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SPINOR CONDENSATES AND LIGHT SCATTERING FROM
BOSE-EINSTEIN CONDENSATES

Dan M. Stamper-Kurn1, Wolfgang Ketterle2

Abstract

These notes discuss two aspects of the physics of atomic Bose-Einstein condensates: optical
properties and spinor condensates. The first topic includes light scattering experiments which
probe the excitations of a condensate in both the free-particle and phonon regime. At higher
light intensity, a new form of superradiance and phase-coherent matter wave amplification were
observed. We also discuss properties of spinor condensates and describe studies of ground–state
spin domain structures and dynamical studies which revealed metastable excited states and quan-
tum tunneling.

1 Introduction

The possibility of creating optical fields with many photons in a single mode of a resonator was realized
with the creation of the laser in 1960. The possibility of creating a matter-wave field with many atoms
in a single mode of an atom trap (which is the atomic equivalent of an optical resonator) was realized
with the achievement of Bose-Einstein condensation (BEC) in 1995. Because of the wealth of new
phenomena which the condensates display, and the precision and flexibility with which they can be
manipulated, interest in them has grown explosively in the communities of atomic physics, quantum
optics, and many-body physics. At least twenty groups have created condensates, and the publication
rate on Bose-Einstein condensation has soared following the discovery of the gaseous condensates.

Although atomic condensates and laser light share many properties, they also differ fundamentally:
atoms interact readily, while photons do not. As a result, the atomic condensates constitute a novel
class of many-body systems that provide a new laboratory for many-body physics. They have already
yielded discoveries such as stability and collapse of condensates with attractive interactions, multi-
component condensates, Feshbach resonances and novel optical properties, and have led to advances in
many-body theory. Furthermore, because atoms interact, atom optics is inherently non-linear optics.
Consequently, nonlinear effects such as four-wave mixing that were first achieved with light only with
difficulty, occur almost automatically with coherent matter waves.

These lecture notes will focus on two aspects of Bose-Einstein condensation: light scattering from
a Bose-Einstein condensate and spinor condensates. Our lectures at Les Houches covered a broader
range of topics, including trapping techniques, methods to probe the condensate and studies of sound
and condensate formation. For those topics we refer to our Varenna Summer School Notes which give
a comprehensive discussion of experimental techniques, static and dynamic properties, coherence and
optical trapping of condensates [1]. This paper and some other recent review papers summarize the
state of the field [2–4].

Research on gaseous BEC can be divided into two areas: In the first, which could be labeled “the
atomic condensate as a coherent gas” or “atom lasers,” one would like to have as little interaction
as possible between atoms — almost like photons in an optical laser. Thus the experiments are
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preferentially done at low densities. The Bose-Einstein condensate serves as an intense source of
ultracold coherent atoms for experiments in atom optics, in precision studies or for explorations of
basic aspects of quantum mechanics. The second area could be labeled as “BEC as a new quantum
fluid” or “BEC as a many-body system.” The focus here is on the interactions between the atoms
which are most pronounced at high densities.

The topics covered in these notes illustrate both aspects of BEC. Spinor condensates realize a
new class of quantum fluids. Coherent matter wave amplification is at the heart of atom lasers. Our
studies of light scattering from a Bose condensate link both aspects together: light scattering was
used to imprint phonons into the condensate, but also to measure the coherence of an atom laser and
to realize a matter wave amplifier.

Chapters 2 and 4 of this review are based on the thesis of one of the authors [5]. An abbreviated
version of chapter 2 will appear in Ref. [6].

2 Optical properties of a Bose-Einstein condensate

What does a trapped Bose-Einstein condensate look like? More precisely, how does it interact with
light, and does this differ fundamentally from what one would naively expect from a similar collection
of very cold atoms? In the early 1990s, before Bose-Einstein condensation was realized in atomic gases,
there were lively debates about how a condensate could be observed. Some researchers thought it would
absorb all light and would therefore be “pitch black,” some predicted it would be “transparent” (due
to superradiant line-broadening [7]), others predicted that it would reflect light due to polaritons [8,9]
and be “shiny” like a mirror.

All the observations of Bose condensates have employed scattering or absorption of laser light.
These observations were either done on ballistically expanding dilute clouds or with far–off–resonant
light. Under those circumstances, a Bose condensate scatters light as ordinary atoms do. On reso-
nance, the condensate strongly absorbs the light, giving rise to the well-known “shadow pictures” of
expanding condensates where the condensate appears black. For off-resonant light, the absorption can
be made negligibly small, and the condensate acts as a dispersive medium bending the light like a glass
sphere. This regime has been used for non-destructive in-situ imaging of Bose-Einstein condensates.

Our group has recently looked more closely at how coherent, weakly–interacting atoms interact
with coherent light. Light scattering imparts momentum to the condensate and creates an excitation
in a many–body system (Fig. 1). Consequently, the collective nature of excitations and the coherence
of the condensate can affect its optical properties. Thus light scattering can be used to illuminate
properties of the condensate.

2.1 Light scattering from a Bose-Einstein condensate

2.1.1 Elastic and inelastic light scattering

Let us begin by considering the effect on a single atom of a single light scattering event. The initial
state of the atom–light system is |Nk, . . .0l . . . ; i〉 where Nk photons are in an incident beam with
wavevector k, no photons are in other photon modes (such as mode l), and the atom is in state |i〉
which can be either a trapped or untrapped state. After adiabatically eliminating the excited atomic
state, the coupling between the atom and the light is described by the operator

H′ = C
∑

k,l,m,n

ĉ†l â
†
nĉkâmδl+n−k−m (2.1)

Here ĉk (ĉ†k) is the destruction (creation) operator for optical waves, and âk (â†k) is the destruction
(creation) operator for atomic waves of wavevector k. The strength of atomic resonances and the
detuning of the light determines the strength of the coupling, summarized in the coefficient C.

Due to the coupling, light is scattered from the incident beam to wavevector l = k − q with a
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Fig. 1. Light scattering from a Bose-Einstein condensate. When a photon is scattered, it transfers momentum

to the condensate and creates an excitation (upper left). Therefore, an analysis of the scattered light allows

the determination of the dynamic structure factor, in close analogy to neutron scattering experiments with

superfluid helium (upper right). For sufficiently large momentum transfer the excitation leads to an atom

scattered out of the condensate. The signal is greatly increased by stimulating the light scattering by a second

laser beam and detecting the scattered atoms (lower left)—this is the scheme for Bragg spectroscopy. Light

scattering can also be stimulated by adding a coherent atomic field (lower right). This led to superradiant

scattering of light and atoms.
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cross–section proportional to1

dσ

dΩ
∝ |C|2× (2.2)∣∣∣∣∣〈Nk − 1, . . .1l . . . ; i|

∑
m

ĉ†k−qâ
†
m+q ĉkâm|Nk, . . .0l . . . ; i〉

∣∣∣∣∣
2

+
∑
j 6=i

∣∣∣∣∣〈Nk − 1, . . .1l . . . ; j|
∑
m

ĉ†k−qâ
†
m+q ĉkâm|Nk, . . .0l . . . ; i〉

∣∣∣∣∣
2


Two contributions to the light scattering are separated in the above expression. The first part
describes “coherent” light scattering, i.e. diffraction and refraction, in which the atomic system is
left in its original state, and the scattered light has the same frequency as the incident light. The
coupling shifts the phase of the elastically scattered light by an amount proportional to 〈Nk −
1, . . .1l . . . ; i|H′|Nk, . . .0l . . . ; i〉. This phase shift can be used to spatially image an atomic cloud
by a dispersive imaging technique, such as dark–ground or phase–contrast imaging. For a dilute cloud
of size d, the coherent scattering is limited to the diffraction angle λ/d. When the cloud is much larger
than an optical wavelength λ, only small–angle forward scattering is coherent.

The second part of the scattering cross–section describes “incoherent” light scattering in which the
state of the atom is changed. For the case considered here, d� λ, this occurs when light is scattered
outside the diffraction angle. Incoherent, or inelastic light scattering is used for absorption imaging
where the light which is transmitted by the cloud is collected, and the amount of probe light scattered
out of the imaging system is determined.

One can learn more from inelastic scattering than just by observing absorption, i.e. counting the
total sum of scattered photons. An inelastically scattered photon is shifted in frequency from the
incident photon. Further, the outgoing angle of the scattered photon determines the momentum ~~q
which is imparted to the sample. Thus, a spectroscopic analysis of inelastically scattered photons at
a given angle from the incident light beam determines the response of the atomic sample to a given
energy and momentum transfer (Fig. 1).

Analyzing photons scattered by a Bose–Einstein condensate from a single beam would be a difficult
task. Alkali Bose–Einstein condensates are currently produced with . 107 atoms. If one would scatter
light from a small fraction of these over a 4π solid angle, only a few photons would be collected and
one would need to determine their frequency amidst a large background of incident and scattered
light.

Instead, we have adopted a different approach. Rather than detecting spontaneous scattering from
a single beam, we study light scattering as a stimulated process, called Bragg scattering, induced by
two laser beams which illuminate the atomic sample (Fig. 1). The momentum and energy transfer is
pre–determined by the angle and frequency difference between the incident beams, respectively, rather
than post–determined by the position of a photo–detector and by a difficult frequency measurement.
The quantities of interest are matrix elements which characterize the response of the condensate, and
they are the same for spontaneous and stimulated scattering. Furthermore, since the momentum
transfer can be much greater than the momentum spread of the sub–recoil atomic sample, and since
stimulated light scattering can be made to dominate over spontaneous scattering, the response of the
system can be assessed by the nearly background–free detection of recoiling atoms.

We have studied Bose–Einstein condensates by the spectroscopic measurement of the Bragg scat-
tering resonance. In this paper, we describe two applications of Bragg spectroscopy to study excita-
tions of a Bose–Einstein condensate in either the free–particle [10] (large momentum transfer) or the
phonon [11] (small momentum transfer) regime. The discussion includes a description of the dynamic
structure factor of a Bose–Einstein condensate which leads to the interpretation of our measurements

1Our discussion is limited to low intensity of the probe light, allowing us to neglect the Mollow triplet fluorescence
spectrum observed at high intensities.
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as an observation of the zero–point momentum distribution of trapped condensates, as a measure-
ment of the energies of free–particle and phonon excitations, and as evidence for correlations in the
many–body condensate wavefunction introduced by interatomic interactions.

2.1.2 Light scattering from atomic beams and atoms at rest

The interaction of a neutral atomic beam with an optical standing wave was studied by several groups
in the early 1980’s. Quantitative studies which focused on the effect of conservative optical potentials
were performed by Pritchard and collaborators [12, 13]. In two different experiments, a collimated
atomic beam of sodium was incident upon a standing light wave formed by a retro–reflected laser
beam. Two regimes of scattering were identified: Kapitza–Dirac scattering from a thin optical grating
(tightly focused beams) which is non–specific in the angle between the incident atomic beam and the
standing wave [12], and Bragg scattering from a thick grating (loosely focused beams) which occurs
only at specific resonant angles [13]. In these atomic beam experiments, the kinetic energy of the
atoms, and thus the magnitude of their momentum, is unchanged by scattering off the stationary
optical field. Thus, scattering can occur only if the optical field contains photons propagating in a
direction so that the atomic momentum can be rotated by the absorption and stimulated emission
of photons from the standing wave. A thin optical grating contains photons propagating over a wide
angular range, and thus scattering is not limited to specific angles. In the case of a broad focus, the
angular divergence of the photons is too small to allow scattering except at specific incident angles of
the atomic beam to the standing wave (the so-called Bragg angles).

Kapitza–Dirac [14] and Bragg [15] scattering of Bose–Einstein condensates have also been demon-
strated. These experiments were performed by exposing the nearly stationary atomic sources to a
pulse of two intersecting laser beams which had a variable differential detuning ω. Such an experi-
mental situation is identical to the aforementioned atomic beam experiments when viewed in the frame
of reference of the atoms: the duration of the optical pulse corresponds to the width of the optical
grating, and a differential detuning between the optical beams is equivalent to an atom crossing an
optical grating at an angle which introduces opposite Doppler shifts to the two counter–propagating
laser beams. Kapitza–Dirac scattering occurs for short pulses which contain frequency components
necessary to excite the atom to an energy of ~ω0

q = ~2q2/2m where ~q is the momentum recoil due to
a single scattering event. Similarly, the condition for Bragg scattering becomes a resonance condition
for exciting an atom to an excited momentum state: ω = ω0

q (for first order scattering).
The Bragg resonance condition is sensitive to the motion of the atom with respect to the optical

standing wave orientation. By simple energy and momentum conservation, the energy transferred to
an atom with initial velocity ~vi by a momentum kick of ~~q is

~ω =
(~~q +m~vi)2

2m
− mv2

i

2
=
~2q2

2m
+ ~~q · ~vi (2.3)

Thus, the Bragg resonance is Doppler sensitive and can be used to determine spectroscopically the
velocity distribution of an atomic sample. It has been used previously to determine the temperature
of laser-cooled atoms [16]. Here we extend the method to the determination of the zero-point motion
of a condensate.

2.1.3 Relation to the dynamic structure factor of a many–body system

Inelastic scattering has long been used to probe the properties of condensed–matter systems. In
the case of liquid helium, both neutron and light scattering were used to determine the elementary
excitations of this system [17–21]. A theoretical discussion of the spectrum of inelastically scattered
light from a Bose–Einstein condensate has been presented by a number of authors [22–24]. The
dilute atomic condensates are particularly simple examples for the general scattering theory since the
scattering can be treated in an atomic basis. Following the experimental studies of inelastic light
scattering which are summarized in this review, a thorough interpretation of light scattering from an
inhomogeneous Bose–Einstein condensate was presented [25].
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Let us discuss how Bragg scattering is used to probe the properties of a many–body system. An
atomic sample is exposed to two laser beams, with wavevectors ~k1 and ~k2 and a frequency difference ω
which is generally much smaller than the detuning ∆ of the beams from an atomic resonance. The two
laser beams interfere to form a “walking” wave intensity modulation Imod(~r, t) = I cos(~q ·~r−ωt) where
~q = ~k1 − ~k2. Due to the ac Stark effect [26], atoms exposed to this intensity modulation experience a
conservative optical potential with a spatial modulation of Vmod = (~Γ2/8∆) · (Imod/Isat) where Γ is
the line width of the atomic resonance and Isat the saturation intensity.

To determine the Bragg scattering response of a many–body system, we express the modulated
potential in second quantized notation as

Vmod =
V

2
(
ρ̂†(~q)e−iωt + ρ̂†(−~q)e+iωt

)
(2.4)

where ρ̂(~q) =
∑
m â
†
m+q âm is the Fourier transform of the atomic density operator at wavevector ~q.

Equivalently, Vmod is found by isolating those terms in H′ (Eq. 2.1) which involve the macroscopically
occupied optical modes at wavevectors ~k1 and ~k2, and replacing the photon creation and destruction
operators with c–numbers proportional to the electric field strength of the Bragg scattering laser
beams.

We may then determine the Bragg scattering rate using Fermi’s golden rule. Considering scattering
out of the many–body ground state |g〉, we neglect the counter–rotating term in Vmod and obtain the
excitation rate per particle as

W

N
=

2π
N~

(
V

2

) 2∑
f

|〈f |ρ̂†(~q)|g〉|2δ(~ω − (Ef − Eg)) ≡ 2πω2
RS(~q, ω) (2.5)

Here N is the number of atoms in the system, and the sum is performed over all final excited states
|f〉 with energy Ef . We have introduced the dynamic structure factor S(~q, ω) which is the Fourier
transform of density–density fluctuations in state |g〉 with spatial and temporal frequencies of ~q and ω,
respectively [20,21]. The dynamic structure factor generally characterizes the response of the system
to longitudinal perturbations of any source, not solely to optical excitation. The density fluctuation
spectrum is directly determined by the Bragg scattering response, normalized by the two–photon
Rabi frequency ωR = V/2~. Integrating over all frequencies ω one obtains the static structure factor
S(~q) = 〈g|ρ̂(~q)ρ̂†(~q)|g〉 which is equivalent to the line strength of the Bragg resonance.

2.2 The dynamic structure factor of a Bose–Einstein condensate

In this section, we use the theory of the weakly–interacting Bose–Einstein condensate to predict the
dynamic structure factor, first for a homogeneous condensate and then for the situation of experimental
relevance, an inhomogeneous condensate confined by a harmonic trapping potential.

2.2.1 The homogeneous condensate

A Bose–Einstein condensate is quite different from other fluids in that the microscopic (i.e. single–
atom) excitations of the system become manifest as macroscopic density fluctuations due to interfer-
ence with the macroscopic wavefunction. Considering density fluctuations in a homogeneous Bose–
Einstein condensate, we may approximate

|e〉 =
1√
N
ρ̂†(~q)|g〉 =

1√
N

∑
m

â†m+q âm|g〉 '
(â†qâ0 + â†0â−q)|g〉√

N
= |e+〉 + |e−〉 (2.6)

Here, the macroscopic occupation of the zero–momentum state picks out two terms in the sum.
Following Bogoliubov [27], we identify â†0 = â0 =

√
N0 and transform to Bogoliubov operators by

substituting âk = ukb̂k−vkb̂†−k. The operators b̂†k and b̂k are creation and destruction operators for the
proper microscopic quasi–particle excitations of the condensate, with uk = coshφk, vk = sinhφk and
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Fig. 2. Probing the dispersion relation of a Bose-Einstein condensate by off-resonant light scattering. The

microscopic excitation spectrum in a homogeneous weakly–interacting Bose–Einstein condensate is given by

the Bogoliubov dispersion relation (solid line). For small momenta ~q, such that ~q � mc the dispersion

relation is phonon–like (linear). Here m is the mass, and the speed of sound c is related to the interaction

energy µ by µ = mc2. For large momenta (~q � mc) it is particle–like (quadratic) offset from the energy of a

free–particle excitation by a mean–field shift of µ (≈ 5 kHz for our experiments). Excitations can be created

optically by stimulated light scattering using two laser beams which are both far detuned (about 2 GHz) from

the atomic resonance. Momentum and energy are provided by absorption of one photon to a virtual excited

level, followed by stimulated emission of a second, lower energy photon.

tanh 2φk = µ/(~ω0
k+µ). Here, µ is the chemical potential, and, again, ~ω0

k = ~2k2/2m is the free recoil
energy at wavevector ~k. The Bogoliubov quasi–particle spectrum is given as ~ωBk =

√
~ω0

k(~ω0
k + 2µ)

(see Fig. 2).
The many–body wavefunction of the condensate |g〉 corresponds to the quasi–particle vacuum

defined by the relations b̂k|g〉 = 0, ∀k. Thus, we find

ρ̂†(~q)|g〉 '
√
N0(uq − vq)b̂†q |g〉 (2.7)

From this, it follows that for a homogeneous Bose–Einstein condensate S(~q, ω) ' (uq−vq)2δ(ω−ωBq ),
and S(~q) = (uq − vq)2 = ω0

q/ω
B
q .

