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Abstract

We simulate the influence of a reversible isomerization reaction on the phase segregation process occurring

after spinodal decomposition of a deeply quenched regular binary mixture, restricting attention to systems

wherein material transport occurs solely by diffusion. Our theoretical approach follows a diffuse interface

model of partially miscible binary mixtures wherein the coupling between reaction and diffusion is addressed

within the frame of nonequilibrium thermodynamics, leading to a linear dependence of the reaction rate on

the chemical affinity. Ultimately, the rate for an elementary reaction depends on the local part of the chemical

potential difference since reaction is an inherently local phenomenon. Based on 2D simulation results, we

express the competition between segregation and reaction as a function of the Damköhler number. For

a phase-separating mixture with components having different physical properties, a skewed phase diagram

leads, at large times, to a system converging to a single-phase equilibrium state, corresponding to the absolute

minimum of the Gibbs free energy. This conclusion continues to hold for the critical phase separation of

an ideally perfectly symmetric binary mixture, where the choice of final equilibrium state at large times

depends on the initial mean concentration being slightly larger or less than the critical concentration.
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I. INTRODUCTION

The objective of this research is to study numerically the influence of a simple reversible iso-

merization reaction on the phase segregation of a regular binary mixture, occurring after it is

deeply quenched from a single-phase equilibrium state into the (two-phase) unstable range of its

phase diagram. Based on results of previous works showing that spinodal decomposition of regular

binary mixtures can be convection-driven in low-viscosity systems,1–6 herein we further restrict

attention to cases in which material transport occurs solely by diffusion, to be able to focus on the

competition between segregation and reaction in the absence of any convection-driven coalescence

(which is relevant whenever transport can occur by convection as well). In fact, phase separation

in a number of reaction-diffusion systems occurs primarily by spinodal decomposition, usually trig-

gered by a thermal or compositional quench. Actually, the necessary displacement from a stable

state in the one-phase region into the spinodal range can also occur by reaction, e.g., polymer-

ization of a monomer when the polymer being formed is incompatible with one or more of the

other components in the system. Note that in what follows we will not deal with reaction-induced

spinodal decomposition in any detail since the focus of this paper is on the competition between

segregation and reaction during spinodal decomposition of a binary mixture triggered by a thermal

quench. In spite of this, due to its relevance to the design of new materials such as, e.g., monolithic

porous polymer or carbon materials,7 reaction-induced spinodal decomposition8,9 has been studied

extensively over the past few decades, mostly by experiment.10–17 In fact, the first attempt to in-

vestigate instabilities in a binary mixture undergoing phase separation induced by an autocatalytic

reaction dates back to Huberman18 in 1976. On the other hand, early experimental observations

of the influence of chemical reactions on phase separation include a study of pattern formation in

a polymer blend with segregation coupled to a transesterification reaction,19 or the introduction of

photo-cross-linking reactions to binary and ternary phase-separating mixtures by Tran-Cong and
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collaborators.20–25 In fact, a number of works indicated that chemical reactions may slow down

the phase separation in polymer blends; in particular, Glotzer et al.26 studied by Monte Carlo

simulation the phase separation of a binary mixture in the presence of a reversible A ⇋ B reaction,

showing that, unlike the nonreacting case, phase separation proceeds only to a certain extent, until

the system freezes into a lamellar morphology, due to a suppression of low wavenumber composition

fluctuations.27 Ever since a number of similar studies have been conducted to further investigate the

influence of reversible reactions on binary and ternary systems undergoing phase separation, based

on alternative numerical methods and model equations.28–35 In particular, Glotzer’s results were

questioned by Lefever and coworkers36,37 as to the thermodynamic coupling between reaction kinet-

ics and diffusion, which cannot be neglected particularly in the vicinity of the critical point. Using

nonequilibrium thermodynamics,38,39 Carati & Lefever37 presented a more general linear stability

analysis showing that there exist four possible cases that include the prediction by Glotzer et al.27

regarding a reaction-induced stabilization of low wavenumber composition fluctuations. Herein,

we further address reaction and diffusion in a phase-separating regular binary mixture within the

frame of nonequilibrium thermodynamics, focusing on the influence of a reversible isomerization

reaction as it affects both the linear regime of spinodal decomposition and its late stage, based on

a binary fluid diffuse-interface model for regular mixtures with an asymmetric phase diagram. We

also address reaction coupled to phase segregation in an ideally perfectly symmetric binary system.

