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SPINOR BUNDLES ON QUADRICS

GIORGIO OTTAVIANI

ABSTRACT. We define some stable vector bundles on the complex quadric
hypersurface Qn of dimension n as the natural generalization of the universal
bundle and the dual of the quotient bundle on Q4 ~ Gr(l,3). We call them
spinor bundles. When n = 2fc — 1 there is one spinor bundle of rank 2k~1.
When n = 2k there are two spinor bundles of rank 2k~1. Their behavior
is slightly different according as n = 0 (mod 4) or n = 2 (mod 4). As an
application, we describe some moduli spaces of rank 3 vector bundles on Q5
and Qe-

Introduction. Let Qn be the smooth quadric hypersurface of the complex pro-
jective space Pn+1.

In this paper we define in a geometrical way some vector bundles on the quadric
Qn as the natural generalization of the universal bundle and the dual of the quotient
bundle on Q4 ~ Gr(l,3). We call them spinor bundles. On Q4 this definition is
equivalent to the usual one.

Spinor bundles are homogeneous and stable (according to the definition of Mum-
ford-Takemoto). We study their first properties using the geometrical description
given and some standard techniques available in [OSS].

We also use a theorem of Ramanan (see [Um]) about the stability of homoge-
neous bundles induced by irreducible representations. When n is odd there is only
one spinor bundle, while when n is even there are two nonisomorphic spinor bun-
dles. When n is even the behavior of spinor bundles is slightly different according
as n = 0 (mod4) or n = 2 (mod4).

In [Ot2] we have given a cohomological splitting criterion for vector bundles on
quadrics involving spinor bundles.

Qn ~ Spin(n + 2)/P(cty) [St] is a homogeneous manifold, and the semisimple
part of the Lie algebra of -P(ai) is o(n). At the level of Lie algebras, spinor bundles
are defined from the spin and half-spin representations of o(n).

The paper is divided into three sections. In §1 we give some preliminary results
and we define the spinor bundles. In §2 we study the first properties of spinor
bundles. In §3, as an application, we describe some moduli spaces of rank 3 vector
bundles on Q5 and Qq.

1. Geometrical definition of spinor bundles on Qn- For basic facts about
vector bundles we refer to [OSS]. We set E(t) = E ®oQn 0Qn(i) for t E 1 when
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302 GIORGIO OTTAVIANI

E is a vector bundle on Qn. The first Chern class of E can be considered as an
integer. We denote by E* the dual vector bundle of E. If F is a sheaf on a variety
X, we denote by hl (X, F) the dimension of the complex vector space Hl (X, F).

We will recall some facts about linear spaces of maximal dimension on Qn [GH,
Chapter 6; LV, pp. 16-17].

The situation is different for quadrics of odd or even dimension. If n = 2fc is even,
then the linear spaces of Qn of maximal dimension have dimension fc. There are
two disjoint families of fc-planes on Qn, each parametrized by a smooth irreducible
projective variety Sk (called spinor variety) of dimension fc(fc + l)/2. We have:
Pic(Sfc) ~ Z and if Osk(l) is the ample generator, then //°(S&, Osk(l)) = C2 .

If n = 2fc + 1 is odd, then the linear spaces on Qn of maximal dimension have
dimension fc. There is only one family of fc-planes on Qn which is parametrized by
Sk+i-

It is well known that Si ~ P1, S2 ~ P3.
Let Q2k+2 n // = Q2k+y with H a nontangent hyperplane. The natural map

{Pfc+1 I Pfc+1 c Q2k+2} - {Pk I Pk c Q2k+1},
pk+l ^ pfc+1 nH

is 2 : 1 and is an isomorphism when restricted to each connected component of
rpfc+i | pfc+i c Q2k+2), Observe that if Pk+1 C H for some Pfc+1, then H would
be tangent to Q2fc+2, so that (1) is well defined.

If x E Qn, the linear spaces on Qn of maximal dimension which contain x are
in a natural bijective correspondence with the linear spaces of maximal dimension
on Qn-2 — Qn n TxQn fl //, where TxQn is the tangent space to Qn in x and H is
a generic hyperplane. In fact TxQn (lQn is a cone with vertex in x over a smooth
quadric Qn-2.

PROPOSITION 1.1. Let Q2k+y^H = Q2k, where H is a nontangent hyperplane.
We have {Pk | Pfc C Q2k} — S'k U S'k, so that we have two natural embeddings

i': S'k -* Sk+y and i": S'k' -» Sfc+ll where Sk+y =2 {Pfc | P* C g2fc+i}.
Then i'*0sk+l(l) — 0_<(1), i"*0sk+l(l) — Os»(l), and the restriction map

H°(Sk+y,0(l)) - H°(S'k, 0(1)) © H°(S'k\ 0(1))
is an isomorphism

PROOF. We have a natural commutative diagram

5;    ——* Gr(fc,2fc + 1)

S„+i  —2— Gr(fc,2fc + 2)
where j*0Gr(k2k+2)(l) c± 0Or(t>M+I)(l).

