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Spinning strings in AdS5ÃS5: New integrable system relations
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A general class of rotating closed string solutions in AdS53S5 is shown to be described by a Neumann-
Rosochatius one-dimensional integrable system. The latter represents an oscillator on a sphere or a hyperboloid
with an additional ‘‘centrifugal’’ potential. We expect that the reduction of the AdS53S5 sigma model to the
Neumann-Rosochatius system should have further generalizations and should be useful for uncovering new
relations between integrable structures on two sides of the AdS/conformal field theory~CFT! duality. We find,
in particular, new circular rotating string solutions with two AdS5 and three S5 spins. As in other recently
discussed examples, the leading large-spin correction to the classical energy turns out to be proportional to the
square of the string tension or the ’t Hooft couplingl, suggesting that it can be matched onto the one-loop
anomalous dimensions of the corresponding ‘‘long’’ operators on the super-Yang-Mills side of the AdS/CFT
duality.
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I. INTRODUCTION AND SUMMARY

Integrability of the spin chain Hamiltonian representi
the planar one-loop dilatation operator ofN54 super Yang-
Mills theory @1–3# has recently made possible, following
proposal in@4,5#, a number of remarkable and striking tes
of AdS conformal field theory~CFT! duality @6–11#. This
generalizes the near Bogomol’nyi-Prasad-Sommerfi
~BPS! correspondence of@12# to non-BPS cases.

The AdS/CFT correspondence predicts that the energ
a given physical string state~in global AdS5 coordinates!
should match the scaling dimension of the correspond
operator in gauge theory. While the full energy spectrum
the quantum string in AdS53S5 is hard to determine, som
of its parts can be probed by considering the semiclass
string configurations@13,14#. In certain cases with large
quantum numbers~such as angular momentaJi in S5), one
finds that the energy of the string solution is given by
classical expression, i.e., quantum sigma model correct
appear to be suppressed@5#.

On the gauge theory side, the~one-loop! scaling dimen-
sions of gauge-invariant composite operators can be fo
by solving the eigenvalue problem for the Hamiltonian of
associated spin chain. This is achieved by means of algeb
Bethe ansatz techniques. In general, the Bethe ansatz lea
a complicated system of algebraic equations. However, in
thermodynamic limit~of large quantum numbers or ‘‘long’
operators! the algebraic equations turn into integral ones a
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with some natural assumptions about the density distribu
of Bethe roots the explicit solutions can be found. Rema
ably, the Bethe solutions obtained in the thermodynam
limit turn out to be related to semiclassical string configu
tions in a precise way.

In general, one can classify strings moving on S5 with
three ‘‘R charges’’@SO~6! spins# defining the highest weigh
state (J1 ,J2 ,J3) of an SO~6! representation. For a simple
case of two nonvanishing spins (J1 ,J2) the string evolution
equations are solved in terms of elliptic functions; the cor
sponding string configurations can have folded@7# or circular
@4,8# profiles, giving rise to two different expressions for th
space-time energy. On the gauge theory side, the rele
Bethe solutions and the associated scaling dimensions
been found in@6,9#, and shown to agree with their strin
counterparts for both folded@6,7,9# and circular@6,8,9# type
configurations. Other surprising examples of a perfect ag
ment between string energies and scaling dimensions
gauge theory operators include@11# a simple circular string
solution with three spins@4# and a pulsating string solution
@15#.

Even more remarkably, in the recent work@10# the entire
Bethe resolvent~corresponding either to the circular or to th
folded string type thermodynamic density distributions! was
reproduced from the classical string sigma model. T
agreement goes beyond comparing just the string ener
with the scaling dimensions: it involves matching theinfinite
towers of commuting conserved charges on the gauge
string sides of the AdS/CFT correspondence. In fact, the
the resolvent is nothing else but a generating function
local conserved commuting charges in string theory prope
restricted to the leading@O(l) or ‘‘one-loop’’# level.

The matching of higher local commuting string charg

,

,
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ARUTYUNOV, RUSSO, AND TSEYTLIN PHYSICAL REVIEW D69, 086009 ~2004!
@10#1 and recent advances in study of integrability of t
dilatation operator at higher loops inN54 super Yang-Mills
theory @3,30# ~and in its S3 reduced matrix model versio
@31#! provide strong support that the same integrable str
ture should be underlying the two sides of the duality.

Still, our understanding of the gauge/string duality, ev
in the ‘‘semiclassical’’ ~large quantum number! sector of
states, is far from complete. More detailed analysis of diff
ent physical configurations in both gauge and string theo
is required to elucidate how the duality works. While rece
papers@9–11,27# shed some light on how the integrability o
the AdS53S5 string theory is related to that of the plan
SYM theory, many details are missing.

In view of the general problem of establishing correspo
dence between various integrable subsectors of string
gauge theories it is of interest to obtain a systematic pic
of reductions of the two-dimensional integrable O~4,2!
3O~6! sigma model describing propagation of the classi
string in the AdS53S5 space-time to various one
dimensional integrable models. In@8# we have shown tha
for a natural rotating string ansatz the AdS53S5 string
sigma model reduces to an integrable Neumann model@32#
describing an oscillator on a 2-sphere.

The aim of the present paper is to make further progr
in this direction. We will consider a more general integrab
subsector in string theory which arises from a rotating str
ansatz extending the one in@8#. In this case the 2D sigma
model reduces to the Neumann-Rosochatius~NR! @33# inte-
grable system describing a particle on a sphere in
( i(wi

2r i
21v i

2r i
22) potential~in the previous case@8# we had

v i50). While, as in@8#, the general solutions of this syste
are given by theta-functions on a genus 2 hyperelliptic cu
its new feature is the existence of a very simple new clas
solutions corresponding to circular strings with constant ra
r i(s)5const. These solutions generalize the ones of@4#
~which had two equal spins! to the case when all 213
AdS53S5 spins may be different. The corresponding ene
has a very simple dependence on the spins and winding n
bers. Understanding its SYM scaling dimension counterp
should help, in particular, to clarify the issue of how t
winding numbers of circular strings are reflected in the Be
root distributions~cf. @6,8,11#!.

Let us now summarize the contents of the paper. In S
II A we shall present the generalized rotating string ansatz
a closed string fixed at the origin of AdS5 and rotating in 3
orthogonal planes in S5 and explain the reduction of the O~6!
invariant sigma model to the NR system for the 3 rad
directions of the string. In Sec. II B we will list the corre
sponding integrals of motion and the Virasoro constrai
allowing one to express the AdS5 energy as a function of the

1The integrability of the O~n! invariant sigma models was dis
cussed, e.g., in@16–18#. Classical solutions for strings in consta
curvature spaces were studied in@19–22# and refs. there~see also
@23,24# for other similar solutions in AdS53S5 and its generaliza-
tions!. More recent AdS/CFT motivated discussions concerning
tegrability, higher local and nonlocal charges and Yangian struct
of related sigma models are in@25–29#.
08600
c-

n

-
s
t

-
nd
re

l

s

g

e

e
of
ii

y
m-
rt

e

c.
r

l

s

three S5 spins. In Sec. II C we shall mention that a ‘‘2D
dual’’ version of the rotating string ansatz~with roles of t
ands interchanged! describes a general pulsating string s
lution with radii oscillating in time which is thus also de
scribed by an NR integrable model~some special cases o
pulsating solutions were previously discussed
@11,13,15,21,34#!. In Sec. II D we shall clarify how the inte
grability of the NR system follows from its relation to th
integrable O~6! sigma model by deriving its Lax represent
tion. We shall also explain how higher commuting charg
can be computed from the sigma-model monodromy fu
tion.

In Sec. III we shall study a very simple special class
NR solutions on S5 which has a similarity with rotating
string solutions in flat space and generalizes the circu
2-spin and 3-spin rotating string solutions in@4#. As will be
shown in Sec. III B, the corresponding energy has a reg
large-spin expansion inl/J2. In Sec. III C we shall find the
spectrum of quadratic fluctuations near these circular s
tions ~extending and simplifying the discussion in@5# for the
special solutions of@4#!. We shall determine the stability
conditions and mention some straightforward application

In Sec. IV we shall study more general solutions of t
NR system with a nontrivial dependence on the world-sh
coordinates. We shall consider, in particular, a two-sp
solution which is expressed in terms of the elliptic function
The resulting system of equations relating energy and t
spins turns out to be more involved that in the previou
discussed elliptic~sine-Gordon! limit of the Neumann model
@7–9#, but we expect that it might be possible to direct
match an appropriate ‘‘one-loop’’ limit of this system on
the corresponding Bethe ansatz equations on the SYM
~as was done in the Neumann model case in@6,9#!.