Although many previous works have addressed the competition between segregation and re-

action particularly in phase-separating chemically reactive polymer blends, to our knowledge the

Damköhler number dependence of segregation statistics for a regular binary mixture undergoing

phase separation in the presence of a reversible isomerization reaction has not been discussed in the

literature before and constitutes the principal result reported herein. An outline of the remainder

of this paper is as follows. The governing equations and numerical methods are briefly outlined

in Sect. II. Then, in Sect. III we show the results of numerical simulations of a phase-separating
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chemically reactive binary mixture as a function of the Damköhler number. Conclusions are then

presented.

II. MODEL DESCRIPTION

We restrict attention to partially miscible, regular binary mixtures of two species A and B

with molar fractions xA and xB = 1 − xA, kept at constant temperature T and pressure P . In

previous works,1,4,40–43 such mixtures had been assumed to have components with equal densities,

viscosities and molecular weights (i.e., an ideally perfectly symmetric binary system). Herein, we

consider mixtures with component species having different physical properties, corresponding to an

asymmetric phase diagram.44 Now, when the mixture has a uniform composition, the equilibrium

state of the system is described by the thermodynamic Gibbs free energy of mixing

∆gth = gth − (gAxA + gBxB), (1)

where gth is the molar free energy of the mixture at equilibrium, while gA and gB denote the molar

free energies of the pure species at temperature T and P . For regular mixtures, the thermodynamic

Gibbs free energy of mixing can be written as the sum of an ideal (or entropic) part,

∆gid = RT [xA log xA + xB log xB], (2)

(R being the universal gas constant) which is proportional to the entropy of mixing for an ideal

solution, and an enthalpic (so-called excess) part,

∆gex = RTxAxB[ΨAxA +ΨBxB], (3)

4



where Ψi denotes the Margules parameter for the ith species. When the composition of the

mixture is nonuniform, following Cahn & Hilliard,45 spatial inhomogeneities in the composition

can be accounted for by representing the generalized Gibbs free energy of mixing as the sum of a

thermodynamic part and a nonlocal part, i.e.,

g̃ = gth +
1

2
RTa2|∇φ|2, (4)

where a is a (coarse-grained) sub-micron-scale length, which represents the typical interface thick-

ness between the two phases at equilibrium. Now, from the expression for the chemical potential

for species i for homogeneous solution at constant T and P

µthi =
1

RT

(

∂cgth

∂ci

)

cj 6=i

, (5)

with ci = cxi denoting the mole density of species i and c = cA + cB the total mole density, we see

that for a binary system the chemical potential difference µth = µthA − µthB is thermodynamically

conjugated to φ ≡ xA, i.e., µ
th = d(gth/RT )

dφ . With the above definitions we obtain

µth = µ0 + log
φ

1− φ
+Ψ+(1− 2φ) −Ψ−(1− 6φ+ 6φ2), (6)

where µ0 = (gA − gB)/RT while Ψ+ = (ΨA + ΨB)/2 and Ψ− = (ΨA − ΨB)/2. This relation

was extended to inhomogeneous mixtures by Cahn & Hilliard45 in terms of the generalized (i.e.,

thermodynamic plus nonlocal) chemical potential difference

µ̃ =
δ(g̃/RT )

δφ
= µth − a2∇2φ. (7)
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A. The governing equations

We consider a reversible isomerization reaction, A ⇋ B. Also, we assume isothermal conditions

so that the energy balance is identically satisfied. Now, requiring mass conservation for each species

leads to well-known continuity equations for the mole densities ci (i = A, B):

∂cA
∂t

+∇ · cAvA = −R, (8)

∂cB
∂t

+∇ · cBvB = R. (9)

Here, vA and vB are the local mean species velocities for A and B whileR is the reaction rate (molar

consumption rate of A per unit volume). As a rule, the above mass conservation equations must

be coupled to the Navier-Stokes equation; however, in what follows we further restrict attention

to an isothermal reaction-diffusion system in the absence of flow, i.e., where cAvA + cBvB ≡ 0.