It is shown in [LV] that /*0Gr(k2t+2)(l) ^ 0Sfc+] (2). Then

i'*0Sk+,m = (9°i'rOGT{k,2h+2)(l) = (jo/)*0Gr(„,2„+2)(l) ^ 0s>i2).

AsPic(Sj(.) = Z, it follows that i'*0Slfc+1(l) - 0S- (1) and in the same way i"*0Sk+l (1)
-0S»(1).
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SPINOR BUNDLES ON QUADRICS 303

For the second assertion, since H°(Sk+i, 0(1)) and H°(S'k,0(l))®H°(S'k\ 0(1))
are vector spaces of the same dimension 2fc+1, it is sufficient to prove that the
restriction map is injective.

We use induction on fc. If fc = 1, then i'(S'y) and i"(S[') are two skew lines in
P3, so that the assertion is true.

Suppose that the assertion is false for fc+ 1: we have s E H°(Sk+2, 0(1)), s^O,
such that s[sk t = 0, s|s« i = 0. Let Pk+1 c Q2fc+3 such that s(Pk+l) ^ 0 and
let x E Pk+1 n H. Then

{Pfc+! |xePfc+1 cQ2fc+3n//}    ^    {Pk+1 | x e Pk+1 c Q2fc+3}

» l\

S'k U Sk Sk+y
and we obtain the natural commutative diagram:

S'k U,Sfc'       -►  Sk+y

I 1
S'k+1 U Sk+1   -*   Sk+2

We have s \s     ^ 0 because Pfc+1 g Sk+y, but s |j;,= s |g» = 0, contradicting the
induction hypothesis . This completes the proof.

COROLLARY 1.2.   (i) LetxEQ2k+y and consider

(Sk% ■= {Pk I x E Pk C Q2k+y} ^ {Pk | Pfc C Q2fc+i} = Sk+y.

Then ix0sk+1(l) ~ 0(sk)x(i) and the restriction map

H°(Sk+y,0(l))^H°((Sk)x,0(l))
is surjective.

(ii) Let x E Q2k and consider

iS'k-i)x U (_?£__), = {Pk|xePfcC Q2k} ^ {Pk | Pk C Q2fc} = S'k U S£:

jx induces two embeddings:

Jx '■ i$k-y)x —* Sk,        Jx : (Sk-y)x —* Sk.

Then j'*0s'(l) — 0(S'_ )(!)> 3x*0s"(l) — <3(S"_ )_(1) and the restriction maps

//0(5fc^(l))-^0((5„_x)„0(l)),
i.°(S„,0(l))-#0((S„_J_,0(l))

are surjective.

PROOF. We have observed that {Pfc | x E Pk C <22fc+i} - {Pfc_1 I Pfc_1 C
Q2fc+i n TxQ2k+y n //} where H is a hyperplane not tangent to Q2fc+i and not
containing x.

From map (1) we see that the last variety is isomorphic to one component of
(pk | pfc c Q2k+1 n _/}. Now the thesis of case (i) follows from Proposition 1.
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In case (ii), we cut with a hyperplane H, so that from map (1) we go back again
to case (i).

Consider now the quadric Q2k+y- From Corollary 1.2, for each x E Q2k+y we
have an inclusion

H°((Sk)x, 0(1))* ^ H°(Sk+y, 0(1))*
and then an embedding s:Q2fc+i —> Gr(2fc - l,2fc+1 - 1) in the Grassmannian of
(2fc - l)-subspaces of P2*+1-1.

In the same way, in the case of even dimension, from Corollary 1.2 we have the
two embeddings

s': Q2k - Gr(2fc~1 - 1,2k - 1), s": Q2k -» Gr(2fc-X - 1,2k - 1).

DEFINITION 1.3. Let U be the universal bundle of the Grassmannian. We call
s*U = S the spinor bundle on Q2k+y- Its rank is 2k. We call s'*U = S' and
s"*U ^ S" the two spinor bundles on Q2k-  Their rank is 2k~1.

If / is an automorphism of Q2k that exchanges the two families of fc-planes, we
have f*S' =_ S" and f*S" s_ 5'.

It is clear that spinor bundles S on all quadrics Q are homogeneous, i.e., f*S ~
S V/ E Aut(Q)0, where Aut(Q)0 is the connected component of the identity in
Aut(Q).

From the geometrical description given, the following theorem is clear.

THEOREM 1.4. (i) LetS', S" be the spinor bundles onQ2k, and leti:Q2k-y —*
<32fc be a smooth hyperplane section. Then i*S' a i*S" zt S, where S is the spinor
bundle on Q2k-y-

(ii) Let S be the spinor bundle on Q2k+i, and let i:Q2k —> Q2k+i be a smooth
hyperplane section. Then i*S ~ S' © S", where S' and S" are the spinor bundles
on Q2k-

EXAMPLES 1.5. In the definition of spinor bundles, the two embeddings
s':Q4 —* Gr(l,3) and s":Q4 —> Gr(l,3) are isomorphisms. So the spinor bun-
dles on Q4 are the universal bundle and the dual of the quotient bundle.