Thus, we expect Bragg scattering from an interacting, homogeneous Bose–Einstein condensate
to differ from the Bragg scattering of a non–interacting condensate in two ways. First, the Bragg
resonance occurs at the Bogoliubov quasi–particle energy which is higher than the free–particle recoil
energy, i.e. the Bragg resonance line at a momentum transfer of ~~q is shifted upwards in frequency
from the free particle resonance by ∆ω = ωBq −ω0

q . Second, the Bragg scattering response is weakened
relative to that of free particles by a factor S(~q) = (uq − vq)2 < 1. In other words, light scattering
from a Bose–Einstein condensate is suppressed by the presence of repulsive interatomic interactions.
Indeed, these two statements are equivalent: by the f–sum rule which states that

∫
ωS(~q, ω)dω = ω0

q ,
an increase in the resonance frequency implies a decrease in the excitation strength [20].

Let us evaluate the structure factor in two limits of the Bragg scattering wavevector ~q. The
wavevector which corresponds to the interaction energy is the inverse healing length ξ−1 =

√
2mc/~

where c is the speed of Bogoliubov sound. For large scattering wavevectors (q � ξ−1), Bragg scattering
occurs in the free–particle regime. The Bragg resonance is shifted upwards by the chemical potential
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∆ω ' µ/~, and the line strength tends to S(~q) → 1 − µ/~ω0
q . Thus, by measuring the frequency

shift of the Bragg scattering resonance in the free–particle regime, one can directly measure the
chemical potential [10]. For small wavevectors (q � ξ−1), the Bose–Einstein condensate responds
to optical excitation collectively with the creation of phonons. The static structure factor tends to
S(~q)→ ~q/2mc and vanishes in the long wavelength limit, as required of a zero–temperature system
with finite compressibility [28].

2.2.2 Bragg scattering as a probe of pair correlations in the condensate

It is interesting to re–examine these modifications to light scattering from a Bose–Einstein conden-
sate in terms of the structure of the many–body condensate wavefunction. What is it about a di-
lute, weakly–interacting Bose–Einstein condensate that suppresses light scattering compared to non–
interacting atoms? As discussed above, the static structure factor S(~q) is the magnitude of the state
vector |e〉 ' |e+〉+ |e−〉 (Eq. 2.6). The states |e+〉 and |e−〉 represent two means by which momentum
is imparted to the condensate: either by promoting a zero-momentum particle to momentum ~~q, or
else by demoting a particle from momentum −~~q to zero momentum.

If correlations could be neglected, the total rate of excitation would simply be the sum of the
independent rates for these two processes, proportional to 〈e+|e+〉 = 〈N0

q 〉 + 1 = u2
q and 〈e−|e−〉 =

〈N0
−q〉 = v2

q where 〈N0
k 〉 is the expected number of atoms of momentum ~~k in the condensate. Indeed,

a simple–minded rate equation leads to an expression for the total scattering rate which is proportional
to N0(〈N0

q 〉+ 1) + 〈N0
−q〉(N0 + 1). This expression is the sum of the rates of the two processes which

can transfer momentum ~~q to the system and scatter particles into or out of the condensate. Each
rate is proportional to the number of particles in the initial state and, because of bosonic stimulation,
to the number of atoms in the final state plus one. This would apply, for example, to a condensate in
a pure number state, or to an ideal gas condensate with a thermal admixture of atoms with momenta
±~~q, and would always lead to S(~q) > 1.

Yet, for the many-body ground state of the interacting Bose gas, the behavior is dramatically
different. Interactions between zero-momentum atoms admix into the condensate pairs of atoms
at momenta ±~~q the population of which comprises the quantum depletion [29]. As a result, the
two momentum transfer mechanisms described above produce indistinguishable final states, and the
total rate of momentum transfer is given by the interference of two amplitudes, not by the sum of
two rates. Pair excitations in the condensate are correlated so as to minimize the total energy, and
this results in a relative phase between the two amplitudes which produces destructive interference:
S(~q) = (uq − vq)2 < 1. For high momentum, 〈N0

q 〉 � 1 and the interference plays a minor role. In
the phonon regime, while the independent rates u2

q and v2
q (and hence 〈N0

±q〉) diverge as 1/q, the
correlated quantum depletion extinguishes the rate of Bragg excitation.

It is interesting to note that the extinction of Bragg scattering at low momentum, i.e. the minus
sign in the amplitude uq − vq of state |e〉, arises from minimizing the energy of an interacting Bose
gas with positive scattering length. One might wonder whether a negative sign of the scattering
length would lead to an enhancement of scattering. However, homogeneous condensates with negative
scattering length are unstable. In a trap, they are only stable when their size is smaller than the
healing length, effectively cutting off the long–wavelength phonon modes. Therefore, a condensate
with negative scattering length should show essentially the same behavior as a similar–sized condensate
of non-interacting atoms.

2.2.3 Mean–field theory determination of S(~q, ω)

These same results are obtained also in a self–consistent mean–field approach. Considering again the
homogeneous case, we introduce the perturbation

Vmod =
V

2
(
ei~q·~r−iωt + e−i~q·~r+iωt

)
(2.8)
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to the time–dependent Gross–Pitaevskii equation [30, 31], and use a condensate wavefunction of the
form

ψ(~r, t) = e−iµt/~
(
ψ0(~r, t) + u(t)ei~q·~r−iωt + v∗(t)e−i~q·~r+iωt

)
(2.9)

Here, µ = ng is the chemical potential where n is the condensate density, g = 4π~2a/m and a is the s–
wave scattering length. In the absence of the perturbation, the ground–state condensate wavefunction
is ψ0(~r, t) =

√
n.

The weak potential Vmod introduces the small perturbations u(t)ei~q·~r−iωt and v(t)e−i~q·~r+iωt where
the amplitudes u(t) and v(t) are slowly varying functions of time. Using the Gross–Pitaevskii equation
and isolating terms proportional to ei~q·~r−iωt and e−i~q·~r+iωt, we obtain the set of equations

~ωu+ i~
du

dt
=

(
~2q2

2m
+ ng

)
u+ ngv +

V

2
ψ0 (2.10)

−~ωv − i~dv
dt

=
(
~2q2

2m
+ ng

)
v + ngu+

V

2
ψ0 (2.11)

Let us now apply the Bogoliubov transformation, and write(
u(t)
v(t)

)
= α(t)

(
uq
−vq

)
+ β(t)

(
vq
−uq

)
(2.12)

The two component vectors
(

uq
−vq

)
and

(
vq
−uq

)
are solutions of the equations [27,31]

[ (
~ω0

q + µ
)

µ
−µ −

(
~ω0

q + µ
) ] ( u

v

)
= ~ω̃

(
u
v

)
(2.13)

with frequencies ω̃ = ωBq and ω̃ = −ωBq , respectively. The negative frequency solution corresponds to
excitations in the −~q direction. With this substitution, Eqs. 2.10 and 2.11 are decoupled:

~ωα + i~
dα

dt
= ~ωBq α+ (uq − vq)

V

2
ψ0 (2.14)

~ωβ + i~
dβ

dt
= −~ωBq β + (uq − vq)

V

2
ψ0 (2.15)

These equations are identical to those of first–order perturbation theory for a single–particle Schrödinger
equation, and thus the rates of growth of |α|2 and |β|2 can be evaluated using Fermi’s golden rule. |α|2
and |β|2 are the probabilities for creating quasiparticles with momentum ~~q and −~~q, respectively.

The response of the condensate to Bragg scattering can be evaluated by calculating the momentum
imparted to the condensate

〈ψ(~r, t)|p̂|ψ(~r, t)〉 = ~~q ×
(
|α|2 − |β|2

)
= ~~q ×

(
|u|2 − |v|2

)
(2.16)

Normalizing by the Bragg scattering momentum ~q, we obtain the Bragg excitation rate per particle
as

d

dt

(
〈ψ(~r, t)|p̂|ψ(~r, t)〉

~q N0

)
= 2πω2

R(uq − vq)2
[
δ(~ω − ~ωBq )− δ(~ω + ~ωBq )

]
= 2πω2

R [S(~q, ω)− S(−~q,−ω)] (2.17)

where, again, ωR is the two–photon Rabi frequency.
This treatment reveals two important points. First, the mean–field treatment reproduces the sup-

pression of the structure factor, even though, as discussed in Sec. 2.2.2, this suppression is indicative of
correlations in the many–body condensate wavefunction. In the mean–field theory, correlations in the
condensate wavefunction are explicitly neglected by the use of a Hartree wavefunction. Nevertheless,
when the excitation of the condensate is also treated in a Hartree approximation (i.e. assuming all
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particles are in the same, albeit time–varying, single–particle wavefunction), the dynamic response is
correctly obtained.

Second, this treatment takes into account both the positive and negative frequency terms in Vmod,
unlike in Sec. 2.1.3 where we chose to consider only the positive frequency part for simplicity. One
finds that the momentum imparted by stimulated scattering from the two Bragg beams measures
the difference S(~q, ω) − S(−~q,−ω). This is important when one considers Bragg scattering from a
non–zero temperature system which has thermally excited states and undergo anti-Stokes scattering.
The dynamic structure factor for a non–zero temperature Bose–Einstein condensate is given as [20,21]

S(~q, ω) = (uq − vq)2
[
(〈NB

q 〉+ 1)δ(~ω − ~ωBq ) + 〈NB
−q〉δ(~ω + ~ωBq )

]
(2.18)

where 〈NB
q 〉 is the thermal population of quasi–particles. Light scattering is thus quite sensitive to the

presence of excitations in the condensate, as confirmed by the recent observation of superradiant light
scattering from a condensate which is due to the buildup of excited particles in a preferred mode [32].
However, inserting Eq. 2.18 into Eq. 2.17 shows that the effects of thermally–excited particles are
cancelled out in the Bragg scattering response, and thus one measures the zero–temperature structure
factor even in a finite–temperature sample.

2.2.4 The inhomogeneous condensate

The Bose–Einstein condensates realized experimentally differ from the homogeneous condensates con-
sidered above due to their confinement. This confinement changes the Bragg scattering resonance from
that predicted for a homogeneous Bose–Einstein condensate by introducing an inhomogeneous density
distribution and by introducing Doppler broadening due to the zero–point momentum distribution.

The confining potential of magnetic or even optical traps is typically harmonic, taking the form
V (~r) = (m/2)(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), where ωx, ωy, and ωz are the trap frequencies. The condensate

wavefunction ψ(~r) can be determined by the mean–field Gross–Pitaevskii equation [30,31]. For large
condensates for which the interaction energy is much larger than the kinetic energy, the wavefunction
is given by the Thomas–Fermi solution as [3]

|ψ(~r)|2 = n max

(
1−

(
x

xc

)2

−
(
y

yc

)2

−
(
z

zc

)2

, 0

)
(2.19)

where the Thomas–Fermi radii are defined as x2
c = 2µ/mω2

x (similar for yc and zc), and µ = gn where
n is the maximum condensate density and g = 4π~2a/m with a being the s–wave scattering length.

Let us first consider the two effects of confinement separately:

a) Mean–field shift and broadening: The effects of interactions on Bragg scattering from an
inhomogeneous density distribution can be accounted for using a local density approximation
(discussed further in [25]). Using the density distribution of a condensate in the Thomas–Fermi
regime (Eq. 2.19) and the predicted S(~q, ω) for a homogeneous condensate at the local value of
the density, the Bragg resonance line shape is calculated to be [11]

Iµ(ω) dω =
15
8
ω2 − ω0

q
2

ω0
q(µ/~)2

√
1−

ω2 − ω0
q

2

2ω0
qµ/~

dω (2.20)

The line strength S(~q) and center frequency can be obtained from Eq. 2.20 by integration.
Explicitly, the static structure factor of a harmonically–confined Bose–Einstein condensate is
given by

S(~q) =
15η
64

(y + 4η − 2yη2 + 12η3 − 3yη4) (2.21)

where η2 = ~ω0
q/2µ and y = π − 2 arctan((η2 − 1)/2η). The line strength has the limiting

values of S(~q) → 15π/32 (~ω0
q/2µ)1/2 in the phonon regime and S(~q) → 1 − 4µ/7~ω0

q in the
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free–particle regime. In accordance with the f–sum rule, the center frequency ω̄ is given as
ω0
q/S(~q). In the free–particle regime (~ω0

q � µ), the line center is shifted upwards from the
free–particle resonance frequency by 4µ/7~, and broadened to an rms–width of

∆ωµ =

√
8

147
µ

~
(2.22)

b) Doppler broadening: Doppler broadening arises due to the initial momentum distribution of
the condensate. The momentum distribution of a trapped Bose–Einstein condensate, assuming
its full coherence, is given by the Fourier transform of the condensate wavefunction (Eq. 2.19).
Thus, neglecting the mean–field shift (the impulse approximation as discussed in [25]), the Bragg
excitation rate ID(ω) from a Bose–Einstein condensate at a frequency difference of ω between
the two Bragg beams is

ID(ω)dω (2.23)

∝
∫
d3~k δ

(
~~k · ~q
m
− (ω − ω0

q)

) ∣∣∣∣∫ d3~r e−i
~k·~rψ(~r)

∣∣∣∣2 dω
∝
∫
dx1 dx2 e

−ik(ω)·(x2−x1)

∫
dy dz ψ∗(x1, y, z)ψ(x2, y, z) dω

where ~~q is the Bragg scattering momentum and ψ(~r) is the condensate wave function. In the last
line, a coordinate system is chosen so that ~~q lies in the x̂–direction, and k(ω) = m(ω − ω0

q)/~q
. In the Thomas–Fermi regime, for Bragg scattering along one of the principal axes of the
harmonic trap, the Doppler line shape is then

ID(ω)dω ∝ (2.24)
2(4 + κ2)J1(κ)J2(κ) + κJ0(κ)[5κJ1(κ) − 16J2(κ) + 3κJ3(κ)]

κ3
dω

where κ = k(ω)xc, and Ji are Bessel functions. This line shape is similar to a Gaussian, but its
rms–width is undefined. We therefore fitted a Gaussian function to the line shape and extracted
an effective rms–width of

∆ωD ' 1.58
~q
mxc

(2.25)

2.2.5 Relevance of Doppler broadening

Thus, the Bragg scattering resonance for a trapped Bose–Einstein condensate is sensitive both to the
velocity (Doppler shift) and the density (mean–field shift) of the atomic sample. The above treatments,
in which we considered the effects of each of these shifts separately, are valid predictions in two limiting
cases: for large condensates so that µ/~ � ~q/mxc one can neglect Doppler broadening, while for
small condensates where µ/~ � ~q/mxc one can neglect mean–field broadening. However, in our
experiments on Bragg scattering in the free–particle regime [10], the Doppler and mean–field widths
were comparable, and one must consider both effects simultaneously.

We now show with the aid of simple sum rules that it is correct to add the Doppler broadening
(Eq. 2.25) and the mean–field broadening (Eq. 2.22) in quadrature to obtain the total rms line width
which can then be compared to experiments. A unified approach toward determining fully the dynamic
structure factor in the presence of both Doppler and mean–field shifts has been presented recently by
Zambelli et al. and was compared favorably with experimental data [25].

The condensate wavefunction |g〉 determined by the Gross–Pitaevskii equation is a solution of the
equation H0|g〉 = µ|g〉 where

H0 =
p̂2

2m
+ U(~r) + gn(~r) (2.26)
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In the regime ~ω0
q � µ, the excitations relevant to Bragg scattering are well described as free–particle

excitations which obey

~ωf |f〉 =
(
p̂2

2m
+ U(~r) + 2gn(~r)

)
|f〉 = Hexc|f〉 (2.27)

This can be seen, for example, by considering Eq. 2.13 in the free–particle regime where vq → 0. Thus,
the excitations are eigenfunctions of the Hamiltonian Hexc = H0 + gn(~r) which is different from the
Hamiltonian H0 which gives the condensate wavefunction [33]. The extra term gn(~r) represents the
repulsion of excitations from the condensate which gives rise to the mean–field shift in the free–particle
regime.

An exact determination of the resonance line shape using Fermi’s golden rule requires detailed
knowledge of the excitation wavefunctions. Such an explicit calculation has been performed [34] in
the context of the two–photon optical excitation from the 1S to the 2S state in hydrogen which
has been employed to probe properties of a hydrogen Bose–Einstein condensate [35, 36]. However,
even without this exact description, moments of the spectral line can be easily determined. The first
moment of the spectral line is given by

~ω̄ =

∫∞
0 dω ωS(~q, ω)∫∞
0 dω S(~q, ω)

(2.28)

= 〈ei~q·~rHexc e
−i~q·~r −H0〉c (2.29)

=
~2q2

2m
+ g〈n〉c (2.30)

where 〈X〉c = 〈g|X|g〉, and 〈~p〉c = 0 in the ground state. Thus the Bragg resonance line for a
harmonically trapped condensate is shifted from the free–particle resonance by g〈n〉c = 4µ/7~.

The rms–width of the line ∆ω =
√
ω2 − ω2 is calculated using

~2ω2 = 〈ei~q·~rH2
exce

−i~q·~r −H2
0〉c (2.31)

by which one obtains

~2(∆ω)2 =

〈(
~~q · ~p
m

)2
〉
c

+ g2
(
〈n2〉c − 〈n〉2c

)
(2.32)

Thus the total rms–width of the line is the sum of two widths in quadrature: the Doppler width due
to the finite size of the condensate, and the line broadening due to the inhomogeneous condensate
density.

