particle (the pion) changes the analytic structure of the fermion-fermion scattering
amplitude, creating an extended unitarity region [8].

Another interesting application is pure Yang-Mills theory. In practice, one would
bootstrap 2 to 2 scattering amplitudes involving the stable glueballs (that can have nonzero
spin). One may hope that the SU(2) theory has a special place near the boundary of the
allowed space of (strongly coupled) scattering amplitudes of this type.

It is also interesting to consider massless spinning particles like photons and gravitons.
In the case of photons, one can use the S-matrix bootstrap to bound the leading Wilson
coefficients in the Euler-Heisenberg lagrangian [41]. The case of gravitons is more interesting
but also more difficult. The first obstacle is that the usual S-matrix does not exist in four
spacetime dimensions due to IR divergences. Pragmatically, one may bypass this difficulty by
working in higher dimensions. However, this means that we will have to redo the general anal-
ysis of this paper for spacetime dimension d ≥ 5.39 We leave this endeavour for the future.

The use of S-matrix consistency conditions to bound the space of low energy Effective
Field Theories (EFT) has a long history [25, 43–55]. Our numerical approach can be thought
of as a systematic algorithm to optimize such bounds. However, we use a primal formulation,
where we rule in amplitudes and approach the boundary of the allowed space from within
as we increase the numerical truncation. On the other hand, the recent methods of [53–55]
solve the dual problem and therefore rule out theories. It would be very interesting to
develop a dual formulation that includes the full set of consistency conditions that we
impose in our primal formulation.

In 2+1 dimensions, the dichotomy between bosons and fermions breaks down and
particles can be anyons [56]. It would be very interesting to study their scattering amplitudes.
Explicit computations in Chern-Simons-matter theories [57] show that the crossing equations
need to be modified to accommodate the non-trivial phases of anyon statistics. Nevertheless,
a systematic relativistic S-matrix theory of anyons is still lacking. In addition, one could
consider the coupled system of photons in 3+1 dimensions interacting with anyons living in a
2+1 dimensional subspace, as a reasonable model for topological quantum computation [58].
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A Details of working with spin

In this appendix we provide many technical details which support the discussion in the
main text of the paper. We start in appendix A.1 by reviewing 3d Euclidean rotations
and then move to the discussion of the Poincaré group in appendix A.2. These cover most
of the basics required in section 2.1. We define the vector and spinor representations in
appendix A.3. Finally we derive the Wigner angles in a particular situation (crucial for
appendix E.4) in appendix A.4.

A.1 Euclidean rotations in 3d

Rotations in 3d are generated by three generators J1, J2 and J3 which satisfy the algebra

[Ji, Jj ] = iεijkJk . (A.1)

Physically, these three generators correspond to infinitesimal rotations about the 3 axes.
The Casimir operator which commutes with all the generators is

J2 ≡ J2
1 + J2

2 + J2
3 , [J2, Ji] = 0. (A.2)

Any generic rotation can be written as

R(θi) = exp
(
−

3∑
k=1

iθkJk

)
. (A.3)

For our purposes a more useful way to write a rotation is to use the Euler angles (α, β, γ)
instead of angles θi. A generic rotation in the Euler form reads as

R(α, β, γ) ≡ exp(−iαJ3) exp(−iβJ2) exp(−iγJ3). (A.4)

The Euler angles α, β and γ can be related to the θi angles in (A.3). We do not write this
relation explicitly since it is complicated and not very illuminating.

In quantum mechanical theories, the classical group of symmetries gets extended and
therefore in the case at hand, we need to consider the central extension of SO(3) which is
the SU(2) group. Henceforth when we talk about rotations we will mean the SU(2) group.
The unitary representations of the SU(2) are finite-dimensional and are classified by the
eigenvalue of the Casimir operator J2. The usual basis for these representations is formed
by choosing eigenvectors of the J3 operator and thus these vectors are labelled by two
parameters ` and λ:

J2|`, λ〉 = `(`+ 1)|`, λ〉,
J3|`, λ〉 = λ|`, λ〉,

(A.5)

where ` is a non-negative integer or half-integer and λ = −`,−`+ 1, . . . , `− 1, `.
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Given such a spin ` representation, a generic rotation parametrized using Euler angles
as in (A.4) acts on it in the following way

R(α, β, γ)|`, λ〉 =
∑
λ

|`, λ′〉〈`, λ′|R|`, λ〉 =
∑
λ′

D`
λ′λ(α, β, γ)|`, λ′〉, (A.6)

where in the first equality we inject an identity operator as a sum over all the states and in
the second equality we have defined the Wigner D-matrix

D`
λ′λ(α, β, γ) ≡ 〈`, λ′|R(α, β, γ)|`, λ〉 = exp

(
−i(αλ′ + γλ)

)
× d`λ′λ(β), (A.7)

and the (small) Wigner d-matrix

d`λ′λ(β) ≡ 〈`, λ′| exp(−iβJ2)|`, λ〉. (A.8)

Since the rotation operator is unitary, the inverse of a rotation can be written in terms of
the complex conjugate of a D-matrix as

〈`, λ′|R−1(α, β, γ)|`, λ〉 = 〈`, λ|R(α, β, γ)|`, λ′〉∗ = D` ∗
λλ′(α, β, γ). (A.9)

The general form of (A.8) has the following simple expression

d`λ′λ(β) =
√

(j + λ′)!(j − λ′)!(j + λ)!(j − λ)!

×
∑
ν

(−1)ν (cos(β/2))2j+λ−λ′−2ν (− sin(β/2))λ
′−λ+2ν

ν!(j − λ′ − ν)!(j + λ− ν)!(ν + λ′ − λ)! .
(A.10)

Note that setting the λ′ and λ indices to 0 gives the familiar Legendre polynomials

d`00(β) = P`(cosβ). (A.11)

The small Wigner d-matrix is real. From its explicit expression one can conclude

d`λ′λ(β) = (−1)λ′−λd`−λ′,−λ(β) = (−1)λ′−λd`λλ′(β). (A.12)

As a consequence we also have

D`∗
λ′λ(α, β, γ) = (−1)λ′−λD`

−λ′,−λ(α, β, γ). (A.13)

The Wigner D-matrix satisfies the following important orthogonality relations∑
λ′

D`∗
λ′λ2(α,β,γ)D`

λ′λ1(α,β,γ) = δλ1λ2 , (A.14)

∫ 2π

0
dα

∫ +1

−1
dcosβ

∫ 2π

0
dγD`1∗

λ′1λ1
(α,β,γ)D`2

λ′2λ2
(α,β,γ) = 8π2

2`1+1 δ`1`2δλ
′
1λ
′
2
δλ1λ2 . (A.15)

The small Wigner d matrix satisfies the following orthogonality condition instead∫ π

0
dβ sin β d `1λ′λ(β)d `2λ′λ(β) = 2

2`1 + 1δ`1`2 (A.16)
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Since the spin ` representations described above are unitary, the dual representation is
the same as the complex conjugate representation and moreover, as the spin ` representations
are irreducible, the complex conjugate representations are also irreducible. We denote the
basis of states in the dual spin ` representation by

|`, λ′〉dual.

Under rotations they transform as

R(α, β, γ)|`, λ〉dual =
∑
λ′

D`∗
λ′λ(α, β, γ)|`, λ′〉dual. (A.17)

The dual representations are actually equivalent to the standard spin ` representations. In
order to show that let us rewrite (A.13) in the following form

D`∗
λ′λ(α, β, γ) =

∑
λ1,λ2

(
U−1

)
λ′λ1

D`
λ1λ2(α, β, γ)Uλ2λ, (A.18)

where we have defined

Uλ′λ ≡ d`λ′λ(+π) = (−1)`−λδλ′,−λ,(
U−1

)
λ′λ

= (−1)`+λδλ′,−λ.
(A.19)

In order to confirm that U−1U = UU−1 = 1 and to show the results below, notice the
following identity

1 = (−1)2(`±λ), (A.20)

which holds true since `± λ is always an integer. Using (A.19) we can then relate the basis
states in two representation as follows

|`, λ〉dual =
∑
λ′

Uλ′λ|`, λ′〉 = (−1)`−λ|`,−λ〉. (A.21)

In order to show this, we simply rotate both sides of (A.21). It then follows that

R(α, β, γ)|`, λ〉dual =
∑
λ′,λ′′

D`
λ′′λ′(α, β, γ)Uλ′λ|`, λ′′〉

=
∑

µ,λ′,λ′′,λ′′′

Uλ′′µ
(
U−1

)
µλ′′′

D`
λ′′′λ′(α, β, γ)Uλ′λ|`, λ′′〉

=
∑
µ,λ′′

Uλ′′µD
`∗
µλ(α, β, γ)|`, λ′′〉

=
∑
µ

D`∗
µλ(α, β, γ)|`, µ〉dual.

(A.22)

Where in the first line we used (A.6), in the second line we inserted the identity, we
used (A.18) in the third line and finally we used (A.21) in the fourth line. Thus we see that
the identification (A.21) leads consistently to (A.17).
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A.2 Poincaré group

We now consider the group of symmetries of Minkowski space i.e. the Poincaré group. We
begin by recalling its defining representation, mainly to set the notation, and then we recall
its algebra and unitary representations.

A.2.1 Defining representation

Given a 4-vector
xµ ≡ {t, ~x}, µ = 0, 1, 2, 3, (A.23)

one can define the following transformation

xµ −→ x′µ = aµ + Λ(ω)µνxν , (A.24)

where aµ and ωρσ are Lie parameters of the transformation. The transformation matrix Λ
obeys the constraint

ηµν = ΛµρΛνσηρσ, ηµν = {−+ ++}, (A.25)

where ηµν is the metric. This implies that ωρσ = −ωσρ.
The transformations (A.24) form the Poincaré group, which is also known as the

inhomogeneous Lorentz group. It is denoted by

ISO(1, 3) ≡ R1,3 oO(1, 3), O(1, 3) = SO+(1, 3) o P o T, (A.26)

where R1,3 is the group of 4d Minkowski translations, SO+(1, 3) is the proper orthochronous
Lorentz group and P and T are discrete transformations called parity and time reversal
which act on the coordinates as follows

xµ −→ (t,−~x), xµ −→ (−t, ~x). (A.27)

We restrict the O(1, 3) group to its SO+(1, 3) subgroup by requiring that the generic Lorentz
transformation Λ(a, ω) obeys

det Λ = +1, Λ0
0 ≥ +1. (A.28)

We require our quantum system to be invariant only under the restricted Poincaré
group denoted by

ISO+(1, 3) ≡ R1,3 o SO+(1, 3). (A.29)

Parity or time reversal symmetry may or may not be present. The discussion above was
about the classical group of symmetries. Once again, in quantum mechanical theories the
Lorentz group SO(1, 3) is centrally extended to its double-cover, the SL(2,C) group.

A.2.2 Poincaré algebra

A generic Poincaré transformation can be written in terms of infinitesimal generators

U(a, ω) = exp(−iaµPµ)Λ(ω), Λ(ω) ≡ exp
(
− i2 ωρσM

ρσ
)
. (A.30)
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Here Pµ and Mρσ are the generators of translations and 4d Lorentz tranformations respec-
tively. The generators satisfy the following algebra

[Pµ, Pν ] = 0, (A.31)
[Mµν , Pλ] = i (ηµλPν − ηνλPµ), (A.32)

[Mµν ,Mλσ] = i (ηµλMνσ − ηνλMµσ + ηµσMλν − ηνσMλµ). (A.33)

There are two Casimir operators which commute with all the generators, they are

C1 ≡ −P 2, C2 ≡W 2, Wµ ≡ εµνρσMνρPσ, (A.34)

where Wµ is called the Pauli-Lubanski pseudovector. Using the definitions (A.34) and the
commutation relations (A.31) and (A.32) we can write40

W 2 = −2MµνM
νµC1 − 4PµMµνMνσP

σ. (A.35)

Let us consider the purely Lorentz part Λ(ω) of the generic Poincaré transforma-
tion (A.30). It is convenient to split it into two parts. First, we define boosts

B(~η) ≡ exp
(
−iηiKi

)
, Ki ≡M0i, ηi ≡ ω0i, (A.36)

where Ki are the three boost generators. Second, we define rotations

R(~θ) ≡ exp
(
−iθiJ i

)
, J i ≡ 1

2ε
ijkM jk, θi ≡ εijkωjk, (A.37)

where J i are the generators of rotations around ith axis and θi are the angles of rotations
around the ith axis. For completeness we also write explicitly

~J = {M23, M31, M12}, ~θ = {ω23, ω31, ω12}. (A.38)

Pure rotations form an SO(3) subgroup of the Lorentz group which one can verify by com-
puting the algebra of the operators ~J = {M23, M31, M12} and seeing that it matches (A.1).
In terms of boost and rotation generator the Lorentz algebra (A.33) can be rewritten as

[Ji, Jj ] = +iεijkJk, [Ji,Kj ] = +iεijkKk, [Ki,Kj ] = −iεijkKk. (A.39)

We can use the above commutation relations along with the Baker-Campbell-Hausdorff
formula

eξABe−ξA = B + ξ[A,B] + ξ2

2 [A, [A,B]] + . . . (A.40)

40The Lorentzian 4d epsilon symbol εµνλσ is fully antisymmetric. It is defined by ε0123 = −ε0123 = +1.
Instead the Euclidean 4d epsilon symbol obeys instead ε1234 = ε1234 = +1. It has the following property

4∑
a=1

εabcdεab′c′d′ = δbb′δcc′δdd′ − δbb′δcd′δdc′ − δbc′δcb′δdd′ + δbc′δcd′δdb′ − δbd′δcc′δdb′ + δbd′δcb′δdc′ .
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to get commutation relations between finite boosts and rotations. We list here three such
relations that will turn out to be useful later

e−iJ2θe−iK3ηeiJ2θ = e−i(K3 cos θ+K1 sin θ)η, (A.41)

e−iJ2θe−iJ3φeiJ2θ = e−i(J3 cos θ+J1 sin θ)φ, (A.42)

e−iJ3φe−iJ2θeiJ3φ = e−i(J2 cosφ−J1 sinφ)θ. (A.43)

In particular, we will use the following special cases of the above equations repeatedly

e±iπJ2e−iK3η = eiK3ηe±iπJ2 , (A.44)
e±iπJ2e−iJ3φ = eiJ3φe±iπJ2 , (A.45)
e±iπJ3e−iJ2θ = eiJ2θe±iπJ3 . (A.46)

A.2.3 Unitary representation

We now review the unitary representation of the restricted Poincaré group ISO+(1, 3). We
refer to vectors in this representation as states. The unitary representation is characterized
by the eigenvalues of two Casimirs −P 2 and W 2 as defined in (A.34).

Let us denote the eigenvalue of the first Casimir −P 2 by

c2 = −P 2 = −p2. (A.47)

We focus on the case when c2 > 0 only. We can chose the basis of states to be eigenvalues
of ~P . We denote such a basis by

|c, ~p; . . .〉, (A.48)

where the dots stand for other labels yet to be discussed. Notice that the energy p0 is
related to c as

c2 = −p2 ⇒ p0 = +
√
c2 + ~p2. (A.49)

Thus, we can also use p0 instead of c to label the representation. There are two disconnected
but equivalent regions for p0 which can be related by time-reversal. We consider only
positive energy states i.e those with p0 > 0.

We now focus on the center of mass states, namely the states with ~p = 0. We notice
that 3d spatial rotations leave the ~p = 0 condition invariant. This means that the set of
states (A.48) with ~p = 0 must furnish a representation of the SU(2) group.41 We often
refer to this group as the Little group. SU(2) representations were already discussed in
section A.1. They are labeled by the (half)integer `. The basis of states is labeled by the
eigenvalues of the J3 generator. We can thus fill the dots in (A.48) when ~p = 0

|c,~0; `, λ〉. (A.50)

Under 3d rotation the state (A.50) transforms according to (A.4),

R(α, β, γ)|c,~0; `, λ〉 =
∑
λ′

D`
λ′λ(α, β, γ)|c,~0; `, λ′〉. (A.51)

41This follows for example from the equality W 2|c,~0; . . .〉 = −4P 2J2 |c,~0; . . .〉, which can be deduced
using the results of appendix A.2.2. We see that the second Casimir W 2 for the center of mass states simply
reduces to the J2 Casimir of the SU(2) group defined in (A.2).
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We now need to define a basis of states with generic values of ~p from (A.50) by applying
an appropriate Lorentz transformation which we denote by Uh(~p). In other words

|c, ~p; `, λ〉 = Uh(~p)|c,~0; `, λ〉. (A.52)

The most convenient choice of the transformation Uh(~p) is as follows

Uh(~p) = R(φ, θ,−φ) exp(−iηK3), (A.53)

where (φ, θ,−φ) are the three Wigner angles and η is the rapidity related to the four-
momentum by (2.6). Here the boost generates a non-zero 3-momentum along the z-axis.
The rotation then brings this 3-momentum to the required direction ~p, where (φ, θ) are the
spherical angles of ~p.42

The choice (A.53) is known as the helicity boost and the basis (A.52) is known as the
helicity basis. This name comes from the fact that the states are the eigenstates of the
helicity operator defined as

H ≡ ( ~J · ~P ). (A.54)

In other words one has
H|c, ~p; `, λ〉 = λp |c, ~p; `, λ〉, (A.55)

where p is the length of ~p. Moreover the helicity label λ remains invariant under any 3d
rotation as can be seen from

R(α, β, γ)|c, ~p; `, λ; γ〉 = R(α, β, γ)R(φ, θ,−φ)B3(η)|c,~0; `, λ; γ〉
= R(α′, β′, γ′)B3(η)|c,~0; `, λ; γ〉
= R(α′, β′,−α′) exp(−i(α′ + γ′)J3)B3(η)|c,~0; `, λ; γ〉
= exp(−iλ(α′ + γ′))R(α′, β′,−α′)B3(η)|c,~0; `, λ; γ〉
= exp(−iλ(α′ + γ′))Uh(~p ′)|c,~0; `, λ; γ〉,
= exp(−iλ(α′ + γ′))|c, ~p ′; `, λ; γ〉.

(A.56)

Here in the second line we use the fact two rotations give another rotation, and the
parameters (α′, β′, γ′) can be expressed in terms of (α, β, γ, φ, θ). In the fourth line we use
the fact that J3 commutes with K3. Finally we obtain the three-momentum ~p ′ which has
(α′, β′) spherical angles and |~p ′| = |~p |. Thus, contrary to the rotations of the center of
mass states (A.51), the rotation of a state in a generic frame with non-zero momentum
~p only changes the direction of its three-momentum but not its helicity. This can be
understood intuitively since the helicities in the helicity eigenstates are always aligned with
the three-momentum.