The embedding s: Q3 —> Gr(l, 3) corresponds to a hyperplane section. If S is the
spinor bundle on Q3, then S2S* = TQ3. In fact TQ4 \q3^ S*®S* =2 S2S* © 0(1)
and the exact sequence

0-TQ3-TQ4|Q3-0(1)-0

splits. On Q2 the two spinor bundles are the duals of the two line bundles corre-
sponding to two skew-lines on Q2.

On Qy ~ P1 we can define the spinor bundle to be 0Pi (-1).

COROLLARY 1.6. Let I C Qn (n > 3) be a line and let S be a spinor bundle on
Qn. Then S [, = 0rU"'3)m ® 0t(-ir2Un'3)/21.

2. First properties of spinor bundles on Qn- Now let n — 2fc + 1 and
consider the connected, simply connected, simple Lie group Spin(n + 2) = Gn- We
fix a maximal torus T C Gn. The Lie algebra of Gn is o(n + 2) and the Lie algebra
of T is a Cartan subalgebra of o(n + 2) which we denote by f).

Let $ be the set of roots of o(n+2) relative to 1), and let a_,... ,otk+y be a subset
of simple roots, so that every root a E $ can be written as an integral combination
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a — "Y^iZy ni°-i with either all n* > 0 or all rii < 0. This divides the set of roots
into two disjoint subsets, the positive roots $+, and the negative roots <I>-.

Let ( , ) denote the natural inner product on f)* induced by the Killing form.
Let Xy,..., Afc+i € h* be the fundamental weights, characterized by the property
2(Xi,ctj)/(otj, aj) = 8ij. We also denote by A^ the corresponding fundamental
weights which act on T.

Associated to the set of simple roots ay,..., ak+y is the Dynkin diagram Bk+y.
Let ga C o(n + 2) be the eigenspace for a root a. If A C {qi, ..., ak+y} we define
$+(A) = {a E $+ | a = £?_!_ "«««. m = 0 for a* € A}. Let P(A) be the standard
parabolic subgroup of Gn whose Lie algebra is rj © (0Q€$- ga) © (0_e_.+ (A) 9a)-
Consider the incidence variety F := {(_, Pfc) E Qn x Sk+y | x E Pk C Qn}-

We have two surjective projections as follows:

w '/ ' <.
Qn Sk+y

Then, if x € Qn, P~l(x) — (Sk)x and q |p-i(x)= ix (see Corollary 1.2). From the
geometrical description given, the dual of the spinor bundle S* on Qn is p«t7*0(l),
where 0(1) is the ample line bundle on Sk+y which generates Pic(Sfc+i) = Z. It is
well known [St] that in the diagram (2) we have the isomorphisms Qn — Gn/P(ay),
Sk+y a Gn/P(ak+y), F ~ Gn/P(ay,ak+y).

The line bundle 0(1) on Sk+y is defined by the character Xk+y of (the semisimple
part of) P(ak+y), that is 0(1) = Gn Xp(_fc+1) C where the twisted product is
defined to be the quotient of G„ x C by the action p - (g, v) — (gp~1,Xk+i(p)v),
(g,v) EGn xC,pEP(ak+y).

Then c7*0(l) is a line bundle on F defined by the character Afc+i of the semisim-
ple part of P(ay), and S* = p*q*0(l) is defined by the irreducible representation
p of the semisimple part of P(ay) with maximal weight A^+i. At the level of Lie
algebras, the semisimple part of Lie P(ay) is o(n) (the Dynkin diagram is Bk) and
it follows that Dp is the spin representation of o(n).

Exactly in the same way, when n — 2k, S" and S"* are defined from the two
half-spin representations of o(n).

The important fact is that for each n the spinor bundles are defined by irreducible
representations. By a theorem of Ramanan (see [Um]), vector bundles defined by
irreducible representations are stable with respect to each ample line bundle, so
that we can state the following.

THEOREM 2.1.   The spinor bundles on Qn are stable.

We shall use also the now classical theorem of Bott (see [St]) about cohomology
of homogeneous bundles.

For further reference, we also state the following.

COROLLARY 2.2. Let E be a vector bundle on Q2k+y and let Q2k C <22fc+i be
a generic hyperplane section. If E \Q2k— S' © 5" then E is semistable.

THEOREM 2.3.   Let S be a spinor bundle on Qn-  Then

Hl(Qn, S(t)) = 0     for i such that 0 < i < n, for all t E I,
H°(Qn, S(t)) - 0     for t < 0, h°(Qn, 5(1)) = 2^n+1^2l
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PROOF. We could apply the theorem of Bott, but we prefer to give a simple
inductive argument.

For n = 1,2 the theorem is well known. So we proceed by induction on n. Let
5 be a spinor bundle on Qn+y- Consider the exact sequences on Qn+i'-

0 — S(t - 1) -* S(t) -> S [Qn (t) -> 0   for all t E I.

From the induction hypothesis and Theorem 1.4 we have

H\Qn,S \Qn (t)) = 0    for i such that 0 < i < n, for all t E Z,
H°(Qn,S\Qn (t)) = 0   iort<0.