2.3 Experimental aspects of Bragg spectroscopy

For the experimental studies of light scattering from Bose–Einstein condensates, condensates of atomic
sodium were produced as in our previous experiments [1, 37]. These condensates typically contained
107 atoms, and were held in a magnetic trap which provided a cylindrically–symmetric cigar–shaped
harmonic confinement. The strength of the confining field could be easily modified by adjusting the
currents through the magnetic trapping coils, allowing us to vary the peak condensate density in the
range (0.5 – 6) ×1014 cm−3 and the radial half–width of the condensate (xc) between 7 and 15 µm.

The two laser beams used for Bragg scattering were derived from a common source, and had a
detuning to the red of the 3S1/2, |F = 1〉 → 3P3/2, |F ′ = 0, 1, 2〉 optical transitions of about ∆ = 1.7
GHz (similar parameters were used for experiments at NIST, Gaithersburg [14, 15, 38, 39]). A small
frequency difference ω between the counter–propagating beams, on the order of 2π × 100 kHz, was
introduced by using two independently–controlled acousto–optic modulators (AOM’s) to control the
frequency of two independent beams2.

2In our study of the free–particle regime using counter–propagating Bragg beams, we alternately used a single AOM
to generate a single beam with two different frequencies which was retro–reflected. This was done to minimize the
deleterious effects of vibrations of optical components
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Phonon [11] BEC Free–particle [10]
Velocity ~q/m = 7 mm/s c = 10 mm/s ~q/m = 60 mm/s
Energy ~ω0

q = h× 1.5 kHz µ = h× 6 kHz ~ω0
q = h × 100 kHz

Table 1. Conditions for Bragg scattering in the phonon and the free–particle regimes. The two regimes

can be distinguished by comparing the Bragg scattering velocity ~q/m to the speed of Bogoliubov sound

c =
√
µ/m, or, similarly, the Bragg scattering kinetic energy ~ω0

q = ~2q2/2m to the chemical potential µ.

Bragg scattering using beams inclined by 14◦ to one another accessed the phonon regime, while the use of

counter–propagating beams accessed the free–particle regime.

To determine the Bragg scattering response, the laser beams were pulsed on for about 400 µs.
After the optical excitation, the Bose–Einstein condensate was allowed to freely expand for 20 – 70 ms
time of flight, after which the atoms were imaged by absorption imaging. Bragg scattered atoms were
clearly distinguished by their displacement in the time–of–flight images (see Figs. 3, 8). The Bragg
resonance spectrum for both trapped and untrapped Bose–Einstein condensates was determined by
scanning the frequency difference ω and determining the fraction of Bragg scattered atoms.

As discussed above, there are two different regimes of excitations described by the Bogoliubov
theory for the zero–temperature, weakly–interacting Bose–Einstein condensate: the phonon and the
free–particle regimes. These two regimes can be distinguished in a number of equivalent ways. In
the phonon regime, the wavevector of the excitation q is smaller than the inverse healing length
q � ξ−1 =

√
2mµ/~2. Equivalently, the free recoil velocity ~q/m is smaller than the speed of sound

c. One can also distinguish the free–particle from the phonon regime by comparing the free recoil
energy ~2q2/2m = ~ω0

q to the condensate interaction energy µ: ~ω0
q � µ in the phonon regime, and

~ω0
q � µ in the free–particle regime.
Either of these types of excitations can be accessed by Bragg scattering. In an N -th order Bragg

scattering event induced by laser beams of wavevectors ~k1 and ~k2 (|~k1| ' |~k2| = k), N photons
are transferred from one incident beam to another, imparting a momentum ~q = 2N~k sin(θ/2),
where θ is the angle between ~k1 and ~k2 . Thus, small–angle Bragg scattering can be used to excite
low–momentum phonon excitations, while large–angle or high–order Bragg scattering can excite high–
momentum free–particle excitations.

The conditions in our two experiments are shown in Table 1. In our first experimental study of
Bragg scattering, excitations in the free–particle regime were studied by using two counter–propagating
Bragg beams [10]. As shown in Table 1, the recoil velocity and energy for an excitation with a
momentum of two photon recoils (~q = 2~k) were clearly in the free–particle regime. In a second
experiment, we accessed the phonon regime by using Bragg beams which were inclined at a small
angle of about 14◦ with respect to one another. This yielded a recoil velocity and energy which
implied that Bragg scattering in a trapped Bose–Einstein condensate would occur in the phonon
regime.

2.4 Light scattering in the free–particle regime

2.4.1 Measurement of line shift and line broadening

Fig. 3 illustrates our experimental method for probing the free–particle regime. Counter–propagating
Bragg beams were incident along a radial direction (vertical in image) of the cigar–shaped condensate.
After probing, the condensate was allowed to freely expand, allowing Bragg scattered atoms to separate
spatially from the unscattered atoms, as shown in the figure. During free expansion, a cigar–shaped
condensate expands primarily radially, with a maximum radial velocity of vr =

√
2µ/m =

√
2c. Thus,

since the Bragg scattered atoms are clearly separated from the remaining condensate during the time
of flight, ~q/m � c and thus Bragg scattering at a momentum of ~q = 2~k produces free–particle
excitations.

The use of Bragg spectroscopy allowed the true momentum distribution of a gaseous Bose–Einstein
condensate to be observed for the first time. Previous to this work, the onset of Bose–Einstein con-
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thermal ideal interacting time–of–
cloud BEC BEC flight

∆x aosc

√
kBT/~ω aosc aoscξ

∆p (~/aosc)
√
kBT/~ω ~/aosc (~/aosc)(1/ξ) (~/aosc)ξ

∆x∆p/~ kBT/~ω 1 1

Table 2. Scaling of spatial and momentum widths of thermal clouds and Bose-Einstein condensates in an

isotropic harmonic trap with frequency ω. The parameter ξ =
√
µ/~ω denotes the strength of the mean-field

interaction, and aosc =
√
~/mω the oscillator length.
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total width. The observed Doppler width of the resonance is proportional to the condensate’s momentum

uncertainty ∆p, and was consistent with the Heisenberg limit ∆p ≈ ~/xc as the condensate radius xc was

varied. Thus, the coherence length of the condensate is equal to its physical size, i.e. the condensate is one

“coherent matter wave.” An analogous measurement in the time domain has been done in Gaithersburg [38].

The error bars are 1σ errors of the Gaussian fits to the data.

densation had been observed by the observation of a bimodal density distribution either in situ, or else
in time–of–flight. In both cases, the condensate can be distinguished from the thermal cloud because
its energy µ, which is typically dominated by interaction energy, is smaller than the thermal energy
kBT . In situ, a separation between the two components of the gas occurs due to the inhomogeneous
quadratic trapping potential, while in time–of–flight images, the separation is seen in velocity space
after the explosive conversion of the interaction energy of the condensate to kinetic energy of ballistic
expansion; in both cases, the spatial extent of the gas scales as the square root of its energy. As a
result, both in time–of–flight and in the spatial domain, is the onset of BEC indicated by a narrowing
of the density distribution relative to that of the thermal component by a factor of

√
µ/kBT (Table

2). Indeed, we used Bragg spectroscopy to observe the expanding condensate in momentum space
after its interaction energy had been converted to kinetic energy during its time of flight (Fig. 4).
In a time–of–flight analysis, the condensate distribution is just ≈ 3 times narrower than that of the
thermal cloud (corresponding to the factor

√
µ/kBT ), but wider than the momentum distribution of

the harmonic oscillator ground state.
However, the in situ momentum distribution of the trapped condensate is much narrower than

in ballistic expansion, by a factor ξ2 = µ/~ω (Table 2). It is also narrower than the momentum
distribution of the harmonic oscillator ground state. This could be directly determined by the use of
Bragg spectroscopy before releasing the condensate from its trap. As shown in Fig. 4, the momentum
distribution of a trapped Bose–Einstein condensate is significantly narrower than that observed in
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time–of–flight; for the data shown, the in situ momentum width is 10 times narrower than in time–
of–flight. Thus, the distinction between the thermal cloud and the condensate in momentum space
is much more stark than in coordinate space and emphasizes the original description by Einstein of
Bose–Einstein condensation as a condensation in momentum space.

We obtained Bragg resonance spectra for trapped condensates over a range of condensate densities
and radial widths, and determined the shifts of the line center (Fig. 10) and the rms–widths (Fig. 5) of
the resonances. The shifts of the line center for trapped condensates from the free–particle resonance
frequency were compared with measurements of the chemical potential determined from the width of
condensates in time–of–flight images [1]. The measured shift of (0.54±0.07)µ/~was in agreement with
the predicted 0.57µ/~. In related work, mean–field line shifts measured by two–photon spectroscopy
of atomic hydrogen were used as a measurement of the a1S,2S scattering length for collisions between
atoms in the 1S and 2S states [35].

The rms line widths showed effects of both mean–field broadening and Doppler broadening: mean–
field broadening caused the line width to increase as the condensate number, and hence its size and
density, were increased, while Doppler–broadening caused the rms–width to increase as the radial
width of the condensate was decreased. Experimental Bragg spectra for conditions at the cross–
over between mean–field dominated (local density approximation) and Doppler dominated (impulse
approximation) behaviour are shown in Fig. 5. These were analyzed in Ref. [25] and compared with
a theoretical treatment based on an eikonal approximation which accounts for both effects.

The Doppler line widths were extracted from Bragg spectra by subtracting the broadening due
to the mean–field and the finite pulse duration. Doppler widths were determined for both trapped
condensates and condensates released from the trap. The width for freely–expanding condensates
during the conversion of their interaction energy into kinetic energy was in full agreement with mean–
field theory [40]. Thus, both in momentum space and in coordinate space [1], the predicted behaviour
of freely–expanding Bose–Einstein condensates has been quantitatively verified, nicely confirming the
mean–field description of large–amplitude dynamics of a condensate.

2.4.2 A measurement of the coherence length of a Bose–Einstein condensate

The Doppler width of the Bragg scattering resonance of trapped Bose–Einstein condensates measured
their momentum distribution and thus measured their coherence length. By observing momentum
distributions which were equal to the Heisenberg–limited momentum distribution determined by the
condensate size (Fig. 5), our measurements showed that the coherence length of the condensate was
no smaller than the radial width of the condensate, or simply that condensates can be described by a
single macroscopic wavefunction.

To make this statement more quantitative, consider the possibility that the condensate is not fully
coherent. As shown pictorially in Fig. 6, consider a situation in which the trapped Bose–Einstein
condensate is actually composed of many smaller coherent condensates of typical size χ with no phase
relation between them. Formally, one considers〈

Ψ̂†(~r1)Ψ̂(~r2)
〉

=
〈

Ψ̂†(~r1)
〉 〈

Ψ̂(~r2)
〉
g(1)(|~r1 − ~r2|) (2.33)

where g(1)(r) is the first–order coherence function which decays from g(1)(0) = 1 to g(1)(r � χ) = 0.
The Doppler line shape of the Bragg resonance, shown in Eq. 2.23 for the case of full coherence, now
becomes

ID(ω)dω ∝ (2.34)∫
dx1 dx2 e

−ik(ω)(x2−x1)

∫
dydz

〈
Ψ̂†(x1, y, z)Ψ̂(x2, y, z)

〉
dω =∫

dx1 dx2 e
−ik(ω)(x2−x1)g(1)(|x1 − x2|)

∫
dydz ψ∗(x1, y, z)ψ(x2, y, z) dω

The effect of a limited coherence length is to increase the momentum distribution and thereby
broaden the Doppler width of the Bragg resonance. For example, consider a condensate wavefunction
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Fig. 6. A quasi–condensate can be depicted pictorially as being composed of many smaller condensates, each

with a well–defined phase which is unrelated to the phase of the other small condensates. The range of phase

coherence is the coherence length χ.
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which is Gaussian ψ(~r) = exp(−
∑
x2
i/2σ

2
i ) with rms–widths of σi, (i = x, y, z), and a first–order

correlation function of the form g(1)(r) = e−r
2/2χ2

. For Bragg scattering along the x̂–direction,
the Doppler line width becomes ∆ωD(χ) = ~q/m ×

√
σ−2
x + χ−2. Fig. 7 shows the Doppler line

width ∆ωD(χ) calculated using the Thomas–Fermi condensate wavefunction for different values of
the coherence length χ. The calculations agree well with an approximation of the form

∆ωD(χ) '

√
[∆ωD(χ→∞)]2 +

[
~q
mχ

]2

(2.35)

This relation can be used to extract a coherence length from the Doppler widths for trapped Bose–
Einstein condensates. Taking the average for all data points shown in Fig. 5b (assuming the ratio of
the coherence length to the condensate size is constant), one finds an average value for the ratio of the
measured Doppler width to that predicted for a fully coherent condensate of ∆ωD(χ)/∆ωD(χ→∞) =
1.09±0.11. This corresponds to a determination of the coherence length in the range χ = 1.4+∞

−0.5×xc,
i.e. the measurements place a lower bound on the coherence length of χ ' xc and are consistent with
full coherence (χ→∞).

The coherence of a condensate was first demonstrated by Andrews et al. by the observation of
matter–wave interference when two independent Bose–Einstein condensates were overlapped [41]. The
regular high–contrast fringes indicated, at least qualitatively, that the condensates possessed long–
range first–order coherence. Our measurements using Bragg scattering provide a more quantitative
measure of this property. Recently, two other groups have made measurements of the coherence
length [38,42]. These measurements give evidence of a decay of the coherence length over two length



20 arXiv:cond-mat/0005001

(a)

trapped
condensate

k
1

,ω
1

k
2

,ω
1

-ω

q

(c)

(e)

(b)

(d)

Fig. 8. Observation of momentum transfer by Bragg scattering. (a) Atoms were exposed to laser beams

with wavevectors ~k1 and ~k2 and frequency difference ω, imparting momentum ~~q along the axis of the trapped

condensate. The Bragg scattering response of trapped condensates (b,d) was much weaker than that of

condensates after a 5 ms free expansion (c,e). Absorption images (b,c) after 70 ms time of flight show

scattered atoms distinguished from the denser unscattered cloud by their axial displacement. Curves (d,e)

show radially averaged (vertically in image) profiles of the optical density after subtraction of the thermal

distribution. The Bragg scattering velocity is smaller than the speed of sound in the condensate (position

indicated by circle). Images are 3.3 × 3.3 mm. Figure taken from Ref. [11].

scales. In particular, the Munich group ascribes the short–range decay of the first–order coherence
function to the presence of thermal excitations. Instead of light, one could also use the scattering of
fast atoms to determine the coherence length of a condensate, as suggested recently [43].

2.5 Light scattering in the phonon regime

2.5.1 Experimental study

A second experiment explored the use of Bragg spectroscopy of a Bose–Einstein condensate in the
phonon regime [11]. Laser beams separated by an angle of about 14◦ were directed at a condensate so
that the Bragg scattering momentum ~~q was directed along the condensate axis (Fig. 8). Orienting
the Bragg scattering momentum in the axial direction was necessary to allow for a clear distinction
between the Bragg scattered atoms and the unscattered condensate in time–of–flight images, since
the condensate expands radially in at a velocity vr =

√
2c which is greater than the recoil velocity

~q/m in the phonon regime (c > ~q/m). The axial expansion is slower than the radial expansion by
a factor which is 2/π times the aspect ratio of the cylindrical condensate [40], and was negligible for
our experimental conditions.

We could directly compare Bragg scattering in the phonon and free–particle regimes by using the
identical optical setup to optically excite either a trapped Bose–Einstein condensate, or a condensate
that had been allowed to freely expand for 5 ms before the Bragg excitation. As discussed above,
excitation in the trapped condensate occurred in the phonon regime. As for the expanded cloud,
its density was reduced by a factor of 23 and thus the speed of sound by a factor of 5 from that
of a trapped Bose–Einstein condensate. Therefore, excitations in expanded cloud occurred in the
free–particle regime.

As shown in Figs. 8 and 9, the Bragg scattering response in the phonon regime was significantly
weaker in strength and shifted upwards in frequency from that of free particles as predicted by Bogoli-
ubov theory (Sec. 2.2). The line strength and center shift were measured for condensates at various
densities, as presented in Fig. 10. As the condensate density is increased, the speed of sound increases
and, at a constant Bragg scattering momentum ~q, one pushes further into the phonon regime where
the line strength decreases. We could directly compare our experimental results to the predictions of
the local density approximation (Eq. 2.20) since the Doppler shift was negligible at small momentum
transfer. The striking difference from the free–particle regime demonstrates the collective nature of
low momentum excitations.

The results summarized in Fig. 10 show that we have confirmed the Bogoliubov dispersion relation
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(Fig. 2) in both the small– and large–momentum regime. Data were taken at only two values of
the momentum transfer, but by varying the condensate density, the ratio of the recoil energy to the
mean–field energy could be smoothly varied.
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Fig. 9. Bragg scattering of phonons and of free particles. Momentum transfer per particle, in units of ~q, is

shown vs. the frequency difference ω/2π between the two Bragg beams. Open symbols represent the phonon

excitation spectrum for a trapped condensate at a chemical potential µ/h = 9.2 kHz (compared to the free

recoil shift of ≈ 1.4 kHz). Closed symbols show the free-particle response of an expanded cloud. Lines are fits

to the difference of two Gaussian line shapes representing excitation in the forward and backward directions.

2.5.2 Suppression of light scattering from a Bose–Einstein condensate

The diminished line strength for stimulated light scattering observed in the phonon regime shows
that inelastic spontaneous light scattering (Rayleigh scattering) from a Bose–Einstein condensate is
different from the light scattering from an equal number of non–interacting atoms. Consider Rayleigh
scattering from a homogeneous Bose–Einstein condensate with a chemical potential µ. Light scattered
at an angle θ from an incident beam of light with wavevector ~k imparts a momentum of magnitude
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Fig. 10. Line strengths and line shifts of Bragg resonances. Shown are (a) the static structure factor S(~q)

and (b) the shift of the line center from the free-particle resonance. S(~q) is the ratio of the line strength at

a given chemical potential µ to that observed for free particles. As the density and µ increase, the structure

factor is reduced, and the Bragg resonance is shifted upward in frequency. Solid lines are predictions of a

local-density approximation for light scattering by 14◦. The dotted line indicates a mean-field shift of 4µ/7h

as measured in the free-particle regime using a scattering angle of 180 degrees. Figure taken from Ref. [11].
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Fig. 11. Rayleigh scattering from a homogeneous interacting Bose–Einstein condensate is suppressed with

respect to scattering from free atoms. The suppression factor is plotted against the ratio of the recoil energy

~ω0
k = ~2k2/2m to the interaction energy µ, where k the wavevector of the incident light. Points indicate

the factor by which the scattering of near–resonant light at λ = 589 nm (closed symbols) and infrared

light at λ = 985 nm (open symbols) is suppressed at typical condensate densities attained in our magnetic

(n = 4× 1014 cm−3, squares) and optical (n = 3× 1015 cm−3, triangles) traps.