Finally let us discuss transformation properties of the states (A.52) under a generic
Poincaré transformation U(a, ω), where a and ω are its Lie parameters as discussed in

42Notice that a rotation R(φ, θ, γ) with any value of γ would do the job. Such a rotation is 4π periodic
in φ. With the particular choice γ = −φ, the rotation becomes instead 2π periodic in φ, namely R(φ +
2π, θ,−(φ+ 2π)) = R(φ, θ,−φ).
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appendix A.2.2. One has

U(a, ω)|c, ~p; `, λ; γ〉 = exp(−iaµPµ)Λ(ω)|c, ~p; `, λ; γ〉
= exp(−iaµPµ)Uh(~p ′)Uh(~p ′)−1Λ(ω)Uh(~p)|c,~0; `, λ; γ〉
= exp(−iaµPµ)Uh(~p ′)R(α, β, γ)|c,~0; `, λ; γ〉

= exp(−iaµp′µ)
∑
λ′

D`
λ′λ(α, β, γ)|c, ~p ′; `, λ′; γ〉.

(A.57)

Here in the second line we inserted the identity operator in the form

I = Uh(~p ′)Uh(~p ′)−1. (A.58)

The key point lies in the third line where we notice that the following product of Lorentz
group elements is a pure rotation

R(α(p, ω), β(p, ω), γ(p, ω)) = Uh(~p ′)−1Λ(ω)Uh(~p), p′µ ≡ Λµν(w)pν . (A.59)

This can be seen as follows. The transformation (A.59) takes the rest frame states to the
rest frames states in the following way: ~0→ ~p→ ~p ′ → ~0. The rotation (A.59) is known as
a Wigner rotation. In the third line of (A.57) we use (A.51). Finally the action of Uh(~p ′)
just sends the COM frame state to the helicity state with final momentum ~p ′.

The Wigner angles (α, β, γ) in the left-hand side of (A.59) are determined in terms
of (p, ω). They can be computed for example by choosing a particular finite dimensional
representation and comparing the final matrices in the left- and right-hand side of (A.59).
However these expressions are too cumbersome to be presented in the most general case.
In practice we only need to consider a few special cases. The most important one for our
paper is discussed in appendix A.4.

A.2.4 Clebsch-Gordan coefficients

In this appendix we compute in detail the Clebsch-Gordan coefficient C`λ defined in (2.23).
For convenience let us recall its definition here

(2π)4δ(4)(pµ − pµ1 − p
µ
2 )δαγ × C`λ(~p1, ~p2, α) ≡ 〈c, ~p; `, λ; γ|κ1, κ2〉, (A.60)

where κ1 and κ2 are the one-particle states (with masses m1, m2, spins j1, j2, helicities
λ1, λ2 and three-momenta ~p1, ~p2) and α is the multiplicity label of the two-particle states
which reads as

α = (m1,m2, j1, j2, λ1, λ2). (A.61)

Using it the decomposition of generic two particle states can be written as

|κ1, κ2〉 =
∑
`,λ

C`λ(~p1, ~p2, α)|c, ~p; `, λ;α〉. (A.62)

We start by bringing the states in the right-hand side of (A.60) to the center of mass
frame. This is done by injecting an identity operator

I = Uh(~p)U−1
h (~p) (A.63)
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composed out of the helicity boosts (A.53) into the definition of the Clebsch-Gordan
coefficient (A.60), we then have

C`λ(~p1, ~p2) = C`λ(~p ′1 ,−~p ′1 , α)×D j1
λ′1λ1

(~ω1)D j2
λ′2λ2

(~ω2). (A.64)

The value of ~p in (A.63) is chosen in such a way that the inverse helicity boost U−1
h (~p)

brings the pair of vectors (~p1, ~p2) to (~p ′1 ,−~p ′1) which are in the center of mass frame. The
Wigner angles ~ω1 and ~ω2 correspond to the Wigner rotations W1 and W2 defined as

Wi ≡ U−1
h (Λ~pi)ΛUh(~pi), Λ = U−1

h (~p). (A.65)

In practice we never need the general expression (A.64). We will therefore not attempt
to derive the Wigner angles ~ω1 and ~ω2. What we will need instead is the Clebsch-Gordan
coefficient in the center of mass frame

C`λ(~p,−~p, α), (A.66)

which enters in the right-hand side of (A.64). Notice that we dropped the primes and the
subscripts compared to (A.64). Recalling the definition of the two-particle center of mass
states (2.26)

|(p, θ, φ);λ1, λ2〉 ≡ |m1, ~p; j1, λ1〉 ⊗ |m2,−~p; j2, λ2〉, (A.67)

where (p, θ, φ) are the spherical coordinates of ~p, and using the definition (A.60) we can
write the Clebsch-Gordan coefficient (A.66) as

(2π)4δ(4)(0)× C`λ(~p,−~p, α) ≡ 〈c,~0; `, λ;λ1, λ2|(p, θ, φ);λ1, λ2〉. (A.68)

We also notice that the state (A.67) obeys the following relation

R(φ, θ,−φ)|(p, 0, 0);λ1, λ2〉 = e−2iφλ2 |(p, θ, φ);λ1, λ2〉. (A.69)

We prove it later in this section.
In order to compute the Clebsch-Gordan coefficient (A.68) we inject the identity

operator
I = R(φ, θ,−φ)R−1(φ, θ,−φ) (A.70)

in the right-hand side of (A.68). Due to (A.51) and (A.69) the matrix element in the
right-hand side of (A.68) becomes

〈c, 0, `, λ|(p, θ, φ);λ1, λ2〉 = e+2iφλ2
∑
λ′

D`
λλ′(φ, θ,−φ) 〈c, 0, `, λ′|(p, 0, 0);λ1, λ2〉

= e+2iφλ2D`
λ λ12(φ, θ,−φ) 〈c, 0, `, λ12|(p, 0, 0);λ1, λ2〉.

(A.71)

In the second line we have used the fact that the states here are eigenvectors of the J3
generator and we have defined

λ12 ≡ λ1 − λ2. (A.72)

Finally, we denote the matrix element in the right-hand side of the second line in (A.71) by

(2π)4δ(4)(0)× C`(p) ≡ 〈c1, 0, `, λ12|(p, 0, 0);λ1, λ2〉. (A.73)
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As indicated, the coefficient C`(p) can only depend on the spin label ` and the length p.
Its value is fixed by the choice of normalization. We will derive it shortly. Plugging (A.71)
and (A.73) into (A.68) we derive the final expression of the Clebsch-Gordan coefficient

C`λ(~p,−~p, α) = C`(p)e+2iφλ2D`
λ λ12(φ, θ,−φ). (A.74)

Using (A.74), see also (A.67), we can write the decomposition (A.62) in the center of
mass frame. It reads

|(p, θ, φ);λ1, λ2〉 = e+2iφλ2
∑
`,λ

C`(p) D`
λλ12(φ, θ,−φ)|c,~0; `, λ;α〉

=
∑
`,λ

C`(p) ei(λ1+λ2−λ)φd`λλ12(θ)|c,~0; `, λ;α〉. (A.75)

We can invert the above equation using (A.15) and the orthogonality of the exponential
function

|c,~0; `, λ;α〉 = 2`+ 1
4πC`(p)

∫ 2π

0
dφ

∫ +1

−1
d cos θe−i(λ1+λ2−λ)φd`λλ12(θ)|(p, θ, φ);λ1, λ2〉. (A.76)

Derivation of (A.69). Let us denote the vector ~p aligned with the direction of the
z-axis by ~pz. Notice that as defined both ~p and ~pz have the same length p. Using the
definition (A.67) we can write

R(φ, θ,−φ)|(p, 0, 0);λ1, λ2〉 =
(R(φ, θ,−φ)|m1, ~pz; j1, λ1〉)⊗ (R(φ, θ,−φ)|m2,−~pz; j2, λ2〉) . (A.77)

From (A.56) it is clear that the rotation operators bring the two one-particle states from ~pz
and −~pz configuration to the ~p and −~p configuration with some additional phases ξ1 and
ξ2. In other words

R(φ, θ,−φ)|(p, 0, 0);λ1, λ2〉 = ei(ξ1+ξ2)|(p, θ, φ);λ1, λ2〉 (A.78)

The goal of this section is to compute the phases ξ1 and ξ2.
Let us start from the state with ~pz. Its spherical angles are (0, 0). Using the definition

of the helicity basis (A.52) we can simply write

R(φ, θ,−φ)|m1, ~pz; j1, λ1〉 = R(φ, θ,−φ)R(0, 0, 0)e−iηK3 |m1,~0; j1, λ1〉
= |m1, ~p; j1, λ1〉.

(A.79)

Thus, we conclude that
ξ1 = 0. (A.80)

Let us now address the state with −~pz. According to (2.27) its spherical angles are
(π, π) instead. Using again the definition of the helicity basis (A.52) we can write

R(φ, θ,−φ)|m2, ~pz; j2, λ2〉 = R(φ, θ,−φ)R(π, π,−π)e−iηK3 |m2,~0; j2, λ2〉
= R(π + φ, π − θ,−π − φ)e−2iφJ3e−iηK3 |m2,~0; j2, λ2〉
= e−2iφλ2 |m2,−~p; j2, λ2〉.

(A.81)
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In the second line of (A.81) we have repeatedly used the identities (A.45) and (A.46). In
the last line we have used the fact that J3 and K3 commute and that the center of mass
state is the eigenstate of the J3 generator. Thus, we conclude that

ξ2 = −2λ2φ. (A.82)

Combining (A.78) with (A.80) and (A.82) we arrive at the desired property (A.69).

Computation of (A.73). The coefficient C`(p) in (A.73) is fixed by the normalization
condition (2.14). In what follows we carefully compute it. Using (2.20) and performing the
change of variables, see appendix A of [12] for details, we get

〈κ′1, κ′2|κ1, κ2〉 = (2π)64p0
1p

0
2 δ

(3)(~p ′1 − ~p1)δ(3)(~p ′2 − ~p2)δα′α (A.83)

= (2π)64
√
−p2

p2 δ(4)(p′µ − pµ)δ(cos θ′ − cos θ)δ(φ′ − φ)δα′α, (A.84)

where α is given by (A.61) and

δα′α ≡ δm′1m1δm′2m2δj′1j1δj′2j2δλ′1λ1δλ′2λ2 . (A.85)

Now let us take the norm of both sides of (A.76) and use (2.22) and (A.84) to get

δ`′` δλ′λ δγ′γ =
( 2`+ 1

4π|C`(p)|

)2
(2π)24

√
−p2

p2

×
∫ 2π

0
dφ

∫ +1

−1
d cos θe−i(λ1+λ2−λ)φd`λλ12(θ)

×
∫ 2π

0
dφ′

∫ +1

−1
d cos θ′ei(λ′1+λ′2−λ′)φ′d`λ′λ′12

(θ′)

× δ(cos θ′ − cos θ)δ(φ′ − φ)δα′α.

(A.86)

The delta functions over the angular coordinates removes two of the integrals and sets φ′ = φ

and cos θ′ = cos θ. We can then use the orthogonality of the small Wigner d matrix (A.16)
along with the orthogonality of the exponential function to obtain

1 =
( 2`+ 1

4π|C`(p)|

)2
(2π)24

√
−p2

p2
4π

2`+ 1 . (A.87)

Noticing that in the center of mass frame −p2 = c2, we immediately get

|C`(p)|2 = 4π(2`+ 1)× c

p
. (A.88)

The phase of the C`(p) coefficient is unobservable. In all the final formulas it will enter in
the form (A.88). Thus we can simply set this phase to zero and obtain the final expression

C`(p) =
√

4π(2`+ 1)× c

p
. (A.89)
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A.3 Finite dimensional Lorentz representations

Let us discuss two particular finite-dimensional representations on the Lorentz group, namely
the vector and spinor representations.

Vector representation. The generators of the Lorentz transformation (A.30) obey
the algebra (A.33). In the vector representation of the Lorentz group, the generators
satisfying (A.33) can be written as[

Mµν]
ρσ

= −i (δµρδνσ − δµσδνρ) ⇒
[
Mµν]ρ

σ = −i (ηµρδνσ − δµσηνρ). (A.90)

According to (A.36) and (A.37) they split into generators of boosts and rotations as

[
K1]ρ

σ = i


0 +1 0 0

+1 0 0 0
0 0 0 0
0 0 0 0

 , [
K2]ρ

σ = i


0 0 +1 0
0 0 0 0

+1 0 0 0
0 0 0 0

 , [
K3]ρ

σ = i


0 0 0 +1
0 0 0 0
0 0 0 0

+1 0 0 0

 ,

[
J1]ρ

σ =−i


0 0 0 0
0 0 0 0
0 0 0 +1
0 0 −1 0

 , [
J2]ρ

σ =−i


0 0 0 0
0 0 0 −1
0 0 0 0
0 +1 0 0

 , [
J3]ρ

σ =−i


0 0 0 0
0 0 +1 0
0 −1 0 0
0 0 0 0

 .

Using (A.36) the matrices of finite transformations follow straightforwardly, for instance for
the boost along the z-axis we get

B3(η)µν =


cosh η 0 0 sinh η

0 1 0 0
0 0 1 0

sinh η 0 0 cosh η

 . (A.91)

Similarly using (A.37) for the rotation around the y-axis and z-axis we get respectively

R2(β)µν =


1 0 0 0
0 cosβ 0 sin β
0 0 1 0
0 − sin β 0 cosβ

 , R3(γ)µν =


1 0 0 0
0 cos γ − sin γ 0
0 sin γ cos γ 0
0 0 0 1

 . (A.92)

In defining a 1PS we apply a boost along the positive direction of the z-axis to the
particle at rest. The boost parameter can be found from

p0

0
0
p

 = B3(η)


m

0
0
0

 , η ≥ 0. (A.93)

Using (A.91) we get

cosh η = p0

m
, sinh η = p

m
. (A.94)
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Consider now a state with the three-momentum ~p constrained to the xz-plane

pµ = {p0, px, 0, pz}. (A.95)

In terms of rapidity and spherical coordinates it is described by the following parameters

pµ : (η, θ). (A.96)

The components of the vector (A.95) can be expressed in terms of the components (A.96) as

p0 = m cosh η, p = m sinh η, px = p sin θ, pz = p cos θ. (A.97)

By definition (2.5) the helicity state is constructed by applying (A.53) to the center of mass
states. We have 

p0

px
0
pz

 = Uh(p)


m

0
0
0

 , (A.98)

where in the vector representation the matrix Uh(p) reads as

Uh(p) = R2(θ)B3(η) =


cosh η 0 0 sinh η

sinh η sin θ cos θ 0 cosh η sin θ
0 0 1 0

sinh η cos θ − sin θ 0 cosh η cos θ

 . (A.99)

Spinor representation. In order to define the spinor representation of the Lorentz group,
we first define the 4× 4 gamma matrices in our conventions43

γµ ≡
(

0 σµ

σ̄µ 0

)
, (A.100)

where
σµ = (I, ~σ) and σ̄µ = (I,−~σ) (A.101)

and ~σ are the usual 2× 2 Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.102)

From the explicit form of the gamma matrices it is easy to verify that they satisfy

{γµ, γν} = −2ηµν , (A.103)

where {A,B} ≡ AB + BA is the anti-commutator. We can now define the generators of
the spinorial representation of the Lorentz group:

Sµν ≡ i

4[γµ, γν ]. (A.104)

43Note that we work in the Weyl (also known as chiral) basis for the gamma matrices.
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These generators satisfy the Lorentz algebra (A.33) and we can split them into boost
generators Ki = S0i and rotation generators J i = 1

2ε
ijkSjk. For the reader’s convenience,

we write out these matrices explicitly

K1 =


0 − i

2 0 0
− i

2 0 0 0
0 0 0 i

2
0 0 i

2 0

 , K2 =


0 −1

2 0 0
1
2 0 0 0
0 0 0 1

2
0 0 −1

2 0

 , K3 =


− i

2 0 0 0
0 i

2 0 0
0 0 i

2 0
0 0 0 − i

2

 ,

J1 =


0 1

2 0 0
1
2 0 0 0
0 0 0 1

2
0 0 1

2 0

 , J2 =


0 − i

2 0 0
i
2 0 0 0
0 0 0 − i

2
0 0 i

2 0

 , J3 =


1
2 0 0 0
0 −1

2 0 0
0 0 1

2 0
0 0 0 −1

2

 .

Using (A.36) and (A.37) the matrices of finite transformations follow straightforwardly, for
instance for a boost along the z-axis by rapidity η we get

B3(η) =


e−

η
2 0 0 0

0 eη/2 0 0
0 0 eη/2 0
0 0 0 e−

η
2

 , (A.105)

while for rotations about the y-axis by an angle θ we get

R2(θ) =


cos

(
θ
2

)
− sin

(
θ
2

)
0 0

sin
(
θ
2

)
cos

(
θ
2

)
0 0

0 0 cos
(
θ
2

)
− sin

(
θ
2

)
0 0 sin

(
θ
2

)
cos

(
θ
2

)

 . (A.106)

In case of a rotation about the z-axis by an angle φ we have

R3(φ) =


e−

iφ
2 0 0 0

0 e
iφ
2 0 0

0 0 e−
iφ
2 0

0 0 0 e
iφ
2

 . (A.107)

A.4 An example of the Wigner rotation

Consider now the vector (A.96) and the following Lorentz transformation applied to it

Λ = R2(ψ2)B3(χ)R2(ψ1), ψi ∈ [0, π], (A.108)

which implements a rotation around the y-axis by an angle ψ1 followed by a boost along
the positive z-axis with the rapidity parameter χ and another rotation around the y-axis
by an angle ψ2. As a result we get the following 4-momentum

p′µ = Λµνpν (A.109)
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which is described by the parameters

p′µ : (η′, θ′), (A.110)

and also lies in the xz-plane. The four-vector p′µ can be generated using the helicity boost
Uh(p′) = Uh(η′, θ′) analogously to (A.98). The components of p′µ can be found from (A.109).
The values of (η′, θ′) in the helicity boost matrix then follow straightforwardly.

The Wigner rotation associated to generic Lorentz transformations are defined in (A.59).
In case of the Lorentz transformation (A.108), upon plugging the above results in the
definition (A.59), we get the following explicit result

Rwigner = U−1
h (p′) ΛUh(p) =


1 0 0 0
0 cosω 0 sinω
0 0 1 0
0 − sinω 0 cosω

 , (A.111)

where the Wigner angle written in compact form read as

cosω = p0p′0 −m2 coshχ
p p′

, sinω = m sinhχ
p′

sin(θ + ψ1). (A.112)

The Wigner angle ω depends on five parameters (η, θ, χ, ψ1, ψ2). The full form of the angle
ω reads as

cosω = A√
B2 − 1

, sinω = sin(θ + ψ1) sinhχ√
B2 − 1

, (A.113)

where we have defined

A ≡ sinh η coshχ+ cosh η sinhχ cos(θ + ψ1), (A.114)
B ≡ cosh η coshχ+ sinh η sinhχ cos(θ + ψ1). (A.115)

B Parity and time-reversal

In this section we will discuss the discrete symmetries of the full Poincaré group, namely
parity P and time-reversal T .