Therefore, Eqs. (8) and (9) reduce to

∂φ

∂t
= −∇ · Jφ − ṽR, (10)

with ṽ denoting the molar volume ṽ = c−1 =Mw/ρ (a constant in this case based on our assumption

of equal molecular weights). Here, the species balance equation for A has been rewritten in terms

of the mole fraction xA ≡ cA/c ≡ φ. Also, the diffusive (or antidiffusive) volumetric flux can be

shown to be proportional to the gradient of the generalized chemical potential difference [Eq. (7)]

through the relation44,46

Jφ = −Dφ(1− φ)∇µ̃, (11)
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where D is the molecular diffusivity. Note that, based on our derivation of the entropy equation

for a binary mixture,42 the entropy production rate for this reaction-diffusion system is

σ

R
= −1

ṽ
Jφ · ∇µ̃− A

RT
R, (12)

where the chemical affinity, A = −RTµth, depends solely on the local part of the chemical poten-

tial difference.39 Now, consistent with our modeling the diffusive volumetric flux as the negative

gradient of the chemical potential difference (corresponding to a positive contribution to the en-

tropy production), in this work we are interested in a nonequilibrium thermodynamics approach

to reaction rate modeling,38 i.e.,

R = −k
ṽ

A

RT
, (13)

where k > 0 is an Onsager coefficient which, in fact, can be immediately identified as a reciprocal

reaction time (i.e., k ≡ τ−1
r ). Although quite close to chemical equilibrium Eq. (13) is expected to

hold to a good approximation, large deviations from a linear flux-force dependence are generally

observed for chemical reactions.38 In fact, in nonequilibrium thermodynamics of chemical reactions,

the rate for an elementary reaction is usually expressed in terms of Arrhenius-type exponentials of

the chemical potential (a.k.a. fugacity, or the exponential transform of the chemical potential), so

that the relationship between reaction rate and affinity turns out to be nonlinear:38,47

R = −k
ṽ

(

1− e−A/RT
)

, (14)

which obviously reduces to Eq. (13) for |A|/RT ≪ 1. Since all results reported herein have been

based on Eq. (13), we show in Fig. 1 both reaction rate models [Eqs. (13) and (14)] as a function

of composition. From this plot, as the range of concentrations accessed by all of our simulations is
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FIG. 1: Dimensionless reaction rates vs. concentration from Eq. (13) (solid), Eq. (14) (dashed), and Eq. (13)
with concentration-dependent Onsager coefficient [Eq. (15)] (dot-dashed).
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nowhere in the neighborhood of φ = 0 or 1, we can safely conclude that both reaction rate models

lead to results that are not qualitatively different. However, it should be acknowledged that both of

the above reaction rates show unphysical behavior as they blow up in the dilute limit; in particular,

Eq. (13) is divergent at both ends of the composition range (i.e., as φ → 0 or 1), while Eq. (14)

only diverges as φ → 1. In what follows we further restrict attention to Eq. (13). In this case,

both divergences of the reaction rate can be eliminated by introducing a concentration-dependent

Onsager coefficient of the form:

K(φ)

k
=

c1φ(1− φ)

1 + c2 log
(

φ
1−φ

) . (15)

As can be seen (Fig. 1), with c1 = 4 and c2 = 2 · 10−5 this model not only provides an excellent

approximation to the above reaction rates for the range of compositions of interest in this work,

but it also reduces to a linear function of φ as φ→ 0 or 1.
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B. Numerical methods

The governing equation (in dimensionless form) can be rewritten as follows:

(∂t −∇2)φ = −∇2

{

φ(1− φ)

[

2Ψ+φ+ 6Ψ−(φ2 − φ) +
( a

L

)2
∇2φ

]}

+∇ ·
{[

2Ψ+φ+ 6Ψ−(φ2 − φ) +
( a

L

)2
∇2φ

]

(1− 2φ)∇φ
}

− kL2

D
µth, (16)

where lengths and times have been scaled by L and L2/D, respectively, with L denoting a macro

length scale (which in our case coincides with the periodicity length of the computational domain).

Now, since we consider phase-separating mixtures with an asymmetric phase diagram (as it happens

when µ0 6= 0, which is the case with the simulation results reported herein), the reaction term in

Eq. (16) can be estimated as O
(

kL2

D |µ0|
)

, while the diffusion term is O
(

ψD(φ0)
D

L2

a2

)

. Here, ψ

is defined as ψ = −1
2
∂µth

∂φ

∣

∣

∣

φ0
, while D(φ0) ≡ Dφ0(1 − φ0). [It turns out that D(φ0)ψ(φ0) is

an estimate of the effective diffusivity that arises in a linear stability analysis (see Appendix).]