~q = 2~k sin(θ/2). The intensity of light scattered at this angle is diminished by S(q) = ω0
q/ω

B
q .

Integrating over all possible scattering angles θ and accounting for the dipolar emission pattern, we
find that Rayleigh scattering from a homogeneous interacting Bose–Einstein condensate is suppressed
by a factor

F =
3

8π

∫
dΩ
(
cos2 θ+ sin2 θ sin2 φ

) 2k sin(θ/2)√
(2k sin(θ/2))2 + 2ξ−2

=
1

64x3
√

1 + 2x

[√
2x
(
15 + 46x+ 64x2 + 64x3

)
−3
√

1 + 2x
(
5 + 12x+ 16x2

)
tanh−1

(√
2x

1 + 2x

)]
(2.36)

where x = ~ω0
k/µ.

This suppression in Rayleigh scattering should be observable in current Bose–Einstein condensa-
tion experiments (Fig. 11). For example, Rayleigh scattering of near–resonant light from a sodium
condensate at a density of 3×1015 cm−3, which is the maximum density of condensates which has been
obtained in optical traps [44], should be reduced by a factor of two. It would also be interesting to
measure this suppression of light scattering at a Feshbach resonance [45], where the chemical potential
can be made quite large by tuning the scattering length a using magnetic fields. In such experiments,
light scattering may allow one to study dynamically how the pair correlations in a condensate are
established in response to a sudden increase in the interaction strength.

3 Amplified scattering of light

3.1 Introduction

In the previous section, we discussed the elementary process in which a photon is inelastically scattered
from a condensate and creates a quasi-particle. We focused on the limit of low intensity of the probe
light which means that each photon is assumed to probe the “original condensate.” This is valid as
long as the quasi-particles created by photon scattering decay or decohere fast enough so that the
optical properties of the condensate don’t change.

However, the low temperature and coherent nature of the condensate imply very long decoherence
times, leading to long-lived quasi-particles which can affect the scattering of subsequent photons. The
presence of long-lived excitations introduces strong correlations between successive Rayleigh scattering
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events [46]. This provides a positive feedback mechanism and leads to directional amplified Rayleigh
scattering.

This non-linear behavior happens already at very low laser intensity. The amplification of the
scattering process is stimulated by the matter-wave field analogous to stimulated emission in the
optical laser. When this amplification process starts spontaneously, a new form of superradiance is
realized (Sect. 3.2). When it is initiated by seeding the condensate with an input matter wave, it
leads to coherent atom amplification (Sect. 3.3).

3.2 Superradiant Rayleigh scattering

3.2.1 Semiclassical derivation of the gain mechanism

The gain mechanism for Rayleigh scattering from a condensate can be derived semi-classically. When
a condensate of N0 atoms is exposed to a laser beam with wavevector ~k0 and scatters a photon
with wavevector ~ki, an atom (or quasi-particle, also called momentum side-mode in [47]) with recoil
momentum ~ ~Kj = ~(~k0 − ~ki) is generated. Since light propagates at a velocity about ten orders of
magnitude greater than the atomic recoil velocity (3 cm/s for sodium), the recoiling atoms remain
within the volume of the condensate long after the photons have left and affect subsequent scattering
events. They interfere with the condensate at rest to form a moving matter wave grating of wavevector
~Kj, which diffracts the laser beam into the phase-matching direction ~ki (= ~k0− ~Kj). This diffraction is
a self-amplifying process because every diffracted photon creates another recoiling atom which further
increases the amplitude of the matter wave grating.

When Nj recoiling atoms interfere with N0 condensate atoms, the density modulation comprises
Nmod = 2

√
N0Nj atoms. The light scattered by these atoms interferes constructively in the phase-

matching direction with a total power P of

P = ~ω fj R
N2

mod

4
, (3.1)

fj =
sin2 θj
8π/3

Ωj . (3.2)

Here, R is the rate for single-atom Rayleigh scattering which is proportional to the laser intensity,
and ω is the frequency of the radiation. The angular term in Eq. (3.2) reflects the dipolar emission
pattern with θj being the angle between the polarization of the incident light and the direction of
emission. Due to the finite size of the sample, the phase matching condition is fulfilled over the
solid angle Ωj ∼ λ2/A, where A is the cross-sectional area of the condensate perpendicular to the
direction of the light emission and λ the optical wavelength. More rigorously, Ωj is given by the usual
phase-matching integral for superradiance in extended samples [48]:

Ωj =
∫
dΩ(~k)

∣∣∣∣∫ ρ̃(~r) expi(~ki−~k)·~r d~r

∣∣∣∣2 , (3.3)

where |~k| = |~ki|, and ρ̃(~r) is the normalized density distribution of the condensate (
∫
ρ̃(~r)d~r = 1).

Since each scattered photon creates a recoiling atom, we obtain the growth rate for Nj from P/~ω:

Ṅj = GjNj . (3.4)

This equation predicts exponential growth of Nj with the small-signal gain Gj = RN0fj ∼
R sin2 θj Dj, where Dj ∼ ρ0 λ

2 lj is the resonant optical density for a condensate with an atomic
density ρ0 and a length lj along the axis of emission. Therefore, for an anisotropic Bose condensate,
the gain is largest when the light is emitted along its longest axis (the “end-fire mode” [49]). Eq.
(3.4) is valid in the absence of decoherence and predicts the build-up of highly anisotropic Rayleigh
scattering from a non-spherical sample of atoms.
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The built-up of a matter-wave grating dramatically changes the optical properties of the condensate
— the condensate becomes “reflective.” This property is only due to the coherent nature of the
condensate. This phenomenon is completely different from the reflectivity caused by polaritons which
depends on the dipole-dipole interaction of excited atoms and requires high atomic densities [8, 9].

3.2.2 Four-wave mixing of light and atoms

Further insight is obtained by describing the scattering process fully quantum-mechanically. As dis-
cussed in Sect. 2.1.1, the Hamiltonian H′ describes light scattering as a coupling (i.e. a four–wave
mixing) between two Schrödinger (matter) waves and two electromagnetic waves. It is convenient to
rewrite H′ by choosing to quantize the recoiling atoms in the volume of the condensate and use plane
waves for the light. The important terms in H′ include the macroscopically occupied initial atom
field â0(the condensate) and electromagnetic field ĉ0 (the incident laser beam with wavevector ~k0),
i.e. H′ ' Ci,j ĉ†i â

†
j ĉ0â0 where ~ki is the wavevector of the outgoing light, and â†j is the creation operator

for an atom in the final state j.
The square of the matrix element which describes the creation of recoiling atoms is proportional to

Nj + 1 reflecting bosonic stimulation in the atomic field, where Nj is the number of atoms in the final
state j. We use Fermi’s Golden Rule to sum over all final states of the electromagnetic field which
are assumed to be initially empty (spontaneous scattering) and obtain the growth rate of Nj as

Ṅj = Gj(Nj + 1) (3.5)

= R N0
sin2 θj
8π/3

Ωj (Nj + 1) ,

which is identical to the classical treatment of Sect. 3.2.1 except that Nj is replaced by Nj + 1. The
solid angle factor Ωj now reflects the number of electromagnetic plane wave modes i which are excited
together with a quasiparticle in state j localized in the volume of the condensate. Energy conservation
requires that the frequency of the scattered light be red-shifted with respect to the incident radiation
by the kinetic energy of the recoiling atoms. Eq. (3.5) describes both normal Rayleigh scattering
at a constant total rate ΣṄj = RN0 when Nj � 1, and exponential gain of the j-th recoil mode
due to bosonic stimulation once Nj becomes non-negligible. Initially, the angular distribution of the
scattered light follows the single-atom spontaneous (dipolar) emission pattern, but can become highly
anisotropic when stimulation by the atomic field becomes important.

The choice of plane waves for the scattered light is arbitrary. Another basis set are spherical
waves [49]. For the situation considered here it is more convenient to choose orthogonal modes for
the different directions of light emission which have diffraction limited beam waists Aj identical to
the cross section of the condensate perpendicular to the axis of light emission (see Ref. [49], page 45).
Therefore, for scattering into a specific direction, one has to consider only the longitudinal “beam waist
modes” along the direction of scattering, and their wavevector is determined by energy conservation.
Of course, the final result is the same (Eq. 3.5). The solid angle factor Ωj ∝ 1/Aj appears in this
derivation because the energy density of a single photon in the beam waist is inversely proportional
to Aj .

One can account for decoherence and losses by adding a damping term to Eq. 3.5.

Ṅj = Gj(Nj + 1)−DjNj . (3.6)

As we discuss below, this damping term reflects the finite linewidth of the Bragg resonance and is
necessary to account for the observed threshold behavior.

3.2.3 Bosonic stimulation by scattered atoms or scattered light?

In the previous discussion, we evaluated coupling matrix elements assuming that the atoms scatter
light always into empty modes of the electromagnetic field, and thus found that bosonic stimulation by
the occupied atomic recoil mode was responsible for superradiant light scattering. If the time between
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light scattering events from the condensate is much longer than the time it takes the scattered photons
to leave the condensate, this assumption is clearly justified. But suppose that the Rayleigh scattering
rate were increased so that the mean number of scattered photons in the condensate were non–zero.
What effect would this have on the observed superradiance? Does the number of photons occupying
the scattered light mode lead to additional bosonic stimulation?

To answer this question and, in particular, to clarify the importance of the decay times of the atom
and optical modes, let us consider light scattering into just one selected electromagnetic mode which
is defined as the mode of a cavity built around the condensate. In the so-called bad cavity limit, we
will obtain the results of the previous section.

The two modes of the light and the atoms are labeled as before and coupled by the operator

H′ = Cĉ†i â
†
j ĉ0â0 + h.c. (3.7)

where C denotes the strength of the coupling. In the interaction picture, we obtain coupled equations
of motion for the mode operators

dâj
dt

= −Da
2
âj − (iCâ0ĉ0)ĉ†i (3.8)

dĉ†i
dt

= (iCâ†0ĉ
†
0)âj −

Dc
2
ĉ†i (3.9)

Da and Dc are the damping rates for the number of atoms in mode j and for the number of photons
in mode i. Similar coupled equations were considered in Refs. [47,50]. If the scattered light is strongly
damped we can adiabatically eliminate it by setting the l.h.s. of Eq. 3.9 to zero

ĉ†i =
2iC
Dc

â†0ĉ
†
0âj (3.10)

Inserting this expression into Eq. 3.8 leads to a gain equation for the atomic field operator

dâj
dt

=
1
2

[
4|C|2
Dc

N0n0 −Da
]
âj (3.11)

The field operators for the initial states were replaced by the square root of the occupation numbers
N0 and n0 for the atoms in the condensate and the photons in the laser beam which leads to an
expression for the gain G = 4(|C|2/Dc)N0n0.

Alternatively, we can find the eigenvalues λ1,2 of the matrix in Eqs. 3.8 and 3.9 as

λ1,2 = −Da +Dc
4

±

√(
Da −Dc

4

)2

+ C2N0n0 (3.12)

For C = 0, the two eigenvalues are −Da/2 and −Dc/2. When Dc � Da, G, the two eigenvalues
are −Dc/2 and 1

2

[
(4|C|2/Dc) N0n0 −Da

]
; this is the result obtained in Eq. 3.11.

Eqs. 3.8 and 3.9 can be applied to the free–space situation discussed in the previous section where
the optical modes i are the beam-waist modes quantized in a longitudinal box of length L and mode
density L/c. The rate of spontaneous emission into the beam waist mode is given by Fermi’s golden
rule and is proportional to the square of the matrix element times the mode density |C|2N0n0(L/c)
and is equivalent to Eq. 3.5.

On resonance, a cavity of finesse F enhances the density of states by the factor 8F/π [51]. The
cavity walls create mirror images of the radiating atoms which enhance the scattering rate. The
number of effective mirror images is proportional to the finesse of the cavity. Therefore, the gain in
Eq. 3.11 is proportional to the rate of spontaneous emission into the solid angle Ωj and to the finesse
of the cavity.

G = R N0
sin2 θj
8π/3

Ωj
8F
π

(3.13)
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The free-space limit is retrieved by setting the finesse to about unity (F = π/8) which cancels the
last factor in Eq. 3.13. Or equivalently, free space corresponds to the limit of a cavity with a damping
time of about L/c.

This result is useful to discuss bosonic stimulation by the matter wave field and the optical field.
The operator describing light scattering (Eq. 3.7) has a matrix element squared of |C|2(Nj + 1)(ni +
1)N0n0. Since this expectation value is proportional to (Nj +1)(ni+1), it seems that there is bosonic
stimulation by both the final atomic state (occupied by Nj atoms) and the final optical state (occupied
by ni photons). However, Eqs. 3.11 and 3.13 show that this notion is incorrect. After adiabatic
elimination of the rapidly–damped scattered light we have only stimulation by the atomic field. The
superradiant gain G is increased by increasing the finesse of the optical cavity, thus increasing the
decay time of the scattered light. However, the gain does not explicitly depend on the number of
photons in this mode.

Since the coupled equations have complete symmetry between light and atoms, one can also discuss
the complementary case where the atoms are rapidly damped and are adiabatically eliminated. In
this case, one obtains a gain equation for the scattered light showing optical stimulation, but not
stimulation by the matter wave field in the final state. This situation applies to the optical laser and
also to stimulated Brioullin scattering (see also Sect. 3.2.5).

On first sight it appears counterintuitive that bosonic stimulation is not multiplicative if we have
a large occupation in both the final photon state and the final atomic state. However, when we have
occupancy in all final states, the scattering can go both ways. Thus, let us consider the situation
in which there are Nj recoiling atoms and ni scattered photons in the volume of the condensate,
and look at time scales much longer than the coherence time, i.e. a situation in which rate equations
apply. The process |n0, ni;N0, Nj〉 → |n0−1, ni+1;N0−1, Nj +1〉 by which atoms scatter out of the
condensate into the recoil mode j occurs with a rate proportional to the square of the matrix element
|C|2(Nj + 1)(ni + 1)N0n0. The process |n0, ni;N0, Nj〉 → |n0 + 1, ni − 1;N0 + 1, Nj − 1〉 by which
atoms scatter back into the condensate has a rate proportional to |C|2Njni(N0 + 1)(n0 + 1). The net
rate of scattering atoms from the condensate into mode j is the difference of the two partial rates.
If we assume N0, Nj , n0 � 1 and also much larger than ni, since the scattered light was assumed to
suffer the strongest damping, we obtain the leading term in the net scattering rate to be proportional
to |C|2NjN0n0 as before. The bosonic stimulation by the least populated field (mode i) in the matrix
element dropped out when the net rate was calculated.

This finding should be generally applicable. For example, when two condensed atoms form
molecules by photoassociation or near a Feshbach resonance, the coupled equations involve a mat-
ter wave field for the atoms and for the molecules [52, 53] which leads to bosonic stimulation in the
coupling matrix element and therefore in the partial rate. However, molecules are the most rapidly
damped mode. Therefore the net rate of molecule formation is independent of bosonic stimulation by
the particles in the final state and can not distinguish between a coherent molecular matter wave field
and an incoherent classical ensemble of molecules in the final state.

Eq. 3.8 also describes Bragg scattering where a condensate is exposed to two strong laser beams in
modes 0 and i. This results in Rabi oscillations of the atoms between states 0 and j. For short times
t, one has Nj ∝ N0n0nit

2. The scattering rate Ṅj is now proportional to N1/2
j which is incompatible

with the simple concept of bosonic stimulation. The simple picture of bosonic stimulation is only
obtained when we are in the regime where rate equations apply. This example shows that one has
to be careful not to over-interpret the intuitive concept of bosonic stimulation. It can be misleading
to use this concept in the case of coherently coupled fields. It can be applied to the situation where
one of the fields (either the atomic or the optical one) is strongly damped, but then there is bosonic
stimulation of the net scattering rate only by the long-lived field.

3.2.4 Observation of directional emission of light and atoms

For the experimental study of directional Rayleigh scattering, elongated Bose–Einstein condensates
were prepared in a magnetic trap [37]. The trapped condensates were approximately 20µm in diameter
d and 200µm in length l and contained several million sodium atoms in the F = 1 hyperfine ground
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Fig. 12. Observation of superradiant Rayleigh scattering. (A) An elongated condensate is illuminated with

a single off-resonant laser beam. Collective scattering leads to photons scattered predominantly along the

axial direction, and atoms at 45 degrees. (B-G) Absorption images after 20 ms time-of-flight show the atomic

momentum distribution after their exposure to a laser pulse of variable duration. When the polarization was

parallel to the long axis, superradiance was suppressed, and normal Rayleigh scattering was observed (B-D).

For perpendicular polarization, directional superradiant scattering of atoms was observed (E-G), and evolved

to repeated scattering for longer laser pulses (F,G). The pulse durations were 25 (B), 100 (C,D), 35 (E), 75

(F), 100 µs (G). The field of view of each image is 2.8 × 3.3 mm. The scattering angle appears larger than 45

degrees due to the angle of observation. All images use the same gray scale except for (D), which enhances

the small signal of Rayleigh scattered atoms in (C). Reprinted with permission from Ref. [32], copyright 1999

American Association for the Advancement of Science.

state. The condensate was exposed to a single off-resonant laser pulse which was red-detuned by
1.7 GHz from the 3S1/2, F = 1 → 3P3/2, F = 0, 1, 2 transition. The beam had a diameter of a few
millimeters, propagated at an angle of 45 degrees to the vertical axis and intersected the elongated
condensate perpendicular to its long axis (Fig. 12). Typical laser intensities were between 1 and
100 mW/cm2 corresponding to Rayleigh scattering rates of 45 to 4500 s−1, and the pulse duration
between 10 and 800 µs. In order to probe the momentum distribution of scattered atoms, the magnetic
trap was suddenly turned off immediately after the light pulse, and the ballistically expanding cloud
was imaged after 20 to 50 ms time-of-flight using resonant probe light propagating vertically onto a
CCD camera.