B.1 Parity

Parity in the defining vector representation of the Lorentz group is given by the following
matrix

P =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (B.1)

We denote the parity operator in the (infinite-dimensional) unitary representation by the
same symbol P. It obeys the following commutation relations with the generators of the
Poincaré group

PPµP† = (P 0,−~P ), PKiP† = −Ki, PJ iP† = J i. (B.2)
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In what follows we will use (B.2) to derive the action of parity on one- and two-particle
states. We will then derive constraints on the scattering amplitudes due to parity. Let us
begin with the following preliminary computation of the parity transformation property of
the helicity boost operator (A.53),

PUh(~p)P† = PR(φ, θ,−φ)P†PB3(η)P†

= R(φ, θ,−φ)B3(−η)
= R(φ, θ,−φ)R(0, π, 0)B3(η)R†(0, π, 0).

(B.3)

Here in the first line we injected the identity I = P†P, we then used the commutation
properties (B.2) in the second line. Finally, in the third line we used (A.44).

One-particle states. Consider the action of parity on a one-particle state (2.13) in the
rest frame. Since parity commutes with all of the rotation generators Ji, it must leave the
helicity of the particle invariant.44 Therefore the most general possible action is a simple
multiplication by a phase which we denote by η. In other words

P|m,~0; j, λ〉 = η|m,~0; j, λ〉. (B.4)

This phase η is called the intrinsic parity of the particle. Due to the discussion of section 3.3
in [19], one can always define parity operator P in such a way that either P2 = +1 or
P2 = −1. As a result, applying (B.4) consecutively we conclude that

η2 = +1 or η2 = −1. (B.5)

We can now deduce the action of parity on a generic one-particle state (2.13), see
also (A.52). One has

P|m, ~p; j, λ〉 = PUh(~p)|m,~0; j, λ〉
= PUh(~p)P†P|m,~0; j, λ〉
= ηR(φ, θ,−φ)R(0, π, 0)B3(η)R†(0, π, 0)|m,~0; j, λ〉
= η(−1)j+λR(φ, θ,−φ)R(0, π, 0)B3(η)|m,~0; j,−λ〉.

(B.6)

Here in the third line we used (B.3) and (B.4), instead in the fourth line we used (A.51), (A.6)
and the following property of the small Wigner d-matrix

djλ′λ(−π) = (−1)j+λ′δ−λ,λ′ . (B.7)

Next, by repeatedly using (A.45) and (A.46) one can show that

R(φ, θ,−φ)R(0, π, 0) = R(φ+ π, π − θ,−(φ+ π))e−i(2π+2φ)J3 . (B.8)

Inserting this relation into (B.6) and using the fact that J3 commutes with K3 and that
the ~p = 0 state is the eigenstate of J3 we conclude that

P|m, ~p; j, λ〉 = η(−1)j+λe+i(2π+2φ)λR(φ+ π, π − θ,−(φ+ π))B3(η)|m,~0; j,−λ〉
= η(−1)j+3λe2iλφUh(−~p)|m,~0; j,−λ〉
= η(−1)j−λe2iλφ|m,−~p; j,−λ〉.

(B.9)

44This can be seen by applying parity to the eigenvector conditions (A.5).
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Here in the second line we used (2.27) and (A.53). In the third line we used (A.52) and the
fact that

e4iπλ = e4iπj = +1 (B.10)

for any λ and j which are integer or half-integer. Summarizing, the final expression for the
action of the parity operator on a one-particle states reads as

P|m, ~p; j, λ〉 = η(−1)j−λe2iλφ|m,−~p; j,−λ〉. (B.11)

Two-particle COM states. From the action of parity on one-particle states (B.11), one
can conclude the action of parity on two-particle center of mass states defined in (2.26).
One has

P|(p,θ,φ),λ1,λ2〉=P (|m1, ~p;j1,λ1〉⊗|m2,−~p;j2,λ2〉)

= η1η2(−1)j1−λ1(−1)j2−λ2e2iφλ1e2i(φ+π)λ2 |m1,−~p;j1,−λ1〉⊗|m2, ~p;j2,−λ2〉

= η1η2(−1)j1−j2−λ1−λ2e2iφ(λ1+λ2)|(p,π−θ,φ+π),−λ1,−λ2〉,

where η1 and η2 are the intrinsic parities of the first and the second particle respectively.
Notice also that in the third line we used for the second particle the identity

1 = e2πi(λ±j), (B.12)

which holds true since λ± j is always an integer. To summarize, we have

P|(p, θ, φ), λ1, λ2〉 = η1η2(−1)j1−j2−λ1−λ2e2iφ(λ1+λ2)|(p, π − θ, φ+ π),−λ1,−λ2〉. (B.13)

In principle (B.13) is our final answer. However, for applications to scattering amplitudes
we need to bring (B.13) to a different form. We focus on the case where φ = 0, when (B.13)
simplifies to

P|(p, θ, 0), λ1, λ2〉 = η1η2(−1)j1−j2−λ1−λ2 |(p, π − θ, π),−λ1,−λ2〉. (B.14)

Here the two-particle state in the right-hand side by definition reads as

|(p, π − θ, π),−λ1,−λ2〉 = |m1,−~p, j1,−λ1〉 ⊗ |m2, ~p, j2,−λ2〉, (B.15)

where the three-vector ~p has (θ, 0) spherical angles and the three-vector −~p has (π − θ, π)
spherical angles. Using (A.45) and (A.46) one can derive the following relations

R(π, π − θ,−π) = e−iπJ2R(0, θ,−2π), (B.16)
R(0, θ, 0) = e−iπJ2R(π, π − θ,−π). (B.17)

Using the definition of helicity states (A.52) and the relation (B.16) we conclude that the
first one-particle state in (B.15) can be written as

|m1,−~p; j1,−λ1〉 = R(π, π − θ,−π)B(η)|m1,~0; j1,−λ1〉
= e−iπJ2R(0, θ, 0)e2πiJ3B3(η)|m1,~0; j1,−λ1〉
= e−2πiλ1e−iπJ2R(0, θ, 0)B3(η)|m1,~0; j1,−λ1〉
= (−1)−2j1e−iπJ2 |m1, ~p; j1,−λ1〉.

(B.18)
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Figure 7. The geometric picture behind (B.14) and (B.20). Particle 1 is red and particle 2 is blue.

In the third line we used the fact that J3 commutes with K3 and that the state with ~p = 0
is the eigenstate of J3. In the last equality we used (B.12). Analogously using (B.17) for
the second one-particle state in (B.15) we conclude that

|m2, ~p; j2,−λ2〉 = e−iπJ2 |m2,−~p; j2,−λ2〉. (B.19)

Plugging (B.18) and (B.19) into (B.15) we obtain the following relation

|(p, π − θ, π),−λ1,−λ2〉 = (−1)−2j1e−iπJ2 |(p, θ, 0),−λ1,−λ2〉. (B.20)

Finally, plugging (B.20) into (B.14) and using an obvious identity (−1)−j−λ = (−1)j+λ

which holds true since j + λ is always an integer, we obtain the desired expression

P|(p, θ, 0);λ1, λ2〉 = η1η2(−1)j1+j2+λ1+λ2e−iπJ2 |(p, θ, 0);−λ1,−λ2〉. (B.21)

The benefit of this equation is that the states in the left- and right-hand side are in the
same configuration contrary to (B.14). For a pictorial representation of the above formulas
see figure 7.

Two-particle irreps. The two-particle states can be decomposed into states in the
irreducible representation of the Poincaré group. We refer to them as the two-particle
irreps. In the center of mass frame such a decomposition and its inverse are given by (A.75)
and (A.76) respectively. Applying parity to (A.76) and using (B.13) we get

P|c,0;`,λ;λ1,λ2〉=N
∫ 2π

0
dφ

∫ π

0
dθ sinθe−iφ(λ1+λ2−λ)d

(`)
λλ12

(θ)P|(p,θ,φ);λ1,λ2〉 (B.22)

= ηcom
12 N

∫ 2π

0
dφ

∫ π

0
dθ sinθei(λ1+λ2+λ)φd

(`)
λλ12

(θ)|(p,π−θ,φ+π),−λ1,−λ2〉,

where we have defined

N ≡ 2`+ 1
4πC`(p) , ηcom

12 ≡ η1η2(−1)j1−j2−λ1−λ2 . (B.23)

Changing the integration variables from θ and φ to θ′ ≡ π − θ and φ′ ≡ φ+ π, using the
following property of the small Wigner d-matrix

d
(`)
λ′λ(π − θ) = (−1)`+λ′d(`)

λ′,−λ(θ), (B.24)
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the second line of (B.22) can be written as

P|c, 0; `, λ;λ1, λ2〉 = (−1)−λ1−λ2−λ(−1)`+ληcom
12 N (B.25)

×
∫ 3π

π
dφ′

∫ π

0
dθ′ sin θ′ei(λ1+λ2+λ)φ′d

(`)
λ,−λ12

(θ′)|(p, θ′, φ′),−λ1,−λ2〉.

Consider now a function f(φ) which is 2π periodic in φ. The following property then
holds ∫ 2π

0
dφf(φ) =

∫ φ0+2π

φ0
dφf(φ) (B.26)

for any real φ0. We notice that both ei(λ1+λ2+λ)φ′ and |(p, θ′, φ′),−λ1,−λ2〉 are 2π periodic
in φ′. The former follows from the fact that λ1 + λ2 + λ is always an integer. The latter
follows from our definition of the helicity basis (A.53), see in particular footnote 42. We
can then use the definition (A.76) one more time to conclude that

P|c, 0; `, λ;λ1, λ2〉 = (−1)−λ1−λ2−λ(−1)`+ληcom
12 |c, 0; `, λ;−λ1,−λ2〉. (B.27)

Plugging in (B.23) and using (B.12) the above can be brought to the following final form

P|c, 0; `, λ;λ1, λ2〉 = η1η2(−1)`−j1+j2 |c, 0; `, λ;−λ1,−λ2〉. (B.28)

Constraints on scattering amplitudes. In parity invariant theories the scattering
operators S and T obey

S = PSP† = P†SP, T = PTP† = P†TP. (B.29)

Using (B.29) in the definition of the center of mass amplitude (2.61) we obtain the following
constraint on the COM scattering amplitudes

〈(p′, θ, 0);λ3, λ4|T |(p, 0, 0);λ1, λ2〉 = 〈(p′, θ, 0);λ3, λ4|P†TP|(p, 0, 0);λ1, λ2〉. (B.30)

Using (B.21) the right-hand side of this equation can be written as

〈(p′, θ, 0);λ3, λ4|P†TP|(p, 0, 0);λ1, λ2〉
= η1η2η

∗
3η
∗
4(−1)j1+j2+λ1+λ2(−1)j3+j4+λ3+λ4

〈(p′, θ, 0);−λ3,−λ4|eiπJ2Te−iπJ2 |(p, 0, 0);−λ1,−λ2〉. (B.31)

Plugging this into (B.30), using the fact the scattering operator T is invariant under
rotations and invoking the definition of the COM amplitudes we obtain the final constraint

T12→34
λ3,λ4
λ1,λ2

(s, t, u) = η1η2η
∗
3η
∗
4(−1)j1+j2+j3+j4(−1)λ1+λ2+λ3+λ4T12→34

−λ3,−λ4
−λ1,−λ2

(s, t, u).
(B.32)
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B.2 Time-reversal

In the defining vector representation time-reversal is given by the following matrix

T =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (B.33)

We use the same symbol T to denote the time-reversal operator in the (infinite-dimensional)
unitary representation. Using (B.33) one can deduce the following commutation properties
of the time-reversal operator with finite rotations and boosts in the unitary representation

T e−iθiJiT † = e−iθiJi and T e−iηiKiT † = eiηiKi . (B.34)

Similarly, the action of time-reversal on the translation operators is given by

T e−iP 0tT † = e+iP 0t and T e+i ~P ·~xT † = e+i ~P ·~x. (B.35)

We recall now that T is anti-unitary, namely it obeys the following condition

T iT † = −i. (B.36)

Using these facts we deduce the following commutation relations of T with the generators
of the Poincaré group

T PµT † = (P 0,−~P ), T KiT † = Ki, T J iT † = −J i. (B.37)

In what follows we will use (B.37) to derive the action of time-reversal on one- and
two-particle states. Then (as in the previous section) we will derive constraints on the
scattering amplitudes. As before, we begin by computing the transformation property of
the helicity eigenstate boost (A.53) under time-reversal,

T Uh(~p)T † = T R(φ, θ,−φ)T †T B3(η)T †

= R(φ, θ,−φ)B3(−η)
= R(φ, θ,−φ)R(0, π, 0)B3(η)R†(0, π, 0).

(B.38)

Here in the first line we injected the identity I = T †T , we then used the commutation
properties (B.37) together with (B.36) in the second line. Finally, in the third line we
used (A.44). Interestingly enough, (B.38) is the same as (B.3). Thus, we expect that in
what follows we will be able to utilize many intermediate results from the previous section.

One-particle states. Let us first deduce the action of time-reversal on a one-particle
state in the rest frame. Consider the following relation

T R(α, β, γ)|m,~0; j, λ〉 = T R(α, β, γ)T †T |m,~0; j, λ〉
= R(α, β, γ)T |m,~0; j, λ〉,

(B.39)
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which holds true due to (B.36) and (B.37). On the other hand we also have

T R(α, β, γ)|m,~0; j, λ〉 = T D`
λ′λ(α, β, γ)|m,~0; j, λ〉

= D`∗
λ′λ(α, β, γ)T |m,~0; j, λ′〉.

(B.40)

Here in the first line we simply used (A.51). Instead the second line follows from (B.36)
and the explicit form of the large Wigner D-matrix, see (A.7) and (A.10). Comparing the
above two expressions we conclude that

R(α, β, γ)T |m,~0; j, λ〉 = D`∗
λ′λ(α, β, γ)T |m,~0; j, λ′〉. (B.41)

By comparing (B.41) with (A.17), we see that the time reversal transformed one-particle
states (in the center of mass) are in the dual spin ` representation. Using (A.21) we conclude
that45

T |m,~0; j, λ〉 = ε (−1)j−λ|m,~0; j,−λ〉, (B.42)

where ε is the proportionality coefficient obeying |ε|2 = 1. One can always define T in such
a way that T 2 = +1 or T 2 = −1. Thus, we have

ε2 = +1 or ε2 = −1. (B.43)

In order to obtain the action of time-reversal on a one-particle state, we use the
definition of the helicity basis (A.52) and (B.38). We have

T |m, ~p; j, λ〉 = T Uh(~p)|m,~0, j, λ〉
= T Uh(~p)T †T |m,~0, j, λ〉
= R(φ, θ,−φ)R(0, π, 0)B(+~η)R†(0, π, 0)T |m,~0, j, λ〉
= ε(−1)j−λR(φ, θ,−φ)R(0, π, 0)B(+η)R†(0, π, 0)|m,~0, j,−λ〉
= εR(φ, θ,−φ)R(0, π, 0)B(+~η)|m,~0, j, λ〉.

(B.44)

In going from the fourth to the fifth line we used (B.7) and (B.12). Utilizing (B.8) and (B.12)
the above result can be brought to the following final form

T |m, ~p; j, λ〉 = ε(−1)2je−2iλφ|m,−~p, j;λ〉. (B.45)

Two-particle COM states. From the action of time-reversal on one-particle states (B.11),
one concludes the action of time-reversal on two-particle center of mass states defined
in (2.26). One has

T |(p, θ, φ);λ1, λ2〉 = T (|m1, ~p, j1, λ1〉 ⊗ |m2,−~p, j2, λ2〉) (B.46)

= ε1ε2(−1)2j1(−1)2j2e−2iφλ1e−2i(φ+π)λ2 |m1,−~p, j1, λ1〉 ⊗ |m2, ~p, j2, λ2〉.

Using (B.12) we can bring the above to the final form

T |(p, θ, φ);λ1, λ2〉 = ε1ε2(−1)2j1e−2i(λ1+λ2)φ|(p, π − θ, φ+ π);λ1, λ2〉. (B.47)
45From J3T = −T J3 and (A.5) we could have only concluded that helicity flips under-time reversal.
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Two-particle irreps. Let us repeat that the two-particle states can be decomposed into
states in the irreducible representation of the Poincaré group. We refer to them as the
two-particle irreps. In the center of mass frame such a decomposition and its inverse were
given by (A.75) and (A.76) respectively. Applying time-reversal to (A.76) and using (B.47)
we get

T |c,0;`,λ;λ1,λ2〉=N
∫ 2π

0
dφ

∫ π

0
dθ sinθT e−i(λ1+λ2−λ)φd

(`)
λλ12

(θ)|(p,θ,φ);λ1,λ2〉

=N
∫ 2π

0
dφ

∫ π

0
dθ sinθe+i(λ1+λ2−λ)φd

(`)
λλ12

(θ)T |(p,θ,φ);λ1,λ2〉 (B.48)

= εcom
12 N

∫ 2π

0
dφ

∫ π

0
dθ sinθe−i(λ1+λ2+λ)φd

(`)
λλ12

(θ)|(p,π−θ,φ+π),λ1,λ2〉.

Notice that in going from the first to the second line we used (B.36). The constant N was
defined in (B.23) and we have introduced for brevity

εcom
12 ≡ ε1ε2(−1)2j1 . (B.49)

Changing the integration variables from θ and φ to θ′ ≡ π − θ and φ′ ≡ φ+ π, using
the following property of the small Wigner d-matrix

d
(`)
λ′λ(π − θ) = (−1)λ−`d(`)

−λ′λ(θ), (B.50)

we can bring (B.48) to the following form

T |c, 0; `, λ;λ1, λ2〉 = εcom
12 N ei(λ1+λ2+λ)π(−1)λ1−λ2−` (B.51)

×
∫ 3π

π
dφ′

∫ π

0
dθ′ sin θ′ e−i(λ1+λ2+λ)φd

(`)
−λλ12

(θ′)|(p, θ′, π′), λ1, λ2〉.