Finally, in Sec. V we shall generalize the discussion
Secs. II and III to the case when the string can rotate in b
AdS5 and S5. Here we get a combination of the two N
systems~an AdS2 and S2 one! coupled by the Virasoro con
straints. We again consider the simplest solution with c
stant radii parametrized by 213 spins (Sa ,Ji) and 213
winding numbers. If the string rotates only in AdS5 the cor-
responding energy does not have a regular large-spin ex
sion ~Sec. V A!, but it does if there is at least one large sp
in S5 ~Sec. V B!. For example, the simplest (S,J) string so-
lution which is a circle in both AdS5 and S5 is stable, and it
should be possible to match the leading largeJ correction to
its energy with a particular anomalous dimension on
SYM side by identifying the corresponding distribution
Bethe roots in the associated XXX21/2 spin chain@2# ~as was
done for other folded and circular (S,J) string solutions in
@9#!.

II. REDUCTION OF O „6… SIGMA-MODEL
TO THE NEUMANN-ROSOCHATIUS SYSTEM

A. Generalized rotating string ansatz

Here we shall generalize the rotation ansatz in@8# which
allowed us to reduce the classical string sigm

-
es
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SPINNING STRINGS IN AdS53S5: NEW INTEGRABLE SYSTEM . . . PHYSICAL REVIEW D69, 086009 ~2004!
model equations to those of a 1D integrable model. That
lead to new interesting simple classes of rotating string
lutions.

Let us consider the bosonic part of the classical clo
string propagating in the AdS53S5 space-time. The world-
sheet action in the conformal gauge is

I 52
Al

4pE dtds@Gmn
(AdS5)

~x!]axm]axn

1Gpq
(S5)~y!]ayp]ayq#,

Al[
R2

a8
. ~2.1!

It is convenient to represent Eq.~2.1! as an action for the
O(6)3SO(4,2) sigma-model~we follow the notation of@4#!

I 5
Al

2pE dtds~LS1LAdS!, ~2.2!

where

LS52
1

2
]aXM]aXM1

1

2
L~XMXM21!, ~2.3!

LAdS52
1

2
hMN]aYM]aYN

1
1

2
L̃~hMNYMYN11!. ~2.4!

Here XM , M51, . . . ,6 andYM , M50, . . . ,5 are the em-
bedding coordinates ofR6 with the Euclidean metric inLS
and with hMN5(21,11,11,11,11,21) in LAdS respec-
tively. L and L̃ are the Lagrange multipliers. The actio
~2.2! is to be supplemented with the usual conformal gau
constraints. The embedding coordinates of AdS53S5 can be
parametrized in terms of angles of AdS5 and S5 as in @4,8#

X11 iX25sing cosceiw1,

X31 iX45sing sinceiw2,

X51 iX65cosgeiw3, ~2.5!

Y11 iY25sinhr sinueif1,

Y31 iY45sinhr cosueif2,

Y51 iY05coshreit . ~2.6!

In this section we will be discussing the case when the st
is located at the center of AdS5 and rotating in S5, i.e. is
trivially embedded in AdS5 asY51 iY05eit , with the global
time of AdS5 being t5kt and withY1 , . . . ,Y450.

The S5 metric has three commuting translational isom
tries in w i in Eqs.~2.5! which give rise to three global com
08600
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d
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muting integrals of motion~spins! Ji . Since we are inter-
ested in a periodic motion withJi5” 0 it is natural to choose
the following ansatz forXM :

X1[X11 iX25z1~s!eiw1t,

X2[X31 iX45z2~s!eiw2t,

X3[X51 iX65z3~s!eiw3t. ~2.7!

In contrast to our earlier work@8# here we shall not assum
that zi are real, i.e. in general

zk5r k~s!eiak(s), k51,2,3. ~2.8!

In order to find the relevant closed string solutions we ne
also to impose the periodicity conditions onXM or zi :

r i~s12p!5r i~s!,

a i~s12p!5a i12pmi ,

mi50,61,62, . . . .
~2.9!

Thusr k are real periodic functions ofs, while real phasesak
are periodic only up to 2pmk shift.

Comparing Eq.~2.7! to Eq.~2.5! we conclude that for this
general ‘‘complex’’ ansatz the anglesw i depend on botht
ands,

w i5wit1a i~s!. ~2.10!

The integersmi that will label different solutions thus play
the role of ‘‘winding numbers’’ in the linear isometry direc
tions w i .

As a consequence ofXM
2 51, r k must lie on a two-sphere

(
i 51

3

r i
251. ~2.11!

The space-time energyE of the string@related to the genera
tor of a compact SO~2! ‘‘05’’ subgroup of SO~4,2!# here is
simply

E5Alk[AlE. ~2.12!

The spinsJ15J12, J25J34, J35J56 forming a Cartan sub-
algebra of SO~6! are

Ji5AlwiE
0

2pds

2p
r i

2~s![AlJi , ~2.13!

and thus satisfy

(
i 51

3 Ji

wi
51. ~2.14!

As discussed in@4#, to have a consistent semiclassical stri
state interpretation of these configurations one should l
for solutions for which all other components of the SO~6!
9-3
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ARUTYUNOV, RUSSO, AND TSEYTLIN PHYSICAL REVIEW D69, 086009 ~2004!
angular momentum tensorJMN vanish. This is automatically
the case if allwi are different@8#, but are to be checked in
other cases. The nonvanishing Cartan compone
(J1 ,J2 ,J3) would specify in quantum theory the highe
weight state of the SO~6! irrep. with the Dynkin labels@J2
2J3 ,J12J2 ,J21J3# @these are the Dynkin labels describin
the SO~6! representation content of the corresponding co
posite operator in the dual gauge theory#.

The Virasoro constraints that need to be imposed o
sigma model solution of Eq.~2.3! are ~dot and prime are
derivatives overt ands)

k25ẊMẊM1XM8 XM8 5(
i 51

3

~r i8
21r i

2a i8
21wi

2r i
2!,

~2.15!

05ẊMXM8 52(
i 51

3

wir i
2a i8 . ~2.16!

B. Integrals of motion and constraints

In general, starting with

X i~t,s!5r i~t,s!eiw i (t,s) ~2.17!

we get from Eq.~2.3! the Lagrangian

LS5
1

2 (
i 51

3

@ ṙ i
22r i8

21r i
2~ ẇ i

22w i8
2!#

1
1

2
LS (

i 51

3

r i
221D . ~2.18!

One can easily check that the ansatz

r i5r i~s!, w i5wit1a i~s! ~2.19!

is indeed consistent with the equations of motion.
Substituting the ansatz~2.19! or Eq. ~2.7! into the SO~6!

Lagrangian~2.3! we get the following effective 1D ‘‘me-
chanical’’ system for a particle on a 5D sphere~we change
the sign ofL since nows plays the role of 1D time!

L5
1

2 (
i 51

3

~zi8z8 i* 2wi
2zizi* !2

1

2
LS (

i 51

3

zizi* 21D .

~2.20!

If we setzk5xk1 ixk13, this is recognized as a special ca
of the standard integrablen56 Neumann model~harmonic
oscillator on a 5-sphere! where three of the six frequencie
are equal to the other three. This relation implies integrabi
of the ~2.20! model, i.e. determines integrals of motion.

Equivalently, in the ‘‘planar’’ coordinates~2.8! we get
from Eq. ~2.18!

L5
1

2 (
i 51

3

~r i8
21r i

2a i8
22wi

2r i
2!2

1

2
LS (

i 51

3

r i
221D .

~2.21!
08600
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Equations for the anglesa i can be integrated once

a i85
v i

r i
2 , v i5const, ~2.22!

wherev i are three integrals of motion. Eliminatinga i8 with
the help of Eq.~2.22! we note that the equations of motio
for the remaining three real radial coordinatesr i can be de-
rived from the following effective Lagrangian:

L5
1

2
(
i 51

3 S r i8
22wi

2r i
22

v i
2

r i
2 D 2

1

2
LS (

i 51

3

r i
221D .

~2.23!

When the new integration constantsv i vanish, i.e.a i are
constant, we go back to the previously studied@8# example
of then53 Neumann model. For nonzerov i the Lagrangian
~2.23! describes the so called Neumann-Rosochatius~NR!
integrable system~see, e.g.,@33#!. Its integrability follows
already from the fact that it is a special case of t
6-dimensional Neumann system.

Finding the integrals of the ‘‘radial’’ system~2.23! is
straightforward using the relation to the Neumann model:
n56 Neumann system with coordinatesxM has, in general,
the following six integrals of motion:

FM5xM
2 1 (

MÞN

6
~xMxN8 2xNxM8 !2

wM
2 2wN

2
,

(
M51

6

FM51. ~2.24!

However, in our case there are equalities between frequ
cies (w15w4 ,w25w5 ,w35w6) so one should be careful t
avoid singularities. The integrals of the Neuman
Rosochatius model are obtained as the following combi
tions I i5Fi1Fi 13 ( i 51,2,3) in which singular terms can
cel. Explicitly, we find@using Eq.~2.22!#

I i5r i
21(

j 5” i

3 1

wi
22wj

2 F ~r i r j82r j r i8!21
v i

2

r i
2 r j

21
v j

2

r j
2 r i

2G ,

(
i 51

3

I i51. ~2.25!

This gives us two independent integrals of motion~which we
shall denoteba) in addition to the three other integrals (v i)
we found already.