The momentum distributions of atoms after light scattering (Fig. 12 B-G) showed a dramatic
dependence on the polarization of the incident laser beam. For polarization parallel to the long axis
of the elongated condensate (θj = 0), light emission into the end-fire mode was suppressed, and the
distribution of atoms followed the dipolar pattern of normal Rayleigh scattering. For perpendicular
polarization (θj = π/2), photons were predominantly emitted along the long axis of the condensate
where the superradiant gain was the largest. The recoiling atoms appeared as highly directional beams
propagating at an angle of 45 degrees with respect to this axis.

A characteristic feature of superradiance is an accelerated decay of the initial state. In our experi-
ment, normal exponential decay and the superradiant decay could be directly compared by tracing the
number of atoms remaining in the condensate at rest after exposure to light of different polarizations.
For parallel polarization, we observed a simple exponential decay with the expected Rayleigh scatter-
ing rate (Fig. 13). For perpendicular polarization, the end-fire mode was active and the condensate
decayed non-exponentially with a strongly accelerated superradiant rate.

The directional scattering of atoms implies that the light is scattered preferentially into the axial
direction. This was verified by observing the scattered light with a CCD camera (Fig. 14 A). The
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Fig. 13. Exponential and superradiant decay. The decay of atoms in the condensate at rest showed the normal

exponential decay for parallel polarization (open circles) and faster superradiant decay for perpendicular

polarization (full circles). The laser intensities (13 mW/cm2) and oscillator strengths were equal in both

cases. Reprinted with permission from Ref. [32], copyright 1999 American Association for the Advancement

of Science.

camera was positioned out of focus of the imaging system, so that the images represent the angular
distribution of photons emitted around the axial direction. The images consisted of bright spots with
angular widths equal to the diffraction limit for a source with a diameter ∼ 14µm. Typical images
showed more than one such spot, and their pattern changed randomly under the same experimental
conditions. The observation of a few spots is consistent with a Fresnel number F = πd2/4lλ slightly
larger than one, implying that the geometric angle d/l is larger than the diffraction angle λ/d. F > 1
leads to multimode superradiance [54] since there is now more than one end-fire mode.

By replacing the camera with a photomultiplier, a time-resolved measurement of the scattered light
intensity was obtained (Fig. 14 B). Simple Rayleigh scattering would give a constant signal during the
square-shaped laser pulse. Instead, we observed a fast rise and a subsequent decay consistent with
a stimulated process. Measurements at variable laser intensities showed a threshold for the onset of
superradiance, and a shorter rise time for higher laser intensities. This behavior can be accounted for
by Eq. 3.6.

We determined the exponential rate (Gj −Dj) by fitting the initial rise in the light intensity. At
early times the depletion of the condensate is negligible and Gj and Dj are constants. Fig. 14 C shows
the inverse rise time Ṅ/N vs. the Rayleigh scattering rate R, which was measured by “switching off”
the superradiance using parallel polarization. The slope gives Gj/R and the offset determines the
loss Lj . The agreement between the calculated value for Gj/R ∼ 890 (using Ωj ∼ 1.9 × 10−4 and
N0 = 4.7 × 106) and the result of the simple linear fit (790) is better than the uncertainty in the
Rayleigh scattering rate (40%). The offset in Fig. 14 C determines the threshold for superradiance
and yields 1/Dj = 35µs.

The rate of decoherence Dj for the superradiance indicates the decay of the matter wave in-
terference. This has been studied separately using stimulated Rayleigh scattering (or Bragg spec-
troscopy) [10], where the linewidth of the Bragg resonance resulted from Doppler and mean-field
broadening. The observed FWHM of approximately 5 kHz yields a decoherence time of 32µs, in good
agreement with the value shown above.

For higher laser powers, a distinct change in both the momentum pattern of the atoms (Fig. 12
F,G) and in the photomultiplier traces (Fig. 14B) was observed. The atomic pattern showed additional
momentum peaks which can be explained as a sequential scattering process where atoms in the initial
momentum peak undergo further superradiant scattering. These processes are time-delayed with
respect to the primary process, and showed up as a second peak in the time-resolved photomultiplier
traces (Fig. 14B). Those higher-order peaks may also be affected by stimulated Raman scattering and
four-wave mixing between matter waves [39] which couple the different recoil modes.
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Fig. 14. Observation of directional emission of light. (A) The angular pattern of the emitted light along

the axial direction showed a few bright spots with an angular width θD (1/e2 diameter) of 107 ± 20 mrad,

corresponding to the diffraction limited angle of an object of ∼ 14 µm in diameter. The images were integrated

over the entire duration of the light pulse. (B) The temporal evolution of the light intensity showed a strong

initial increase characteristic of a stimulated process. For higher laser power, the pulse was shorter and more

intense. The laser intensities were 3.8 (solid line), 2.4 (dashed line), and 1.4 mW/cm2 (dotted line), and

the duration was 550µs. The inset shows a double-peak in the temporal signal when the laser intensity was

about 15 mW/cm2, which was above the threshold for sequential superradiant scattering. The photomultiplier

recorded the light over an angle of 200 mrad around the axial direction. (C) The dependence of the inverse

initial rise time on the Rayleigh scattering rate shows a threshold for the stimulated process. The solid curve

is a straight-line fit. Reprinted with permission from Ref. [32], copyright 1999 American Association for the

Advancement of Science.
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3.2.5 Relation to other non-linear phenomena

The directional emission of light and atoms described in the previous sections is analogous to the
superradiance discussed by Dicke [49]. He considered an elongated radiating system of incoherently
electronically excited atoms, and showed that this system realizes “a laser which does not employ
mirrors in order to produce feedback amplification.” The amplification of this “Coherence brightened
laser” is provided by electronic coherence: “The memory of the previously emitted electromagnetic
field is burned into the radiating system rather than being sent back into the radiating system by
the use of mirrors [49].” The key feature of superradiance (or superfluorescence) [54–58] is that
spontaneous emission is not a single-atom process, but a collective process of all atoms, leaving the
atoms in a coherent superposition of ground and excited states [59]. The condensate at rest “pumped”
by the off-resonant laser corresponds to the electronically excited state in the Dicke case. It can decay
by a spontaneous Raman process to a state with photon recoil (corresponding to the ground state).
The rate of superradiant emission in Dicke’s treatment is proportional to the square of an oscillating
macroscopic dipole moment. In the present case, the radiated intensity is proportional to the square of
the contrast of the matter wave interference pattern between the condensate and the recoiling atoms.
In both cases, the initial emission of light shows the single atom dipole pattern. Quantum noise and
spontaneous emission create spatial coherence and lead to directional emission different from forward
scattering.

The situation of an atom cloud with a small excited state admixture (“dressed” condensate)
nicely demonstrates the analogy between the optical laser and the atom laser. If the emitted light is
allowed to build up in a cavity, an optical laser is realized (called the Coherent Atomic Recoil Laser
(CARL) [60–62]. If the matter wave field builds up in a cavity, it realizes an atom laser by optical
pumping [63–65]. In our experiment, the matter wave field builds up in a traveling wave even without
a cavity because of the slow motion of the recoiling atoms.

For smaller momentum transfer, the nature of the quasi-particles in the condensate will change
from recoiling atoms to phonons. The observed phenomenon is therefore related to stimulated Bril-
louin scattering which was called “phonon maser action” [66] due to the amplification of sound waves.
However, the analogy is closest when the roles of light and atoms are exchanged. In Brillouin scat-
tering, the optical field builds up, whereas the phonon field generated by the momentum transfer
is usually rapidly damped and adiabatically eliminated from the equations. In our case, the matter
wave field builds up and the optical field can be eliminated due to the fact that light propagates at a
velocity which is ten orders of magnitude faster than the atomic recoil velocity.

The observed phenomenon differs from other stimulated processes like Brillouin scattering and
Dicke superradiance in two regards. In those cases, the electromagnetic field is treated either classi-
cally, or spontaneous emission (“quantum noise”) is needed only to initiate the process, which then
evolves classically after many photons have been accumulated. In our case, all of the light is emitted
spontaneously, i.e. without optical stimulation. Furthermore, our system gives rise to a “cascade” of
superradiant scattering processes which does not exist in the two-level superradiance systems studied
so far.

More generally, one can regard the observed superradiance as an instability against spatial pattern
formation triggered by noise. The spatial pattern is the periodic density modulation, the noise is the
quantum noise which leads to spontaneous scattering. Spontaneous pattern formation is an interesting
non-linear phenomenon studied in fluid mechanics, optics and chemical reactions [67].

Superradiance is based on the coherence of the emitting system, but it does not require quantum
degeneracy. The condition for superradiance is that the gain exceed the losses, or that the superradiant
decay time be shorter than any decoherence time. Above the BEC transition temperature Tc, thermal
Doppler broadening results in a thirty times shorter decoherence time than for a condensate. Further,
the larger size of the thermal cloud reduces the solid angle Ωj and therefore the gain by another factor
of ten. Therefore, the threshold for superradiance in a thermal cloud is several orders of magnitude
higher than for a condensate. No signs of superradiant scattering were observed above Tc; rather, the
sudden appearance of superradiant emission was a sensitive indicator for reaching the phase transition.
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Fig. 15. Experimental scheme for observing phase coherent matter wave amplification. A small-amplitude

matter wave was split off the condensate by applying a pulse of two off-resonant laser beams (Bragg pulse).

This input matter wave was amplified by passing it through the condensate pumped by a laser beam. The

coherence of the amplified wave was verified by observing its interference with a reference matter wave, which

was produced by applying a second (reference) Bragg pulse to the condensate. The interference signal was

observed after 35 ms of ballistic expansion. The fringes on the right side show the interference between the

amplified input and the reference matter wave. Reprinted by permission from Nature, Ref. [68], copyright

1999 Macmillan Magazines Ltd.

3.3 Phase-coherent amplification of matter waves

Atom amplification differs from light amplification in one important aspect. Since the total number
of atoms is conserved (in contrast to photons), the active medium of a matter wave amplifier has to
include a reservoir of atoms. One also needs a coupling mechanism which transfers atoms from the
reservoir to an input mode while conserving energy and momentum. The gain mechanism which was
explained above can act as a matter wave amplifier. The momentum required to transfer atoms from
the condensate at rest to the input mode is provided by light scattering. Refs. [47,50] discussed that a
condensate pumped by an off-resonant laser beam acts as a matter wave amplifier which can amplify
input matter waves within the momentum range which can be reached by scattering a single pump
photon.

The inversion in this matter wave amplifier is most apparent in the dressed atom picture where
the condensate at rest and the pump light field are treated as one system. An atom in the dressed
condensate can now spontaneously decay into a recoiling atom and a scattered photon which escapes.
Inversion is maintained since the photons escape and thus the inverse process of combining recoiling
atom and emitted photon into a dressed atom at rest is not possible. Thus, in principle, a complete
transfer of the condensate atoms into the recoil mode can occur.

Our observation of superradiance can be regarded as the observation of matter wave amplification
of noise, i.e. of spontaneously scattered atoms. To examine this amplification mechanism further,
we performed an experiment in which, rather than examine the amplification of noise, we amplify
a well–defined input signal, i.e. a matter wave of well–defined momentum which was generated by
Bragg scattering. By comparing the input and output waves, we could characterize the amplification
process.

The input atoms were generated by exposing the condensate to a pulsed optical standing wave
which transferred a small fraction of the atoms (between 10−4 and 10−2) into a recoil mode by
Bragg diffraction [10, 15]. Both laser beams were red-detuned by 1.7 GHz from the 3S1/2, |F = 1〉 →
3P3/2, |F = 0, 1, 2〉 transition to suppress normal Rayleigh scattering. The geometry of the light beams
is shown in Fig. 15. The beam which was perpendicular to the long axis of the condensate (radial
beam) was blue detuned by 50 kHz relative to the axial beam. This detuning fulfilled the Bragg
resonance condition.
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Fig. 16. Input–output characteristic of the matter-wave amplifier. (a-c) Typical time-of-flight absorption

images demonstrating matter wave amplification. The output of the seeded amplifier (c) is clearly visible,

whereas no recoiling atoms are discernible in the case without amplification (a) or amplification without the

input (b). The size of the images is 2.8 mm × 2.3 mm. (d) Output of the amplifier as a function of the

number of atoms at the input. A straight line fit shows a number gain of 30. Reprinted by permission from

Nature, Ref. [68], copyright 1999 Macmillan Magazines Ltd.

Amplification of the input matter wave was realized by applying an intense radial pump pulse for
the next 20 µs with a typical intensity of 40 mW/cm2. The number of atoms in the recoil mode was
determined by suddenly switching off the trap and observing the ballistically expanding atoms after
35 ms of time-of-flight using resonant absorption imaging. After the expansion, the condensate and
the recoiling atoms were fully separated (Fig. 16c).

Fig. 16 shows the input-output characteristics of the amplifier. The number of input atoms was
below the detection limit of our absorption imaging (Fig. 16a) and was determined from a calibration
of the Bragg process at high laser powers, where the diffracted atoms were clearly visible in the images.
The amplification pulse alone, although above the threshold for superradiance [32], did not generate
a discernible signal of atoms in the recoil mode (Fig. 16b). When the weak input matter wave was
added, the amplified signal was clearly visible (Fig. 16c). The gain was controlled by the intensity of
the pump pulse (see Eq. (3.11)) and typically varied between 10 and 100. Fig. 16d shows the observed
linear relationship between the atom numbers in the input and the amplified output with a number
gain of 30.

The phase of the amplified matter wave was determined with an interferometric technique (Fig. 15).
For this, a reference matter wave was split off the condensate in the same way as the first (input)
wave. The phase of the reference matter wave was scanned by shifting the phase of the radio-frequency
signal that drove the acousto-optic modulator generating the axial Bragg beam. We then observed
the interference between the reference and the amplified matter waves by measuring the number of
atoms in the recoil mode.

When the input was comparable in intensity to the reference matter wave, high contrast fringes
were observed even without amplification. Fringes were barely visible when the input was about 40
times weaker in population. After amplification, we regained a large visibility (Fig. 15). This increase
in visibility proved the coherent nature of the matter wave amplification process. The increase in
visibility of the interference fringes was a factor of two, less than the expected square root of the total
gain of thirty. This might be due to a distortion of the matter wave during the amplification, but this
effect requires further study. A similar experiment with rubidium atoms was done at the University
of Tokyo [69].
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This experiment can be regarded as a demonstration of an active atom interferometer. It realizes
a two-pulse atom interferometer with phase-coherent amplification in one of the arms. Such active
interferometers may be advantageous for precise measurements of phase shifts in highly absorptive
media, e.g. for measurements of the index of (matter wave) refraction when a condensate passes
through a gas of atoms or molecules [70]. Since the most accurate optical gyroscopes are active
interferometers [71], atom amplification might also play a role in future matter-wave gyroscopes [72].

4 Spinor Bose–Einstein condensates

The experiments described in the previous sections explored the nature of Bose–Einstein condensates of
atomic gases in which all the atoms were in the same internal state, in particular, the |F = 1, mF = −1〉
hyperfine state of sodium. The Bose–Einstein condensation phase transition leads to a non–zero value
of a scalar order parameter, the condensate wavefunction ψ(~r) = 〈Ψ̂(~r)〉. As such, a single–component
gaseous condensate can be considered as a simple, tractable model of the more complicated spinless
superfluid 4He. Many experiments in recent years have explored aspects of this connection between
the two quantum fluids [1].

However, unlike 4He, alkali atoms can have a non–zero spin and therefore numerous internal
hyperfine states which are stable electronic ground states. Thus, there exists the possibility of creating
a quantum fluid simultaneously composed of several, distinguishable components by Bose condensing
a gas of atoms in several hyperfine states.

The study of multi–component superfluid systems has been a tantalizing goal of low–temperature
physics for decades. The earliest discussion focused on 4He – 6He mixtures. 6He is radioactive with a
half-life of 1 second. An ambitious experiment by Guttman and Arnold [73] in 1953 sought evidence for
the superfluid flow of 6He mixed with 4He to no avail. Nevertheless, this pursuit touched off a series of
theoretical works on two–component superfluid hydrodynamics [74, and others since]. In 1978, Colson
and Fetter [75] considered such mixtures in the context of mean–field theories which apply directly
to current experiments, and discussed the criterion for interactions between the superfluids to cause
miscibility or phase–separation. After progress in the stabilization of a spin–polarized atomic hydrogen
gas, Siggia and Ruckenstein [76] considered the use of different hyperfine states to achieve a mixture
of superfluids. Since the observation of gaseous Bose condensates, the interest in multi–component
condensates has been revived with a flurry of theoretical attention [77–80, for example].

For atomic gases in magnetic traps, the availability of hyperfine states is restricted by the require-
ment that the trapped atoms remain in weak–field seeking states. For example, alkali atoms with a
nuclear spin of I = 3/2, such as 87Rb and 23Na, have three weak–field seeking states at zero–field:
one in the lower hyperfine manifold (|F = 1, mF = −1〉), and two in the upper hyperfine manifold
(|F = 2, mF = 1, 2〉). Generally, the simultaneous confinement of more than one of these states is
unstable against exothermic hyperfine state changing collisions.

However, it was recently found that magnetically–trapped multi–component gases of 87Rb are quite
long lived due to a fortunate near–equality of the singlet and triplet scattering lengths which greatly
suppresses the spin exchange collision rate [81–84]. This allowed for the creation of multi–component
condensates by the simultaneous magnetic confinement of 87Rb atoms in the |F = 1, mF = −1〉 and
|F = 2, mF = 2〉 [81] (and, in later work, |F = 2, mF = 1〉) states. The Boulder group has used
magnetically trapped multi–component condensates for a remarkable series of experiments. Studies
have probed the spatial separation of a two–component Bose–Einstein condensate [81, 85] and the
stability of a relative phase between the two components even in the presence of dissipation [86].
The Boulder group has also explored the nature of multi–component condensates in the presence of
continuous resonant and non–resonant rf coupling between the components. Such coupling links the
external center–of–mass and the internal degrees of freedom of the condensed gas and gives rise to a rich
variety of dynamical effects such as Josephson–type oscillations [87] and spin–wave excitations [88,89],
as well as new techniques for manipulating the phase of the condensate wavefunction [90, 91]. Some
of this work is reviewed in Refs. [92, 93].