Then

Hl(Qn+i, S(t)) — 0   for i such that 1 < i < n, for all t E Z,
H1(Qn+i,S(t - 1)) -* //1(g„+i,S(i))    is surjective for all t E T,
Hn(Qn+y,S(t - 1)) -* Hn(Qn+l,S(t))    is injective for all t E I,
H°(S(t - 1)) -» H°(S(t)) is surjective for t < 0.

From Theorem B and Serre duality the result follows.
We now want to study the case when spinor bundles restrict to maximal linear

spaces on quadrics.
We first need the following lemma.

LEMMA 2.4.   Let E be a vector bundle on Pn such that

( C    if 0 < i = j < n,
h\p\e(-J)) = \       -   '- : .(0     i/O < t,j < n,i ^ 3.

Then
n

£^®np„(t).
i=0

PROOF. We have a Beilinson spectral sequence [Be, OSS] with _yi-term

Qn(n) 0 ...      oiq

0        ^"-^n-l) :

: fl'(l)     0

0 ... on0
->p

which converges to
f E    for i = 0,

El = \
[ 0     otherwise.
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In our case Ev{" = E%q = E™, so that a filtration of E results: 0 = E0 C Ey C
■ • • C En = E with Et subsheaves such that

i=0 p=0 t=0

Consider the sequence

0 -» Ey -> E2 -» £_/£i -» 0.
By [At], we have Ey :_ fip(p), E2/Ey ~ n?(g) for some p, g.   By Lemma 2 of
[Be]:Ext1(f]«(g),nP(p)) = 0, so that E2 ~ fF(p) © fl«(.).

Exactly in the same way it follows that each subsheaf Ei is a direct summand
of Ei+y, and this completes the proof.

THEOREM 2.5.   Let S be a spinor bundle on Q2m+i and consider a linear space
PmCQ2m+y. ThenS\pm=®™=0Wpm(i).

PROOF. The proof is by induction on m. For m = 1 the result is well known.
By Lemma 2.4 it is sufficient to show that

{C    for 0 < i = j < m,
0    for 0 < i, ji < m,i ^ j.

Consider a linear space Pm+1 D Pm. Then Pm+1 n Q2m+y = Pm U Pm := X and
we have an exact sequence of Mayer-Vietoris type [Ba]

(3) 0 -» Ox -» Opm © 0pm -» 0y - 0

where F = Pm n Pm ~ Pm_1.
Consider a generic linear space P2m   C  P2m+2 such that P2m  D  Y.    Then

pm n P2m = y  P2m n Q2m+1 _ Q2m_x smooth quadric.
We get the commutative diagram:

Y    -►   Q2m-1

I      I
Pm   -►   Q2m + 1

Thus by Theorem 1.4 5 \y— SQ2m_l |y ®Sq2„1_1 \y, where SQ2m_l is the spinor
bundle on Q2m-y. By the induction hypothesis, 5,<D2m_1 |y~ ©^q1 ^VW- Then

f C2,    0 <i = j < m- 1,ff(y,sL(-;')) =
ly \0,       0<*\j<m-_,tjfcj,

m—1

^"^y^ly (-m)) = 2^(^) = 2m+2-2.
i=0

Moreover, as A is a (singular) plane section of Q2m+i, it is easy to check inductively
that

H°(X,S\x(-3)) = 0   for_>0,
Hl(X, S \x (-j)) =0   for 1 < i < m - 1, Vj E I,
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h™(X,S\x(-3))=l°   +1    f°r^m-1'
V IX V    J I)       | 2m+i     fory = m

If we tensor (3) by 5 and consider the associated cohomology sequence we get

H*(Pm,S\pm(-3))®IP(P™,S\,m(-3)) = \^    ?0nZi=.i-m'     ■[0      for 0 < 1,3 < m, i ^ 3.

As S is homogeneous, we have S \pm — S |pm. This completes the proof.

THEOREM 2.6. (i) Let S', S" be the spinor bundles on Q4m. The restrictions
to one family of linear P2m c Q4m are

m m—1

s' |p2m^ 0"p-(2O,     s" \p2mc 0 n2p\t\2i +1),
i=0 i=0

while the restrictions to the other family of linear P2m C Q4m are

m-l m

s' lP2^ 0 nP^t.1(2z + i),       S" |pa_~ 0O2U2i).
i=0 t=0

(ii) Let S', S" be the spinor bundles on Q4m+2. The restrictions to one family
of linear p2m+1 c Q4m+2 are

m m

S     |p2m+l—  ^J7"p2m+1 (2l), S       | p2m+l —  ^J7 ^p2m+1 (2« +  1),
1=0 i=0

while the restrictions to the other family of linear p2m+1 c Q4m+2 are
m m

S     |p2m+l— ^J7"p2m+i (2l + 1), S      |p2m+l— ^J7"p2m + l (2z).
i=0 i=0

PROOF. Let Pfc C Q2k be a linear space. From Theorems 1.4 and 2.5 it follows
that S' © S" |pfc~ ©*Lonp*(0. By [At] S' and S" must decompose on Pfc with
direct summands Qpk(i) for some i.