The constraints~2.15!, ~2.16! can be written as

k25(
i 51

3 S r i8
21wi

2r i
21

v i
2

r i
2 D , ~2.26!
9-4
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(
i 51

3

wiv i50. ~2.27!

As a consequence of Eq.~2.27! only two of the three inte-
grals of motionv i are independent ofwi .

As discussed in@8#, the periodicity condition in Eq.~2.9!
on r i implies that the integrals of motionba can be traded for
two integersna labeling different types of solutions. Impos
ing the periodicity condition in Eq.~2.9! on a i gives, in view
of Eq. ~2.22!, the following constraint:

v iE
0

2p ds

r i
2~s!

52pmi . ~2.28!

It implies thatv i should be expressible in terms of the int
gersmi , frequencieswi and the ‘‘radial’’ integralsba or na .2

The moduli space of solutions will thus be parametrized
(w1 ,w2 ,w3 ;n1 ,n2 ;m1 ,m2 ,m3). The constraint~2.27! will
give one relation between these 31213 parameters. As a
consequence, tradingwi for the angular momenta, the energ
of the solutions as determined by Eqs.~2.12!,~2.26! will be a
function of the SO~6! spins and the ‘‘topological’’ numbers
na andmi

E5E~Ji ;na ,mi !, E5AlES Ji

Al
;na ,mi D . ~2.29!

The constraint~2.27! will provide one additional relation be
tweenJi andna ,mi .

In the following sections of this paper we shall consid
several special solutions of the above system~2.21!. We shall
start in Sec. III with a discussion of the simplest possi
solution with constantr i ~for which na50) and which rep-
resent an interesting new class of circular 3-spin soluti
generalizing the circular solution of@4#.

C. ‘‘2D-dual’’ NR system for pulsating solutions

It is of interest to consider a ‘‘2D-dual’’ version of th
rotation ansatz~2.7!,~2.8! where t and s are interchanged
~but still keeping the AdS5 time ast5kt), i.e.

X i5zi~t!eimis5r i~t!eia i (t)1 imis,

(
i 51

3

r i
2~t!51. ~2.30!

In this case the radial directions depend ont instead ofs
and the ‘‘frequencies’’mi must take integer values in order
satisfy the closed string periodicity condition. In general,
order to have the zero non-Cartan components of the O~6!
angular momentum tensor one is to assume thatmi5” mj .

2Note that since the integral in Eq.~2.28! is of a positive function,
mi50 impliesv i50.
08600
y
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This ansatz describes an ‘‘oscillating’’ or ‘‘pulsating’’ S5

string configuration, special cases of which~with motion in
both AdS5 and S5) were discussed previously i
@11,13,15,21,34#.

Since the sigma model Lagrangian~2.3! is formally in-
variant unders↔t, the resulting 1D effective Lagrangia
will have essentially the same form as Eqs.~2.20!,~2.21!
~here we do not invert the sign of the Lagrangian!

L5
1

2 (
i 51

3

~ żi żi* 2mi
2zizi* !1

1

2
LS (

i 51

3

zizi* 21D .

~2.31!

Solving for ȧ i as in Eq. ~2.22! we get r i
2ȧ i5Ji5const,

where the counterparts of the integration constantsv i are, in
fact, the angular momenta in Eq.~2.13!. Then we end up
with the following analogue of Eq.~2.23!:

L5
1

2
(
i 51

3 S ṙ i
22mi

2r i
22

J i
2

r i
2 D 1

1

2
LS (

i 51

3

r i
221D .

~2.32!

Thus pulsating solutions~carrying also 3 spinsJi) are again
described by a special Neumann-Rosochatius integrable
tem.

Since~the S5 part of! the corresponding conformal gaug
constraints are alsot↔s symmetric, they take a form simi
lar to Eqs.~2.15!,~2.16! or Eqs.~2.26!,~2.27!

k25(
i 51

3 S ṙ i
21mi

2r i
21

J i
2

r i
2 D , ~2.33!

(
i 51

3

miJi50. ~2.34!

One may look for periodic solutions of the above NR syst
~2.32! subject to the constraint~2.33!, i.e. having finite 1D
energy~equal to 1

2 k2). In the simplest~‘‘elliptic’’ ! case re-
ducing to a sine-Gordon type system we may follo
@15,21,35# and introduce, as for any periodic solitonic sol
tion, an oscillation ‘‘level number’’ N. This may be achieve
by considering a semiclassical~WKB! quantization of the
action ~2.32!.

Here we shall not go into detailed study of the resulti
pulsating string solutions. Let us only mention that a spec
r i5const solution of the above system~when, in fact, there
is no oscillation of the radii! is essentially the same as th
special circular solution withr i5const of the system~2.23!
discussed below in Sec. III.

In the case of the S5 pulsating solution in@11,15# the
expansion of the energy at large level N@1 appears to be
regular inl/N2 ~this is not the case for pulsating string
AdS5 @15#! and, indeed, the leadingl/N2 term inE can then
be matched onto the SYM anomalous dimensions as
shown in@6,11#.
9-5
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D. Lax representation for the NR system induced
from the O„6… sigma model

Having in mind further generalizations, it is useful to u
derstand how the integrability of the NR system~e.g., the
Lax representation! follows from the fact that this system i
embedded into a much more general integrable@16# O~6!
sigma model. Here we will clarify this issue and point o
some related open problems.

We start with describing the zero-curvature representa
for the O~6! sigma-model in terms of 434 matrices. Let Xi
be the 3 complex embedding fields~2.7! of the O~6! model.
Let us introduce the following skew-symmetric matrixS:

S5S 0 X1 2X2 X̄3

2X1 0 X3 X̄2

X2 2X3 0 X̄1

2X̄3 2X̄2 2X̄1 0

D . ~2.35!

The matrixS is also unitary,SS†51, provided XiX̄ i51. Let
us also introduce the su~4!-valued currentA with compo-
nents

At5S]tS
†, As5S]sS†,

A65
1

2
~At6As!. ~2.36!

This current can be used to construct the following matri
U andV @16#:

U5
1

11,
A22

1

12,
A1

V52
1

11,
A22

1

12,
A1 . ~2.37!
08600
t

n

s

Here, is a spectral parameter, and by constructionU andV
have simple poles at,561. They obey the zero-curvatur
condition

]tU2]sV1@U,V#50, ~2.38!

which is a crucial device for demonstrating the integrabil
of the sigma models. Quite generally, one can associat
Eq. ~2.38! the transition matrix T(s,,) ~see, e.g.,@36#! de-
fined through the path-ordered exponent,

T~s,, !5P expE
0

s

U~s8,, !ds8, ~2.39!

and show that the trace of the monodromy matrix~the par-
allel transport along the period of the zero-curvature conn
tion!

Q~, !5Tr T~2p,, ! ~2.40!

generates~when expanded asQ5(n50
` Qn,n) an infinite

tower of commuting integrals of motion.3

Consider now the generalized rotation~or ‘‘Neumann’’!
ansatz for the sigma model variables Xi in Eq. ~2.7!, i.e.

X i5zi~s!eiwit, (
i 51

3

uzi u251. ~2.41!

Remarkably, the current~2.36! evaluated on Xi of the form
~2.41! admits the following factorization:

At5Q~t!A tQ
†~t!, As5Q~t!A sQ†~t!. ~2.42!

HereQ(t) is the diagonal matrix
tegrals
Q~t!5diag~e2 iw3t, e2 iw2t, e2 iw1t, e2 i (w11w21w3)t!,

while the matricesAt andAs are independent oft and given by

At5 i S 2w3z3z3* 2wizizi* ~w21w3!z2z3* ~w11w3!z1z3* ~w12w2!z1z2

~w21w3!z2* z3 2w2z2z2* 2wizizi* ~w11w2!z1z2* 2~w12w3!z1z3

~w11w3!z1* z3 ~w11w2!z1* z2 2w1z1z1* 2wizizi* ~w22w3!z2z3

~w12w2!z1* z2* 2~w12w3!z1* z3* ~w22w3!z2* z3* wizizi*
D ,

and

As5S z1z18* 1z2z28* 1z3* z38 z3* z282z38* z2 z3* z182z38* z1 z2z182z28z1

z2* z382z28* z3 z1z18* 1z3z38* 1z2* z28 z2* z182z28* z1 z1z382z18z3

z1* z382z18* z3 z1* z282z18* z2 z2z28* 1z3z38* 1z1* z18 z3z282z38z2

z1* z28* 2z18* z2* z3* z18* 2z38* z1* z2* z38* 2z28* z3* zi8zi*
D .

3Derivation of the Poisson algebra satisfied by matrix elements of the transition matrix and the proof of commutativity of the in
generated by the monodromy matrix can be found in@37#.
9-6
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As the consequence, one finds

U5Q~t!U~s!Q†~t!, V5Q~t!V~s!Q†~t!,
~2.43!

whereU andV depend only ons. The zero-curvature con
dition ~2.38! reduces to

]sV5@Q†]tQ2V,U#. ~2.44!