Using (A.76) and (B.26) we conclude that

T |c, 0; `, λ;λ1, λ2〉 = εcom
12 ei(λ1+λ2+λ)π(−1)λ1−λ2−`|c, 0; `,−λ;λ1, λ2〉. (B.52)

Using (B.49) and the obvious identity (−1)`−λ = (−1)λ−` which holds true since `− λ is
always an integer, we obtain our final expression

T |c, 0, `, λ;λ1, λ2〉 = ε1ε2(−1)`−λ|c, 0, `,−λ;λ1, λ2〉. (B.53)

Constraints on scattering amplitudes. In time-reversal invariant theories the scat-
tering operators S and T obey

T ST † = S†, T TT † = T †. (B.54)

Consider the states

|ψ〉 = |(p′, θ, 0);λ3, λ4〉, |φ〉 = T |(p, 0, 0);λ1, λ2〉. (B.55)

By definition the anti-unitary time-reversal operator T satisfies

〈T ψ|T φ〉∗ = 〈ψ|φ〉, (B.56)
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where
|T φ〉 ≡ T |φ〉 and |T ψ〉 ≡ T |ψ〉. (B.57)

Using (B.47) and time-reversal invariance of the T operator (B.54), we have

|T φ〉 = TT |(p, 0, 0);λ1, λ2〉
= ε1ε2(−1)2j1T †|(p, π, π), λ1, λ2〉

(B.58)

and
〈T ψ| = ε∗3ε

∗
4(−1)2j3〈(p, π − θ, π), λ3, λ4|. (B.59)

Plugging (B.58) and (B.59) along with the definitions (B.55) into (B.56), we arrive at

〈(p′, θ, 0);λ3, λ4|T |(p, 0, 0);λ1, λ2〉 =
ε∗1ε
∗
2ε3ε4(−1)2j1(−1)2j3〈(p′, π − θ, π);λ3, λ4|T †|(p, π, π);λ1, λ2〉∗

ε∗1ε
∗
2ε3ε4(−1)2j1(−1)2j3〈(p, π, π);λ1, λ2|T |(p′, π − θ, π);λ3, λ4〉.

(B.60)

We are now left with bringing the matrix element in the last line of (B.60) to the standard
COM frame. For that we will use the following identity

R(π, π + θ′ − θ,−π) = R(π, π − θ, 0)R(0, θ′, 0)eiπJ3 , (B.61)

which is a simple reorganization of exponents in the definition of the Euler rotation (A.4).
Let us start by the following rewriting of the 34 two-particle state

|(p′, π − θ, π);λ3, λ4〉 = e2iπλ4R(π, π − θ,−π)|(p′, 0, 0);λ3, λ4〉
= e2iπλ4R(π, π − θ, 0)R(0, 0, 0)eiπJ3 |(p′, 0, 0);λ3, λ4〉

= eiπ(λ3+λ4)R(π, π − θ, 0)|(p′, 0, 0);λ3, λ4〉.

(B.62)

Here in the first line we used (A.69). We used (B.61) with θ′ = 0 in the second line. Finally
we used the fact that the states with the momentum along the z-axis are eigenstates of J3
generators. Analogously we can write the 12 two-particle state as

|(p, π, π);λ1, λ2〉 = e2iπλ2R(π, π,−π)|(p, 0, 0);λ1, λ2〉
= e2iπλ2R(π, π − θ, 0)R(0, θ, 0)eiπJ3 |(p, 0, 0);λ1, λ2〉

= eiπ(λ1+λ2)R(π, π − θ, 0)|(p, θ, 0);λ1, λ2〉,

(B.63)

where in the second line we used (B.61) with θ′ = θ. Plugging both (B.62) and (B.63) into
the last line of (B.60) we conclude that

〈(p′, θ, 0);λ3, λ4|T |(p, 0, 0);λ1, λ2〉

= ε∗1ε
∗
2ε3ε4(−1)2j1(−1)2j3eiπ(−λ1−λ2+λ3+λ4)

〈(p, θ, 0);λ1, λ2| (R(π, π − θ, 0))† TR(π, π − θ, 0)|(p′, 0, 0);λ3, λ4〉. (B.64)

The series of steps from (B.60) to (B.64) is depicted in figure 8.
Using the fact that the scattering operator is invariant under rotations and that

according to (D.17)–(D.19) the Mandelstam variables remain invariant under the exchange
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Figure 8. The geometric picture involved in going from (B.60) to (B.64). Particle 1 is red, particle
2 is blue, particle 3 is magenta and particle 4 is cyan.

p↔ p′, we can use the definition of the center of mass amplitudes (2.61) and write (B.64)
in its final form

T12→34
λ3,λ4
λ1,λ2

(s, t, u) = ε∗1ε
∗
2ε3ε4(−1)λ1−λ2−λ3+λ4T34→12

λ1,λ2
λ3,λ4

(s, t, u). (B.65)

Here we also simplified the phases according to (B.12). Notice that whereas parity (2.64)
imposes a constraint on the same amplitude, time reversal relates the process 12→ 34 to
the process 34→ 12, which are in general different.

B.3 PT

Let us conclude this appendix by discussing the situation when our physical system is
symmetric under simultaneous application of parity and time-reversal, in other words under
the PT transformation. Due to (B.11) and (B.45), the one-particle states transform under
PT as follows

PT |m, ~p; j, λ〉 = ηε(−1)j−λ|m, ~p; j,−λ〉. (B.66)

One can then derive constraints posed by PT on scattering amplitudes. The simplest way
to obtain them is to combine (B.32) and (B.65). One then has

T12→34
λ3,λ4
λ1,λ2

(s, t, u) = ζ∗1ζ
∗
2ζ3ζ4(−1)j1−j2−j3+j4T34→12

−λ1,−λ2
−λ3,−λ4

(s, t, u), (B.67)

where we have defined the phases as

ζi ≡ εiηi. (B.68)

It is interesting to consider the case of identical neutral particles with spin j and the
phase ζ. Then the equation (B.67) becomes

T λ3,λ4
λ1,λ2

(s, t, u) = T−λ1,−λ2
−λ3,−λ4

(s, t, u), (B.69)

where we have removed the subscript 12→ 34 since all the particles are identical and used
the fact that |ζ|2 = 1.

Any consistent quantum field theory must be CPT invariant [59]. This means that one
can always introduce the so called CPT operator which we denote by Σ. In the system of
neutral particles one can choose

Σ = PT . (B.70)

As a result the constraint (B.69) on the scattering amplitudes of identical particles is not
an additional assumption but rather a consequence of the CPT theorem.
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C Identical particles

In this appendix we consider the special situation where a two-particle state (2PS) describes
a system of two identical particles with mass m and spin j. Such a system possesses Bose
or Fermi (anti-)symmetry. In other words, the two-particle state must satisfy

|κ1, κ2〉id = (−1)2j |κ2, κ1〉id. (C.1)

Here we have added a subscript id to explicitly indicate that the state describes a system
of two identical particles. In order to satisfy (C.1), we have to take the symmetrized, in
case of bosons, and the anti-symmetrized, in case of fermions, tensor product, i.e

|κ1,κ2〉id≡
1√
2

(
|m,~p1;j,λ1〉⊗|m,~p2;j,λ2〉+(−1)2j |m,~p2;j,λ2〉⊗|m,~p1;j,λ1〉

)
. (C.2)

We remind the reader that ⊗ denotes the ordered tensor product that was used in (2.19) to
define generic two-particle states. The normalization of the state (C.2) follows from (2.14)
and reads

id〈κ1, κ2|κ3, κ4〉id = δ(κ1 − κ3)δ(κ2 − κ4) + (−1)2jδ(κ1 − κ4)δ(κ2 − κ3). (C.3)

C.1 Two-particle COM states

As before we need to define the identical 2PS in the center of momentum. Adapting (2.26)
to the case of identical particles we get

|(p, θ, φ);λ1, λ2〉id ≡
1√
2

(
|m,+~p; j, λ1〉 ⊗ |m,−~p; j, λ2〉+ (−1)2j |m,−~p; j, λ2〉 ⊗ |m, ~p; j, λ1〉

)
. (C.4)

In the notation (2.26) this can be equivalently written as

|(p, θ, φ);λ1, λ2〉id = 1√
2

(
|(p, θ, φ);λ1, λ2〉+ (−1)2j |(p, π − θ, π + φ);λ2, λ1〉

)
. (C.5)

The normalization of these states is fixed by (2.35). Analogously to (2.28) we can write it
in spherical coordinates as

id〈(p, θ, φ);λ1, λ2|(p′, 0, 0);λ′1, λ′2〉id = (C.6)

(2π)4δ4(0)× 16π2√s√
pp′

(
δ(θ)δ(φ)

sin θ δλ1λ′1
δλ2λ′2

+ (−1)2j δ(π − θ)δ(φ+ π)
sin(π − θ) δλ2λ′1

δλ1λ′2

)
.

The symmetry (C.1) for the two-particle states in the center of mass reads as

|(p, θ, φ);λ1, λ2〉id = (−1)2j |(p, π − θ, φ+ π);λ2, λ1〉id. (C.7)

Let us now restrict our attention on the special case φ = 0 and derive the following two
relations

|(p, θ, 0);λ1, λ2〉id = e−iπJ2 |(p, θ, 0);λ2, λ1〉id, (C.8)
|(p, θ, 0);λ1, λ2〉id = (−1)λ1−λ2e−iπJ3 |(p, π − θ, 0);λ2, λ1〉id. (C.9)

– 73 –



J
H
E
P
0
1
(
2
0
2
2
)
0
6
0

z

x

~p, λ
1

-~p,
λ2

θ

θ

Ry(π)
z

x

~p, λ
2

-~p,
λ1

θ

θ

Figure 9. The geometric picture behind (C.8). The particles are identical and are therefore
represented by the same colour.

The first one simply follows from (C.7) with φ = 0 and (B.20) and is shown in figure 9.
The second one follows from (C.7) with φ = 0 and (A.69) and is shown in figure 10. More
precisely

|(p, θ, φ);λ1, λ2〉id = (−1)2je2iπλ1R(π, π − θ,−π)|(p, 0, 0);λ2, λ1〉id
= (−1)2je2iπλ1e−iπJ3R(0, π − θ, 0)e+iπJ3 |(p, 0, 0);λ2, λ1〉id
= (−1)2jeiπ(λ2+λ1)e−iπJ3R(0, π − θ, 0)|(p, 0, 0);λ2, λ1〉id
= (−1)2jeiπ(λ1+λ2)e−iπJ3 |(p, π − θ, 0);λ2, λ1〉id.

(C.10)

In the first and the fourth line we used (A.69). In the second line we simply used the
definition of Euler rotations (A.4). Finally in the third line we used the fact that the states
with the three-momentum along the z-axis are eigenvector of J3. Using (B.12) in the last
line of (C.10) we obtain (C.9).

C.2 Two-particle irreps

We would now like to decompose identical two particle states (C.2) into irreducible represen-
tations analogously to the generic two-particle state decomposition (2.29). The two-particle
states in the irreducible representation are denoted by

|c, 0, `, λ;λ1, λ2〉id. (C.11)

As before the subscript id emphasizes the fact that we do not deal with a generic situation
but with the identical particle case. In what follows we need to define the states (C.11)
precisely and fix their normalization.

In a generic situation, the two-particle states in the reducible and irreducible representa-
tions are related by (A.76). Since the Lorentz transformation property of the states are the
same for identical and distinct particles, we can just use the decomposition formula (A.76)
but with an unspecified normalization Nid which we fix later in the section. One has

|c,~0;`,λ;λ1,λ2〉id =Nid

∫ 2π

0
dφ

∫ +1

−1
dcosθe−i(λ1+λ2−λ)φd`λλ12(θ)|(p,θ,φ);λ1,λ2〉id. (C.12)
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Figure 10. The geometric picture behind (C.9). The particles are identical and are therefore
represented by the same colour.

We can use this formula to deduce the symmetry property of the state (C.11) under the
exchange of two particles. Plugging (C.7) into the right-hand side of (C.12) we get

(−1)2jNid

∫ 2π

0
dφ

∫ π

0
dθ sin θ e−i(λ1+λ2−λ)φd

(`)
λλ12

(θ)|(p, π − θ, φ+ π);λ2, λ1〉id

= (−1)2jNid

∫ 3π

π
dφ′

∫ π

0
dθ′ sin θ′e−i(λ1+λ2−λ)(φ′−π)d

(`)
λλ12

(π − θ′)|(p, θ′, φ′);λ2, λ1〉id

= (−1)2jeiπ(λ1+λ2−λ)(−1)`+λ

×Nid

∫ 3π

π
dφ′

∫ π

0
dθ′ sin θ′e−i(λ1+λ2−λ)φ′d

(`)
λλ21

(θ′)|(p, θ′, φ′);λ2, λ1〉id. (C.13)

In the second line we changed the integration variables from θ and φ to θ′ ≡ π − θ and
φ′ ≡ φ+ π. In the third line we used (B.24) to rewrite the small Wigner d-matrix. Also
recall the definition

λ12 ≡ λ1 − λ2. (C.14)

The last line in (C.13) simply contains the two-particle irrep (C.12). In order to see this,
we refer the reader to (B.26) and the discussion below. Combining (C.12) and (C.13), and
taking into account (B.12) we finally get46

|c,~0; `, λ;λ1, λ2〉id = (−1)`+λ1−λ2 |c, 0; `, λ;λ2, λ1〉id. (C.15)

We can now define two-particle irreps (C.11) describing identical particles in terms
of generic two-particle irreps by requiring that (C.11) automatically satisfies the condi-
tion (C.15). Our choice here is as follows

|c, 0, `, λ;λ1, λ2〉id ≡
1
2
(
|c, 0, `, λ;λ1, λ2〉+ (−1)`+λ1−λ2 |c, 0, `, λ;λ2, λ1〉

)
. (C.16)

46Notice that due to (C.15) the two-particle irreps with λ1 = λ2 exist only for even spins `. When λ1 6= λ2

we can form two linear combinations from two-particle irreps, one of which exists only for even spins ` and
the other one only for odd `.
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The normalization of the states (C.16) follows from the normalization of each of the two
terms fixed by (2.22) together with (2.25). As a result the normalization of the states (C.16)
is given by (2.22) along with

δγ′γ = 1
2
(
δλ1λ′1

δλ2λ′2
+ (−1)`+λ1−λ2δλ1λ′2

δλ2λ′1

)
. (C.17)

Having defined (C.16), we can apply (2.29) to both terms in the right-hand side of (C.5).
Using the property of the small Wigner d-matrix (B.24) we get

|(p, θ, φ);λ1, λ2〉id =
√

2
∑
`,λ

C`(p)ei(λ1+λ2−λ)φd
(`)
λλ12

(θ)|c, 0; `, λ;λ1, λ2〉id, (C.18)

where the coefficient C`(p) is given by (2.32). As before we can invert the above equation
to get precisely (C.12) with

Nid = 2`+ 1
4π
√

2C`(p)
. (C.19)

C.3 Constraints on scattering amplitudes

Consider now the scattering of identical particles.47 The amplitude describing such a
situation is defined as

T λ3,λ4
λ1,λ2

(s, t, u)× (2π)4δ(4)(0) ≡ id〈(p′, θ, 0);λ3, λ4|T |(p, 0, 0);λ1, λ2〉id, (C.20)

where the identical two-particle states were defined in (C.5). We now deduce constraints
the amplitude (C.20) must obey in order to incorporate the symmetry property (C.7). In
practice we will use (C.7) rewritten in the form (C.9).

Let us start with the outgoing particles 3 and 4. Using (C.9) one can rewrite the
right-hand side of (C.20) as

id〈(p′, θ, 0);λ3, λ4|T |(p, 0, 0);λ1, λ2〉id
= (−1)λ3−λ4 id〈(p′, π − θ, 0);λ4, λ3|eiπJ3T |(p, 0, 0);λ1, λ2〉id
= (−1)λ3−λ4 id〈(p′, π − θ, 0);λ4, λ3|eiπJ3Te−iπJ3eiπJ3 |(p, 0, 0);λ1, λ2〉id
= (−1)λ3−λ4+λ1−λ2 id〈(p′, π − θ, 0);λ4, λ3|T |(p, 0, 0);λ1, λ2〉id.

(C.21)

In the third line we simply injected the identity operator made out of z-rotations. In
the fourth line we used the fact that the states with the momentum along the z-axis are
eigenstates of J3 generators. Looking at the definition of the Mandelstam variables (D.18)
and (D.19) we see that the exchange θ ↔ π − θ simply corresponds to t ↔ u. Combin-
ing (C.21) with (C.20) we obtain

T λ3,λ4
λ1,λ2

(s, t, u) = (−1)λ1−λ2−λ3+λ4T λ4,λ3
λ1,λ2

(s, u, t), (C.22)

which is nothing but the (34) t− u crossing equation.
47More generally one can consider scattering processes with only incoming or outgoing particles being

identical. As presented, most of the results in this section still apply to these situations.
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Let now address the incoming particles 1 and 2. First, we need the following relation
which holds true for generic two-particle states (and therefore also for identical two-particle
states)

|(p, θ, 0);λ3, λ4〉 = (−1)λ3−λ4e−iπJ3e−iπJ2 |(p, π − θ, 0);λ3, λ4〉. (C.23)
It simply follows from (A.69) and (A.46), see also (A.4) and (A.53). Due to (C.9) and (A.69)
we also have the following relation for identical particles

|(p, 0, 0);λ1, λ2〉id = (−1)λ1−λ2e−iπJ3e−iπJ2 |(p, 0, 0);λ2, λ1〉id. (C.24)

Using both (C.23) and (C.23) in the right-hand side of (C.20), and the fact that the
scattering operator is invariant under rotations we conclude that

T λ3,λ4
λ1,λ2

(s, t, u) = (−1)λ1−λ2+λ3−λ4T λ3,λ4
λ2,λ1

(s, u, t), (C.25)

which is nothing but the (12) t− u crossing equation.
Combining both crossing equations (C.22) and (C.25) we obtain the following purely

kinematic constraint

T λ3,λ4
λ1,λ2

(s, t, u) = T λ4,λ3
λ2,λ1

(s, t, u). (C.26)

Here we used the fact that λ1 − λ2 + λ3 − λ4 is always an integer.

D Center of mass frame

In this section we define the center of mass frame describing two-, three- and four-point
amplitudes.

D.1 Two-point amplitudes

We start with the two-point amplitude defined in (2.52). It reads

free〈c1, ~p1; `1, λ1; γ1|T |c2, ~p2; `2, λ2; γ2〉free. (D.1)

It is non-zero only for ~p1 = ~p2 due to translation symmetry. By using the three boost
generators one can set

~p1 = ~p2 = 0. (D.2)
The remaining symmetry is SO(3). The matrix element (D.1) at the point (D.2) must be
invariant under this SO(3) symmetry. Applying an SO(3) rotation to (D.1) we get

free〈c1,~0; `1, λ1; γ1|T |c2,~0; `2, λ2; γ2〉free =∑
λ′1,λ

′
2

free〈c1,~0; `1, λ′1; γ1|T |c2,~0; `2, λ′2; γ2〉free ×D
∗(`1)
λ′1λ1

( ~ω1)D (`2)
λ′2λ2

( ~ω2). (D.3)

In order to make the amplitude invariant one has to demand that

free〈c1,~0; `1, λ1; γ1|T |c2,~0; `2, λ2; γ2〉free ∝ δ`1`2δλ1λ2 . (D.4)

Then due to the orthogonality (A.14) the Wigner D-matrices disappear completely and one
recovers the invariance of the two-point amplitude. The condition (D.4) means that there
is only one independent two-point amplitude

N2 = 1. (D.5)
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D.2 Three-point amplitudes

Consider the following matrix element

out〈κ1, κ2|c, ~p; `, λ; γ〉in = free〈κ1, κ2|S|c, ~p; `, λ; γ〉free. (D.6)

It appears in the discussion of poles, see for example section 2.5.1 in [12]. It also appears in
computations of partial amplitudes, see the end of appendix H. It is interesting to ask what
happens if the ket state in (D.6) is actually a one particle state, namely when we deal with
the following object

out〈κ1, κ2|κ3〉in = free〈κ1, κ2|S|κ3〉free. (D.7)

It describes the decay process of the asymptotic state 3 into two asymptotic states 1 and 2.
Strictly speaking such a matrix element must be zero, since asymptotic states by definition
cannot decay.48 In some circumstances when a particle is unstable but lives long enough
it might be useful however to treat it as an approximate asymptotic state and prescribe
physical meaning to (D.7).