In contrast, a far–off–resonant optical trap confines atoms regardless of their hyperfine state [44].
Thus, the atomic spin is liberated from the requirements of magnetic trapping and becomes a new
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degree of freedom. In particular, all atoms in the lower hyperfine manifold, for example the F = 1
hyperfine manifold of sodium, can be stably trapped simultaneously without suffering from hyperfine
manifold changing collisions. Such multi–component optically trapped condensates are represented by
an order parameter which is a vector in hyperfine spin space, and are thus called spinor Bose–Einstein
condensates. A variety of new phenomena are predicted for this new quantum fluid such as spin
textures, spin waves, and coupling between atomic spin and superfluid flow [94–96].

Spinor Bose condensates differ from other multi–component Bose condensates, such as the exper-
imentally realized 87Rb mixtures or the proposed mixtures of several atomic species, in important
ways stemming from symmetries under rotations of the vectorial order parameter. Furthermore, spin
relaxation collisions within the lower F = 1 hyperfine manifold

|mF = 0〉+ |mF = 0〉 ↔ |mF = +1〉+ |mF = −1〉 (4.1)

allow for population mixing among the different hyperfine states without trap loss. In contrast, spin
relaxation is the major limitation to the lifetime (about a second) of the 87Rb mixtures.

Since the realization of an optical trap for Bose–Einstein condensates [44], our group has performed
several experimental studies of this new quantum fluid. In three different experiments we explored
the ground–state spin structure of spinor condensates in external magnetic fields [97], the formation
and persistence of metastable spin domain configurations [98], and the transport across spin domain
boundaries by quantum tunneling [99]. In this section, we summarize our current understanding of
this fluid as derived from our experiments and from a growing number of theoretical works. While a
portion of this work has been reviewed in Refs. [1, 100], this section is the first comprehensive review
on spinor Bose–Einstein condensates.

4.1 The implications of rotational symmetry

An F = 1 spinor Bose–Einstein condensate is described by a three–component order parameter

~ψ(~r) =

 ψ1(~r)
ψ0(~r)
ψ−1(~r)

 (4.2)

and can thus be regarded as a particular instance of a multi–component condensate. Here, the
subscripts refer to the spin projection on the quantization axis, mF = −1, 0,+1. However, the spinor
Bose–Einstein condensate is distinguished from a general, multi–component quantum fluid by the fact
that the order parameter ~ψ transforms as a vector. The vectorial character of the order parameter
has a pronounced effect on interatomic interactions, and defines important features of the spinor
condensate at zero magnetic field, where the rotational symmetry of the system is preserved.

In second–quantized notation, the Hamiltonian for a multi–component gas has the general form

Ĥ =
∫
d3~r

{
Ψ̂†i (~r)

(
−~

2∇2

2m
δij + Uij(~r)

)
Ψ̂j(~r)

+
gij,kl

2

∫
d3~r1 d

3~r2 Ψ̂†i (~r1)Ψ̂†j(~r2)Ψ̂k(~r2)Ψ̂l(~r1) δ(~r1 − ~r2) } (4.3)

where the indices i, j, k, l correspond to theN components of the gas, and repeated indices are summed.
The general form of the external potential Uij(~r) allows for a potential which is not diagonal in the hy-
perfine spin basis, in which case it can represent a Josephson-type coupling between spin components.
The Uij(~r) terms also contain the effects of magnetic fields which are discussed in later sections.

The interatomic interaction (second line of the above expression) has been approximated as a
contact interaction in which the coefficients gij,kl describe the strength of the various elastic and
inelastic (state converting) collisions. These generally constitute a large number of free parameters.
Particle exchange (gij,kl = gji,kl) and time–reversal (gij,kl = gkl,ij) symmetries reduce the number
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of free parameters from N4 to [(N2 + N + 2)(N2 + N)]/8 but still a large number of interaction
parameters remain3. For a three–component condensate, the number of interaction parameters is 21.

This situation is greatly simplified in the case of spinor condensates due to rotational symmetry.
The rotationally symmetric characterization of two–body collisions among atoms of hyperfine spin F1

and F2 can only depend on their total spin f = F1 + F2 and not on its orientation. Thus, in the
s–wave limit, the interatomic interaction Vint(~r1 − ~r2) is reduced to the form [94,95]

Vint(~r1 − ~r2) =
4π~2

m
δ(~r1 − ~r2)

∑
f

af P̃f (4.4)

where af is the scattering length for collisions between atoms with total spin f , and P̃f is the projection
operator for the total spin. For colliding bosons of spin F , f can take the values f = 0, 2, . . . , 2F .
Therefore, the interaction parameters gij,kl describing collisions among the N = 2F + 1 different
components of a spinor condensate of spin F depend only on F + 1 = (N + 1)/2 scattering lengths.

In particular, for the F = 1 spinor system which was realized in gaseous sodium, interactions
are described fully by just two parameters, the scattering lengths af=0 and af=2. The interaction
potential can then be written as

Vint(~r1 − ~r2) =
(
g0 + g2

~F1 · ~F2

)
δ(~r1 − ~r2) (4.5)

where the parameters g0 and g2 are defined as

g0 =
4π~2

m

2af=2 + af=0

3
(4.6)

g2 =
4π~2

m

af=2 − af=0

3
(4.7)

and ~F1 and ~F2 are the spin operators for the two colliding particles. The spin–dependence of the
interatomic interaction is thereby isolated in the rotationally–symmetric term g2

~F1 · ~F2 δ(~r1 − ~r2).
The Hamiltonian describing a weakly–interacting Bose gas of spin F = 1 now becomes [94,95]

Ĥ =
∫
d3~r

{
Ψ̂†i (~r)

(
−~

2∇2

2m
δij + Vij(~r)

)
Ψ̂j(~r) (4.8)

+
1
2

[
g0Ψ̂†i (~r)Ψ̂

†
j(~r)Ψ̂i(~r)Ψ̂j(~r)

+ g2

(
Ψ̂†i (~r)(Fη)ijΨ̂j(~r)

)
·
(

Ψ̂†k(~r)(Fη)klΨ̂l(~r)
)]}

where the index η runs over the three coordinate axes x, y, z.
Equivalently, the Hamiltonian can be written in the form of Eq. 4.3, where all non–zero gij,kl are

determined by g0 and g2 as shown in Table 3. Taking into account particle exchange symmetries and
gathering similar terms, the interaction Hamiltonian can be written as

Hint =
1
2

∫
d3~r

[
(g0 + g2)Ψ̂†1Ψ̂†1Ψ̂1Ψ̂1 + g0Ψ̂†0Ψ̂†0Ψ̂0Ψ̂0

+ (g0 + g2)Ψ̂†−1Ψ̂†−1Ψ̂−1Ψ̂−1 + 2(g0 + g2)Ψ̂†1Ψ̂†0Ψ̂1Ψ̂0

+ 2(g0 + g2)Ψ̂†−1Ψ̂†0Ψ̂−1Ψ̂0 + 2(g0 − g2)Ψ̂†1Ψ̂†−1Ψ̂1Ψ̂−1

+ 2g2(Ψ̂†0Ψ̂†0Ψ̂1Ψ̂−1 + Ψ̂†1Ψ̂†−1Ψ̂0Ψ̂0)
]

(4.9)

The first three terms are the self–scattering terms, the following three the cross–scattering terms, and
the last line contains the spin relaxation terms.

3Due to particle exchange symmetry, we may denote the interaction parameter as gA,B where A and B are elements
of the set P of distinct unordered pairs of indices i, j. There are Z = N(N + 1)/2 such pairs. Due to time–reversal
symmetry, the interaction parameters are enumerated as gZ where Z is an unordered pair of elements from P. Thus,
the number of free interaction parameters is Z(Z + 1)/2 = [(N2 + N + 2)(N2 +N)]/8.
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gAB,AB mF = +1 mF = 0 mF = −1
mF = +1 g0 + g2

g0+g2
2

g0−g2
2

mF = 0 g0+g2
2 g0

g0+g2
2

mF = −1 g0−g2
2

g0+g2
2 g0 + g2

Table 3. Interaction parameters gij,kl describing elastic collisions in the F = 1 spinor system. The interaction

Hamiltonian is defined as in Eq. 4.3. The interaction parameter responsible for spin relaxation is g00,−1+1 = g2.

The cross–species scattering length discussed in Sec. 4.6 is given as gAB,AB = 2π~2aAB/m.

It is important to note that this simplification of the interaction term is only strictly valid in the
absence of magnetic fields. As the magnetic field is increased, the hyperfine spin F is no longer a
good quantum number for describing the atomic states, and thus collisional properties deviate from
the relations imposed by rotational symmetry. Dramatic deviations from rotational symmetry can be
seen, for example, at a Feshbach resonance where the scattering length for one particular collisional
channel is greatly varied. Nonetheless, away from Feshbach resonances and at low magnetic fields for
which the Zeeman shifts are much smaller than the hyperfine splitting, one can expect the zero–field
description of collisional interactions to remain valid.

The properties of spinor Bose–Einstein condensates at zero–magnetic field have been recently
discussed by a number of authors. Ho [94] and Ohmi and Machida [95] considered the ground state of
a spinor condensate by an extension of mean–field theory (see also [101]). The N–particle condensate
ground state is found by replacing the field operators Ψ̂i in Eq. 4.8 with c–number order parameters
ψi. It is convenient to express the order parameter as ~ψ =

√
n~ζ where n is the atomic density and ~ζ

is a three–component spinor of normalization |~ζ| = 1, obtaining the energy functional

E =
∫
d3~r

[
ψ∗i (~r)

(
−~

2∇2

2m

)
ψi(~r) + (U(~r)− µ)n(~r) +

n2

2

(
g0 + g2〈~F 〉2

)]
(4.10)

Here it is assumed that the external potential is scalar, i.e. diagonal in the hyperfine spin basis and
equal for each of the spin components. The chemical potential µ determines the number of atoms in
the condensate.

The ground–state spinor ~ζ is determined by minimizing the spin–dependent interaction energy,
n2g2〈~F 〉2/2, which is expressed in terms of the average condensate spin 〈~F 〉η = ζ∗i (Fη)ijζj . There are
two distinct solutions depending on the sign of the spin–dependent interaction parameter g2:

• g2 > 0: the collisional coupling is anti–ferromagnetic as the condensate lowers its energy by
minimizing its average spin, i.e. by making |〈~F 〉| = 0. The ground state spinor is then one of
a degenerate set of spinors, the “polar” states, corresponding to all possible rotations of the
hyperfine state |mF = 0〉.

• g2 < 0: the collisional coupling is ferromagnetic as the condensate lowers its energy by maximiz-
ing its average spin, i.e. by making |〈~F 〉| = 1. In this case the ground state spinors correspond
to all rotations of the hyperfine state |mF = +1〉.

Law, Pu, and Bigelow [96] explicitly calculated the many–body state of a homogeneous spinor
Bose–Einstein condensate without assuming a Hartree form. They describe an elegant transformation
of the spinor Hamiltonian in terms of operators which obey an angular momentum algebra, and
thus immediately yield eigenstates of the many–body Hamiltonian and their energy spectrum. Anti–
ferromagnetic coupling leads to a unique ground–state which cannot be represented in the Hartree
form and which has super–Poissonian fluctuations in the population of each spin state. Ferromagnetic
coupling yields a degenerate family of ground states with sub–Poissonian fluctuations. The Hartree
solution with all atoms in the |mF = +1〉 state is included in the family of ferromagnetic ground
states obtained by Law, Pu and Bigelow.
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to the Hamiltonian is considered (see text): a) linear Zeeman shift from homogeneous field, b) linear Zeeman

shift from field gradient, c) quadratic Zeeman shift, d) spin-dependent mean-field interaction.

The highly entangled ground state of Law et al. for the anti–ferromagnetic case differs in energy
from the ground state in the mean–field formalism (all atoms in the |mF = 0〉 state) only by a term
which is proportional to N , the number of atoms. This energy is N times smaller than the mean-
field energy which scales as N2. Therefore, it will be difficult to observe this highly correlated state.
Several authors have extended the treatment to finite magnetic fields and shown that the singlet
state of Ref. [96] is only the ground state at very small magnetic fields; otherwise the ground state
approaches the Hartree form [102,103].

The scattering lengths af=0 and af=2 can be calculated by incorporating data from a variety of
experiments into models of the interparticle potentials. For sodium, it is predicted that af=2 = 2.75
nm [104] and af=2 − af=0 = 0.29 nm [105]. Thus, an F = 1 spinor condensate of sodium should be
anti–ferromagnetic. For 87Rb, it appears that af=2 − af=0 < 0 and thus an F = 1 spinor condensate
of 87Rb should be ferromagnetic [94].

4.2 Tailoring the ground–state structure with magnetic fields

These theoretical considerations differ from the conditions in our experiment in two major regards:
the imposition of spin conservation, and the effects of field inhomogeneities and quadratic Zeeman
shifts. These differences are exemplified by considering the outcome of an experiment we performed,
in which an optically–trapped Bose condensed cloud was prepared with all atoms in the |mF = 0〉
state. The cloud was then allowed to equilibrate to the ground state by spin relaxation and by spatial
redistribution [97]. For simplicity, consider only variations in the condensate wavefunction in one
dimension, the ẑ–direction, and define the coordinate z to give the distance from the center of the
condensate. This corresponds to the experimental situation in which the spinor condensates were held
in the highly anisotropic, cigar–shaped potential of an optical trap.

Let us consider the evolution of the pure mF = 0 condensate as we slowly add the effects of
magnetic fields and mean–field interactions and construct the relevant energy functional (Fig. 17).

a) Linear Zeeman shift from homogeneous field. In a homogeneous magnetic field of strength B0,
the linear Zeeman energy

Elin = −p
∫
d3r n〈Fz〉 (4.11)

is minimized by placing all atoms in the strong–field seeking |mF = +1〉 state (a ferromagnetic
state)4. Here, p = gµBB0 where g is the Landé g–factor and µB is the Bohr magneton.

However, spin non-conserving collisions (dipolar relaxation), which would be necessary to trans-
form the mF = 0 condensate to the mF = +1 ground state, are negligible over the lifetime of the

4 The operator Fz gives the component of the spin along the direction of the magnetic field. This direction need not
be the same as the long axis of the trapped condensate.
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condensate. Thus, the total spin is a conserved quantity, and rather than considering the global
ground state of the system, one must consider the lowest energy state under the restriction of
spin conservation. Formally, one minimizes the restricted energy functional

Ktot = Etot + p̃

∫
d3~r n〈Fz〉 (4.12)

where p̃ is a Lagrange parameter determined by the given value of the total spin. For the case
where

∫
〈Fz〉nd3~r = 0, the linear Zeeman shift of a homogeneous magnetic field (ElZ) is exactly

canceled (p0 = p̃).
This is an important point: spin conservation allows one to study the effects of the small
spin–dependent interaction energies even at magnetic fields for which the linear Zeeman energy
would otherwise be dominant. For example, in the case of sodium, the spin–dependent mean–
field energy is just c2n ' h×50 Hz for a typical density of n = 3×1014 cm−3. Thus, without the
restriction of spin conservation, the ground–state spinor would trivially consist of all atoms in
the |mF = +1〉 state at a magnetic field of just 70 µG, and any interesting structure, correlations
or dynamics due to the anti–ferromagnetic coupling would be obscured. However, due to spin
conservation, many of these effects can be studied even in the absence of such demanding field
stability.

b) Linear Zeeman shift from field gradient. A field gradient B′ along the long axis of the condensate
introduces an energy term

Egrad = −
∫
d3~r p(z)n〈Fz〉 (4.13)

with p(z) = gµBB
′z, which makes it energetically favorable for two mF = 0 atoms to collide

and produce a mF = +1 atom on the high–field end of the cloud, and a mF = −1 atom on the
low–field end. Thus, the condensate is magnetically polarized into two pure spin domains.

c) Quadratic Zeeman shift from homogeneous field. The quadratic Zeeman shift at a field B0

introduces an energy term of the form

Equad = q

∫
d3~r n〈F 2

z 〉 (4.14)

which causes the energy of a mF = 0 atom to be lower than the average energy of a mF = +1
and mF = −1 atom by an amount q = q̂B2

0 . For sodium, q̂ = h × 390 Hz/G2. The quadratic
Zeeman energy favors population in the |mF = 0〉 state, and thus introduces an mF = 0 domain
at the center of the cloud with boundaries at q = |p(z)| (see Fig. 17c).

d) Spin-dependent mean–field interaction. As discussed previously, the collisional interactions give
a spin–dependent energy term of the form

Eint =
1
2

∫
d3~r g2n

2〈~F 〉2 (4.15)

Anti–ferromagnetic coupling (g2 > 0) favors the polar state, and thus makes the central mF = 0
domain larger. Ferromagnetic coupling (g2 < 0) favors the ferromagnetic states |mf = +1〉 and
|mF = −1〉 at the ends of the cloud, and thus the mF = 0 domain shrinks (see Fig. 17d).

Collecting spin–dependent energy terms, we now have the restricted energy functional

Ktot =
∫
d3~r (K0 +Kspin) (4.16)

K0 = ~ψ†
(
−~

2∇2

2m

)
~ψ + (U(~r)− µ+

g0

2
n)n (4.17)

Kspin =
(
−p(z)〈Fz〉+ q〈F 2

z 〉+ c〈~F 〉2
)
n (4.18)

where c = g2n/2. The ground–state spin structure of a spinor condensate is found by minimizing
Ktot.
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a magnetic bias field and field gradient is indicated by a vertical line across the relevant domain diagram.

Reprinted by permission from Nature, [97], copyright 1999 Macmillan Magazines Ltd.

4.3 Spin–domain diagrams: a local density approximation to the spin structure of spinor condensates

Focusing on the spin–dependent part, Kspin has a simple and elegant form. Let us step away from the
specific experimental considerations and consider a homogeneous spinor condensate with some arbi-
trary, uniform values of the parameters p, q and c. The ground–state spinors obtained by minimizing
the energy functional Kspin are indicated in the three diagrams of Fig. 18 for three conditions on the
parameter c [97]. For a non–interacting gas (c = 0), the ground–state spinor is determined by the
effects of magnetic fields alone.