Next, we note that the diagonal matrixQ†]tQ is
s-independent and, therefore, one can introduce the foll
ing L andM-operators:

L[V2Q†]tQ, M[2U, ~2.45!

which furnish the Lax representation for the NR system,

]sL5@L,M #. ~2.46!

This is a new Lax representation for the NR system; th
previously known examples include the formulation of t
Lax equations in terms of 333 @38# or 232 @39# matrices.
Thus, the O~6! sigma model indices the Lax pair for the N
system in terms of traceless anti-hermitian 434 matrices. An
m
he

en
u

i
w

08600
-

interesting open problem is to construct the classicalr-matrix
corresponding to the Lax system~2.45!, ~2.46!.

As was discussed in the previous subsection, the NR
tem has the (s-independent! integrals precisely in numbe
which is required for its Liouville integrability. Regardin
now s as a~periodic! time variable, the integrals of motion
of the NR system can be constructed, e.g., asFn5Tr Ln.
However, being embedded into the more general tw
dimensional integrable system it inherits aninfinite number
of conserved~i.e. t-independent! integrals of motion. One
possible way to exhibit this infinite commuting family is t
compute the monodromy~2.40! for the Neumann connection
U(s,,). In general, this is a difficult problem, but it can b
simplified by considering the special~simplest! solutions of
the NR system.

A significant simplification of the Lax pair occurs if w
restrict ourselves to the two-spin solutions, which are o
tained by setting X350. In this case we have effectively th
SO~4! sigma model that is isomorphic to two copies
SU~2! models. Indeed, one can show that by a similar
transformation the matricesAt andAs can be brought to the
form
At5 i S w2z2z2* 2w1z1z1* ~w11w2!z1z2* 0 0

~w11w2!z1* z2 w1z1z1* 2w2z2z2* 0 0

0 0 2w1z1z1* 2w2z2z2* ~w12w2!z1z2

0 0 ~w12w2!z1* z2* w1z1z1* 1w2z2z2*
D

and

As5S z1z18* 1z2* z28 z2* z182z28* z1 0 0

z1* z282z18* z2 z2z28* 1z1* z18 0 0

0 0 z1z18* 1z2z28* z2z182z28z1

0 0 z1* z28* 2z18* z2 z18z1* 1z28z2*
D ,
t

l

which exhibits factorization into two SU~2! sectors. It is easy
to see that the NR evolution equations arise already fro
single SU~2! sector, e.g., from the upper left conner of t
Lax matrices. Schematically, the correspondingL-operator
reads as

L5L01
L1

12,
1

L21

11,
, ~2.47!

wereL05diag(2 iw2 ,2 iw1).
Let us recall that the Neumann model admits two differ

kinds of two-spin solutions corresponding to string config
rations of the folded or circular type respectively@8#. For
instance, the two-spin circular type solution can be written
terms of the standard Jacobi elliptic functions as follo
(z350):
a

t
-

n
s

z1~s!5sn~as,t!, z2~s!5cn~as,t!,

a[Aw12
2

t
5

2

p
K~ t!, ~2.48!

where w12
2 5w1

22w2
2 is related to the elliptic modulus

through the closed string periodicity condition.4 The modu-
lus t is related to the spinsJ1 and J2 by a transcendenta
equation~see@8# for details!. On this particular solution the
matricesU andV projected on the first SU~2! sector are

4K is the standard complete elliptic integral of the first kind.
9-7
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U5
1

12,2 S i ,~w1sn2as2w2cn2as! 2adnas2 i ,~w11w2!snascnas

adnas2 i ,~w11w2!snascnas 2 i ,~w1sn2as2w2cn2as!
D

and

V5
1

12,2 S i ~w1sn2as2w2cn2as! 2a,dnas2 i ~w11w2!snascnas

a,dnas2 i ~w11w2!snascnas 2 i ~w1sn2as2w2cn2as!
D .
ge

ula
ith

th

ng

m

tin
e

ha
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d

he

.

Using these matrices and applying the~recurrent! Abelian-
ization procedure of Zakharov and Shabat@40# one can com-
pute the monodromy functionQ(,) in Eq. ~2.40! and, as a
consequence, the corresponding higher commuting char

In a recent work @10# the higher commuting~local!
charges were obtained for both the folded and the circ
two-spin solutions of the Neumann model and linked w
those of the one-loop planarN54 SYM theory. The ap-
proach of@10# was based on finding the form of Ba¨cklund
transformations, which also provides a way of generating
commuting conserved charges~see, e.g.,@18#!. It would be of
interest to understand better a relation between the Ba¨cklund
transformations and the monodromy approach in our stri
context.

III. SPECIAL CIRCULAR SOLUTIONS: CONSTANT L

CASE

A very simple special class of solutions of the syste
~2.20! or ~2.21! which has a similarity with rotating string
solutions in flat space and generalizes the circular rota
string solutions in@4,5# has the property that the Lagrang
multiplier is constant, i.e.L5const.

A. Constant radii solution

Let us start with the Lagrangian~2.20! in terms of the
complex coordinateszi . Then the equations of motion are

zi91mi
2zi50, mi

2[wi
21L, (

i 51

3

uzi u251, ~3.1!

L5(
i 51

3

~ uzi8u
22wi

2uzi u2!. ~3.2!

Equation~3.1! can be easily integrated if one assumes t
L5const,

zi5aie
imis1bie

2 imis, ~3.3!

whereai ,bi are complex coefficients. The periodicity cond
tion zi(s12p)5zi(s) implies thatmi must be integer. To
satisfy the constancy ofL in Eq. ~3.2! we need to impose
08600
s.

r

e

y

g

t

(
i 51

3

~ uai u21ubi u2!51,

(
i 51

3

~mi
21wi

2!~ai* bie
2imis1aibi* e22imis!50.

~3.4!

In addition, we need to impose( i 51
3 uzi u251, i.e.

(
i 51

3

~ uai u21ubi u2!51,

(
i 51

3

~ai* bie
2imis1aibi* e22imis!50. ~3.5!

It is easy to show that modulo the global SU~3! @subgroup of
SO~6!# invariance of the system~2.20! or Eqs.~3.1!,~3.2! the
only nontrivial solution of Eqs.~3.4!,~3.5! is bi50 or ai
50. In the former case@mi may be positive or negative an
ai can be made real byU(1) rotations#

zi5aie
imis, (

i 51

3

ai
251. ~3.6!

It may seem that one may get a new solution if two of t
windingsmi are equal while the third is zero, i.e.~this is, in
fact, the circular solution of@4#! if

z15a cosms, z25a sinms, z35A12a2, ~3.7!

but it can be transformed back into the form~3.6! by a global
SU~2! rotation.

It is useful also to rederive the solution~3.6! in a slightly
different way using real coordinatesr i ,a i , i.e. starting with
Eqs.~2.23!,~2.22!. The potentialwir i

21(v i
2/r i

2) in Eq. ~2.23!
has a minimum, and that suggests thatr i5const may be a
solution. That needs to be checked sincer i are constrained to
be on S2. The equations of motion that follow from Eq
~2.23! are

r i952wi
2r i1

v i
2

r i
3 2Lr i , ~3.8!

L5(
j 51

3 S r j8
22wj

2r j
21

v j
2

r j
2 D , (

j 51

3

r j
251.

~3.9!

They indeed have a solution if
9-8
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r i~s!5ai5const, wi
22

v i
2

ai
4 5n25const, ~3.10!

wheren is an arbitrary constant~which may be positive or
negative!. Then it follows that the Lagrange multiplier in Eq
~2.23! is thus constant on this solution

L52n2. ~3.11!

As a result, we obtain an interesting 3-spingeneralizationof
the circular string solution found in@4# ~where two out of
three spins were equal!.

Equation~3.10! implies

ai
25

uv i u

Awi
22n2

,

a i85
v i

ai
2 5

v i

uv i u
Awi

22n2[mi , ~3.12!

i.e.

a i5a0i1mis, ~3.13!

wheremi must be integers to satisfy the periodicity conditi
~2.9! anda0i can be set to zero by SO~2! rotations. Then

wi
25mi

21n2, v i5ai
2mi . ~3.14!

The constraints~2.15!,~2.16! or ~2.26!,~2.27! give

k25(
i 51

3

ai
2~wi

21mi
2!52(

i 51

3

ai
2wi

22n2,

(
i 51

3

ai
251, (

i 51

3

ai
2wimi50, ~3.15!

or, equivalently, in terms of the energy and spins@cf. Eqs.
~2.12!,~2.13!,~2.14!#

E 252(
i 51

3

wiJi2n2, i.e. E 252(
i 51

3

Ami
21n2Ji2n2,

~3.16!

(
i 51

3 Ji

wi
51, i.e. (

i 51

3 J i

Ami
21n2

51, ~3.17!

(
i 51

3

miJi50. ~3.18!

We shall assume for definiteness that allwi and thus allJi
are non-negative. Then Eq.~3.18! implies that one of the
threemi ’s must have opposite sign to the other two.