Let us discuss the spin structure of (D.7) in the COM frame. By using the three boosts
we can set ~p3 = 0. By using two rotations we can move to the following final frame

pµ1 = {E1, 0, 0, +p},
pµ2 = {E2, 0, 0, −p},
pµ3 = {E3, 0, 0, 0},

(D.8)

where the energies read as

E1 =
∣∣m2

3 +m2
1 −m2

2
∣∣

2m3
, E2 =

∣∣m2
3 −m2

1 +m2
2
∣∣

2m3
, E3 = m3 (D.9)

and we have

p = 1
2m3

√
(m3 +m1 +m2)(m3 −m1 −m2)(m3 −m1 +m2)(m3 +m1 −m2). (D.10)

The value p should be real, this enforces the condition

m3 ≥ m1 +m2. (D.11)

Having chosen the frame (D.8) one is left with a single generator of rotations around the
z-axis. This means that one has a remaining SO(2) symmetry and the matrix element (D.7)
in the frame (D.8) must be invariant under it. To find the consequence of this symmetry one
can inject the identity operator composed out of z-rotations into (D.7) twice and requiring
that the matrix element remains invariant. It leads to the following constraint

λ3 = λ1 − λ2. (D.12)
48If a particle is unstable an observer after waiting long enough will see the decay product which is

described by true asymptotic states.
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Given the condition (D.12) one can easily count the number of different three-point
amplitudes N3. It is given by

N3 =
+j1∑

λ1=−j1

+j2∑
λ2=−j2

+j3∑
λ3=−j3

δλ1+λ2,λ3 . (D.13)

This expression was rewritten in a compact form in [27], it reads as

N3 = (2j1 + 1)(2j2 + 1)− r(r + 1), r ≡ max(j1 + j2 − j3, 0), j1 ≤ j2 ≤ j3. (D.14)

D.3 Four-point amplitudes

The four-point amplitude was defined in (2.41). Using all the generators of the Lorentz
group, we can bring this amplitude to the following frame

pµ1 = {E1, 0, 0,+p},
pµ2 = {E2, 0, 0,−p},
pµ3 = {E3,+p′ sin θ, 0,+p′ cos θ},
pµ4 = {E4,−p′ sin θ, 0,−p′ cos θ},

(D.15)

where p ≥ 0, p′ ≥ 0 and θ ∈ [0, π] and the energies are given by

E1 =
√
m2

1 + p2, E2 =
√
m2

2 + p2, E3 =
√
m2

3 + p′2, E4 =
√
m2

4 + p′2. (D.16)

The Mandelstam variables in the COM frame (D.15) then read as

s = (E1 + E2)2 = (E3 + E4)2, (D.17)
t = m2

1 +m2
3 − 2E1E3 + 2pp′ cos θ, (D.18)

u = m2
1 +m2

4 − 2E1E4 − 2pp′ cos θ. (D.19)

In the case of four-point COM amplitudes there is no additional symmetry left. Thus, the
total number of amplitudes is obtained by simply counting all possible helicity configurations

N4 = (2`1 + 1)(2`2 + 1)(2`3 + 1)(2`4 + 1). (D.20)

The relations (D.17)–(D.19) express the Mandelstam variables (s, t, u) in terms of
(p,p′, θ). We can also invert these relations as follows. From (D.17) we get

p = L12(s)
2
√
s
, p′ = L34(s)

2
√
s
, (D.21)

where we have defined

Lij(s) ≡
√(

s− (mi −mj)2)(s− (mi +mj)2). (D.22)

Plugging (D.21) into (D.16) we get the energies

E1 = s+m2
1−m2

2
2
√
s

, E2 = s−m2
1+m2

2
2
√
s

, E3 = s+m2
3−m2

4
2
√
s

, E4 = s−m2
3+m2

4
2
√
s

. (D.23)
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Subtracting (D.19) from (D.18) and using (D.21) and (D.23) we get

cos θ = s(t− u) + (m2
1 −m2

2)(m2
3 −m2

4)
L12(s)L34(s) . (D.24)

In the range θ ∈ [0, π] we can also write unambiguously

sin θ =
√

1− cos2 θ = 2
√
s
√

Φ
L12(s)L34(s) , (D.25)

where we have defined

Φ≡ stu−s(m2
2−m2

4)(m2
1−m2

3)−t(m2
1−m2

2)(m2
3−m2

4)+∆t (m2
1m

2
4−m2

2m
2
3)

= stu−s(m2
2−m2

3)(m2
1−m2

4)+u(m2
1−m2

2)(m2
3−m2

4)+∆u(m2
1m

2
3−m2

2m
2
4) (D.26)

together with

∆t ≡ −m2
1 +m2

2 +m2
3 −m2

4, ∆u ≡ −m2
1 +m2

2 −m2
3 +m2

4. (D.27)

Let us study the physical ranges of the Mandelstam variables. From (D.16) and (D.17)
the following inequalities follow

s ≥ max
(
(m1 +m2)2, (m3 +m4)2

)
. (D.28)

Notice, that due to (D.28) all the energies Ei in (D.23) are positive and L12(s), L34(s) are
real as they should be. Since the value of cos θ is bounded to be in the [−1,+1] interval, we
can derive the following constraints on the values of the variable t from (D.24)

t ∈
[
v + L12(s)L34(s)

2s , v − L12(s)L34(s)
2s

]
,

v ≡ 1
2 (m2

1 +m2
2 +m2

3 +m2
4 − s)−

(m2
1 −m2

2)(m2
3 −m2

4)
2s .

(D.29)

From (D.28) and (D.29) in the equal mass case we recover the familiar result

s ∈ [4m2, ∞), t ∈ [−(s− 4m2), 0]. (D.30)

There is a very special situation when

L12(s) = 0 or L34(s) = 0. (D.31)

From (D.21) we see that this corresponds to when either incoming or outgoing particles
are at rest. In such a situation we cannot define the angle between incoming and outgoing
particles which can be see from (D.24) which is singular at (D.31). The values of s which
lead to (D.31) are

s = (m1 ±m2)2, s = (m3 ±m4)2 . (D.32)

E Crossing equations

The goal of this appendix is to prove the crossing relations in a general frame (2.70)–(2.73)
and then derive the crossing equations in the COM frame (2.74) and (2.76) together with
the Wigner angles αi and βi.
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E.1 Analytic continuation of four-momenta

Consider the interacting part of the scattering amplitude

T λ3,λ4
λ1,λ2

(pµ1
1 , pµ2

2 , pµ3
3 , pµ4

4 ). (E.1)

This function is defined only for non-negative energies p0
i ≥ 0, provided that the following

constraint is satisfied
p2
i = −m2

i , (E.2)

where mi ≥ 0 are the masses of particles. However crossing requires us to evaluate the
amplitude (E.1) at −pµi points which means that one must extend the definition of (E.1)
also to negative values of energies p0

i . This can be done by analytically continuing the
amplitude (E.1) in each component of four 4-vectors pµi to the full complex plane while
keeping the constraints (E.2) satisfied.49 To perform this analytic continuation, one needs
to choose the path in (complexified) momentum space.

To continue the discussion in more detail let us focus for simplicity on a function of a
single 4-momentum

f(pµ) (E.3)

defined for p0 ≥ 0 and p2 = −m2 with the non-negative mass m. The case of four 4-
momenta (E.1) follows straightforwardly by the repeated use of the steps here for each
i = 1, 2, 3, 4. Using the spherical coordinates p, θ and φ one can write

p0 =
√

p2 +m2,


p1 = p sin θ cosφ,
p2 = p sin θ sinφ,
p3 = p cos θ,

(E.4)

where p ≥ 0 is the length of the 3-vector ~p. The relation p2 = −m2 can be rewritten as

p = i
√

(m− p0)(p0 +m). (E.5)

If we promote p0 to the full complex plane, the function (E.5) will have an analytic structure
as depicted on figure 11 with two branch points ±m and two branch cuts ending in these
points.

In order to study crossing we need to defined (E.3) at the following point

f(−pµ). (E.6)

This can be achieved by performing the following analytic continuation

p0 + iε→ complex value→ −p0 − iε, ~p→ complex value→ −~p. (E.7)

In the p0 complex plane two different options for such an analytic continuation are depicted
in figure 11.50 Note that the original domain of physical energy p0 ≥ m by convention lies
slightly above the right-hand branch cut.

49In other words by using the analytic continuation, the amplitude (E.1) can be defined as a function of
4× 4 = 16 complex variables which satisfy the four constraints (E.2).

50To be precise, the two different paths for analytic continuation take us to two different points on the
Riemann surface.
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p0

m−m

A.C. 1

A.C
. 2

A
B

Figure 11. The complex p0 plane. We depict the analytic structure of the function p(p0) defined
in (E.5). It has two branch cuts. The original domain of the function p is given by positive values
p0 slightly above the right cut. We define p for negative values of p0 by an analytic continuation.
The two different options are depicted in red and blue. Two paths together encircle the +m branch
point and thus differ by a monodromy around that point.

Now let us investigate the behavior of the function (E.5) depending on the chosen path
of the analytic continuation. If the path does not cross any branch cuts we simply get

p→ complex value→ +p. (E.8)

In case we cross once one of the branch cuts we get an extra phase due to the monodromy
around the associated branch point which leads to

p0 ±m→ (p0 ±m)e2πi.

As a result for this path we get the following

p→ complex value→ −p. (E.9)

To summarize, the analytic continuation (E.7) can be implemented in two different ways
depending on the path chosen on figure 11. The two distinct options (E.8) and (E.9) due
to (E.4) read as

p0 → −p0, p→ +p, θ → π − θ, φ→ π + φ, (E.10)
p0 → −p0, p→ −p, θ → θ, φ→ φ. (E.11)

The first option (E.10) is commonly used in the literature. The second option (E.11) is
more suitable for massless particles since two branch cuts in figure 11 unite and one cannot
choose a path for the analytic continuation without crossing any of the two branch cuts.
For treating massless particles one can also use the first option (E.10) and take the limit
m→ 0 at the very end.
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The helicity states are defined via (2.5) and at a practical level depend only on the
rapidity and two angles (η, θ, φ). Using the definition of rapidity (2.6) we can write (E.10)
and (E.11) as

η → iπ − η, θ → π − θ, φ→ π + φ, (E.12)
η → iπ + η, θ → θ, φ→ φ. (E.13)

E.2 Crossing equations in a general frame

Given an amplitude of the 12→ 34 process in a generic frame we would like to relate it in
this appendix to the four “crossed” amplitudes associated to the following processes

4̄2→ 31̄, 13̄→ 2̄4, 3̄2→ 1̄4, 14̄→ 32̄. (E.14)

We refer to these relations as the crossing equations. To be concrete we will focus on writing
the crossing equations for 12→ 34 and 4̄2→ 31̄ amplitudes, the rest will follow by analogy.

Given an amplitude
T12→34

λ3,λ4
λ1,λ2

(p1, p2, p3, p4), (E.15)

one can obtain the amplitude 4̄2→ 31̄ by crossing particles 1 and 4. The ingoing particle 1
becomes then the outgoing one and the outgoing particle 4 becomes the ingoing one. As a
result we need to make the following replacements: pµ1 → −p

µ
1 and pµ4 → −p

µ
4 . Moreover if

a particle 1 has a charge (or more generally transforms in some representation of a global
group) the particle ī has the opposite charge (transforms in the conjugate representation).
As a result (E.15) under crossing 1-4 becomes

T4̄2→31̄
λ3,λ1
λ4,λ2

(−p4, p2, p3,−p1). (E.16)

In both (E.15) and (E.16) all 4-momenta have positive energies p0
i > 0 and are on-shell (2.48).

Without using the LSZ reduction formula one can only postulate crossing. It states
that one can define a single “mother amplitude” with complex values of 4-momenta such
that all the amplitudes in (E.15) and (E.16) are its boundary values. This is known as the
Mandelstam hypothesis. One cannot however simply equate (E.15) and (E.16). At the very
least these amplitudes should have the same Lorentz transformation properties. We will use
this requirement to fix the crossing equations up to an overall phase. This is the original
way by which general spin crossing equations were derived in [22].

Consider the transformation property of the amplitude describing the 12→ 34 process
under generic Lorentz transformations Λ. According to (2.54) it reads as

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = (E.17)∑
λ′i

D
(j1)
λ′1λ1

(p1,Λ)D (j2)
λ′2λ2

(p2,Λ)D∗(j3)
λ′3λ3

(p3,Λ)D∗(j4)
λ′4λ4

(p4,Λ)T12→34
λ′3,λ

′
4

λ′1,λ
′
2
(p′1, p′2, p′3, p′4).

Similarly the crossed amplitude describing the 4̄2→ 31̄ process transforms as

T4̄2→31̄
λ3,λ1
λ4,λ2

(−p4, p2, p3,−p1) = (E.18)∑
λ′i

D
∗(j1)
λ′1λ1

(−p1,Λ)D (j2)
λ′2λ2

(p2,Λ)D∗(j3)
λ′3λ3

(p3,Λ)D (j4)
λ′4λ4

(−p4,Λ)T4̄2→31̄
λ′3,λ

′
1

λ′4,λ
′
2
(−p′4, p′2, p′3,−p′1).
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In the equations (E.17) and (E.18) we have schematically denoted the arguments of the
Wigner D-matrices by (pi,Λ). In practice they depend only on three Wigner angles which
correspond to the pi → Λpi Lorentz transformation. We denote these angles as

D
(ji)
λ′iλi

(αi, βi, γi) ≡ D
(ji)
λ′iλi

(+p,Λ), (E.19)

D
(ji)
λ′iλi

(ᾱi, β̄i, γ̄i) ≡ D
(j)
λ′λi

(−pi,Λ), (E.20)

where i = 1, 2, 3, 4. The Wigner angles (αi, βi, γi) generically differ from (ᾱi, β̄i, γ̄i). They
are however closely related. The main technical task of this appendix is to understand
precisely how.

We would like to equate the amplitudes which transform in the same way under Lorentz
transformations. Thus, in practice we need to compare the transformation properties
of (E.17) and (E.18). This in turn boils down to comparing the Wigner D-matrices

D
(j1)
λ′1λ1

(+p1,Λ) vs. D
∗(j1)
λ′1λ1

(−p1,Λ) and D
∗(j4)
λ′4λ4

(+p4,Λ) vs. D
(j4)
λ′4λ4

(−p4,Λ).

In order to do this recall that according to (A.57) and (A.59) the Wigner rotation matrices
are defined as

D
(j)
λ′λ(α, β, γ) = D

(j)
λ′λ(+p,Λ) : R(α, β, γ) = Uh(+p′)−1ΛUh(+p), (E.21)

D
(j)
λ′λ(ᾱ, β̄, γ̄) = D

(j)
λ′λ(−p,Λ) : R(ᾱ, β̄, γ̄) = Uh(−p′)−1ΛUh(−p), (E.22)

where the helicity transformation Uh(+p) is defined via (A.53). We repeat this definition
here for convenience

Uh(+p) = R(φ, θ,−φ)×B3(η). (E.23)

The quantity Uh(−p) is defined from Uh(+p) by analytic continuation. As discussed in the
previous section there are two distinct ways to do it, using (E.12) or (E.13). Below we
address the two options separately.

E.2.1 Analytic continuation 1

Using (E.23) and (E.12) we get

Uh(−p) = R(π + φ, π − θ, −π − φ)×B3(iπ − η). (E.24)

We can then focus on the vector representation defined in appendix A.3 and compute the
Wigner angles in (E.21) and (E.22) brute force using computer algebra.51,52,53 Comparing
the results we conclude that

ᾱ = −α+ 2φ′, β̄ = −β, γ̄ = −γ − 2φ. (E.25)
51Given a generic 3× 3 rotation matrix it is straightforward to determine tanα, cosβ and tan γ without

any ambiguity. In order to determine the rest of trigonometric functions it is necessary to choose the region
of β angle. One can either have β ∈ [0, π] or β ∈ [0,−π].

52By convention β ∈ [0, π], however we are free to choose either β̄ ∈ [0, π] or β̄ ∈ [0,−π]. We make the
latter choice, however both options lead to the same conclusion in the very end.

53We first perform this computation for a generic infinitesimal Lorentz transformation. We then focus on
some simple finite transformations like boosts along the x, y and z axes separately.
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From the properties of the Wigner D-matrix it then follows that

D
(j)
λ′,λ(ᾱ, β̄, γ̄) = e−2iφ′λ′D

(j)
λ′,λ(−α,−β,−γ)e+2iφλ

= ei(π−2φ′)λ′e−i(π−2φ)λD
∗(j)
λ′λ (α, β, γ),

(E.26)

see appendix A.2 of [16] for the summary of properties of D matrices. In other words

D
(j)
λ′λ(−p,Λ) = ei(π−2φ′)λ′e−i(π−2φ)λD

∗(j)
λ′λ (+p,Λ). (E.27)

With the help of (E.27) one can rewrite the transformation property (E.18) in the
following form54

T4̄2→31̄
λ3,λ1
λ4,λ2

(−p4, p2, p3,−p1) =
∑
λ′i

e−i(π−2φ′1)λ′1e+i(π−2φ1)λ1ei(π−2φ′4)λ′4e−i(π−2φ4)λ4

D
(j1)
λ′1λ1

(+p1,Λ)D (j2)
λ′2λ2

(+p1,Λ)D∗(j3)
λ′3λ3

(+p1,Λ)D∗(j4)
λ′4λ4

(+p4,Λ)T4̄2→31̄
λ′3,λ

′
1

λ′4,λ
′
2
(−p′4, p′2, p′3,−p′1),

(E.28)

which can be rewritten as(
e−i(π−2φ1)λ1e+i(π−2φ4)λ4T4̄2→31̄

λ3,λ1
λ4,λ2

(−p4, p2, p3,−p1)
)

=
∑
λ′i

D
(j1)
λ′1λ1

(+p1,Λ)D (j2)
λ′2λ2

(+p1,Λ)

D
∗(j3)
λ′3λ3

(+p1,Λ)D∗(j4)
λ′4λ4

(+p4,Λ)
(
e−i(π−2φ′1)λ′1ei(π−2φ′4)λ′4T4̄2→31̄

λ′3,λ
′
1

λ′4,λ
′
2
(−p′4, p′2, p′3,−p′1)

)
.