Consider now a hyperplane Pfc_1 C Pfc. As fipfc(l) |pt-i^ np^^l) © 0P*-i,
from the canonical isomorphism /\n(A © B) = ©"=0(AJ A <g> /\n~] B) (A,B vector
bundles) we get

nU(*) |P*-i- nP*-' (0 © npl-i(i -1).
By Theorem 1.4, S' |p„_i— 5"' |p„_i, so that it follows that the only possible
decompositions are those stated.

LEMMA 2.7. Let Ey, E2 be semistable vector bundles on Qn with rankEy =
rank_?2, cy(Ey) = cy(E2). Let at least one of Ey, E2 be stable.  Then

„ ( 0    if and only if Ey,E2 are not isomorphic,
h"(Qn,E*®E2) = \  .......„„ ,.[1    if and only if Ey, E2 are isomorphic.

PROOF. It is a straightforward extension of [OSS, corollary of Lemma 1.2.8 and
Theorem 1.2.9, pp. 171-172].
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THEOREM 2.8. (i) Let n = 2m + 1 and let S be the spinor bundle on Qn. We
have a natural exact sequence:

0 - S - 0$r+l - 5(1) -» 0

and an isomorphism S* ~ 5(1).
(ii) Let n = 2m and let S', S" be the spinor bundles on Qn- We have two natural

exact sequences

0 -> S' -> O02™ - 5"(1) - 0,        0^5"^ OF"* -* 5'(1) - 0.Qn Wn v    '

Furthermore, if n = 0 (mod4) we have the two isomorphisms S'* £_ 5'(1) and
S"* ~ 5"(1), and ifn = 2 (mod4) we have the two isomorphisms S'* st S"(l) and
5"*~5'(1).

PROOF. The proof is by induction on n. The result is well known for n = 2,3,4.
By definition of spinor bundles, if 5 is a spinor bundle on Qn we have an exact
sequence
(4) O-S-0«aI(,,+l)/a,->£-O.

By the induction hypothesis (and Corollary 2.2) it follows that if E\Qn_1 is semi-
stable for the generic Qn-i, then E is semistable too.

Now let n be odd. If we tensor (4) by 5 and consider the associated cohomology
sequence, we get by Theorem 2.3

h°(S®E) = h\S®S).
Let Qn-i be a smooth hyperplane section of Qn- Look at the exact sequence

(5) 0->S®S->S®S(1)-»S®S(1)|Qb_i-»0.
By the induction hypothesis, if 5' and 5" are the spinor bundles on Qn-y, we have
from Theorem 1.4

S® 5(1) \Qn ^ (S' ® S"*)®2 ® (S' ® S'*) ® (S" ® S"*).
Then by Lemma 2.7 h°(S ® 5(1) L      ) = 2.

From (5), we have an exact sequence

(6) H0(Qn,S®S(l))^H°(Qn-y,S®S(l)\o     ) - Hl(Qn,S ® 5).
1 Wn— 1

Asfr°(5®5(l)) < 1 by Lemma 2.7, we have h1 (S®S) / 0, and then h°(S®E) ^ 0.
From Lemma 2.7 it follows that E ~ 5*, and /iJ(5 ® 5) = 1. From (6) it follows
that h°(S ® 5(1)) ^ 0, and from Lemma 2.7 again it follows that 5* ~ 5(1).

Let n be even. We have an exact sequence
(7) 0^5'^ 0e2"/2 -» E - 0

with £ semistable. If we tensor it by 5"*(-l) and we look at the associated
cohomology sequence we get

(8) H°(Qn, S"*(-l) ®E)^ Hl(Qn,S' ® S"*(-l)) - 0.
Let Qn-i be a smooth hyperplane section of Qn- Look at the exact sequence

(9) 0-»S'®S"*(-l)-»S'®S"*->S'®S"* L     -►().
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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By  the  induction hypothesis,   if 5  is  the spinor bundle on Qn-i,   we have
5'®5"*L     ~ S® S*, so that

1 Wn— 1

H°(Qn-y,S'®S"*\0     )=C.'Vn-l

From (9) we have an exact sequence

H°(Qn, S' ® S"*) - C -► H\Qn, S' ® S"*(-l))
II
0

so that tfiS'sS'^i-l)) t^O. Then from (8) it follows that H°(S"*(-1)®E) ^ 0
and from Lemma 2.7 E =_ 5"(1).

If we tensor (7) by 5' we get

(10) 0 ^ 5'® 5'- 5,ffi2"/2 -S"(l)®S'-^0

so that

(11) h°(S"(l)®S') = h1(S'®S').
Look at the exact sequence

(12) 0 — 5' ® 5' — 5' ® 5'(1) -♦ 5' ® 5'(1) |        — 0.
We have an associated cohomology sequence

(13) H°(Qn, S' ® S'(l)) -» H°(Qn-y, S' ® 5'(1) |Qni) - Z/1 (Qn, S' ® 5').