One can check directly that the only nonvanishing co
ponents of the SO~6! angular momentum tensorJMN

5Al*0
2p(ds/2p)(XMẊN2XNẊM) on this solution are in-

deed the Cartan onesJ15J12, J25J34, J35J56.
08600
-

Since our aim is to expressE in terms ofJi andmi as in
Eq. ~2.29! the strategy is then to first solve the conditio
~3.17! in terms ofn2, determining it as a function ofJi and
mi and then substitute the result into Eq.~3.16!. The condi-
tion ~3.18! may then be imposed at the very end.

Let us first consider the special case ofn250 ~or L50)
which corresponds to a flat-space solution which can be
bedded into S5 by choosing the free radial parameters of
circular string to satisfy the condition( i 51

3 ai
251. As fol-

lows from Eq.~3.14! for n250 we find that all frequencies
must be integerwi5umi u, e.g.,

w152m1.0, w25m2.0, w35m3.0, ~3.19!

so that the solution is a combination of the left and rig
moving waves@here we use complex combinations of coo
dinates in Eq.~2.7!#5

X15a1eim1(s2t), X25a2eim2(s1t),

X35a3eim3(s1t), (
i 51

3

ai
251. ~3.20!

In the case of Eq.~3.19! we get from Eqs.~3.16!–~3.18!

E 252(
i 51

3

umi uJi , (
i 51

3 Ji

umi u
51, (

i 51

3

miJi50.

~3.21!

This corresponds to a very special point in the moduli sp
of solutions. For fixedmi , we get two constraints onJi , and
the energy is given by the standard flat-space linear Re
relation. For the choice~3.19! we end up with um1uJ1
5m2J21m3J3 @where J2 and J3 are related via
( i 51

3 (Ji /umi u)51] and thusE 254um1uJ1. Clearly, the en-
ergy of this ‘‘flat’’ solution does not have a regular expansi
in 1/J 2 ~cf. @4#! and thus it cannot be directly compared
some anomalous dimension on the SYM side.

B. Energy as function of the spins

Now let us turn to the genuinely ‘‘curved’’ (n5” 0) solu-
tions which will have indeed a regular expansion of the e
ergy for large spins, as was the case of the circular solu
of @4#.

In the 3-spin case one is first to solve Eq.~3.17! to deter-
mine n. The solution of this algebraic equation cannot

5This may look like an example of a ‘‘flat’’ or ‘‘chiral’’ solution of
the O(N) sigma model that trivially satisfies the equations of m
tion following from Eq. ~2.3! ]1]2XM1]1XN]2XNXM50 since
]1XM50 or ]2XM50. But one still needs to impose the Viraso
constraints, and that implies that we need a particular combina
of left and right moving modes.
9-9
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written down explicitly for genericJi but one can find it as a
power series in the largeJ5( i 51

3 Ji expansion as in@4,8#
(J@1)

n25J 22(
i 51

3

mi
2 Ji

J 1 . . . ,

E 25J 21(
i 51

3

mi
2 Ji

J 1 . . . , ~3.22!

whereJ[J11J21J3@1, and thus

E5J1
1

2J (
i 51

3

mi
2 Ji

J 1 . . . . ~3.23!

As in the previous examples in@4,7,8#, here the energy thu
admits a regular expansion in 1/J 25l/J2

E5J1
l

2J (
i 51

3

mi
2 Ji

J
1 . . . , (

i 51

3

miJi50. ~3.24!

Hence it should be possible to match, as in@6,8,9#, the coef-
ficient of theO(l) term in Eq.~3.24! with the 1-loop anoma-
lous dimensions of the corresponding SYM operators de
mined by a special 3-spin case of the integrable SU(2,2u4)
spin chain of@2#. The simplicity of the expression~3.24!
suggests that one may be able to establish the corres
dence with particular solutions of the Bethe ansatz equat
in a relatively direct way, as was the case in@6# for the J1
5J2 , J350 and in@11# for theJ15J2 , J35” 0 circular solu-
tions of @4#.

Let us now look at some special cases. IfJ25J3
50, a25a350, i.e. in the one-spin case, we have a solut
if w1

25n2, i.e. m150 andJ15w1, and thenE5J1. This is
simply the point-like geodesic case: form150 there is no
s-dependence inXi .

In the two-spin caseJ350, a350 Eq. ~3.17! for n2 be-
comes a quartic equation

J 1

Am1
21n2

1
J 2

Am2
21n2

51. ~3.25!

Its simple explicit solution is found in the case whenJ1

5J2, i.e. a15a251/A2, m252m1[m.0,

n25J 22m2, J[J11J252J1 , ~3.26!

so that

E 25J 21m2. ~3.27!

This is the sameE(J) relation as for the 2-spin circular so
lution of @4#. In fact, as was already mentioned above,
two solutions areequivalent: here we have

X15
1

A2
eiwt2 ims, X25

1

A2
eiwt1 ims, ~3.28!
08600
r-

n-
ns

n

e

which is related to the solution in@4# by an SO~4! rotation,

X185
1

A2
~X11X2!, X285

1

A2
~2X11X2!. ~3.29!

In the general case of two unequal spins we can again s
Eq. ~3.25! in the limit of large J1 ,J2 ~for fixed m1 ,m2),
getting the special case of Eq.~3.24! with m1J11m2J2
50, J350, i.e.

E5J1
m2~m21um1u!J2

2J 2
1 . . .

5J2
m1m2

2J 1 . . . . ~3.30!

In another special case when two out of three nonvanish
spins are equal, e.g.,J25J3, and with m150, m252m3
5m we get from Eq.~3.24!

E5J1
m2J2

J 2
1 . . . 5J1

m2

2J 1 . . . . ~3.31!

This is the same as the expression for the circular 3-s
solution (J15” 0, J25J3) in @4#. Indeed, for any values o
J1 ,J25J3 the two solutions are related by a global rotati
in X2 ,X3 directions as in Eq.~3.29!, convertingeim2s into
cosm2s and sinm2s.

To summarize, we have shown that the constant-rad
solutions of the NR system represent a simple generaliza
of the circular 2-spin and 3-spin solutions of@4#. This opens
up a possibility of a direct comparison to SYM one-loo
anomalous dimensions in the~i! 2-spin sector with unequa
spins~cf. @6#! and ~ii ! general 3-spin sector~cf. @11#!.

C. Quadratic fluctuations and stability

Let us now study small fluctuations near the solutions
Sec. III A. This will generalize~and simplify! the discussion
in @5# in the case of the specialJ15J2 3-spin solution and
will clarify the conditions of stability of our new solutions
One application of this analysis would be to compute
1-loop sigma-model correction to the classical energy~3.24!
and to show that it is indeed suppressed by an extra powe
1/J as in the special case considered in@5#. Another would be
to find the spectrum of excited string states carrying the sa
charges as the ‘‘ground-state’’ classical solution as these
be possible to compare to the corresponding spectrum
anomalous dimensions on the SYM side~as was done for the
specialJ15J2 , J350 case in@6#!.

It is straightforward to find the quadratic fluctuation L
grangian by expanding near the solution~3.6! or Eqs.
~3.10!–~3.14!. We shall follow the discussion in Sec. 2 of@5#
where the special case of circular solution with two eq
spins was considered. Using three complex combination
coordinates in Eq.~2.7! and expanding Xi→X i1X̃ i the
sigma model action~2.3! near the classical solution
9-10
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X i5aie
iwit1 imis, wi

25mi
21n2,

(
i 51

3

ai
251, (

i 51

3

ai
2wimi50, ~3.32!

we find the following Lagrangian for the quadratic fluctu
tions ~see@5#!:

L̃52
1

2
]aX̃ i]

aX̃ i* 1
1

2
LX̃ iX̃ i* , ~3.33!

whereL52n2 and X̃i are subject to the constraint6

(
i 51

3

~X iX̃ i* 1X i* X̃ i !50. ~3.34!

To solve this constraint we set

X̃ i5eiwit1 imisZi~t,s!, Zi5gi1 i f i , ~3.35!

so that Eq.~3.34! becomes

(
i 51

3

aigi50. ~3.36!

After integrating by parts, Eq.~3.33! takes the form~cf. @5#!

L̃5(
i 51

3 F1

2
~ ḟ i

21ġi
22 f i8

22gi8
2!

22wi f i ġi12mi f igi8G . ~3.37!

To solve Eq.~3.36! we may apply a global rotation togi ,
ḡi5Mi j (a)gj , that transforms( i 51

3 aigi into ḡ1 and set the
latter to zero in the resulting Lagrangian~3.37!. Equivalently,
we may solve Eq.~3.36! for g1 and substitute the result int
Eq. ~3.37!.

For simplicity, let us first consider the 2-spin case wh
@cf. Eq. ~3.25!#

a1
21a2

251, a350, a1
2um1uw12a2

2m2w250,

w1
22m1

25w2
22m2

25n2. ~3.38!

We shall assume thatm1,0, m2.0. These relations allow
us to expressa1 anda2 in terms ofm1 ,m2 andn

a1
25

m2Am2
21n2

um1uAm1
21n21m2Am2

21n2
,

6Note that imposition of Virasoro constraints on the fluctuations
not necessary in order to determine the non-trivial part of the fl
tuation spectrum@5#.
08600
n

a2
25

um1uAm1
21n2

um1uAm1
21n21m2Am2

21n2
. ~3.39!