Therefore, we define the Damköhler number as a reaction-to-diffusion flux ratio:

Da
L
=

kL2|µ0|
D(φ0)ψ(φ0)

. (17)

Note that, even though a is the physically relevant length scale for transport by molecular

diffusion (as reflected in the order-of-magnitude estimate above), our definition incorporates

L2/(D(φ0)ψ(φ0)) as the time required for transport by diffusion across the whole system size.

We assume periodic boundary conditions, which enables a straightforward pseudospectral spa-

tial discretization. In pseudospectral methods, however, special care must be taken to avoid aliasing

errors in the computation of nonlinear terms. Quadratic nonlinearities are usually made alias-free

using the so-called padding method, consisting of collocating in physical space on a refined grid

with (3/2)2 as many grid points (in 2D) as the number of active modes in the calculation. Us-
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FIG. 2: Thermodynamic Gibbs free energy for a binary mixture with Ψ+ = 2.1, Ψ− = 0 and µ0 = −0.01.
The absolute minimum of the free energy is at φ∗eq = 0.7046.
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ing the padding method, a refined grid with (5N/2)2 points is required for dealiasing the quartic

nonlinearities.48 In our production runs, the 3/2-rule has been employed for quadratic, cubic,

and quartic nonlinearities, since the remaining aliasing errors were found to be negligible. The

Fourier-transformed Eq. (16) can be rewritten as follows:

d

dt
(ek

2tφ̂k) = ek
2tN̂k, (18)

where the Fourier coefficients are denoted by hats, and an integrating factor has been employed

for the exact treatment of the purely diffusive term on the LHS of (16). The grid spacing has

been chosen so that interface profiles are resolved with three collocation points, i.e., ∆x = a/2.

Equation (18) has been time-integrated using the standard fourth-order Runge-Kutta scheme,1

with a variable time step determined by

∆t = NC
∆x

V
, (19)
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FIG. 3: Snapshots of mass fraction at different (nondimensional) times t = 5 10−2, 5 10−1, 2 (left to right)
from phase-field simulations of an asymmetric binary mixture with Ψ+ = 2.1, Ψ− = 0, µ0 = −0.01 on a
5122 grid with Damköhler numbers Da

L
= 0.531, 5.31, 53.1, 531 (top to bottom).

where NC is a dimensionless parameter. Also, ∆x is the dimensionless grid spacing, while V =

max[|φ,x| + |φ,y|]. This makes our temporal scheme sensitive to the spatial gradients of φ. In

addition, NC was chosen such that the time advancement scheme is numerically stable and the

smallest dynamical motions are accurately computed. Unfortunately, the non-linearity of the

equation prevents a rigorous determination of the stability limit and imposes a trial-and-error

determination of the maximum NC . In our simulations, we chose NC = N∗

C(Da) (with N
∗

C(Da) =

10−3 ÷ 10−2 depending on our choice of Da), as we found values of NC > N∗

C(Da) such that the

scheme is numerically unstable.
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III. RESULTS AND DISCUSSION

Numerical results from 2D simulations of spinodal decomposition in the presence of the reversible

isomerization reaction above are now described. Simulations were run at different Damköhler

numbers, Da
L

= 0.531, 5.31, 53.1, 531, with Ψ+ = 2.1 and Ψ− = 0. Using a single Margules

parameter, an asymmetric phase diagram was described solely based on the term µ0 = −0.01.

The corresponding thermodynamic Gibbs free energy is shown in Fig. 2. We took the initial

system location between the spinodal points φβs = 0.39 and φαs = 0.609, at the relative maximum

φ0 = 0.4457. In particular, at this location the results of a linear stability analysis (see Appendix)

hold exactly. Spinodal patterns at different (nondimensional) times and for different values (noted

above) of the Damköhler number are shown in Fig. 3. As can be seen, the phase segregation process

at Da
L
= 0.531 is controlled solely by diffusion, at least for times in the range shown in Fig. 3.

In other words, the characteristic reaction time is so large compared to the characteristic diffusion
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FIG. 5: Normalized mean concentration vs. time (reaction time units) from phase-field simulations of an
asymmetric binary mixture with Ψ+ = 2.1, Ψ− = 0 and µ0 = −0.01 at different Damköhler numbers.