Since, by the induction hypothesis, H°(Qn-y, S'®S'(1) |„      ) = C, from (11) and
(13) we must have

either   h°(S' ® 5'(1)) £ 0,
or    h°(S"(l)®S')^0.

From Lemma 2.7 we must have respectively

either    S'* :_ 5'(1),
or    5'* s. 5"(1).

Now Theorem 2.6 gives the result.
REMARK 2.9. From Theorems 1.4, 2.5, 2.6 and 2.8 it is possible to compute

inductively the Chern classes of spinor bundles. (See [Fr] for a description of the
intersection ring of Qn.) With obvious notations, for n < 8 the Chern classes of
spinor bundles on Qn are the following:

n = 2: cy = (-1,0) or (0, -1) (according to 5' or 5"),
n = 3: ci = —1, c2 = 1,
n = 4: cy = -l,c2 = (1,0) or (0,1),
n = 5: ci = -2, C2 = 2, C3 = -2, C4 = 0,
n = 6: cy = -2, c2 = 2, c3 = (-2,0) or (0, -2), c4 = 0,
n = 7: cy = -4, c2 = 8, c3 = -10, c4 = 16, c5 = -8, C6 = 4,
n = 8: ci = -4, c2 = 8, c3 = -10, c4 = (11,5) or (5,11), c5 = -8, c6 = 4,

c7 = -2, c8 = 1.
Obviously, on Qn (n > 3), ci = -2K™-3)/2!. It seems hard to find simple general
formulas for higher Chern classes.

The following theorem shows that spinor bundles are rigid.
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THEOREM   2.10.   (i) Let n be odd.   If S is the spinor bundle on Qn,  then
h1(S®S*) = 0.

(ii) Let n be even. If S', S" are the spinor bundles on Qn, then

h1(S'®S'*) = h1(S'® S"* ) = h1(S"® S"*) = 0.

PROOF. The proof is by induction on n. The case for n — 2 is well known. If n
is odd, the cohomology sequence associated to (5) is

H0(Qn,S®S*)-^H°(Qn-y,S®S*\Q     J-
II II
c c2

H^Q^S® S) - Hl(Qn,S®S*)^ Hl(Qn-y,S ® S* \Q     )
II II
C 0

so that h1 (S ® 5*) = 0 as we wanted.
If n is even the proof is longer (according to n = 0,2 (mod 4)) though still

elementary and will be omitted.

THEOREM   2.11.   Let E be a vector bundle on Qn-   Let Qn-i  be a smooth
hyperplane section of Qn (if E is semistable we can omit the word "generic"),

(i) Let n be even and let E be a vector bundle on Qn such that E \„     cz S
' Wn— 1

where S is the spinor bundle an Qn-i-  Then E is a spinor bundle on Qn.
(ii) Let n be odd and let E be a vector bundle on Q„ such that E L     ~ 5'©5",

where S', S" are the spinor bundles on Qn-i-  Then E is the spinor bundle on Qn-

PROOF. First observe that by Corollary 2.2 E is semistable. From the cohomol-
ogy sequence associated to the sequence

0 - E(k - 1) - E(k) -» E(k) |        -♦ 0       (fc G Z)

we get that the map H1(Qn,E(k-l)) -» H1(Qn,E(k)) is surjective Vfc E 2. From
Theorem B and Serre duality it follows that

H1(Qn,E(k))=0   VfceZ.

Now let n be even. Consider the sequence (5', 5" spinor bundles on Qn)

0 — E® S"(-1)-* E® S'* ^E®S'* L     ^0.

By hypothesis, H°(Qn-y,E ® S" | „      ) = C, so that we have an exact sequence
' Vn- 1

H°(Qn, E ® S'*) - C - H\Qn, E ® 5'*(-l)).
It must be either h°(E ® S'*) ^ 0 or hx(E ® 5'*(-l)) ^ 0. In the first case from
Lemma 2.7 it follows that E ~ S''.

In the second case, by Theorem 2.8 we have the sequence

0 -» E ® S'*(-1) - E®2"'2 ^E® S"* -+ 0.

From the associated cohomology sequence we get

H°(Qn,E®S"*) - H1(Qn,E®S'*(-l)) - 0
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so that h°(E ® 5"*) ^ 0. From Lemma 2.7 it follows that E ~ 5" as we wanted.
If n is odd, by the hypothesis, h°(E ® 5* I        ) = 2. Consider the sequence

0->E®S*(-i)->E®S*-»£:®S* L    -»o.
' Wn— 1

From the associated cohomology sequence we get

//°(Qn,£;®5*)-C2^//1(Qn,_;®5*(-l)).
By Lemma 2.7, h°(E®S*) < 1, so that h1(E®S*(-l)) # 0.

By Theorem 2.8, we have the sequence
O^E® S*(-l) -» £©2<n+1)/2 - £ ® 5* - 0.

From the associated cohomology sequence we get

H°(Qn,E®S*)^ Hl(Qn,E® S*(-l)) -» 0
so that /i°(.E ® 5*) ^ 0, and by Lemma 2.5 it follows that E ~ 5.