In this case the fluctuations in thei 53 direction decouple,
and we find the following Lagrangian for the remaining
fluctuationsg2 , f 1 , f 2 @e.g. solving Eq.~3.36! for g1 and res-
caling g2]:

L̃5
1

2
~ ḟ 1

21 ḟ 2
21ġ2

22 f 18
22 f 28

22g28
2!12~a2w1f 1

2a1w2f 2!ġ222~a2m1f 12a1m2f 2!g28 . ~3.40!

Solving the resulting equations of motion forFq
5( f 1 , f 2 ,g2) using the ansatz ~see @5#! Fq
5(s,nAq,s,neivst1 ins we find the following characteristic
equation of the frequenciesv:

~v22n2!224a2
2~w1v2m1n!2

24a1
2~w2v2m2n!250. ~3.41!

This is a quartic equation forv, and the stability condition is
that all four roots should be real. The solutions are obviou
real for n50 so instability may appear only fo
n561, . . . . In thespecial case of the 2-spin circular sol
tion of @4#, i.e. w15w25w, 2m15m25m, a1

25a2
25 1

2 we
get

~v22n2!224w2v224m2n250, ~3.42!

which implies instability whenn224m2,0, i.e. for the
modes withn561, . . . ,6(2m21) @5#.

For generica1 ,a2 ,m1 ,m2 and small enoughn one finds
that two of the four roots are complex~with nonzero real
part!.7 In spite of the instability it is useful to work out th
spectrum of frequencies and the stability condition in t
limit of large spins~i.e. largen) since the resulting energie
may be compared to SYM theory. First, let us consider
case of equal spins (2m15m25m). Equation ~3.42! im-
plies that@5#

v6
2 5n212n212m2

62A~n21m2!21n2~n212m2!, ~3.43!

so that the largen expansion gives~for the lower-energy
modes!

v2
(6)56

1

2n
nAn224m21OS 1

n3D . ~3.44!

Then the ‘‘one-loop’’ contribution to the energy of rotatin
string from ~a pair of! such modes is~herek25n212m2,

J5J11J25AlAn21m2; m5k in the notation of@5#!

s
-

7For example, settingm1521, m252, n51 one gets complex
solutions forn from 0 to 1000. This implies instability of ‘‘asym-
metric’’ solutions withum1u5” m2.
9-11
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DEn5
1

k
2uv2u5

1

n2 nAn224m21OS 1

n4D
5

l

J2 nAn224m21OS l2

J4 D . ~3.45!

This expression was indeed reproduced in@6# ~for m51) as
the 1-loop anomalous dimension of excited states on
SYM side~corresponding to a particular Bethe root distrib
tion for the Heisenberg spin chain!.

In the general (m1 ,m2) case, expanding Eq.~3.41! at
largen assuming8 v5O(1/n) we find the following gener-
alization of Eq.~3.44!:

v25
1

2n
n@2a2

2m112a1
2m26An224a1

2a2
2~m12m2!2#

1OS 1

n3D , ~3.46!

wherea1
21a2

251. This reduces to Eq.~3.44! in the equal-
spin case whena1

25a2
25 1

2 , m152m2. Stability condition is
u

q

08600
e

n2>4a1
2(12a1

2)(m12m2)2. If we recall that we have the
constraintm1J11m2J250 whereJi5ai

2Ami
21n2 one may

wish to solve it in the largen limit getting a1
2m11(1

2a1
2)m250, i.e. a1

25m2 /(m22m1), 12a1
252m1 /(m2

2m1), giving the conditionn2>4um1m2u, which implies
the existence of unstable modes withn2,4um1m2u.

One should be able to reproduce the analog of Eq.~3.45!
in the case of Eq.~3.46!, i.e. ~here we assumeum1u.m2)

DEn5
l

J2 nu2~ um1u2m2!

2An224um1um2u1OS l2

J4 D ~3.47!

on the gauge theory side.
It is straightforward to extend the above discussion to

3-spin case, i.e. whena3 is nonzero. This will give a gener
alization of the spectrum found in the (J1 ,J25J3) case in
@5#; as in that special case, there should then be a rang
parameters for which the solution is stable. The general
tion of Eq. ~3.41! to the 3-spin case is9
~v22n2!42~v22n2!2@~a2
21a3

2!V1
21~a2

21a3
2!V2

21~a1
21a2

2!V3
2#1a3

2V1
2V2

21a2
2V1

2V3
21a1

2V2
2V3

250, ~3.48!
ters

lues

-

n.
where

V i[2~wiv2min!, wi5Ami
21n2. ~3.49!

SettingV350, a350 we indeed go back to Eq.~3.41!. This
equation gives 8 characteristic frequencies. Solving the eq
tions for a2 ,a3 in terms ofa1 andwi5Ami

21n2 we get the
following generalization of Eq.~3.39!:

a2
252

m3w3~12a1
2!1m1w1a1

2

m2w22m3w3
,

a3
25

m2w2~12a1
2!1m1w1a1

2

m2w22m3w3
. ~3.50!

Concentrating then on those frequencies that scale as

v5
v̄

n
1OS 1

n2D , n@1 ~3.51!

we get the following equation for the leading part of E
~3.48!:

A1Ba1
250, ~3.52!

8There are also two other frequencies for whichv2→4n2 at large
n.
a-

.

A5@4~v̄2nm3!22n4#@4@v̄2n~m21m3!#2

2n2~n214m2m3!#,

B54~m12m2!~m12m3!n2@12v̄228n~m11m21m3!v̄

14n2~m1m21m1m31m2m3!1n4#.

Stable solutions arise in the range of the parame
m1 ,m2 ,m3 such that Eq.~3.52! has real rootsv̄ for all inte-
gersn. The general stability condition onm1 ,m2 ,m3 anda1

2

appears to be complicated, but one can find particular va
of m1 ,m2 ,m3 for which the solution is stable.

For example, settingm150, m252m35m, so thata1

[a, a3
25a2

25 1
2 (12a2), which is the case of the 3-spin so

lution of @4#, J15a2n, J25J35 1
2 (12a2)Am21n2, we

find, in agreement with@5#10

v̄25
1

4
n2m2F n2

m2 2216a2

62A~3a221!214a2S n2

m2 21D G . ~3.53!

9It can be found, e.g., by adding the constraint~3.36! to the La-
grangian~3.37! and solving the corresponding equations of motio

10In the notation of@5# a5cosg0, m5k.
9-12
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The condition of stability, i.e.v̄2>0 is obtained by demand
ing that (q224)(q224a2)>0 and (3a221)214a2(q2

21)>0, whereq[n/m. The stability condition is satisfied
if q2>1 anda2> 1

4 , which applies to all modes ifm51 as in
@5#. For m52 the potentially unstable mode isn561 hav-
ing q25 1

4 . Then to have stability we need to demanda2

> 1
16 as well as 1

16 <a2< 1
6 (32A5) or 1

6 (31A5)a2,1.
Similar conditions ona are found for higher values ofm.

If instead we setm15m2 ~or m15m3) in Eq. ~3.52! we
find

v̄5nS m36
1

2
nD ,

v̄5nF ~m21m3!6
1

2
An224um2m3uG ~3.54!

implying that modes withn2,4um2m3u are unstable irre-
spective of the value ofa1, just like in the 2-spin case~3.46!.

IV. MORE GENERAL ‘‘NONCONSTANT’’ SOLUTIONS
OF THE NEUMANN-ROSOCHATIUS SYSTEM

A. NR equations in ellipsoidal coordinates

Analogously to the case of the Neumann system in@8# we
can rewrite the equations of motion following from E
~2.23! in the ellipsoidal coordinates (z1 ,z2) which are intro-
duced as

r i5A~wi
22z1!~wi

22z2!)
j Þ i

wi j
2 ,

wi j
2 5wi

22wj
2 .

~4.1!

Expressing the integrals of motion~2.25! in terms ofza one
finds the following separable system of equations:

S dz1

ds D 2

524
P~z1!

~z12z2!2
, S dz2

ds D 2

524
P~z2!

~z12z2!2
,

~4.2!

whereP(z) is

P~z!5~z2b1!~z2b2!~z2w1
2!~z2w2

2!~z2w3
2!

1v1
2~z2w2

2!2~z2w3
2!2

1v2
2~z2w1

2!2~z2w3
2!2

1v3
2~z2w1

2!2~z2w2
2!2.

Hereb1,2 are the constants of motion which can be expres
in terms of the original integralsI i in Eq. ~2.25!. The Hamil-
tonian of the NR system reduces then to

H5
1

2 F(
i 51

3

~wi
21v i

2!2b12b2G . ~4.3!

As in the Neumann case,P(z) is the fifth order polynomial
which defines a hyperelliptic curves21P(z)50. However,
08600
d

with nonzerov i the positions of the roots get shifted. Th
general solution of Eqs.~4.2! can be given in terms of theta
functions associated to the Jacobian of the hyperellip
curve.