In the case of anti–ferromagnetic coupling (c > 0), the spinor diagram changes in two significant
ways. First, since the anti–ferromagnetic energy favors the |mF = 0〉 polar state, the region in which
the |mF = 0〉 state is the ground state is enlarged. Second, at low values of q, in addition to the region
of pure hyperfine states, a region is introduced in which the ground–state spinor is a superposition
of the |mF = ±1〉 states. While admixing the |mF = −1〉 (|mF = +1〉) state for p > 0 (p < 0)
increases the linear Zeeman energy, it reduces the interaction energy by making the superposition
state more polar in character. Explicitly, in the shaded region, 〈Fz〉 = p/2c independent of q. The
effect of the linear Zeeman energy on anti–ferromagnetic condensates was considered also by Ohmi
and Machida [95] whose work did not include the quadratic Zeeman energy, and thus concerned the
q = 0 axis of the spin–domain diagram.

In the case of ferromagnetic coupling (c < 0), the situation is different. The higher interaction
energy for the polar state diminishes the region in which the ground state is the |mF = 0〉 state.
In between the regions of single–component ground–state spinors there is a region in which all three
hyperfine states are generally mixed. In these regions, the |mF = 0〉 state is mixed predominantly
with a large population of only one of the |mF = ±1〉 states and with a small population of the other.

Returning now to the experimental situation, the spin–domain diagram is used to describe the
ground–state spin structure of a spinor condensate through a local density approximation. The values
of q and c (but not its sign) are determined by the magnetic bias field and by the condensate density,
which we assume for now to be constant across the condensate. The coefficient p varies across the
condensate due to the presence of a magnetic field gradient; thus, the variations in the condensate
spin structure across the length of the condensate are determined by scanning along a vertical line in
the spin–domain diagrams. The length of this line is determined by the condensate length and the
field gradient B′. The center of this vertical line is determined by the total spin in the condensate: it
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moves upwards (larger p) as 〈Fz〉 is increased and moves downwards (smaller p) as 〈Fz〉 is decreased.
Thus, by adjusting the condensate density, the magnetic bias field, and the total spin of the cloud, all
regions of the spin–domain diagrams are accessible.

4.4 Experimental methods for the study of spinor condensates

Having introduced this new quantum fluid, let us describe how we made it, and how we probed it. First,
magnetically–trapped Bose–Einstein condensates were produced in the |F = 1, mF = −1〉 hyperfine
state and transferred to an optical trap [44]. Then, we pulsed on rf fields of variable strength which
were swept in frequency to distribute the optically–trapped atoms among the F = 1 hyperfine sublevels
by the method of adiabatic rapid passage [106]. High amplitudes or slow sweep rates transferred all
the atoms from one hyperfine state to another, while low amplitudes or fast sweep rates transferred
just a fraction of the atoms. To achieve an arbitrary hyperfine distribution, it was necessary to make
these rf–transitions at large (15 – 30 G) bias fields, separating the |mF = +1〉 → |mF = 0〉 and
|mF = 0〉 → |mF = −1〉 transition frequencies by about 1 MHz due to the quadratic Zeeman shift.
Otherwise, at low fields where level spacings between the hyperfine sublevels are equal, rf fields can
only be used to rotate the atomic spin vector and cannot, for example, change the atoms from the
ferromagnetic |mF = +1〉 state to the polar |mF = 0〉 state.

After state preparation, the optically–trapped spinor condensates were allowed to evolve in the
presence of variable magnetic bias fields and field gradients. After a variable dwell time in the optical
trap, the spinor condensates were probed by time–of–flight imaging combined with a Stern–Gerlach
spin separation (Fig. 19). The optical trap was suddenly switched off, allowing the atoms to expand
primarily radially from the highly anisotropic optical trap. Then, after allowing about 5 ms for
the interaction energy to be completely converted to kinetic energy, a magnetic field gradient was
applied which separated the spin state populations without distorting them. Finally, after 15 – 30
ms, the atoms were optically pumped to the |F = 2〉 hyperfine manifold. This gave the same optical
cross–section for all the atoms in the subsequent absorption probing on the |F = 2, mF = 2〉 →
|F ′ = 3, mF ′ = 3〉 cycling transition. This probing method obtained both the spatial and hyperfine
distributions along the axis of the optical trap in a single image.

4.5 The formation of ground–state spin domains

In Ref. [97] we explored the ground–state structure of spinor Bose–Einstein condensates with an
average spin of 〈Fz〉 = 0. Condensates were prepared either with all atoms in the |mF = 0〉 state or in
an equal mixture of the |mF = ±1〉 states. The atoms were then allowed to relax to their equilibrium
distribution in the presence of a variable magnetic bias field and field gradient. Probing at variable
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times after the state preparation revealed that the condensates relaxed to the same spin structure
from either of the initial conditions, and remained thereafter in the same equilibrium state (Fig. 20).

Figure 21 shows three examples of the spin structures which were observed. The corresponding
representations of these structures in the anti–ferromagnetic spin–domain diagram are indicated in
Fig. 22.

Fig. 21b shows the equilibrium structure of a spinor condensate for which the quadratic Zeeman
energy is larger than the interaction energy (q > c). The magnetic field gradient is sufficiently strong
so that |p| > q + c at the ends of the cloud, and thus the condensate consists of three pure spin
domains with a mF = +1 domain on the high–field end of the cloud, a mF = 0 domain in the center,
and a mF = −1 domain at the low–field end.

In Fig. 21a, the magnetic field is weaker, and thus the central mF = 0 domain is now flanked by
regions in which the mF = ±1 components are mixed. The appearance of a large population of the
mF = 1 (mF = −1) component on the low–field (high–field) end of the cloud provides a qualitative
confirmation of the anti–ferromagnetic collisional coupling in the F = 1 hyperfine manifold of sodium.
The division between the mF = 0 domain and the domains containing the mF = ±1 components
indicates the immiscibility of the mF = 0 component with the others.

Finally, in Fig. 21c, a condensate is shown for which the total spin is greater than zero. The
magnetic field gradient is about zero, and thus the condensate corresponds to a point on the spin–
domain diagram in which the mF = ±1 components are mixed. This situation nicely demonstrates the
miscibility of the mF = ±1 components with each other. The different widths of the two components
may be due to the curvature of stray magnetic fields, which has opposite effects on the |mF = ±1〉
states due to their different magnetic moments. Another explanation was recently given by Huang
and Gou [107] who ascribe the different widths to the inhomogeneous density of the condensate.

There were some apparent discrepancies between our observations and the local density description
(Sec. 4.3). For instance, as shown in Figs. 21a and b, the separation between the central mF = 0
domain and the neighboring mF = ±1 domains was not sharp, as would have been predicted by the
spin–domain diagram which neglects the kinetic energy. Including the kinetic energy requires that
the the condensate spinor vary gradually between the domains. As discussed in Secs. 4.7 and 4.8, the
condensate spinor should change over a length scale given by ξs =

√
~2/2m∆E, where

∆E = µ0

(√
g0 + g2

g0
− 1
)
' 0.018µ0 (4.19)
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is the height of the interaction energy barrier which expels mF = 0 atoms from mF = 1 spin domains,
and µ0 = g0n is the chemical potential of the mF = 0 atoms at a condensate density of n. This width
ξs can be called a “spin healing length” in analogy with the healing length ξ =

√
~2/2mµ which is

the minimum length for density variations. For typical conditions, ξs ' 1 – 2µm.
In our time–of–flight images (Fig. 21), the overlap between the components appears to be much

larger, on the order of tens of microns. This discrepancy may just be an artifact of the indirect
probing technique from which the spin structure of the trapped condensate is inferred. During the
expansion of the condensate, the kinetic energy at the spin–domain boundaries is released axially,
imparting velocities of

√
2∆E/m ' 2 mm/s. During the 25 ms time of flight, this would cause

a sharp boundary between spin components to be smeared out by ' 50µm, consistent with the
observed width of the overlap between the mF = 0 and mF = ±1 components. Thus, our time–of–
flight imaging technique cannot properly characterize the boundary between neighboring spin domains.
In future work, it would be interesting to examine such boundaries with an in situ imaging technique,
perhaps to observe the spatial structures recently predicted by Isoshima, Machida and Ohmi [108].
It is interesting to note that the radial expansion of the cigar–shaped condensate occurs at a velocity
near the speed of Bogoliubov sound, which describes the propagation of density waves, while the axial
expansion of a spin domain boundary occurs at a “spin sound velocity” which would describe the
propagation of spin waves.

4.6 Miscibility and immiscibility of spinor condensate components

As discussed above, the spin–domain diagram and the observed ground–state spin structures showed
evidence for the miscibility of the mF = −1 and mF = +1 components and the immiscibility of mF =
±1 and mF = 0 components. The bulk miscibility or immiscibility of two–component condensate
mixtures is predicted by mean–field theory [75, 77–79, 109]. The interaction energy density of such
condensates is given by

E =
1
2

(n2
aga + n2

bgb + 2nanbgab) (4.20)

where m is the common atomic mass, and na and nb are the densities of each of the components.
The interaction parameters are given generally as g = 4π~2a/m where aa and ab are the same–
species scattering lengths, and aab is the scattering length for interspecies collisions. Consider a
two–component mixture in a box of volume V with N atoms in each component. If the condensates
overlap, their total mean–field energy is

EO =
N2

2V
(ga + gb + 2gab) (4.21)

If they phase separate, their energy is

ES =
N2

2

(
ga
Va

+
gb
Vb

)
(4.22)

The volumes Va and Vb occupied by each of the separated condensates are determined by the condition
of equal pressure:

ga

(
N

Va

)2

= gb

(
N

Vb

)2

(4.23)

Comparing the energies EO and ES the condensates will phase–separate if gab >
√
gagb, and will mix

if gab <
√
gagb.

In the F = 1 three–component spinor system, the scattering lengths are determined by af=0 and
af=2. Defining ā = (2af=2 + af=0)/3 and ∆a = (af=2 − af=0)/3, the scattering lengths for the
mF = 1, 0 two–component system (or equivalently the mF = −1, 0 system) are given by a0 = ā, and
a1 = a0,1 = ā + ∆a. Since ∆a is positive for sodium, the condition a0,1 >

√
a0a1 applies and the

components should phase-separate, as we have observed [97, 98]. Interestingly, this phase-separation
should not occur in the non-condensed cloud because the same-species mean–field interaction energies
are doubled due to exchange terms.
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In the mF = ±1 two component system, the scattering lengths are a1 = a−1 = ā + ∆a and
a1,−1 = ā − ∆a. Thus, a1,−1 <

√
a1a−1, and these two components should mix. Indeed, as shown

in Fig. 21c, an equilibrium spinor condensate with 〈Fz〉 6= 0, small field gradient, and near-zero
field consists of an overlapping mixture of atoms in the mF = ±1 states. This particular miscible
two–component system has an important advantage. If the trapping potential varies across a two–
component condensate, the lowest energy state may be a phase–separated state if aa 6= ab even though
the condition aab <

√
aaab is fulfilled [110]. In this case, the atoms with the smaller scattering length

concentrate near the trap center, making it harder to observe miscibility. However, in the mF = ±1
system, the two scattering lengths a1 and a−1 are equal by rotational symmetry, so the components
mix completely even in a trapping potential.

4.7 Metastable states of spinor Bose–Einstein condensates

Having observed and explained ground state spin–domain structures, we began to explore dynamical
properties of spinor Bose–Einstein condensates. Ref. [98] discusses the observation of long–lived ex-
cited states of spinor Bose–Einstein condensates. We observed two complementary types of metastable
states: one type in which a two–component condensate was stable in spin composition but which per-
sisted in a non–equilibrium structure of spin domains, and another in which a spatially uniform
condensate was metastable with respect to spin relaxation to an equilibrium spin composition. In
each case, the energy barriers to relaxation to the ground state (the activation energy) were identified
and found to be much smaller than the thermal energies of the metastable gases; thus, such states
would not be metastable in a non–condensed cloud. However, in a Bose condensed cloud with a large
condensate fraction, the thermal energy is only available to the scarce thermal component and thus
thermal relaxation is considerably slowed. In other words, Bose–Einstein condensation allows the
study of weak effects in an energy regime which is much lower than the temperature of the gas.

4.7.1 Metastable spin–domain structures

The first type of metastability was observed in spinor Bose–Einstein condensates in a high magnetic
field (15 G) which caused a two–component mF = 0, 1 cloud to be stable in spin composition. This
occurs because the large quadratic Zeeman shift makes |mF = 0〉+|mF = 0〉 → |mF = +1〉+|mF = −1〉
collisions endothermic, even if the |mF = ±1〉 atoms would move to the ends of the condensate. We
prepared clouds in an equal superposition of the two hyperfine states using a brief rf pulse, and then
allowed the system to equilibrate.

Because of the immiscibility of the mF = 0 and mF = 1 components, the ground–state spin
structure in this case consists of two phase–separated spin domains, one for each of the components,
on opposite sides of the elongated trap with a domain boundary in the middle. What we observed
was dramatically different: a spontaneously formed, metastable arrangement of alternating mF = 0
and mF = 1 spin domains (Fig. 23).

These spin striations began forming within about 50 ms of the initial preparation of two over-
lapping, immiscible components. The striations were initially angled due to radial excitations in the
narrow spinor condensates which soon damped out, leaving strictly horizontal striations. The observed
width of the spin domains grew to an equilibrium value of about 40 µm within about 100 ms (Fig.
24). Thereafter, the clouds were essentially unchanged, remaining in the metastable state for 10 or
more seconds as the number of trapped atoms slowly decayed due to three–body trap losses.

To understand the reason for the metastability, let us consider two adjacent spin domains of the
mF = 0 and mF = 1 components, as shown in Fig. 25. Suppose that, in order for the condensate to
decay to its ground state, the atoms of each spin domain must somehow be transported across the
spin–domain boundary. For this to occur, the atoms of one component must either pass around or
through the other component.

If one component passes around the other, the condensate wavefunction must be varied spatially
in the radial direction. This gives a kinetic energy barrier to decay of about ~2/2mr2 ' kB × 3
nK where r ' 2µm is the condensate radius. The passage of one component through the other is
limited by an interaction barrier since the components are immiscible. As explained in Ref. [99], the
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Fig. 25. Energy barriers responsible for the metastability of spin domains in a two–component mF = 0, 1

condensate. (a) Metastable domains of the mF = 0 (black) and mF = 1 (gray) components are held in

a narrow optical trap. For the population in these domains to decay to the ground state they must either

pass each other without overlapping, or pass through each other. (b) The former is prohibited due to the

kinetic energy barrier of modifying the condensate wavefunction on a radial length scale. (c) The latter is

prohibited due to an interaction energy barrier ∆E, shown here for the passage of an mF = 0 domain of

chemical potential µ0 through the neighboring mF = 1 domain. (d) If a magnetic field gradient B′ is imposed,

the width of the classically forbidden region for the passage of mF = 0 atoms through the mF = 1 domain

is reduced to zb = ∆E/gµBB
′, and the tunneling rate which governs the decay of the metastable domains is

increased.
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interaction energy barrier for atoms in the |mF = 0〉 state to pass through a mF = 1 domain is (see
Eq. 4.19) ∆E ' g2/2g0 × µ0 = c where µ0 is the chemical potential of atoms in the mF = 0 spin
domain, and c is the spin–dependent interaction energy introduced in Sec. 4.1. At a chemical potential
µ0 = kB×300 nK, the interaction energy barrier height is c ' kB×5 nK. The probability of tunneling
through the spin domains is exceedingly small because the axial length of the domains zB ' 40µm
is much larger than the spin healing length ξs ' 1.4µm. Thus, because of these two energy barriers,
the non–equilibrium arrangement of spin–domains is metastable.

The formation of these metastable spin–domains was considered recently by Chui and Ao [111] as a
spinodal decomposition in a binary system. Equilibration occurs on two time scales. First, on a short
time scale determined by the spin–dependent interaction energy c as t ' ~/c, the homogeneous initial
state begins to phase separate into small domains of length scale ξs =

√
~2/2m∆E. Thereafter, the

domains grow by the coalescence of small spin domains on the long time scales required for quantum
tunneling. This work supports the physical picture which we suggested in Ref. [98]. A similar picture
emerges from the work of Pu et al. [112] who consider the quantum dynamics (without dissipation)
of a trapped condensate composed of two overlapping components which tend to phase separate. In
their calculations, they observe the evolution of fine spatial features which exemplify the instability
of such a system against spin domain formation.

4.7.2 Metastable spin composition

Another type of metastability was discovered in the studies of ground–state spin domains of a 〈Fz〉 = 0
condensate discussed in Sec. 4.5. Condensates were prepared either with all atoms in the |mF = 0〉 state
or in an equal mixture of the |mF = ±1〉 states. While the ground state reached from either starting
condition was the same (Fig. 20), equilibration occurred on much different time scales. When starting
from the |mF = 0〉 state, the condensate remained unchanged for several seconds before evolving over
the next few seconds to the ground state. When starting from the |mF = ±1〉 superposition, the
fraction of atoms in the |mF = 0〉 state grew without delay, arriving at equilibrium within less than
a second (Fig. 26).

This difference can be understood by considering a spin-relaxation collision, in which two |mF = 0〉
atoms collide to produce a |mF = 1〉 and a |mF = −1〉 atom. In the presence of a magnetic field
B0, quadratic Zeeman shifts cause the energy of the two |mF = 0〉 atoms to be lower than that of the
|mF = 1〉 and |mF = −1〉 atoms. Due to this activation energy, condensate atoms in the |mF = 0〉
state could not undergo spin-relaxation collisions. Thus, even though the creation of mF = 1 and
mF = −1 spin domains at the ends of the condensate is energetically favored globally in the presence
of a magnetic field gradient, the mF = 0 condensate cannot overcome the local energy barrier for
spin-relaxation. In contrast, condensate atoms in the |mF = 1〉 and |mF = −1〉 states can directly
lower their energy through such collisions, and equilibrate quickly.

In support of this explanation, the metastability time was found to depend strongly on the
quadratic Zeeman energy which was varied by changing the magnetic bias field. Importantly, the
equilibration time changed significantly when q was varied by less than a nanokelvin; this dependence
excludes thermal spin relaxation (in a gas at a temperature T ∼ 100 nK� q/kB) as the equilibration
mechanism, and suggests that the metastable condensate decays to the ground state via quantum tun-
neling. In such tunneling, a pair of atoms in the |mF = ±1〉 states would be produced in a classically
forbidden collision, and would then tunnel to opposite ends of the cloud where their energy is lowered
due to the magnetic field gradient. It would be interesting to study this process further in the future.