〈φ̃
〉

Da t

time that diffusion is hardly influenced by reaction in the range of simulated times, leading to

the formation of pseudo-spherical nuclei of the minority phase embedded in a continuous phase,

which is typical of off-critical spinodal decomposition. Eventually, though, reaction takes over [i.e.,

for t > O(Da−1
L

)], driving a phase-separated system towards its single-phase equilibrium state at

φ∗eq = 0.7046. However, at Da
L
= 5.31 although reaction is still slow compared to diffusion, at the

late stage shown in Fig. 3, after the appearance of the first nuclei, reaction takes over, effectively

arresting the phase separation and driving the system towards the absolute minimum for the free

energy at φ = φ∗eq. Similar behavior is observed for Da
L
= 53.1 and Da

L
= 531, though reaction

tends to kick in sooner due to a smaller characteristic reaction time as compared to the smaller

Damköhler number cases. This competition between reaction and diffusion is also reflected in the

temporal evolution of the characteristic length scale of single-phase microdomains (see Fig. 4),
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defined as

Lφ(t) =
1

φ2rms

∑

k

|φ̂k|2
|k| , (20)

with a hat denoting a Fourier transform. As can be seen, after an incubation time,49 a diffusive

type of scaling is apparent for the characteristic length scale for Da
L
= 0.531, i.e., Lφ(t) ∼ tα,

with α / 1/3, reaction being too slow to have any effect. However, as previously noted, at

larger Damköhler numbers reaction effectively arrests the phase separation, by first accelerating

the phase separation in terms of an overshoot in the growth of the characteristic length scale;

subsequently, the characteristic length sharply decays to a constant value, corresponding to a

single-phase equilibrium state.

Since 〈φ〉 is no longer conserved during the segregation process in the presence of reaction, in

Fig. 5 we show the temporal evolution of a suitably normalized mean concentration, i.e.,

〈φ̃〉 =
〈

φ(r)− φ0
φ∗eq − φ0

〉

, (21)

where φ0 is the initial composition, while φ∗eq denotes the composition of the final single-phase

equilibrium state (with the brackets denoting volume and ensemble averaging). Note that this

definition is the same (barring a single-phase final equilibrium state) as the separation depth

which had been introduced in previous works1,50,51 for measuring the distance of single-phase

microdomains from their (two-phase) local equilibrium state. However, as can be seen, even with

the smallest Damköhler number the temporal evolution of the separation depth (for this reactive

situation) is fundamentally different from that exhibited in the absence of chemical reactions,1

wherein after the (delayed) onset of phase separation, local equilibrium is reached well after the

appearance of microdomains with sharp interfaces, through a process of composition relaxation that
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FIG. 6: Snapshots of mass fraction at different (nondimensional) times t = 4 10−3, 2.4, 3.1, 12, 17 and 28
(left to right and top to bottom) from phase-field simulations of a perfectly symmetric binary mixture with

Ψ+ = 2.1, Ψ− = 0, µ0 = 0, and Da = ka2

D(φ0)ψ(φ0)
= 4.76 on a 2562 grid.

is concomitant to their temporal growth. In the presence of chemical reactions and, in particular,

for large Damköhler numbers there is no time for the mixture to phase separate by diffusion as

reaction takes over, driving the system to a single-phase equilibrium state corresponding to 〈φ̃〉 = 1.

Note that the equilibrium points (previously denoted as φα,βeq ) corresponding to locations on the

tangent to the free energy curve in Fig. 2 and representing two coexisting phases are not relevant

to the present simulations, since after an initial transient wherein as a result of diffusion two phases

might be coexisting for some time, due to the skewness of the phase diagram the system eventually

converges to the single-phase (equilibrium) steady state at φ = φ∗eq.

A. Symmetric binary mixture

The argument above regarding the final equilibrium state for a binary mixture with a skewed

phase diagram can be questioned for a perfectly symmetric binary mixture, since in this case it is not

obvious that the final equilibrium state should be characterized by a single phase. This question

was further investigated by first running simulations with a rectangular strip of the minority α

phase embedded in a continuous β phase (with both φαeq and φβeq obtained from an equilibrium
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calculation assuming phase coexistence) using µ0 = 0, the same Margules parameter as above

and a large value of the Damköhler number. In these simulations, although the reaction rate is

essentially zero within the single-phase microdomains, reactions still occur at the α/β interfaces.