We will not consider the problem of solving Eqs.~4.2! in
full generality, rather we will treat the simplest case of t
vanishing integralv3. As one can see, forv350 the value
z5w3

2 is a root of P(z) and then the NR system can b
solved in terms of elliptic functions.

B. Two-spin solution of the NR system

If v350 we may seta350 and further assume thatr 3
50 @see Eq.~2.22!# which brings us to the two-spin case. I
terms of the ellipsoidal coordinates the two-spin soluti
arises in the limitb2→w3

2.11 It is convenient to perform the
following change of variablesza→ja ~see@8# for details!:

z1→w2
22~w2

22b1!j1 , z2→w3
22~w3

22b2!j2 .
~4.4!

Then we find that the first equation in Eqs.~4.2! reduces to

~j8!254w21
2 j~12j!~12tj!

24v1
2j224v2

2S 1

t
2j D 2

,

j[j1 . ~4.5!

Here t[(w2
22b1)/w21

2 is the modulus of the elliptic curve
The variablev2 can be eliminated usingv2

25v1
2w1

2/w2
2. Thus

we get a one-parameter family of solutions~parametrized by
the additional parameterv1).

It is possible to reduce the elliptic curve corresponding
Eq. ~4.5! to the standard Jacobian form, but the new modu
k appears to be a rather complicated function of t,w1 ,w2 ,v1.
Indeed, we get

~j8!254w21
2 t~j2e0!~j2e1!~j2e2!, ~4.6!

where

v1
25w21

2 t3e0e1e2 ,

v1
22v2

21k22w2
2

52w21
2 t2~e0e11e0e21e1e2!. ~4.7!

After the change of variablej5e10h
21e0, whereenm[en

2em , Eq. ~4.6! becomes

~h8!25w21
2 te20~12h2!~12kh2!, k5

e10

e20
. ~4.8!

Thus, a solution obeying the conditionh(0)50 reads

11To be specific we will treat the case of the folded string~cf. @8#!,
analysis of the circular string solution is very similar.
9-13
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h~s!5sn~sAw21
2 te20,k!. ~4.9!

The radii of the embedding coordinates in Eq.~2.8! then are

r 1
2~s!512t~e01e10h

2!, r 2
2~s!5t~e01e10h

2!.
~4.10!

Note that this is the most general two-spin solution of the
system. In the present case, we require in addition thah
should be periodic,h(s12p)5h(s), which gives

p

2
Aw21

2 te205K~k!, ~4.11!

where K(k) ~and E andP appearing below! are the standard
elliptic functions defined, e.g., in@8#.

Since for the periodic solutionsw1,2(s12p)5w1,2(s)
12pm1,2 we have also the condition~2.28!, we can trade the
parametersv1 ,v2 for the two integersm1 ,m2. Using the
explicit solution~4.9! one can compute the integrals in E
~2.28! with the result

m15
v1

~12te0!K~k!
PS te10

12te0
,kD ,

m25
v2

te0K~k!
PS e01

e0
,kD . ~4.12!

For given nonzero integersmi these are highly transcende
tal equations onv1 ,v2. Computing the spins we get

J15w12w1e0S 11k2
E~k!

K~k! D , ~4.13!

J25w2e0S 11k2
E~k!

K~k! D . ~4.14!

Finally, the energy is given by

E 25k25w1
21tw21

2 2v1
2S 11

w1
2

w2
2D . ~4.15!

Note that due to the extra condition~2.27!, i.e. v1w1
52v2w2, the solution exists only ifJ1 andJ2 are related in
a certain way.

The above system of Eqs.~4.11!–~4.15!, determines the
energyE parametrically as a function of the R-chargesJ1

5AlJ1 , J25AlJ2 and winding numbersm1 ,m2. This sys-
tem is rather complicated to allow for an explicit formula f
E5AlE(J1 /Al,J2 /Al;m1 ,m2). Nevertheless, we hope tha
it might be possible to directly match this system@its leading
O(l) or the ‘‘one-loop’’ approximation# onto the corre-
sponding equations governing the algebraic Bethe ansatz~for
a particular choice of the Bethe root distribution! for the
anomalous dimensions of the corresponding operators on
gauge theory side, as was done in thev i50 case in@6,9#.
08600
he

V. ROTATING STRINGS IN AdS 5ÃS5

Let us now generalize the discussion of Secs. II and III
the case when the string can rotate in both AdS5 and S5. For
that we need to supplement the S5 rotating string ansatz~2.7!
by the similar AdS5 one

Y0[Y51 iY05z0~s!eiv0t,

Y1[Y11 iY25z1~s!eiv1t,

Y2[Y31 iY45z2~s!eiv2t, ~5.1!

where now~generalizing the ansatz considered in@4,8#! zr
5(z0 ,z1 ,z2) are complex, and because of the conditi
hMNYMYN521, their real radial parts lie on a hyperbolo
@h rs5(21,1,1)#

zr5rre
ibr, h rsrrrs[2r0

21r1
21r2

2521. ~5.2!

In the previous sections we had r051, r15r250, b r50. To
satisfy the closed string periodicity conditions we need, as
Eq. ~2.9!,

rr~s12p!5rr~s!, b r~s12p!5b r~s!12pkr ,
~5.3!

wherekr are integers. Comparing Eq.~5.1! to Eq. ~2.5! we
conclude that the AdS5 time t and the angular coordinate
f1 ,f2 are related tob r by

t5v0t1b0~s!,f1

5v1t1b1~s!, f25v2t1b2~s!. ~5.4!

We shall require the time coordinatet to be single-valued
~we are considering a universal cover of AdS5), i.e. we ig-
nore windings in time direction and we will also renamev0
into k, i.e.

k050, v0[k. ~5.5!

The three O~2,4! Cartan generators~spins! here are@S0
5E, v r5(v0 ,v1 ,v2)#

Sr5Alv rE
0

2pds

2p
rr
2~s![AlSr . ~5.6!

In view of Eq. ~5.2!, they satisfy the relation

(
s,r

hsr
Sr

vs
521, i.e.

E
k

2
S1

v1
2

S2

v2
51. ~5.7!

Substituting the above rotational ansatz into the AdS5 La-
grangian~and changing overall sign! we find the analog of
the 1D Lagrangian~2.20! in the S5 case

L̃5
1

2
h rs~zr8zs* 82v r

2zrzs* !2
1

2
L̃~h rszrzs* 11!. ~5.8!

Like its S5 counterpart~2.20!, this 1D Lagrangian is a specia
case of ann56 Neumann system now with signatu
9-14
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(211112), and thus represents again an integrable s
tem ~being related, as in@8#, to a special Euclidean-signatur
Neumann model by an analytic continuation!. The reduction
of the total AdS53S5 Lagrangian on the rotation ansatz
then given by the sum of Eqs.~2.20! and ~5.8!. Writing Eq.
~5.8! in terms of rrr andb r we find as in Eq.~2.22!

b r85
ur

rr
2

, ur5const, ~5.9!

so that finally we end up with

L̃5
1

2
h rsS rr8rs82v r

2rrrs2
urus

rrrs
D2

1

2
L̃~h rsrrrs11!,

~5.10!

where, as above, we assume summation overr ,s. Comparing
this to the NR Lagrangian~2.23!, we conclude that Eq
~5.10! describes a system which is similar to the Neuma
Rosochatius integrable system, but with an indefinite sig
ture, i.e.d i j replaced byh rs .

While the equations forr i and rr following, respectively,
from Eqs.~2.23! and ~5.10! are decoupled, the variables o
the two NR systems are mixed in the conformal gauge c
straints~2.15!,~2.16! which now take the form@generalizing
Eqs.~2.26!,~2.27! where we had r051, ur50, ra50]

r08
21k2r0

21
u0

2

r0
2

5 (
a51

2 S ra8
21va

2ra
21

ua
2

ra
2 D

1(
i 51

3 S r i8
21wi

2r i
21

v i
2

r i
2 D , ~5.11!

ku05 (
a51

2

vaua1(
i 51

3

wiv i , ~5.12!

where r0
22(a51

2 ra
251, and( i 51

3 r i
251. We should also re-

quire the periodicity condition analogous to Eq.~2.28!

urE
0

2p ds

rr
2~s!

52pkr . ~5.13!

Thenk0 implies that we should setu050 as a consequenc
of single-valuedness of the AdS5 time t.

One can then repeat the discussion of Secs. II and II
the present case, classifying general solutions of the resu
NR system. The resulting solutions generalize those of S
IV B in @4# where the integralsv i andur were zero.

A. Simple circular strings in AdS5

Let us first assume that the string is not rotating in S5 ~i.e.
wi ,v i50, r i5const) and consider the AdS5 analog of the
simplest circular solution of Sec. III by demanding thatL̃
5const. The discussion is then exactly the same as~a special
case of that! in Sec. III with few signs reversed. As in Se
08600
s-

-
a-

-

in
ng
c.