4.8 Quantum tunneling

Metastable states can generally overcome the activation energy barrier for decay to the ground state
in two ways. Classically, the system can decay by acquiring thermal energy larger than the activa-
tion energy. However, even without this thermal energy, the system can decay to the ground state
by quantum tunneling. Tunneling describes a wide range of phenomena such as nuclear decay, field
ionization of neutral atoms, and scanning tunneling microscopy. In macroscopic quantum systems,
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Fig. 26. Metastability of the pure |mF = 0〉 state in the presence of a magnetic bias field (250 mG), and

gradient (44 mG/cm). The evolution toward equilibrium of an initially pure |mF = 0〉 condensate (open

symbols), and a mixture of |mF = 1〉 and |mF = −1〉 (closed symbols) is shown by plotting the fraction of

atoms in the |mF = 0〉 state vs. dwell time in the optical trap. Figure taken from Ref. [98].

coherent tunneling can lead to a variety of Josephson effects [113] which have been observed in super-
conductors and quantum fluids. As exemplified by the observation of metastable states which persist
in spite of temperatures higher than the activation energy, gaseous Bose–Einstein condensates are an
appealing new system to study tunneling and Josephson oscillations [114–117].

In our study of optically trapped spinor Bose–Einstein condensates, we looked at the decay of
metastable spin domains via quantum tunneling through the spin domain boundaries [99]. Tunneling
barriers were formed not by an external potential, but rather by the intrinsic repulsion between
two immiscible components of a quantum fluid. Tunneling across spin domain boundaries is a spin
transport mechanism inherent to such a fluid (emphasized in [111]), and the tunneling rates are
sensitive probes of the structure of the domain boundaries. From a practical viewpoint, the use of
phase–separated spin domains rather than externally imposed potentials is an attractive option for
future studies of tunneling in Bose condensates since the energy barriers for tunneling are naturally
of nanokelvin–scale height and micron–scale width.

The system we chose for our study was a simple, well–characterized metastable arrangement of spin
domains in a spinor condensate composed of the mF = 1 and mF = 0 components. Such a state was
obtained by first preparing a spinor condensate in a superposition of the |mF = 0, 1〉 states. A strong
field gradient (several G/cm) was applied to break up the many–domain metastable state (discussed
in the previous section) and separate the spin components into the two–domain ground state. Then,
a weak gradient was applied in the opposite direction, which energetically favored the rearrangement
of the spin domains on opposite ends of the optical trap, and thus yielded a two–domain metastable
state. This simple system allowed for the characterization of the decay of metastable states by the
easy identification of atoms in the metastable and ground–state spin domains of each component (Fig.
27).

To ascribe the decay of these metastable spin domains to quantum tunneling, it was first necessary
to rule out thermal relaxation as a decay mechanism. Figure 28 shows a series of time–of–flight images
reflecting the state of the two–domain metastable state at various times after the state was initially
prepared and held under a 0.1 G/cm gradient. One can identify two stages in the decay of this
metastable cloud to the ground state: a slow decay over the first 12 seconds, followed by a rapid decay
to the ground state within less than one second. The slow decay was found to be rather insensitive to
changes in the condensate density and field gradient, and was thus consistent with thermal relaxation
wherein condensate atoms from the metastable state are thermally excited, and then re-condense into
the ground state domains. The number of atoms which accumulated in the ground–state domains
reached a nearly constant value of about 5× 104, perhaps due to a dynamic equilibrium between the
growth of the domain via re–condensation and its depletion via inelastic losses. We also observed that
the total population in the |mF = 0〉 spin state decreases more rapidly than that in the |mF = 1〉
state, indicating higher inelastic collision rates for the |mF = 0〉 state.
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Fig. 28. Decay of a metastable state by thermal relaxation and quantum tunneling. A two–domain metastable

state was prepared at a 15 G axial bias field and a 0.1 G/cm gradient. Images show metastable (outer parts

in the time-of-flight picture) and ground state (inner parts) spin domains of |mF = 1〉 and |mF = 0〉 atoms,

probed at various times after state preparation. The height of each image is 1.3 mm. The number of atoms

in the ground state domains grew slowly over the first 12 s, after which the atoms tunneled quickly to the

ground state. The total number of atoms (and thus the condensate density) decreased during the dwell time

due to inelastic three–body collisions. Thus, the slow thermal relaxation gave way to a rapid tunneling once

the density fell below a threshold value. Figure taken from Ref. [98].
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Fig. 29. A comparison of the decay of metastable states at different densities. Shown is the fraction of

mF = 0 and mF = 1 atoms found in the ground–state domains after a variable delay time at a constant field

gradient of 0.35 G/cm and a 2 G bias field. The evolution is shown for condensates prepared with different

populations in the initial state, either 1× 106 (open symbols) or 2.5× 105 atoms (closed symbols). The rapid

tunneling in the denser condensate occurred at a later time. The solid lines are guides to the eye.

The rapid decay which ensued (after 12 seconds) was due to quantum tunneling. As discussed
below, the tunneling rate is acutely sensitive to the condensate density. While the condensate is stored
in the optical trap, its density decreases as atoms are lost from the trap due to three–body inelastic
collisions. Thus, as time progressed, the density of the metastable condensate in Fig. 28 decreased
until the tunneling rate was fast enough to cause a rapid (within about 1 second) relaxation to the
ground state.

The dependence of the relaxation time on the condensate density is also shown in Fig. 29.
Metastable condensates were prepared with different initial numbers of atoms, and held in a con-
stant magnetic field gradient. The metastable lifetimes for the two starting conditions were different,
with the denser condensate decaying to the ground state at a later time.

A mean–field description of the tunneling rates was developed [99]. We considered the one–
dimensional motion of a Bose–Einstein condensate composed of two immiscible components of atoms
in states |a〉 and |b〉 and atomic mass m, as in Fig. 25 for the experimental realization of the mF = 1
and mF = 0 components. The chemical potentials of the two components µi = gini are related by the
condition of constant pressure µ2

a/ga = µ2
b/gb where gi = 4π~2ai/m, ai is the same–species scattering

length, and i ∈ a, b labels the component. The mean–field interaction energy for each component is
Ui = gini + gabnj (i 6= j) where gab is determined by the cross–species scattering length aab.

If we assume the boundary between the spin domains to be sharp, component a is excluded from
the domain of component b by an energy barrier ∆E given by

∆E = gabnb − gana =
(

gab√
gagb

− 1
)
µa (4.24)

This energy barrier is responsible for the metastability of spin domains which have an axial length zb
which is much larger than the spin healing length ξs =

√
~2/2m∆E.

In the presence of a state–selective force F , which was experimentally applied in our experiments
using a magnetic field gradient B′, the energy barrier decreases away from the domain boundary as
∆E(z) = ∆E − Fz. Thus the width of the energy barrier is reduced to zb = ∆E/F , and tunneling
can occur when zb ∼ ξs. More precisely, the tunneling rate across the barrier is given by the Fowler–
Nordheim (WKB) equation

dNa
dt

= γ exp

(
−2

√
2m
~2

∫ zb

0

√
∆E(z)dz

)
(4.25)
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Fig. 30. Tunneling across barriers of constant height and variable width zb. Condensates at constant

density were probed after 2 seconds of tunneling at a variable field gradient B′. The population of atoms in

the metastable and ground–state domains of each spin state were easily identified in time–of–flight images

(see Fig. 27). Also shown is the fraction of atoms of each spin state in their metastable domain. Circles

represent the mF = 0 atoms, and pluses the mF = 1 atoms. The energy barrier height was ≈ 5 nK at the

chemical potential of µ0 ' 300 nK. The tunneling rate depended strongly on the width of the energy barrier

zb = ∆E/gµBB
′: at zb = 7µm (B′ = 0.22 G/cm) little tunneling was observed, while at zb = 4µm (B′ = 0.37

G/cm) the atoms had completely tunneled to the ground state in 2 s. The barrier attempt rate and tunneling

probability were determined by a fit to the mF = 0 data (solid line), and found to agree with a mean–field

model. The data indicate that the tunneling rate for mF = 0 atoms is larger than that for mF = 1 atoms.

= γ exp

(
−4

3

√
2m
~2

∆E3/2

F

)
(4.26)

= γ exp
(
−4

3
zb
ξs

)
(4.27)

which also describes the analogous phenomenon of the field emission of electrons from cold metals [118].
Here γ is the total tunneling attempt rate (i.e. not the rate per particle), and the exponential is the
tunneling probability. This relation explains the strong dependence of the tunneling rate on the
condensate density n, which causes the density threshold behaviour observed in Fig. 28.

This mean–field description was tested experimentally by measuring the tunneling rate across
barriers of constant height and variable width. For this, metastable condensates were prepared at a
constant density (giving a constant barrier height of ≈ 5 nK), exposed to a variable gradient (giving
barrier widths between 4 and 20 µm), and allowed to decay for a period τ = 2 s which was short
enough that the condensate density did not vary appreciably due to trap losses. We then measured
the number of atoms of each component in the metastable and ground–state spin domains by time–of–
flight absorption imaging (Fig. 30). When the barrier was wide (small field gradients), the tunneling
rate was small and only a small fraction of atoms were observed in the ground–state domains. When
the barrier was narrow (large field gradients), the tunneling rate was large and a large fraction of
atoms were observed in the ground–state domains. The data were in quantitative agreement with our
mean–field approach using the scattering lengths calculated by Burke et al. [105].
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Fig. 31. Variation of the metastable state lifetime with magnetic field and field gradient. Metastable

condensates at a constant initial chemical potential of µ0 ' 600 nK were allowed to decay at a variable bias

field and field gradient. Shown is the time at which the condensates were observed to have relaxed completely

to the ground state. The dependence of the lifetime on the field gradient at 15 G and 4 G was similar. At

fields of 1 G or lower, the lifetime was dramatically shortened, indicating a substantially higher tunneling rate

at low magnetic fields.

4.9 Magnetic field dependence of spin–domain boundaries

While the tunneling rates measured at high magnetic fields (15 G) agreed with a model of tunneling
in a two–component Bose condensate, at lower magnetic fields, a dramatic increase in the tunneling
rate was observed indicating the breakdown of the two–component description. As described in our
paper (see Fig. 4 of Ref. [99]), the threshold chemical potential for tunneling at a constant field
gradient dramatically increased at magnetic fields below about 1 G. Fig. 31 shows similar data. This
strong increase in the tunneling rate at low fields reveals that the structure of the domain boundary
is changed by the presence of the third spin component, the |mF = −1〉 state.

The introduction of the third spin component to the barrier has the effect of reducing the energy
barrier for the tunneling of mF = 0 atoms. This can be seen by considering a mixture of components a
and b where |a〉 = |mF = 0〉 and |b〉 = cos θ|mF = 1〉− sin θ|mF = −1〉 (0 ≤ θ ≤ π/2). The interaction
energy density of this system can be written in the form of Eq. 4.20 with the definitions

ga = g0 (4.28)
gb = g0 + ∆g cos2 2θ (4.29)
gab = g0 + ∆g(1− sin 2θ) (4.30)

where ∆g = g2. Using these interaction parameters, the energy barrier height which governs the
tunneling of the mF = 0 component becomes

∆E(θ) =

(
g0 + ∆g(1− sin 2θ)√
g0(g0 + ∆g cos2 2θ)

− 1

)
µ0 '

∆g
g0

(
1− sin 2θ − cos2 2θ

2

)
µ0 (4.31)

for ∆g � g0. For θ = 0 or θ = π/2, one recovers the energy barrier for tunneling through a pure
mF = 1 or mF = −1 barrier. For intermediate values, the height of the energy barrier is reduced.
Indeed, at θ = π/4, the energy barrier disappears completely. In this case, |b〉 = 1√

2
(|mF = 1〉−|mF =

−1〉) describes a polar state obtained by rotating the |mF = 0〉 state. The condensate spinor can thus
evolve continuously from state |a〉 to |b〉 by a gradual rotation which is associated with a gap–less (i.e.
no barrier) Goldstone excitation mode. Recent calculations by Isoshima, Machida and Ohmi [108]
confirm the disappearance of the energy barrier when the populations in the |mF = ±1〉 states become
equal. These changes of effective interaction parameters in the presence of the |mF = −1〉 state provide
a mechanism for the variation of the tunneling rates with magnetic fields.
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The local density approximation discussed in Sec. 4.3 indicates that, indeed, the mF = −1 com-
ponent should be introduced to the spin domain boundaries at low magnetic fields. According to this
approximation, the boundaries studied in our experiment between an mF = 0 domain and a region
of 〈Fz〉 > 0 are described in the spin domain diagram (Fig. 22) by a short vertical line at constant
q (determined by the magnetic field) which straddles the border of the mF = 0 region in the p > 0
half–plane. The diagram thus suggests that a pure two–component description of the boundary is
correct for magnetic fields at which the quadratic Zeeman energy is larger than the spin–dependent
interaction energy (q > c). Taking a typical value of the chemical potential of µ0 = 300 nK, this
condition indicates that the two–component description of tunneling should be valid for magnetic
fields greater than 500 mG5. Below this magnetic field, the mF = 0 component is bordered not by a
pure mF = 1 domain, but rather by a region in which the |mF = 1〉 and |mF = −1〉 states are mixed.

However, the local density approach fails to explain why the tunneling rates should increase even
at magnetic fields for which q > c, as we observed. This failure stems from the incomplete description
of the spin domain boundary due to the neglect of kinetic energy in the local density approximation.
As discussed above, 〈Fz〉 must vary continuously at the boundary between spin domains. One may
approximate the spin composition of the boundary region by explicitly minimizing the energy of a
spinor with a given value of 〈Fz〉, and then applying a local density approximation in which we assume
that the spinor at each location in the boundary is determined by the local value of 〈Fz〉. We can
write a spinor for which 〈Fz〉 > 0 as

~ζ =

 √
〈Fz〉+ ε2√

1− 〈Fz〉 − 2ε2
−ε

 (4.32)

where a choice of complex phases has already been made which reduces the anti–ferromagnetic inter-
action energy. The spin–dependent energy Kspin is then

c
(
〈Fz〉2 + 2(1− 2ε2 − 〈Fz〉)(

√
ε2 + 〈Fz〉 − ε)2

)
+ q(2ε2 + 〈Fz〉) (4.33)

which is minimized to determine the fractional population ε2 in the |mF = −1〉 state.
At high magnetic fields (q � c) one finds the approximate solution

ε2 ' 1
(q/c)2

〈Fz〉(1− 〈Fz〉)2 (4.34)

which indicates that atoms in the |mF = −1〉 state are always energetically favored to reside in the
domain boundary6. Their population scales with the magnetic field B0 as q−2 ∝ B−4

0 . At a magnetic
field of 15 G where q/c ≈ 400, the fraction of atoms in the |mF = −1〉 state is exceedingly small
and thus the two–component approximation to the domain boundary should be quite accurate, as
indicated by our data. At lower magnetic fields, the population in the |mF = −1〉 state plays an
increasingly important role.

Guided by these simple approximate treatment, one can also explicitly calculate the spinor wave-
function at the domain boundary which minimizes the total energy. Such calculations were presented
in Ref. [5], and the results are summarized in Figs. 32 and 33. One finds indeed that the fractional
population of atoms in the |mF = −1〉 state is non–zero at all magnetic fields and scales as B−4

0 at high
magnetic fields. The introduction of mF = −1 atoms in the boundary layer increases the penetration
depth of mF = 0 atoms in the boundary region, and thus should increase the rate of tunneling across
the domain boundary. The magnetic field at which this effect becomes significant, according to these
calculations, is about 1 G for our experimental conditions and agrees with the magnetic field value
below which an increased tunneling rate was observed.

5Unlike in Ref. [97], we do not apply here a one–dimensional approximation to reduce the effective interaction energy
by averaging over the radial directions.

6In our paper, an incorrect solution was given which indicated a high–field scaling of ε2 ∝ B−2
0 [99].
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Fig. 32. Numerical calculation of the spin structure at the domain boundaries at different magnetic fields.

Shown are the fractional population in the |mF = 1〉 (dashed line), |mF = 0〉 (solid line), and |mF = −1〉
(dotted line) states, with the |mF = −1〉 population shown at right on an expanded scale. In (a), the

calculation was restricted to just the mF = 0 and mF = 1 components, and hence the results are magnetic

field independent. In the remaining graphs, all three components were considered at magnetic fields of (b)

15 G, (c) 5 G, (d) 1 G, (e) 0.5 G, and (f) 0.25 G. As the magnetic field is decreased, the population in the

|mF = −1〉 state increases, and the boundary region becomes wider. Further details are found in Ref. [5].
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Fig. 33. Variation of the spin–domain boundary width with magnetic field. The calculated spa-

tial variation of the fractional population of atoms in the |mF = 0〉 state was fitted to the function

f(z) = [1 − Erf ((z − z0)/ξ0)]/2, where ξ0 characterizes the penetration length of the mF = 0 component

in the boundary region. The points correspond to graphs (b – f) of Fig. 32, while the dashed line shows

the penetration length calculated for the two–component case. The penetration length is close to the two–

component limit at high magnetic fields, and then increases sharply at lower fields beginning at about 1 G, in

agreement with our experimental observation of an increased tunneling rate below this magnetic field value.

Conclusions

These notes have reviewed advances in atomic BEC in two areas, spinor condensates and light scat-
tering. Many further advances are described in other contributions to this volume. This rapid pace
of developments during the last few years has taken the community by surprise. After decades of an
elusive search nobody expected that condensates would be so robust and relatively easy to manip-
ulate. Also, nobody imagined that such a simple system would pose so many challenges, not only
to experimentalists, but also to our fundamental understanding of physics. The list of future chal-
lenges is long and includes the complete characterization of elastic and inelastic collisions at ultralow
temperatures, the exploration of superfluidity, vortices, and second sound in Bose gases, the study
of quantum-degenerate molecules and Fermi gases, the development of practical “high-power” atom
lasers, and their application in atom optics and precision measurements.

Acknowledgments

We are grateful to Chris Westbrook and Robin Kaiser for organizing a stimulating summer school, to
Shin Inouye for valuable discussions, to Chandra Raman and Ananth Chikkatur for comments on the
manuscript. The BEC work at MIT was done in collaboration with M.R. Andrews, A.P. Chikkatur,
K.B. Davis, D.S. Durfee, A. Görlitz, S. Gupta, Z. Hadzibabic, S. Inouye, M. Köhl, C.E. Kuklewicz,
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