3. Some moduli spaces of rank 3 vector bundles on Q5 and Q6-
REMARK 3.1. Observe that on Q8, the duals of the spinor bundles 5', 5" are

globally generated vector bundles of rank 8. As by Remark 2.9, cg(5'*) = cg(S"*) =
1, we get that the generic section of 5'* (or 5"*) vanishes only at a simple point.

In a similar way, observe that on Q5 and Qe the duals of the spinor bundles (of
rank 4) have their generic sections which do not vanish anywhere. Thus we can
construct a trivial line subbundle of the dual of a spinor bundle 5 on Q5 (and Qe),
so that we have an exact sequence

(14) 0-^0-^5*^570^0,
where 5*/0 is a rank 3 bundle.

We recall that on Q4 Hernandez and Sols [HS] have constructed rank 3 bundles
E from the sequence (5', 5" spinor bundles on Q4)

(15) 0 — 0 — S'* © 5"* — E -> 0.
In [Otl] this construction is extended to Gr(fc,n).

From Theorem 1.4 we get the surprising consequence that the bundles E in (15)
extend to Q5 and even to Qe to the bundles 5*/0 in (14). Using the description
of the moduli space given in [HS] we are able to prove the following:

THEOREM 3.2. (i) P7\<26 w the fine moduli space of rank 3 stable vector bun-
dles on Qe with Chern classes Cy —2,c2— 2, c3 = (2,0) or (0,2).

(ii) P7\<26 is the fine moduli space of rank 3 stable vector bundles on Q5 with
Chern classes cy = 2, c2 = 2, c3 = 2.

PROOF. We want to show first that a rank 3 stable vector bundle E on Qe with
Chern classes cy = 2, c2 = 2, c3 = (2,0) arises as a quotient of the dual of the
spinor bundle 5'* (the one with c3(S'*) = (2,0)) in a sequence

(16) 0 -» 0 -» S'* -> E -> 0.
Let Q4 C Q5 C Qe be smooth generic plane sections and E a vector bundle as

above. By a theorem of Maruyama [Ma2, Theorem 3.1] E \n   is semistable, thus' W4
stable because

h.c.f.(Cl(£:),rank£) = h.c.f.(2,3) = 1.
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By [HS], we have an exact sequence on Q4

(17) 0^0 ^5'©5"^£|Q4^0

where 5', 5" are the spinor bundles on Q4.
From the dual sequence of (17) one easily computes h2(E*(t) L ) = 0 Vi 6 Z,

h1(E*(t) L ) = 0 for t < -1, hl(E* L ) = 1. Then, looking at the cohomology'W4 'W4
sequences associated to the sequences,

0^E*(t-l)\Q^E*(t)\Q5->E*(t)\Q^0,
0 — E*(t - 1) -» E*(t) -» E*(t) L -» 0,1 V5

we get successively (by Theorem B and Serre duality):

h2(E*(t) |g)=0   VteZ,    /iJ(_;*(0 |     ) = 0    for*<-l,    hl(E* |    ) = 1,

/i2(_r(i))=0   WeZ,        /i1(_:*(<)) = 0   for*<-l,        fcx(_?*) = l.
In particular, the restriction maps

H\Qb,E* \Qi) - //'(Q,,/?* |Q4),        Hl(Q6,E*) - Z/1^,^ |gJ

are both isomorphisms of one-dimensional vector spaces.
When we interpret H1(Qe,E*) in terms of extensions, we get that there is an

exact sequence on Qe,
0^0-+A^£->0,

which restricts on the generic Q4 to (17), so that by Theorem 2.11 A ~ 5* and
(16) is proved (there is only one nonsplitting extension).

Next, observe that all bundles E arising from (16) are stable, in fact one easily
computes

Enorm = E(-l),    (E*)norm = E*,    h (Enorm) = h ((E*)norm) = 0.

Furthermore, two bundles Ey, E2 arising from (16) are isomorphic if and only
if the two sections sy, s2 that define them are a scalar multiple one of the other.
In fact each morphism tp = S* —> E can be uniquely extended to a morphism
tp: S* -* S* by the vanishing of h°(S) and h^S).

So we have a bijective map from a Zariski open set of P7 to the coarse moduli
space M (which exists by [Mai]).

The following lemma shows that M is smooth, so that M is exactly a Zariski
open set of P7, and the description given shows that it is fine.

Precisely, we have M = P7\<26- In order to prove this claim, consider that by
the triality principle [Ti, §3.1] the image of the embedding Qe —» Gr(3,7) which
defines the spinor bundles can be described as the set of linear P3 in P7 lying in
some quadric Q6 C P7. The cycles {P3 | P3 C P6 with P6 fixed hyperplane} are
the zero loci of sections of the dual of the universal bundle of Gr(3,7). There exists
a linear P3 C Qe lying in a hyperplane if and only if the hyperplane is tangent to
Qe-

Then the sections of 5* corresponding to the hyperplanes tangent to Qe are the
only one for which the quotient 5*/0 is not locally free. These sections vanish on
a linear P3 contained in Qe- This completes the proof of (i). Observe now that the
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embedding Q5 —> Gr(3,7) which defines the spinor bundle on Q5 factors through
Qe- It follows that the proof of (ii) is very similar to the proof of (i). We omit the
details.