(E.29)

Comparing (E.17) and (E.29) we see that the following two objects transform in the same
way under generic Lorentz transformations

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) vs. e−i(π−2φ1)λ1ei(π−2φ4)λ4T4̄2→31̄
λ3,λ1
λ4,λ2

(−p4, p2, p3,−p1).
(E.30)

As a result, the only way to write crossing equations which involve objects transforming in
the same way under generic Lorentz tranformation is to equate the objects in (E.30). This
procedure leaves undetermined an overall helicity independent phase. The other crossing
equations follow by simply re-labeling the indices.

Our final answer reads as

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = ε
(1)
14 e
−i(π−2φ1)λ1ei(π−2φ4)λ4T4̄2→31̄

λ3,λ1
λ4,λ2

(−p4, p2, p3,−p1),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = ε
(1)
23 e
−i(π−2φ2)λ2ei(π−2φ3)λ3T13̄→2̄4

λ2,λ4
λ1,λ3

(p1,−p3,−p2, p4),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = ε
(1)
13 e
−i(π−2φ1)λ1ei(π−2φ3)λ3T3̄2→14̄

λ1,λ4
λ3,λ2

(−p3, p2,−p1, p4),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = ε
(1)
24 e
−i(π−2φ2)λ2ei(π−2φ4)λ4T14̄→32̄

λ3,λ2
λ1,λ4

(p1,−p4, p3,−p2),
(E.31)

where ε(1)
14 , ε

(1)
23 , ε

(1)
13 and ε(1)

24 are the helicity independent phases unfixed by this procedure.
54In writing this formula we assumed that the relation between D∗(j)

λ′λ (−p,Λ) and D(j)
λ′λ(+p,Λ) is obtained

from (E.27) by taking complex conjugation. This is not quite correct because we are interested in the
analytic continuation along the same path in the p0 complex plane and not along the complex conjugated
path. However, the two continuations are related by a monodromy around square root branch points that
can only give rise to an overall helicity-independent phase which is irrelevant for the discussion below.

– 85 –



J
H
E
P
0
1
(
2
0
2
2
)
0
6
0

E.2.2 Analytic continuation 2

Using (E.23) and (E.13) we get

Uh(−p) = R(φ, θ, −φ)×B3(iπ + η) = −Uh(+p)R(π, 0, 0). (E.32)

Plugging it into (E.22) one gets

D
(j)
λ′λ(ᾱ, β̄, γ̄) = D

(j)
λ′λ(−p,Λ) : R(ᾱ, β̄, γ̄) = R−1(π, 0, 0)

(
Uh(+p′)−1ΛUh(+p)

)
R(π, 0, 0)

= R−1(π, 0, 0)R(α, β, γ)R(π, 0, 0). (E.33)

Using the properties of the small Wigner d-matrices we can write then

D
(j)
λ′λ(ᾱ, β̄, γ̄) = e+iπλ′D

(j)
λ′λ(α, β, γ)e−iπλ = D

∗(j)
−λ′,−λ(α, β, γ). (E.34)

In other words we get
D

(j)
λ′λ(−p,Λ) = D

∗(j)
−λ′,−λ(+p,Λ). (E.35)

Using this we can write the transformation property (E.18) as55

T4̄2→31̄
λ3,λ1
λ4,λ2

(−p4,p2,p3,−p1) =
∑
λ′i

D
(j1)
−λ′1,−λ1

(+p1,Λ)D (j2)
λ′2λ2

(+p2,Λ)D∗(j3)
λ′3λ3

(+p3,Λ)

D
∗(j4)
−λ′4,−λ4

(+p4,Λ)T4̄2→31̄
λ′3,λ

′
1

λ′4,λ
′
2
(−p′4,p′2,p′3,−p′1). (E.36)

Let us rename λ1 and λ4 and call them −λ1 and −λ4. We can also do the same for λ′1 and
λ′4 since they are dummy indices and the summation covers all the options. We get then

T4̄2→31̄
+λ3,−λ1
−λ4,+λ2

(−p4, p2, p3,−p1) =
∑
λ′i

D
(j1)
λ′1,λ1

(+p1,Λ)D (j2)
λ′2λ2

(+p2,Λ)D∗(j3)
λ′3λ3

(+p3,Λ)

D
∗(j4)
λ′4,λ4

(+p4,Λ)T4̄2→31̄
+λ′3,−λ′1
−λ′4,+λ′2

(−p′4, p′2, p′3,−p′1).
(E.37)

Comparing (E.17) and (E.37) we conclude that the following two objects transform in
the same way under the generic Lorentz transformations

T12→34
λ3,λ4
λ1,λ2

(+p1, p2, p3,+p4) vs. T4̄2→31̄
+λ3,−λ1
−λ4,+λ2

(−p4, p2, p3,−p1). (E.38)

Analogous discussion holds for other crossings we can thus write the following equations

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = ε
(2)
14 T4̄2→31̄

+λ3,−λ1
−λ4,+λ2

(−p4,+p2,+p3,−p1),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = ε
(2)
23 T13̄→2̄4

−λ2,+λ4
+λ1,−λ3

(+p1,−p3,−p2,+p4),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = ε
(2)
13 T3̄2→14̄

−λ1,+λ4
−λ3,+λ2

(−p3,+p2,−p1,+p4),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = ε
(2)
24 T14̄→32̄

+λ3,−λ2
+λ1,−λ4

(+p1,−p4,+p3,−p2),

(E.39)

where as before ε(2)
14 , ε

(2)
23 , ε

(2)
13 and ε(2)

24 are the helicity independent phases unfixed by this
procedure.

55See footnote 54.
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E.3 Crossing equations in a general frame: LSZ derivation

In this section we derive the crossing equation (2.71) from the LSZ reduction formula in the
case of spin 1/2 fermion scattering. The latter is carefully discussed in section 41 of [60].
The LSZ reduction formula in this case reads as

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) =
∫
d4x1 d

4x2 d
4x3 d

4x4

× e−ip3x3 [ūλ3(p3)(−i/∂3 +m3)]α3

× e−ip4x4 [ūλ4(p4)(−i/∂4 +m4)]α4

× 〈Ω|T{Ψα4(x4)Ψα3(x3)Ψα1(x1)Ψα2(x2)}|Ω〉connected

× [(i
←−
/∂ 1 +m1)uλ1(p1)]α1 e

ip1x1

× [(i
←−
/∂ 2 +m2)uλ2(p2)]α2 e

ip2x2 , (E.40)

where |Ω〉 denotes the vacuum state and Ψi(x) are 4-component Majorana or Dirac fields
with masses mi. Analogously one can write

T13̄→2̄4
λ2,λ4
λ1,λ3

(p1, p3, p2, p4) =
∫
d4x1 d

4x2 d
4x3 d

4x4

× eip3x3 [v̄λ3(p3)(−i/∂3 +m3)]α3

× e−ip4x4 [ūλ4(p4)(−i/∂4 +m4)]α4

× 〈Ω|T{Ψα4(x4)Ψα2(x2)Ψα1(x1)Ψα3(x3)}|Ω〉connected

× [(i
←−
/∂ 1 +m1)uλ1(p1)]α1 e

ip1x1

× [(i
←−
/∂ 2 +m2)vλ2(p2)]α2 e

−ip2x2 . (E.41)

In the above equations all the momenta have positive energy, namely p0
i > 0. In order to

relate the two processes (E.40) and (E.41) one can analytically continue the latter process
in p2 and p3 to allow for negative energies. Assuming such an analytic continuation exists
one gets

T13̄→2̄4
λ2,λ4
λ1,λ3

(p1,−p3,−p2, p4) =
∫
d4x1 d

4x2 d
4x3 d

4x4

× e−ip3x3 [v̄λ3(−p3)(−i/∂3 +m3)]α3

× e−ip4x4 [ūλ4(p4)(−i/∂4 +m4)]α4

× 〈Ω|T{Ψα4(x4)Ψα2(x2)Ψα1(x1)Ψα3(x3)}|Ω〉connected

× [(i
←−
/∂ 1 +m1)uλ1(p1)]α1 e

ip1x1

× [(i
←−
/∂ 2 +m2)vλ2(−p2)]α2 e

ip2x2 . (E.42)

Notice also that the anticommutation of fermionic operators manifests itself in the following
relation

〈Ω|T{Ψα4(x4)Ψα2(x2)Ψα1(x1)Ψα3(x3)}|Ω〉 = −〈Ω|T{Ψα4(x4)Ψα3(x3)Ψα1(x1)Ψα2(x2)}|Ω〉.
(E.43)

According to appendix E.1 there are two ways of choosing the analytic continuation when
writing (E.42). Below we discuss both of them in order.
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Analytic continuation 1. Using the analytic continuation (E.10) and the definition (3.67)
it follows straightforwardly

uλ(−p) = eiλ(π+2φ)vλ(p), ūλ(−p) = eiλ(π−2φ)v̄λ(p),

vλ(−p) = eiλ(π−2φ)uλ(p), v̄λ(−p) = eiλ(π+2φ)ūλ(p).
(E.44)

Plugging (E.44) and (E.43) into (E.42) and comparing the result with (E.40) we arrive at
the following crossing equation

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = −e−iλ2(π−2φ2)e−iλ3(π+2φ3)T13̄→2̄4
λ2,λ4
λ1,λ3

(p1,−p3,−p2, p4).
(E.45)

Analogously one derives the other three crossing equations. The complete summary of
crossing equations reads

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = −e−iλ1(π−2φ1)e−iλ4(π+2φ4)T4̄2→31̄
λ3,λ1
λ4,λ2

(−p4, p2, p3,−p1),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = −e−iλ2(π−2φ2)e−iλ3(π+2φ3)T13̄→2̄4
λ2,λ4
λ1,λ3

(p1,−p3,−p2, p4),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = −e−iλ1(π−2φ1)e−iλ3(π+2φ3)T3̄2→1̄4
λ1,λ4
λ3,λ2

(−p3, p2,−p1, p4),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = −e−iλ2(π−2φ2)e−iλ4(π+2φ4)T14̄→32̄
λ3,λ2
λ1,λ4

(p1,−p4, p3,−p2).
(E.46)

We can now compare the above to (E.31) and deduce the undetermined phases56

ε
(1)
14 = ε

(1)
23 = ε

(1)
13 = ε

(1)
24 = +1. (E.47)

Analytic continuation 2. Using the analytic continuation (E.11) and the definition (3.67)
it follows straightforwardly

uλ(−p) = i v−λ(p), ūλ(−p) = i v̄−λ(p),
vλ(−p) = i u−λ(p), v̄λ(−p) = i ū−λ(p).

(E.48)

Plugging (E.48) and (E.43) into (E.42) and comparing the result with (E.40) we arrive at
the following crossing equation

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T13̄→2̄4
−λ2,+λ4
+λ1,−λ3

(p1,−p3,−p2, p4). (E.49)

Analogously one derives the other three crossing equations. The complete summary of
crossing equations reads

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T4̄2→31̄
+λ3,−λ1
−λ4,+λ2

(−p4, p2, p3,−p1),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T13̄→2̄4
−λ2,+λ4
+λ1,−λ3

(p1,−p3,−p2, p4),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T3̄2→1̄4
−λ1,+λ4
−λ3,+λ2

(−p3, p2,−p1, p4),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T14̄→32̄
+λ3,−λ2
+λ1,−λ4

(p1,−p4, p3,−p2).

(E.50)

Comparing the above with (E.39), we see that all the previously undetermined phases are

ε
(2)
14 = ε

(2)
23 = ε

(2)
13 = ε

(2)
24 = +1. (E.51)

56Here we use the fact that e2iπλ = −1 since λ is half-integer.
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Concluding remarks. We have derived in this appendix the crossing equations for
generic spin 1/2 particles in a general frame using the LSZ reduction formula. These depend
on the analytic continuation. For the analytic continuation (E.10) our crossing equations
are given by (E.46). For the analytic continuation (E.11) our crossing equations are given
by (E.50). All these formulas remain (almost) the same even if some of the particles have
spin different from 1/2. This follows from the fact that the spin structures of a generic spin
particle can be represented by products of u and v objects. The only change in the crossing
equations comes in the overall sign since some particles can now commute instead.

E.4 Crossing equations in the center of mass frame

The goal of this appendix is to write the crossing equations (E.31) and (E.39) in the center
of mass frame. We will see that both analytic continuations lead to the same center of
mass equations. The crossing equations 1-4 and 2-3 are called the s− t equations. Since
they carry identical information, we focus only on the 2-3 crossing equation. Instead the
crossing equations 1-3 and 2-4 are called the s−u equations. Since they also carry the same
information we focus only the 2-4 crossing equation. The discussion of the s− u center of
mass equations is identical to the s− t one, we will therefore only provide the final results
without any intermediate steps.

E.4.1 s− t crossing equation

According to appendix E.2 the 2-3 crossing equation depending on the analytic continuation
can take either of the two forms

T12→34
λ3,λ4
λ1,λ2

(p1,p2,p3,p4) = ε
(1)
23 e
−i(π−2φ2)λ2ei(π−2φ3)λ3T13̄→2̄4

λ2,λ4
λ1,λ3

(P1,P2,P3,P4), (E.52)

T12→34
λ3,λ4
λ1,λ2

(p1,p2,p3,p4) = ε
(2)
23 T13̄→2̄4

−λ2,+λ4
+λ1,−λ3

(P1,P2,P3,P4), (E.53)

where we have defined

P1 ≡ p1, P2 ≡ −p3, P3 ≡ −p2, P4 ≡ p4. (E.54)

In the right hand-side of (E.52) and (E.53) P1 and P2 describe the incoming particles 1
and 3̄ respectively, whereas P3 and P4 describe the outgoing particles 2̄ and 4 respectively.
The Mandelstam variables associated to the left-hand side are as usual

s ≡ −(p1 + p2)2, t ≡ −(p1 − p3)2, u ≡ −(p1 − p4)2. (E.55)

Instead the Mandelstam variables associated to the right-hand side are

S ≡ −(P1 + P2)2 = −(p1 − p3)2 = t,

T ≡ −(P1 − P3)2 = −(p1 + p2)2 = s,

U ≡ −(P1 − P4)2 = −(p1 − p4)2 = u.

(E.56)

The Mandelstam variables remain invariant by definition under any Lorentz transformation.
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Let us now evaluate the left-hand side of (E.52) and (E.53) in the center of mass frame
of the 12→ 34 process denoted by pcom

i . It is defined in (2.57), we write it here again for
convenience

pcom
1 ≡ (E1, 0, 0,+p),
pcom

3 ≡ (E3,+p′ sin θ, 0,+p′ cos θ),
pcom

2 ≡ (E2, 0, 0,−p),
pcom

4 ≡ (E4,−p′ sin θ, 0,−p′ cos θ).

(E.57)

The main feature of this frame is that it respects the center of mass conditions

pcom
1 + pcom

2 = (E1 + E2, 0, 0, 0),
pcom

3 + pcom
4 = (E3 + E4, 0, 0, 0).

(E.58)

Then the right-hand side of (E.52) and (E.53) will depend on

P com
1 ≡ (E1, 0, 0,p),
P com

2 ≡ (−E3,−p′ sin θ, 0,−p′ cos θ),
P com

3 ≡ (−E2, 0, 0,p),
P com

4 ≡ (E4,−p′ sin θ, 0,−p′ cos θ).

(E.59)

The latter obey

P com
1 − P com

3 = (E1 + E2, 0, 0, 0),
P com

4 − P com
2 = (E3 + E4, 0, 0, 0).

(E.60)

However, this is not the standard COM frame of the process 12 → 34 since it differs
from (E.58). We refer to (E.59) as the (23) crossed COM frame.

Once the left-hand sides of (E.52) and (E.53) are evaluated in the 12→ 34 COM frame
which respects (E.58) we do not get closed expressions since the right-hand side is not in
the 13̄→ 2̄4 COM frame but rather in the (23) crossed COM frame.57 We therefore need
an additional Lorentz transformation. It turns out to be simpler to bring the left-hand side
to the (23) crossed COM frame. This way upon (23) crossing we end up in the COM frame
for the 13̄→ 2̄4. This is illustrated in figure 12.

We now consider the Lorentz transformation Λ such that
pcom

1 = (E1, 0, 0,+p)
pcom

2 = (E2, 0, 0,−p)
pcom

3 = (E3,+p′ sin θ, 0,+p′ cos θ)
pcom

4 = (E4,−p′ sin θ, 0,−p′ cos θ)

=⇒

p̂com
1 = (Ê1, 0, 0,+p̂),
p̂com

2 = (Ê2,−p̂′ sin θ̂, 0,−p̂′ cos θ̂),
p̂com

3 = (Ê3, 0, 0, p̂),
p̂com

4 = (Ê4,−p̂′ sin θ̂, 0,−p̂′ cos θ̂),

(E.61)

where Êi, p̂, , p̂′ and θ̂ are the components of the 4-momenta in the new frame. The frame
described by the right-hand side (E.61) is precisely the (23) crossed frame (E.59) since

p̂com
1 − p̂com

3 = (Ê1 − Ê3, 0, 0, 0),
p̂com

4 − p̂com
2 = (Ê4 − Ê2, 0, 0, 0).

(E.62)

57Recall that we defined the amplitudes as functions of Mandelstam invariants in the COM frame.
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s channel COM frame

1
2

4

3
(i) Lorentz (complex)

12
3

4

(ii) Cross 2↔ 3

1
3

4

2

t channel COM frame

Figure 12. Schematic picture of (23) crossing for COM frame amplitudes.

Due to the results of appendix D.3 we have

E1 = s+m2
1−m2

2
2
√
s

, E2 = s−m2
1+m2

2
2
√
s

, E3 = s+m2
3−m2

4
2
√
s

, E4 = s−m2
3+m2

4
2
√
s

, (E.63)

p = L12(s)
2
√
s
, p′= L34(s)

2
√
s
. (E.64)

These are originally defined in the physical range of parameters of the 12 → 34 process,
where in the case of identical particles we have

12→ 34 : s ≥ 4m2, t ∈ [4m2 − s , 0]. (E.65)

Remember that s is regularized as s + iε, where ε > 0. We can unambiguously continue
all the formulas valid in the domain (E.65) to the physical domain of the 13̄→ 2̄4 process
which for identical particles read as

13̄→ 2̄4 : t ≥ 4m2, s ∈ [4m2 − t , 0]. (E.66)

The Lorentz transformation which allows for (E.61) and (E.62) has the following form

Λ = R2(ψ2)B3(χ)R2(ψ1), (E.67)

where R2 and B3 are finite rotations around the y-axis and boost in the z-direction. Their
form in the vector representation is given in appendix A.3. By requiring (E.62) we can
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determine the unknown parameters ψ1, ψ2 and χ. First, using the rotation R2(ψ1) we make
the x-components of pcom

1 and pcom
3 equal. This is achieved for example with

cosψ1 = p− p′ cos θ√
p2 + p′2 − 2pp′ cos θ

, sinψ1 = p′ sin θ√
p2 + p′2 − 2pp′ cos θ

. (E.68)

Second, using the boost B3(χ) along the z-axis we make the z-components of the rotated
vectors pcom

1 and pcom
3 equal. This is achieved with

coshχ= E1−E3√
(E1−E3)2−p2−p′2+2pp′ cosθ

= m2
1−m2

2−m2
3+m2

4
2
√
s
√
t

, (E.69)

sinhχ=−
√

p2+p′2−2pp′ cosθ√
(E1−E3)2−p2−p′2+2pp′ cosθ

=−

√
s−1(m2

1−m2
2−m2

3+m2
4)2−4t

2
√
t

.