III A, finding solutions withL̃5const turns out to be equiva
lent to looking for constant radii (rr5const) configurations.
Then @cf. Eqs.~3.10!,~3.14!#

rr5const, ba5kas, k050,u050, ua5raka ,
~5.14!

v0
2[k25L̃, va

25ka
21k2, a51,2. ~5.15!

The energy as a function of spins is then obtained by solv
the system of the two equations that follow from the defi
tion of the charges~5.6! and the constraints~5.11!,~5.12!
with k as a parameter@cf. Eqs.~3.17!, ~3.18!#

E
k

2
S 1

Ak1
21k2

2
S 2

Ak2
21k2

51, ~5.16!

kE2
1

2
k25Ak1

21k2S11Ak2
21k2S2 ,

k1S11k2S250. ~5.17!

This implies

k1
2S 1

Ak1
21k2

1
k2

2S 2

Ak2
21k2

5
1

2
k2. ~5.18!

Considering the limit of large spinsSa@1, with ka being
fixed, we conclude thatk5(2k1

2S112k1
2S1)1/31 . . . and

then

E5S11S21
3

4
~2k1

2S112k2
2S2!1/31 . . . , ~5.19!

or, in view of k1S152k2S2 ~treatingS1 ,S2 andk1 as inde-
pendent data!

E5S1
3

4 S 2k1
2SS1

S2
D 1/3

1 . . . , S[S11S2 . ~5.20!

Using Eq.~5.6! this can be rewritten also as

E5S1
3

4
~lS!1/3S 2k1

2 S1

S2
D 1/3

1 . . . . ~5.21!

The case ofk152k25k when the two spins are equalS1
5S25 1

2 S is that of the circular solution found in@4# for
which we get

E5S1
3

4
~2kS!1/31 . . . . ~5.22!

As was shown in@4#, thisk152k2 solution is stable only for
small enoughS.

The ‘‘nonperturbative’’ scaling of the subleading term
Eq. ~5.21! with l precludes one from entertaining a possib
ity of a direct comparison to anomalous dimensions of
9-15
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corresponding operators@4#, i.e. F̄D11 i2
S1 D31 i4

S2 F, in SYM
theory, in contrast to what was found in the S5 case.

Let us now see how this conclusion changes when
consider ‘‘hybrid’’ solutions where the circular string rotat
both in AdS5 andS5.

B. Constant radii circular strings in AdS 5ÃS5

It is straightforward to combine the solutions of Secs. V
and III A to write down the most general circular consta
radii solution in AdS53S5. It will be parametrized by the
313 frequencies (a51,2; i 51,2,3)

v05k, va
25ka

21k2,

wi
25mi

21n2,

k25L̃, n252L, ~5.23!

related to the energyE and 213 spinsSa andJi , and by the
topological numberska and mi . These will be related by
Eqs. ~3.17! and ~5.7! as well as by the conformal gaug
constraints~5.11! and~5.12!. Explicitly, we get the following
generalization of both Eqs.~3.16!–~3.18! and Eqs.
~5.16!,~5.17!

(
i 51

3 J i

Ami
21n2

51,
E
k

2 (
a51

2 S a

Aka
21k2

51, ~5.24!

2kE22(
a51

2

Aka
21k2Sa2k2

52(
i 51

3

Ami
21n2Ji2n2, ~5.25!

(
a51

2

kaSa1(
i 51

3

miJi50. ~5.26!

For given~integer or half-integer, in quantum theory! spins
Sa andJi the solution exists only for such integerska andmi
that satisfy Eq.~5.26!. Assuming that all spins are of th
same order and largeSa;Ji@1 we find

k5J1
1

2J 2 S (
i 51

3

mi
2Ji12(

a51

2

ka
2SaD 1OS 1

J 2D ,

J[(
i 51

3

Ji , ~5.27!

n5J2
1

2J 2 (
i 51

3

mi
2Ji1OS 1

J 2D , ~5.28!

and thus

E5J1
l

2J2 S (
i 51

3

mi
2Ji1 (

a51

2

ka
2SaD 1OS l2

J3 D . ~5.29!
08600
e

-

This expression is a direct generalization of Eq.~3.23! in the
Sa50 case. The energy is minimal ifmi

2 andka
2 have mini-

mal possible values~0 or 1!. We may also look at a differen
limit when J@S@1 ~corresponding tok1

2@mi
2). In this case

we get a ‘‘BMN-type’’ ~single J rotation type! asymptotics
with the leading term still given by Eq.~5.27!, i.e. DE
;(1/2J 2)S.

The conclusion is that to have a regular~i.e. with analytic
l-dependence! large-spin expansion of the energy one nee
to have at least one large component of the spin in the5

direction. This turns out to be the same also in the case
other spinning string solutions with more complicat
s-dependence.

As an explicit example, let us consider the simplest hyb
solution when only one of each two types of spin is nonze
i.e. J15J, S15S, S25J25J350. The string then has r0

2

2r1
251, r350 andr 151, r 25r 350, i.e. @cf. Eq. ~2.5!#

Y05coshr0eikt,

Y15sinhr0eivt1 iks,

X15eiwt1 ims, ~5.30!

where r05coshr0 determines the fixed radial coordinate
AdS5 at which the circular string is located while it is sprea
and rotating inf1 ~it is positioned atu5p/2 andf250 in
S3 of AdS5). Also, the string is a rotating circle alongw1 in
S5 located atw25w350, g5p/2, c50. Its energy forJ
;S@1 is then12

E5J1S1
1

2J 2 ~m2J1k2S!1 . . .

5J1S1
1

2Jk2
S
J S 11

S
JD1 . . . , ~5.31!

where we used thatkS1mJ50 and treatS, J and k as
independent data. Restoringl dependence we thus have13

E5J1S1
lk2

2J

S

J S 11
S

JD1 . . . . ~5.32!

It should be possible to reproduce the same expression
1-loop anomalous dimension on the SYM side as was d
for the folded (S,J) solution in @9#.

One can easily analyze the small fluctuations near
solution as was done in Sec. III D. One finds 1 massless
4 massive~massn) fluctuations in S5 directions. In addition
to 2 massive~massk) decoupled AdS5 fluctuations there are

12Here J5Am21n2, 2kE2k252Ak21k2S1J 21m2, kS
1mJ50, E5k1@kS/A(k21k2)#.

13The ‘‘BMN-type’’ limit ~cf. @14,41#! here corresponds toS/J
!1.
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also 3 coupled ones with a Lagrangian similar to Eq.~3.40!:
to obtain it one is to do the following replacements in E
~3.40!: f 2→ f 1 , g2→gm, f 1→ i f 0 , w1→k, w2→v1

5Ak21n2, m150, m25k, a2→ i r1 , a1→r0, so that Eq.
~3.41! for the characteristic frequenciesv becomes

~v22n2!214r1
2~kv!2

24r0
2~Ak21k2v2kn!250. ~5.33!

The solutions of this equation are real. Indeed, the analo
Eq. ~3.46! is found to be

V25
1

2k
n@2~11r1

2!k

6An214r1
2~r1

211!k2#1OS 1

k3D . ~5.34!

We conclude that@in contrast to similar (S1 ,S2) and (J1 ,J2)
circular solutions# this hybrid (S,J) solution is always
stable.

It should be possible to match Eq.~5.32! with anomalous
dimensions of particular tr(DSFJ)1 . . . operators on the
SYM side by identifying the corresponding distribution
Bethe roots in the Bethe ansatz equations of the assoc
XXX 21/2 Heisenberg spin chain@2#, as was done for othe
folded and circular (S,J) string solutions in@9#.

VI. CONCLUSIONS

To summarize, we have found, in particular, a solution
circular type with five spins (S1 ,S2 ,J1 ,J2 ,J3) whose lead-
ing large-spin correction in the energy looks like a one-lo
term from the viewpoint of SYM theory. Therefore, it
plausible that it can be matched onto the one-loop anoma
dimension corresponding to certain Bethe root distributio
on the SYM side. The string prediction for this anomalo
ys

, J

cl.

J

ed

08600
.

of

ted

f

p

us
s
s

dimension is summarized in Eq.~5.29! @with Eq. ~3.24! as a
particular case#. Deriving it from the spin chain@2# Hamil-
tonian would clarify, in particular, how the winding numbe
of circular string states are encoded in the Bethe root dis
butions.

One interesting special case is that of the solution wit
single spin componentS in AdS5 and a single R-chargeJ.
We have shown that this solution is stable for all values
spins and winding numbers. The corresponding energy
mula in Eq.~5.32! is very simple; it should be possible t
reproduce it on the SYM side as was done for other (S,J)
solutions in@9#.

For general solutions of the Neumann-Rosochatius s
tem, the energy is a complicated implicit function of spi
and topological numbers. For example, in the two-spin c
of Sec. IV B the general solution of the NR system can
written in terms of elliptic functions but the energy is a s
lution of a parametric transcendental system of equation
would be very interesting to find a more direct map betwe
the NR system and Bethe equations for some properly c
sen Bethe root distributions on the SYM side. It would al
be important to find new pulsating solutions of the NR sy
tem mentioned in Sec. II C that may have simple SYM cou
terparts.
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