In fact, with the strip bounded by initially straight interfaces, we saw that nothing happens except

for the interfacial thickness tending to become smaller and smaller, since ideally the system would

want to minimize the Gibbs free energy by getting rid of the additional energy cost incurred by the

presence of interfaces in the computational domain (i.e., by reaching a single-phase homogeneous

equilibrium state). Clearly, this cannot happen in this 1D situation. So we ran additional cases

with a rectangular strip having corrugated interfaces, such as those obtained using a sinusoidal

variation in the y direction to specify the initial interface location. In these cases, we saw that

the system tends to get rid of the corrugations, i.e., with a final equilibrium state characterized by

straight interfaces. However, for a perfectly symmetric binary system consisting of phase-separated

domains initially at equilibrium, interfacial curvature plays a crucial role in driving the system to

its final single-phase equilibrium state. This is apparent in simulations with a circular droplet

of the minority α phase surrounded by a circular crown of the same phase and embedded in a

continuous β phase. Again, since reaction is only taking place at the α/β interfaces, we saw a

cascade of concentric drops collapsing towards the center of the computational domain, with the

final equilibrium state consisting solely of a homogeneous β phase. As can be seen (Fig. 6), at

this value of Damköhler number, it takes a relatively short time for the inner drop to get eroded

by reaction and disappear. However, the time it takes for the circular crown to disappear is

more than twice as long, since its initial (inner) curvature is more than twice as small as the

initial curvature of the inner drop. Next, we looked at an initially phase-separated mixture at

equilibrium consisting of a monodisperse array of drops of the minority α phase embedded in a

continuous β phase. The top panel in Fig. 7 shows a total of 150 drops of the minority phase

(having a radius of 8a) resulting in 〈φ〉(0) = 0.48; as can be seen, at this value of Damköhler
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FIG. 7: Snapshots of mass fraction at different (nondimensional) times t = 0.01, 1, 2.5 (left to right) from
phase-field simulations of a perfectly symmetric binary mixture consisting of a monodisperse array of α-
phase drops embedded in a continuous β phase (at the initial time) with Ψ+ = 2.1, Ψ− = 0, µ0 = 0, and

Da = ka2

D(φ0)ψ(φ0)
= 0.62 on a 5122 grid with 〈φ〉(0) = 0.4864 (top) and 〈φ〉(0) = 0.5150 (bottom).

number a few drops have time to coalesce by diffusion and only afterwards do such larger domains

get eroded by reaction so that the system eventually converges to a homogeneous β phase. In

fact, this conclusion remains valid even when the total number of drops is increased to 176, so

that the initial mean concentration is 〈φ〉(0) = 0.515 > 1/2. In this case, too, we saw that the

continuous phase wins, i.e., the final equilibrium state consists of a single-phase homogeneous β

phase. However, for a perfectly symmetric binary mixture at critical concentration, perturbed by

delocalized (random) composition fluctuations, with a value of Damköhler number slightly larger

than that for the initially monodisperse drops, after the initial diffusion-driven stage of spinodal

decomposition, the late stage evolution in the presence of reaction was very sensitive to initial

disturbances in the composition that would make the initial mean concentration as either slightly

larger or less than the critical concentration, 〈φ〉 = 1/2. This bias (which can be controlled using

the seed for the random number generator) determines the subsequent evolution towards either the

high (with the final equilibrium state being α) or low end (with the final equilibrium state being

β) of the composition range (see Fig. 8).
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FIG. 8: Snapshots of mass fraction at different (nondimensional) times t = 0.02, 1, 80 (left to right) from
phase-field simulations of a perfectly symmetric binary mixture at critical concentration (with random noise

superimposed at the initial time) with Ψ+ = 2.1, Ψ− = 0, µ0 = 0, and Da = ka2

D(φ0)ψ(φ0)
= 2.44 on a 2562

grid with 〈φ〉(0) = 0.50017 (top) and 〈φ〉(0) = 0.49994 (bottom).

IV. CONCLUSIONS

We have discussed numerical results from 2D simulations of spinodal decomposition of a regular

binary mixture with component species having different physical properties (corresponding to an

asymmetric phase diagram) in the presence of a reversible isomerization reaction. Our attention

has been restricted to systems such as, e.g., polymer melts and alloys, wherein material transport

occurs solely by diffusion. Also, the thermodynamic coupling between reaction and diffusion has

been addressed within the frame of nonequilibrium thermodynamics, leading to a linear depen-

dence of reaction rate on affinity. We emphasize that, ultimately, the reaction rate should depend

solely on the local part of the chemical potential difference, since reaction is an inherently local

phenomenon. Using this model, a linear stability analysis for an equilibrium state located in the

spinodal range of the phase diagram shows that the effect of reaction is always destabilizing on

the linear regime of spinodal decomposition. Furthermore, we discussed the competition between

segregation and reaction from spinodal decomposition simulations in 2D at different Damköhler

numbers. In particular, we have shown that due to the skewness of the phase diagram for a mix-
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ture with component species having different physical properties, in all cases the system converges

at large times to a single-phase equilibrium state, corresponding to the absolute minimum of the