Third, the rotation R2(ψ2) brings us to the desired frame. However, we will not need the
explicit expression for the angle ψ2. As a result we get the following expressions

Ê1 = m2
1−m2

3+t
2
√
t

, Ê2 = m2
4−m2

2−t
2
√
t

, Ê3 = m2
1−m2

3−t
2
√
t

, Ê4 = m2
4−m2

2+t
2
√
t

, (E.70)

p̂2 = (L13(t))2

4t , p̂′2 = (L24(t))2

4t . (E.71)

There were several choices of signs in (E.69). We picked one such that the energy Ê1
in (E.70) is non-negative in the physical domain (E.66) of the process 13̄→ 2̄4.

Assuming that we have determined the correct values of parameters ψ1, ψ2 and χ, we
can then straightforwardly compute the Wigner angles using the results of appendix A.4,
which read

cosαi = Ei Êi −m2
i coshχ

pi p̂i
, sinαi = mi sinhχ

p̂i
sin(θi + ψ1). (E.72)

Here the Wigner angles with the subscript i = 1, 2, 3, 4 correspond to Lorentz transformations
of pcom

i in (E.61). The spherical angles of the four-particles in (E.61) before the Lorentz
transformation read as

p1 = p2 = p, θ1 = 0, θ2 = π, p3 = p4 = p′, θ3 = θ, θ4 = θ + π. (E.73)

Using the transformation property (2.54) of scattering amplitudes we can then write

T12→34
λ3,λ4
λ1,λ2

(pcom
1 , pcom

2 , pcom
3 , pcom

4 ) =∑
λ′i

d
(j1)
λ′1λ1

(α1)d(j2)
λ′2λ2

(α2)d(j3)
λ′3λ3

(α3)d(j4)
λ′4λ4

(α4)T12→34
λ′3,λ

′
4

λ′1,λ
′
2
(p̂com

1 , p̂com
3 , p̂com

2 , p̂com
4 ). (E.74)

Analytic continuation 1. Having performed the Lorentz transformations (E.61) we
ended up with (E.70). These expressions contain an ambiguity on how to take a square
root. This is related to the choice of the analytic continuation discussed in section E. For
the choice (E.10) in the domain (E.66) we have

p̂ = +L13(t)
2
√
t
, p̂′ = +L24(t)

2
√
t
. (E.75)
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The spherical angles of the four-momenta p̂com
i after the Lorentz transformation read as

p̂1 = p̂3 = p̂, θ̂1 = θ̂3 = 0, p̂2 = p̂4 = p̂′, θ̂2 = θ̂4 = θ̂ + π. (E.76)

Using these, the boost (E.69) and (E.72) we obtain in full generality the cosines58

cosα1 = +(s+m2
1 −m2

2)(t+m2
1 −m2

3) + 2m2
1 ∆t

L12(s)L13(t) ,

cosα2 = −(s−m2
1 +m2

2)(t+m2
2 −m2

4) + 2m2
2 ∆t

L12(s)L24(t) ,

cosα3 = −(s+m2
3 −m2

4)(t−m2
1 +m2

3) + 2m2
3 ∆t

L34(s)L13(t) ,

cosα4 = +(s+m2
4 −m2

3)(t+m2
4 −m2

2) + 2m2
4 ∆t

L34(s)L24(t) ,

(E.77)

together with sines

sinα1 = − 2m1
√

Φ
L12(s)L13(t) , sinα2 = + 2m2

√
Φ

L12(s)L24(t) ,

sinα3 = − 2m3
√

Φ
L34(s)L13(t) , sinα4 = + 2m4

√
Φ

L34(s)L24(t) ,
(E.78)

where the objects Φ and ∆t were defined (D.26) and (D.27).
Using the crossing relation (E.52), where we set φ2 = π and φ3 = 0, and plugging it

into (E.74) we get

T12→34
λ3,λ4
λ1,λ2

(pcom
1 , pcom

2 , pcom
3 , pcom

4 ) = ε
(1)
23
∑
λ′i

eiπ(λ′2+λ′3)

d
(j1)
λ′1λ1

(α1)d(j2)
λ′2λ2

(α2)d(j3)
λ′3λ3

(α3)d(j4)
λ′4λ4

(α4)T13̄→2̄4
λ′2,λ

′
4

λ′1,λ
′
3
(p̂com

1 ,−p̂com
3 ,−p̂com

2 , p̂com
4 ). (E.79)

There is one last important subtlety we need to take into account. Consider the four-
momentum of particle 3 in the left- and right-hand side of (E.61). Before the Lorentz
transformation the spherical angles of the pcom

3 are (θ3, φ3) = (θ, 0) by definition of the
center of mass frame. After the Lorentz transformation the spherical angles of −p̂com

3 are
(θ̂3, φ̂3).59 They can take one of the two option

(θ̂, 0) or (θ̂, π) = (−θ̂, 0). (E.80)

It is hard to see which option is correct from the above arguments. To check this we pick
random values of s and t from the domain (E.66). We observe that θ̂ ∈ [−π, 0] which favors
the second option in (E.80) is correct. As a result the amplitude in the right-hand side

58The values computed here match precisely the ones of formula (13) in [24]. Notice that our process
12→ 34 corresponds to their ac→ bd. Thus, in order to see the equivalence one needs to identify the labels
as 1 = a, 2 = c, 3 = b and 4 = d.

59We discuss here −p̂com
3 because it is the quantity which enters the right-hand side of (E.79).
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of (E.79) depends on the −θ̂. In order to rewrite it in terms of +θ̂ we use (2.105) and the
following properties of the Wigner d-matrix

d
(j)
λ′λ(−ω) = (−1)λ′−λd(j)

λ′λ(+ω) (E.81)

which lead to

T
λ′2,λ

′
4

λ′1,λ
′
3

(S, T (S,−θ̂), U(S,−θ̂)) = eiπ(λ′1−λ′3−λ′2+λ′4)T
λ′2,λ

′
4

λ′1,λ
′
3

(S, T (S,+θ̂), U(S,+θ̂)). (E.82)

Plugging (E.82) in the right-hand side of (E.79) and using the definition (2.61) we arrive
at the final crossing equation

T12→34
λ3,λ4
λ1,λ2

(s, t, u) = ε
(1)
23
∑
λ′i

eiπ(λ′1+λ′4)

d
(j1)
λ′1λ1

(α1)d(j2)
λ′2λ2

(α2)d(j3)
λ′3λ3

(α3)d(j4)
λ′4λ4

(α4)T13̄→2̄4
λ′2,λ

′
4

λ′1,λ
′
3
(t, s, u). (E.83)

Focusing on the case of identical particles one can check that applying (E.83) twice gives
back the initial process 12 → 34. If we chose the other option in (E.80) the resulting
crossing equations would not have passed this consistency check.

Analytic continuation 2. For the choice of the analytic continuation (E.11) in the
domain (E.66) we have instead

p̂ = ±L13(t)
2
√
t
, p̂′ = ±L24(t)

2
√
t
, (E.84)

where the minus is taken for the crossed particles 2 and 3, and the plus is taken for the
unchanged particles 1 and 4. In other words after the Lorentz transformation (E.61) we get

p̂1 = +L13(t)
2
√
t
, p̂2 = −L24(t)

2
√
t
, p̂3 = −L13(t)

2
√
t
, p̂4 = +L24(t)

2
√
t
. (E.85)

Then the cosine and sine of Wigner angles will be given by (E.77) and (E.78) with an
additional overall sign in both sines and cosines for particle 2 and 3. Denoting the angles
for the second analytic continuation by α(2)

i in other words we see that60

α
(2)
1 = α1, α

(2)
2 = α2 + π, α

(2)
3 = α3 + π, α

(2)
4 = α4. (E.86)

Using the crossing relation (E.53) and plugging it into (E.74) we simply get

T12→34
λ3,λ4
λ1,λ2

(pcom
1 , pcom

2 , pcom
3 , pcom

4 ) = ε
(2)
23
∑
λ′i

d
(j1)
λ′1λ1

(α(2)
1 )d(j2)

λ′2λ2
(α(2)

2 )

d
(j3)
λ′3λ3

(α(2)
3 )d(j4)

λ′4λ4
(α(2)

4 )T13̄→2̄4
−λ′2,+λ′4
+λ′1,−λ′3

(p̂com
1 ,−p̂com

3 ,−p̂com
2 , p̂com

4 ). (E.87)

60Since Wigner d-matrices are 4π periodic we might make an overall sign mistake in the final crossing
equation by choosing (E.86).
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Plugging (E.82) and (E.86) in the right-hand side of (E.87) and using the definition (2.61)
we arrive at the final equation

T12→34
λ3,λ4
λ1,λ2

(s, t, u) = ε
(2)
23
∑
λ′i

eiπ(λ′1−λ′3−λ′2+λ′4)d
(j1)
λ′1λ1

(α1)d(j2)
λ′2λ2

(α2 + π)

d
(j3)
λ′3λ3

(α3 + π)d(j4)
λ′4λ4

(α4)T13̄→2̄4
−λ′2,+λ′4
+λ′1,−λ′3

(t, s, u). (E.88)

Renaming the dummy indices λ′2 → −λ′2 and λ′3 → −λ′3 and using the following property

eiπjd
(j)
λ′λ(ω) = eiπλ

′
d

(j)
−λ′λ(ω + π) (E.89)

it is straightforward to see that (E.88) is equivalent to (E.83) up to an overall phase.

Concluding remarks. Let us conclude by stressing that Wigner small d-matrices obey
the following property

d
(`)
λ′λ(ω + 2π) = e2πi `d

(`)
λ′λ(ω). (E.90)

This means that for bosonic particles Wigner small d-matrices are 2π periodic instead for
fermionic particles they are 4π periodic. As a result the knowledge of (E.77) and (E.78)
does not always fix the Wigner angles αi uniquely since the sine and cosine are 2π periodic
functions. This issue appears only for fermionic particles and causes an ambiguity in the
overall phase in the crossing equations. Extra input is needed to fix this ambiguity.

E.4.2 s− u crossing equation

We now consider the s− u crossing equation due to (2-4) permutation in the center of mass
frame. It is given by

T12→34
λ3,λ4
λ1,λ2

(s, t, u) = ε
(1)
24
∑
λ′i

eiπ(λ′1+λ′3)

d
(j1)
λ′1λ1

(β1)d(j2)
λ′2λ2

(β2)d(j3)
λ′3λ3

(β3)d(j4)
λ′4λ4

(β4)T14̄→32̄
λ′3,λ

′
2

λ′1,λ
′
4
(u, t, s). (E.91)

The cosines of Wigner angles read as61

cosβ1 = +(s+m2
1 −m2

2)(u+m2
1 −m2

4) + 2m2
1 ∆u

L12(s)L14(u) ,

cosβ2 = −(s+m2
2 −m2

1)(u+m2
2 −m2

3) + 2m2
2 ∆u

L12(s)L23(u) ,

cosβ3 = +(s+m2
3 −m2

4)(u+m2
3 −m2

2) + 2m2
3 ∆u

L34(s)L23(u) ,

cosβ4 = −(s+m2
4 −m2

3)(u+m2
4 −m2

1) + 2m2
4 ∆u

L34(s)L14(u) .

(E.92)

61The values computed here match precisely the ones of formula (26) in [24]. Notice that our process
12→ 34 corresponds to their ac→ bd. Thus, in order to see the equivalence one needs to identify the labels
as 1 = a, 2 = c, 3 = b and 4 = d.

– 95 –



J
H
E
P
0
1
(
2
0
2
2
)
0
6
0

The sines of Wigner angles read as

sin β1 = + 2m1
√

Φ
L12(s)L14(u) , sin β2 = − 2m2

√
Φ

L12(s)L23(u) ,

sin β3 = − 2m3
√

Φ
L34(s)L23(u) , sin β4 = + 2m4

√
Φ

L34(s)L14(u) ,
(E.93)

where the objects Φ and ∆u are defined in (D.26) and (D.27).

F Perturbative amplitudes

To complement the discussion of the main text we derive several perturbative results in
this section. The computations done in this section closely follow Part II of [60]. Let us
start by considering the following free Lagrangian density

LΨ
free ≡

i

2Ψγµ∂µΨ− 1
2mΨΨ, (F.1)

where Ψ is the four component Majorana field. It obeys the Majorana condition

Ψ = ΨTC, (F.2)

where C is the charge conjugation matrix defined as

C ≡


0 −1 0 0

+1 0 0 0
0 0 0 +1
0 0 −1 0

 . (F.3)

When acting on the vacuum Majorana field creates a neutral spin 1
2 particle. The intrinsic

parity, defined in (2.16), for such a particle can only be

η = ±i. (F.4)

This is the only option compatible with the Majorana condition (F.2).
In what follows we will compute scattering amplitudes of spin 1

2 particles in Fermi,
Yukawa and pseudo-Yukawa theories to the leading order. We will conclude with a
brief discussion on counting interaction terms in the effective Lagrangian using scattering
amplitudes.

F.1 Fermi theory

Consider the Fermi theory defined by the following Lagrangian density

L = LΨ
free + λ

8m2 (ΨΨ)(ΨΨ), (F.5)
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where λ is the coupling known as the Fermi constant. After performing a standard
computation one can obtain the following expressions for the scattering amplitudes of
Majorana particles to the leading order

T λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = λ

m2 ×
(
[ūλ3(p3)uλ1(p1)][ūλ4(p4)uλ2(p2)]

− [ūλ4(p4)uλ1(p1)][ūλ3(p3)uλ2(p2)] + [v̄λ2(p2)uλ1(p1)][ūλ3(p3)vλ4(p4)]
)
, (F.6)

where u and v are the spinor solutions of the Dirac equation. Their explicit form is given
in (3.67). By using the five tensor structures (3.65) and Fierz identities one can bring the
result (F.6), as expected from (2.56), to the following form

T λ3,λ4
λ1,λ2

(p1, p2, p3, p4) =
5∑
I=1

HI(s, t, u)× TIλ3,λ4
λ1,λ2

(p1, p2, p3, p4), (F.7)

where the functions HI (with I = 1, . . . , 5) denoted collectively by ~H read as

~H(s, t, u) = λ

m2 ×


1
0
0
1
−1

 . (F.8)

F.2 Yukawa theory

We consider now the Yukawa theory defined by the following Lagrangian density

L = LΨ
free −

1
2∂µϕ∂

µϕ− 1
2M

2ϕ2 + 1
2gϕΨΨ. (F.9)

Due to (F.4) the interaction is parity invariant only if the scalar field has the intrinsic parity

ηφ = +1. (F.10)

Again performing a standard computation one gets the following scattering amplitude of
neutral spin 1

2 particles to the leading order

T λ3,λ4
λ1,λ2

(p1,p2,p3,p4) = g2×
(

[ūλ3(p3)uλ1(p1)][ūλ4(p4)uλ2(p2)]
−t+M2 (F.11)

− [ūλ4(p4)uλ1(p1)][ūλ3(p3)uλ2(p2)]
−u+M2 + [v̄λ2(p2)uλ1(p1)][ūλ3(p3)vλ4(p4)]

−s+M2

)
.

By using the five tensor structures (3.65) one can bring the above expression to the
form (F.7), where

~H(s, t, u) = g2

2 ×


− 4
s−M2 + 1

t−M2 + 1
u−M2

1
t−M2 − 1

u−M2

− 1
t−M2 + 1

u−M2

− 1
t−M2 − 1

u−M2
1

t−M2 + 1
u−M2

 . (F.12)
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F.3 Pseudo-Yukawa theory

The pseudo-Yukawa theory is defined by the Lagrangian density

L = LΨ
free −

1
2∂µϕ̃∂

µϕ̃− 1
2M

2ϕ̃2 + 1
2 g̃ϕ̃Ψγ5Ψ. (F.13)

Due to (F.4) the interaction is parity invariant only if the scalar field has the intrinsic parity

ηφ̃ = −1, (F.14)

hence we refer to φ̃ as pseudo-scalar. As before we compute the scattering amplitude to the
leading order and obtain

T λ3,λ4
λ1,λ2

(p1,p2,p3,p4) = g̃2×
(

[ūλ3(p3)γ5uλ1(p1)][ūλ4(p4)γ5uλ2(p2)]
−t+M2 (F.15)

− [ūλ4(p4)γ5uλ1(p1)][ūλ3(p3)γ5uλ2(p2)]
−u+M2 + [v̄λ2(p2)γ5uλ1(p1)][ūλ3(p3)γ5vλ4(p4)]

−s+M2

)
.

Again by using the five tensor structures (3.65) one can bring the above expression to the
form (F.7), where

~H(s, t, u) = g̃2

2 ×



1
t−M2 + 1

u−M2

− 1
t−M2 + 1

u−M2

− 1
t−M2 + 1

u−M2
1

t−M2 + 1
u−M2

− 4
s−M2 + 1

t−M2 + 1
u−M2

 . (F.16)

F.4 Counting couplings at a given order in EFT

Let us consider the effective Lagrangian density of a single Majorana field Ψ describing the
two to two scattering process schematically denoted by ΨΨ→ ΨΨ. It reads

L = LΨ
free + L4 + L5 + L6 + . . . , (F.17)

where Ln with n = 4, 5, 6 are the dimension 4, 5 and 6 terms. The question we will
address now is how to count the number of linearly independent terms in such an effective
Lagrangian density at each order n.