LEMMA 3.3. Let S be a spinor bundle on Qe- Let E be a vector bundle on Qe
arising from the sequence

0^O^S*—E — 0.

Thenh1(E®E*) = 7.

PROOF. Tensoring by 5* the dual sequence of (16), we get

0 — E* ® S* — 5 ® S* -* S* -> 0.

From the associated cohomology sequence and Theorem 2.10 we have

0 - H°(Q6, E* ® S*) ->H°(Q6, S ® S*) -^H°(Qe, S*) -» Hl(Qe, E* ® S*) - 0
II II
C C8

so that h°(E* ® S*) - hx(E* ® 5*) = -7.
From the cohomology sequence associated to the dual sequence of (16) we get

h°(E*) = 0, hx(E*) = 1, h2(E*) = 0. Then, after tensoring (16) by E* and looking
at cohomology we have

0 -► H°(Q6, S* ® E*) ^H°(Qe, E ® E*) ^Hl(Qe, ET) -» //'(Qe,5* ® E*)
II II
C C

-^H1(Q6,E®E*)^0

so that /i1^ ® E*) = hx(E* ® S*) - h°(E* ®S*) = 7,as we wanted.
REMARK 3.4. We do not know if a semistable vector bundle on Qn with the

same rank and Chern classes of a spinor bundle is a spinor bundle. For n < 4 this
is true (using the same techniques of [HS]).

In §1 we noted that the variety S3 which parametrizes one family of the linear
P3's contained in Qe is isomorphic to the variety which parametrizes the linear P2's
contained in Q5. By the triality principle, S3 ~ Qe [Ti]. So, with obvious notations,
we have the isomorphisms (recall that Gn = Spin(n + 2)):Qe — Ge/P(ay) ~
G6/P(a3) * G6/P(ai) si G5/P(a'3), Q5 ~ G5/P(a'y).

THEOREM 3.5. A rank 3 stable vector bundle on Qe — Spin(7)/P(a'3) with
Chern classes cy = 2, c2 = 2, c3 = (2,0) or (0,2) is defined by the irreducible
representation of the semisimiple part of P(a'3) with maximal weight Xy.

PROOF. Consider the following three diagrams given by incidence relations:

Gb/P(a\,a'3) G6/P(ay,a4) G6/P{a3,a4)

Gb/P(a\) G5/P(a'3)      G6/P(ay) G6/P(ct4)     G6/P(a3) G6/P{a4)
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The dual of the two spinor bundles on Qe are defined by 5'* = q'tp'*0(l),
S"* = q"p"*0(l). So in this case the spinor bundles are the pullback of the
universal bundles by the two embeddings Qe — 53 —» Gr(3,7) corresponding to the
two families of linear P3's contained in Qe-

In the same way the 3-bundle q*p*0(l) = U* on Q6 = G5/P(a'3) is the pullback
of the dual of the universal bundle by the embedding Qe cz G5/P(a'3) —► Gr(2,6)
corresponding to the family of linear P2's contained in Q5. U* is defined by the
irreducible representation of the semisimple part oi P(a3) with maximal weight Ai.

We have two exact sequences of vector bundles on Qe:

(18) 0-*U^S'-^O^0,        O^U -»S" -+ 0 -»0.
Now the thesis follows from Theorem 3.2 dualizing the sequences (18).

THEOREM 3.6. (i) Let E be a stable 3-bundle on Qe with Chern classes cy = 2,
c2 = 2, c3 = (2,0) or (0,2).  Then

1 ,      ( h°(Qe,E(t))   fort>0,

All other values of hl(Qe,E(t)) vanish except h5(Qe,E(—6)) = 1.
(ii) Let E be a stable 3-bundle on Q5 with Chern classes Cy = 2, c2 = 2, c3 = 2.

Then
1 ( h°(Q5,E(t))        fort > 0,

_((+I)((+2)(i+3)((+41(6(+35)={ j^»m ;„,-_6
All other values of h*(Q5,E(t)) vanish except h4(Q5,E(—5)) = 1.

(iii) Let E be a stable 3-bundle on Q4 with Chern classes Cy = 2, c2 = (2,2),
c3 = 2.  Then

1 , s      f h°(QA,E(t))    fort>0,-(t + 1 )(t + 2)(t + 3  3*+ 14= I     ™4' ;      -   '
12 (_ hr(Q4,E(t))    for t < -5.

All other values of hl(Q4,E(t)) vanish except /i3(Q4,£'(-4)) = 1.

PROOF. On Qe the result follows after some computations from Theorem 3.5
and the theorem of Bott. On Q$ it follows by restricting the bundles from Qe to a
smooth hyperplane section and by the cohomology sequence associated to the exact
sequence on C^,

0-£?(t-l)-£?(t)-£?(*)|Oe-»0.
In the same way we get the result on Q4-
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