Gibbs free energy. This conclusion is still valid for a perfectly symmetric binary mixture; in fact,

since there is no skewness in the phase diagram in this case, at steady state the system converges to

either the α or β phase (obtained from an equilibrium calculation assuming phase coexistence) de-

pending on the initial mean composition being slightly larger or less than the critical concentration,

which is ultimately controlled by the seed for the random number generator.

APPENDIX A: LINEAR STABILITY ANALYSIS

We study the short-time behavior of a regular binary mixture with an asymmetric phase di-

agram, which is suddenly quenched into the unstable range of its phase diagram at a uniform

concentration φ = φ0 such that µth(φ0) = 0, in the presence of a reversible isomerization reaction.

(Note that near-critical conditions are not assumed.) First, we linearize the Cahn-Hilliard equation

[Eq. (10)] defining

u ≡ φ− φ0
φ0

, ψ = Ψ+ − 3Ψ−(1− 2φ0)−
1

2φ0(1− φ0)
. (A1)

With |u| ≪ 1 and 〈u〉(0) = 0, we obtain:

∂u

∂t
= −2ψ∇2u−∇4u+ 2ψDa0u, (A2)

where the spatial coordinates and time have been made dimensionless based on a and a2/D(φ0),

respectively, while

Da0 ≡
ka2

D(φ0)
(A3)
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is a Damköhler number. Equation (A2) follows from a Taylor series expansion for the chemical

potential difference around u = 0 as

µth = −2ψφ0 u+ . . . (A4)

Using an integrating factor, Eq. (A2) can be rearranged to the form

∂u′

∂t
= −2ψ∇2u′ −∇4u′, with u′ = u exp (−2ψDa0t) , (A5)

which is the same as the linearized Kuramoto-Sivashinsky equation of the nonreactive case.44 Now,

assuming a periodic perturbation,

u′ = u′0e
ik·xeσ

′t, (A6)

we find for the original disturbance

σ(k) = k2(2ψ − k2) + 2ψDa0. (A7)

Hence we see that

k < ψ
(

1 +
√

1 + 2Da0/ψ
)

(A8)

corresponds to unstable growth of the disturbance. It follows from Eq. (A7) that the wavenumber

which maximizes the exponential growth, kmax =
√
ψ, is the same as for the nonreactive case.

However, since σ(0) > 0, the zero mode of the disturbance (i.e., its mean value) is always unstable,

in agreement with 〈φ〉 not being conserved in the presence of reaction.

Finally, we comment on the large-time behavior of a regular binary mixture with an asymmetric
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phase diagram converging to a single-phase equilibrium state. In this case, too, the Cahn-Hilliard

equation can be linearized by first introducing u and ψ as above [Eq. (A1)], with φ0 = φ∗eq denoting

the uniform concentration of the final equilibrium state. With |u| ≪ 1 and 〈u〉(∞) = 0, we obtain,

once again:

∂u

∂t
= 2ψ−∇2u−∇4u− 2ψ−Da0u, (A9)

where ψ− denotes the negative part of ψ (note that ψ− = −ψ is positive since gth is convex in the

neighborhood of φ0). Again, this is the same as a linearized Kuramoto-Sivashinski equation. Now,

based on our assumption of periodic boundaries, the solution to Eq. (A9) can be written down by

inspection:

u(x, t) =
∑

k

ûk(0)e
−(2ψ−k2+k4)teik·x e−2ψ−Da0t. (A10)

Hence, assuming a small value of the Damköhler number, in the final approach to a homogenous

equilibrium state inhomogeneities in the composition are smoothed out on a diffusive time given

by a2/De, where De = 2ψ−D(φ0) represents an effective diffusivity, and, simultaneously, on a

hyperdiffusive time given by a2/D(φ0), while a
2D(φ0) acts as a hyperdiffusivity. Subsequently,

reaction kicks in driving the perturbation to zero on a reaction time scale given by (kψ−)−1.
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