We start with n = 4. It is well known that there is only one linearly independent
term (ΨΨ)(ΨΨ) as was used in (F.5). Naively, one can write however many more terms by
appropriately combining

ΨΨ, Ψγ5Ψ, ΨγµΨ, Ψγµγ5Ψ, ΨσµνΨ. (F.18)

Let us now rewrite the Majorana field in terms of a two component left-handed Weyl spinor
χ, one has

Ψ =
(
χα
χ†α̇

)
. (F.19)
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It is then straightforward to show that62

ΨγµΨ = χ†σµχ− χ†σµχ = 0, (F.20)
i

2ΨσµνΨ = χσµνχ− χ†σµνχ = 0. (F.21)

As a result at the n = 4 level we can write only four terms

L4 3
{

(ΨΨ)(ΨΨ), (Ψγ5Ψ)(Ψγ5Ψ), (Ψγµγ5Ψ)(Ψγµγ5Ψ), (ΨΨ)(Ψγ5Ψ)
}
. (F.22)

Rewriting these in terms of the Weyl spinor χ we see that they are either proportional to
each other or vanish

(ΨΨ)(ΨΨ) =
(
χχ+ χ†χ†

)2
= 2(χχ)(χ†χ†),

(Ψγ5Ψ)(Ψγ5Ψ) =
(
−χχ+ χ†χ†

)2
= −2(χχ)(χ†χ†),

(Ψγµγ5Ψ)(Ψγµγ5Ψ) =
(
−2χ†σµχ

) (
−2χ†σµχ

)
= 4(χχ)(χ†χ†),

(ΨΨ)(Ψγ5Ψ) =
(
χχ+ χ†χ†

) (
−χχ+ χ†χ†

)
= 0. (F.23)

If one is interested in the counting of independent terms only, instead of performing the
above algebra one could notice that L4 terms in the leading order generate the improved
scattering amplitudes ~H(s, t, u) at the crossing symmetric point (3.53). Crossing equations
severely restrict the form of the improved amplitudes at the crossing symmetric point,
see (3.55). The latter contains only one independent parameter. One concludes that there
should be only a single parameter in the effective Lagrangian density L4.

As another example let us consider the n = 6 part. One can write

L6 3
{

(Ψ∂2Ψ)(ΨΨ), (Ψ∂µΨ)(Ψ∂µΨ), (Ψ∂µ∂νΨ)(ΨγµγνΨ), . . .
}
. (F.24)

The improved amplitudes generated by such terms at the leading order will have the
following most general form

~H(s, t, u) = (s− 4m2/3)× ~A+ (t− 4m2/3)× ~B + (u− 4m2/3)× ~C, (F.25)

where ~A, ~B and ~C are some real constants. They are constrained by the crossing equa-
tions (3.27) and (3.28) which require (F.25) to take the following form

~H(s, t, u) = 1
m4


a× (s− 4m2/3)
b× (s+ 2t− 4m2)

1
3(a+ 2b)× (s+ 2t− 4m2)

b× (s− 4m2/3)
(a+ 4b)× (s− 4m2/3)

 , (F.26)

where a and b are the undetermined parameters. One concludes that there are only two
linearly independent terms in (F.24).

62Note that all the Weyl indices here have been contracted appropriately.
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G Bound state close to the two-particle threshold

In section 3.3 we studied the non-perturbative structure of the scattering amplitude of
neutral spin 1

2 particles with mass m in the presence of a scalar particle with mass M .
Such a particle can be interpreted as a bound state of two fermions. The structure of
the improved scattering amplitude is given by (3.59) and (3.60) for the parity even scalar
particle and by (3.61) and (3.62) for parity odd scalar particle. The structure of the center
of mass amplitudes is obtained by plugging these into (3.24).

In this appendix we study the behavior of the center of mass amplitudes in the presence
of bound states in the limit when M → 2m. We follow the analysis presented in appendix E
of [3]. The leading behavior of the COM amplitudes is obtained by taking the following limit

M = (2− ε)m, s = (2m+ Eε)2, (G.1)

where E ≥ 0 is kept fixed as we take the limit ε → 0. Applying it to (3.24) combined
with (3.59) and (3.61) in the leading order in ε we get

~Φscalar(E) = g2

4
E

E +m
×


−1
+1
0
0
0

 , ~Φpseudoscalar(E) = g̃2

4
m

E +m

1
ε
×


1
1
0
0
0

 . (G.2)

We see that the amplitude with the scalar particle is completely finite in this limit, however
the amplitude with the pseudoscalar particle diverges. The partial amplitudes were defined
in (3.44). Plugging there the expressions (G.2), replacing s by M2 and only then taking
the limit (G.1) we get

~Φ`=0
scalar(E) = ig2

64π
1

1 +m/E

√
ε×


−1
+1
0
0
0

 ,

~Φ`=0
pseudoscalar(E) = ig̃2

64π
1

1 + E/m

1√
ε
×


1
1
0
0
0

 .
(G.3)

Notice that poles coming from scalar particles can appear only in ` = 0 partial amplitudes
as is explicitly stated here.

According to (3.58) we can take combination of partial amplitude components to define
parity even Φ`

+(s) and parity odd Φ`
−(s) partial amplitudes. In terms of the objects (3.58)

unitarity takes a very simple form

|1 + iΦ`
+(s)| ≤ 1, |1 + iΦ`

−(s)| ≤ 1. (G.4)
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Using (G.3) in our context we can the write

scalar exchange: Φ`=0
+ (E) = − g2

32π
1

1 +m/E

√
ε, Φ`=0

− (E) = 0, (G.5)

pseudoscalar exchange: Φ`=0
− (E) = g̃2

32π
1

1 + E/m

1√
ε
, Φ`=0

+ (E) = 0. (G.6)

In the limit ε → 0 the partial amplitudes (G.5) vanish and we cannot say anything
interesting about the coupling g2. Instead (G.6) diverges. In order to have a partial
amplitudes which is able to satisfy unitarity (G.4) we need the scaling

g̃2 = a
√
ε, (G.7)

with a finite as ε → 0. It is also convenient to make a change of variables from E to z
variable which are related via

E = −m (z − 1)2

(z + 1)2 . (G.8)

This maps the cut in the E plane to the boundary of the unit disk in z. Plugging the above
into (G.6) we get

Φ`=0
− (z) = ia

128π
(1 + z)2

z
. (G.9)

Using it and taking the leading behavior in small z, the unitarity conditions (G.4) leads to∣∣∣∣ a

128π
1
z

∣∣∣∣ ≤ 1, (G.10)

which should be satisfied on the boundary of the disc described by z = eiφ, where φ ∈ [0, 2π].
It is then straightforward to see that the maximally allowed value of a which obeys the
unitarity condition (G.10) is

a = 128π. (G.11)

Plugging it into (G.7) and expressing ε in terms of m and M from (G.1) we get the analytic
upper bound

g̃2 ≤ 128π

√
2m−M

m
. (G.12)

H General spin tensor structures

We have introduced the notion of tensor structures in (2.56). Even though one can completely
avoid talking about them, it is sometimes beneficial to know a basis of tensor structures
explicitly. In the case of Majorana fermions the detailed discussion of tensor structures
was given in section 3.4. In this appendix we will briefly explain how to construct tensor
structures for amplitudes with generic spin. There are several possible ways of doing this.
One way is to treat particles with generic spin as multi-spinors simply described by tensor
products of u and v objects defined in section 3.4. This approach was employed in [25].
Here we describe another approach used in [61]. (In the massless case it reduces to the
well known spinor-helicity formalism, see for example [62].) We chose the latter because it
closely resembles various approaches used in the CFT literature [26, 63–67].
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Index free formalism. In section 2.1, more precisely in equation (2.2), we have chosen
the basis of states to be |c, ~p; `, λ〉, where λ = −`, . . . ,+` are the helicity labels. It is
convenient to move to another basis where instead of helicities λ we use a symmetrized set
of indices

(a1 . . . a2`), (H.1)

where a1, a2, . . . are the indices in the fundamental representation of the SU(2) Little
group.63 In other words we can have two equivalent bases

|c, ~p; `, λ〉 ↔ |c, ~p; `〉(a1...a2`). (H.2)

It is then extremely convenient to introduce the index free notation by contracting the
states with a complex vector (spinor polarization)

sa =
(
ξ

η

)
, (H.3)

where ξ and η are simply the components of the spinor polarization. With the help of (H.3)
one can define the Little group index-free states

|c, ~p; `〉(s) ≡ |c, ~p; `〉(a1...a2`) × sa1 . . . sa2` . (H.4)

The relation between the two bases (H.2) can be determined by requiring

|c, ~p; `〉(s) =
∑̀
λ=−`

|c, ~p; `, λ〉 × ξλη`−λ. (H.5)

We have defined in (2.47) the interacting part of the scattering amplitude of four
particles. In index free notation it reads

(2π)4δ(4)(pµ1 + pµ2 − p
µ
3 − p

µ
4 )× T12→34(pi, si) ≡(

(s3)〈m3, ~p3; `3| ⊗ (s4)〈m4, ~p4; `4|
)
T
(
|m1, ~p1; `1〉(s1)⊗ |m2, ~p2; `2〉(s2)

)
. (H.6)

Analogously to (2.56) we can perform the decomposition of the index free interacting
scattering amplitudes

T12→34(pi, si) =
(2j1+1)...(2j4+1)∑

I=1
TI(s, t, u) TI(pi, si), (H.7)

where TI(pi, si) are the index-free tensor structures.

63Here we simply use the fact that any generic irreducible representation j of the SU(2) can be represented
as ` =

(
1
2 ⊗ . . .⊗

1
2

)
sym

.
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Auxiliary objects. The index-free tensor structures appearing in (H.7) are kinematic
objects constructed from the 4-momenta pµi and the spinor polarizations sai . The former
have Lorentz indices and the latter have Little group indices. In order to contract them we
need to somehow introduce an auxiliary object which has both Lorentz and Little group
indices and can be an intermediary in the contraction of the two. In what follows we will
define such an auxiliary object.

We use the two-component spinor notation of Wess and Bagger [68]. Given a 4-
momentum pµ one can define the standard SL(2,C) matrices using (A.101),

pαα̇ ≡ p · σαα̇, p̄β̇β ≡ p · σ̄β̇β . (H.8)

The indices are raised and lowered by the ε-symbols εαβ and εα̇β̇, where ε12 = −ε12 = +1.
The representation (H.8) leads to

p2 = − det p = − det p̄, (H.9)

pi · pj = −1
2 tr [pip̄j ]. (H.10)

One can introduce the following two objects which have one Lorentz index β or β̇ and one
Little group index b = 1, 2 (in the fundamental representation)64

hβ
b, h̄b

β̇ (H.11)

related by hermitian conjugation(
hβ

b
)†

= h̄bβ̇ ,
(
h̄b
β̇
)†

= hβb. (H.12)

The Little group indices are raised and lowered by the ε-symbol εab = −εab, where ε12 = +1.
By taking these objects and contracting their Little group indices one can represent the
SL(2,C) matrices as

pαβ̇ = hα
bh̄b β̇ , p̄α̇β = hβbh̄b

α̇. (H.13)

By definition the Little group transformations leave (H.9) invariant. Using the representa-
tion (H.13) and this invariance one can compute the actual expressions of h and h̄. They read

matrix hβb = matrix h̄bβ̇ = 1√
2
√
m+ p0

(
m+ p0 + p3 p1 − i p2

p1 + i p2 m+ p0 − p3

)
. (H.14)

Tensor invariants. We can build tensor structures in (H.7) as products of elementary
tensor invariants. These tensor invariants are in turn built out of

piαβ̇ , hiβ
b, h̄ib

β̇ , sbi (H.15)

by fully contracting their indices with all possible invariant objects such as the Kronecker
and the Levi-Civita symbols. Notice also that one can pair hi and sj by contracting
their Little group indices only if i = j because each particle has its own little group. For
transparency we indicate this contraction by “·”. Below we make a summary of all the
possible invariants.

64These “spinor-helicity” variables are denoted by λ and λ̃ in [61].

– 103 –



J
H
E
P
0
1
(
2
0
2
2
)
0
6
0

Type I consists of invariant objects with an even number of 4-momenta

〈iiijjj〉 ≡ si · hαi δβα hj β · sj ,
〈iiimnjjj〉 ≡ si · hαi α(pmp̄n)β hj β · sj ,
〈iiimnprjjj〉 ≡ si · hαi α(pmp̄nppp̄r)β hj β · sj ,

. . .

(H.16)

Type I* consists of structures related by complex conjugation to the ones of type I

[iiijjj] ≡ si · h̄i α̇ δα̇β̇ h̄
β̇
j · sj ,

[iiimnjjj] ≡ si · h̄i α̇ α̇(p̄mpn)β̇ h̄
β̇
j · sj ,

[iiimnprjjj] ≡ si · h̄i α̇ α̇(p̄mpnp̄ppr)β̇ h̄
β̇
j · sj ,

. . .

(H.17)

Type II consists of invariant objects with an odd number of 4-momenta

〈iiimjjj] ≡ si · hαi pm αβ̇ h̄
β̇
j · sj ,

〈iiimnpjjj] ≡ si · hαi α(pmp̄npp)β̇ h̄
β̇
j · sj ,

. . .

(H.18)

Type II* consists of structures related by complex conjugation to the ones of type II

[iiimjjj〉 ≡ si · h̄i α̇ p̄α̇βm hj β · sj ,
[iiimnpjjj〉 ≡ si · h̄i α̇ α̇(p̄mpnp̄p)β hj β · sj ,

. . .

(H.19)

Type III and III* consists of invariant objects involving the εµνρσ or εµνρσ symbols

〈iiimnpjjj] ≡ si · hαi (pmµ pn ν pp ρε
µνρκσκ)αβ̇ h̄

β̇
j · sj ,

[iiimnpjjj〉 ≡ si · h̄i α̇ (pmµ pn ν pp ρε
µνρκσ̄κ)α̇β hj β · sj .

(H.20)

Basis of tensor structures. There are a large number of relations among tensor invari-
ants. For instance due to the following properties of σ-matrices

σµσ̄νσρ = −ηµνσρ + ηµρσν − ηνρσµ − iεµνρκσκ,
σ̄µσν σ̄ρ = −ηµν σ̄ρ + ηµρσ̄ν − ηνρσ̄µ + iεµνρκσ̄κ,

(H.21)

see for example [32] for details, any invariant with many products of 4-momenta (pm p̄n pp . . .)
can be reduced to the ones involving at most two 4-momenta. As a result the most generic
tensor structure can be represented by

TI = 〈iiijjj〉Aij [iiijjj]Bij 〈iiimjjj]Cij 〈iiimnjjj〉Dij [iiimnjjj]Eij 〈iiimnpjjj]Fij , (H.22)
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where A, B, C D, E and F are exponents fixed by the requirement65,66

TI ∝ s2`1
1 s2`2

2 s2`3
3 s2`4

4 . (H.23)

The latter is simply the statement that the amplitude must be a polynomial in each si with
the degree fixed by the spin of the ith particle. This directly follows from the definition of
the index-free states (H.4).

Constructing all the possible structures according to (H.22) still gives a set of linearly
dependent objects. Eliminating all the dependent structures and forming the basis is the
most challenging part of the formalism. It can be done for particles with low spin, but it
does not seem to be a viable procedure for higher spin particles. Below we simply give a
taste of what kind of relations one could expect.

First, one can show that

〈iiimjjj] = +[jjjmiii〉, 〈iiimnpjjj] = +[jjjmnpiii〉. (H.24)

This is the reason why type II* and type III* invariants have not being included in (H.22).
Second, due to

σµσ̄ν + σν σ̄µ = 2ηµν (H.25)

one can show that

〈iiijjj〉 = −〈jjjiii〉, 〈iiimnjjj〉 = −〈jjjnmiii〉,
[iiijjj] = −[jjjiii], [iiimnjjj] = −[jjjnmiii]

(H.26)

together with
〈iiimnjjj〉+ 〈iiinmjjj〉 = 2 (km · kn) 〈iiijjj〉,
[iiimnjjj] + [iiinmjjj] = 2 (km · kn) [iiijjj].

(H.27)

These relations enforce for instance that type I and I* structures must vanish unless iii 6= jjj

and that without loss of generality one can choose m < n. Third, one can write a number
of Schouten identities. Some of them are

〈iiijjj〉〈kkklll〉+ 〈iiikkk〉〈jjjlll〉+ 〈iiilll〉〈jjjkkk〉 = 0,
〈iiijjj〉〈kkklmmm] + 〈iiikkk〉〈jjjlmmm] + 〈jjjlll〉〈iiilmmm] = 0,

〈iiijkkk]〈lllmnnn] + 〈iiilll〉[kkkjmnnn] + 〈llljkkk]〈iiimnnn] = 0.
(H.28)

Finally, one should take into account the conservation of 4-momenta

pµ1 + pµ2 = pµ3 + pµ4 (H.29)

and its consequences.
65Notice that the exponent F is either 0 or 1 since any pair of ε-symbols can be written in terms of

the metric.
66Notice also that `1 + `2 + `3 + `4 must be even otherwise one will never be able to fully contract all the

Little group indices and form tensor invariants. This is a standard selection rule which comes out naturally
from this formalism.
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Partial amplitudes. For completeness let us mention that using tensor structures one
can also compute partial amplitudes.

In (2.101) we have shown how to decompose the scattering amplitudes into partial
amplitudes by injecting a complete set of states. The main objects in this decomposition to
be determined is the following matrix element

〈κ1, κ2|c, ~p, `, λ〉, (H.30)

where |κ1〉 and |κ2〉 are the 1PS and |c, ~p, `, λ〉 is a generic irrep with spin ` and helicity λ.
The objects (H.30) are the Clebsch-Gordan coefficients of the decomposition. They were
computed in appendix A.2.4 in full generality using group-theoretic arguments. In the
COM frame they are basically the Wigner d-matrices.

We can repeat this procedure in the index-free formalism by injecting a complete set of
states in the following form

I =
∫

d4p

(2π)4 θ(p
0)
∑
γ

∑
`

|c, ~p; `; γ〉(s)×
↔
Ds × (s)〈c, ~p; `; γ|, (H.31)

where γ are all the additional indices characterizing the state and
↔
Ds is the “gluing” operator

defined as
↔
Ds ≡

1
(2`)!2 (

←
∂
a1

s . . .
←
∂
a2`

s )(
→
∂ s, a1 . . .

→
∂ s, a2`). (H.32)

It simply contracts all the Little group indices of two states. The Clebsch-Gordon coeffi-
cient (H.30) then becomes

C`(s1, s2, s) ≡
(
(s1)〈m1, ~p1; `1| ⊗ (s2)〈m2, ~p2; `2|

)
|c, ~p, `〉(s3). (H.33)

One can explicitly construct tensor structures for (H.33). The partial amplitudes is given
then by gluing left- and right-hand sides of the amplitudes after the injection of the
identity (H.31), namely

C`(s1, s2, s)×
↔
Ds × C`(s3, s4, s). (H.34)

Here we keep the expressions slightly schematic by dropping the dependence of the 4-
momenta and focusing only on the spin dependence. The resulting expression (H.34) should
encode the Wigner d-matrix. For instance we have explicitly checked that for the scalar
particles (when there is no dependence on s1, s2, s3 and s4) the expression (H.34) is
proportional to the Legendre polynomial P`. For a similar discussion see [69].
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