CERN LIBRARIES, GENEVA

IR MR R et s

CM-P00058813

PION FORM FACTOR FROM PARTIALLY UNITARIZED

HARD PION CURRENT ALGEBRA

*)
G. Ecker
CERN -~ Geneva

ABSTRAGT

Using a conslstency condition for
the transverse part of the primitive AAV-
vertex function, the electromagnetic form
factor of the pion is derived from partial-
ly'unitarized hard pion current algebra
and the'Schnitzer—Weinberg parametrization
(§ modeil). The resuit is in very good
agreement with the Orsay measurements and
in good enough agreement with the scarce
data for spacelike arguments. The differ-
ennce between the position of the peak of
the form factor and the resonance energy

ig discussed.

) On leave 0f absence from the University
of Vienna, Austria.

Ref.TH.1%12-CERN
30 March 1971



INTRODUCTION

1 ) has

ey}

The partizl unitarization of the hard pion method

2),3)

given new predictions from current algcbra. Ik particulsr,
this appreoach allows one to calculate the electromagretic form Ffactor
of the pion in the region of the ? resopsance where ilncressing .
experimental information is available from colliding beam experirients 4>’5j.
The basic ingredient of the method is something lise elastic uniterlity

for the spectral function of tine wvector current propagater, in other

words the simple rpole iz replaced by tho zwo-pion contlribulion.

Twe coneistency conditions may then be imposed. TFirst, one roguires

5)

that tne resonance occurs at the right position. Second « the
width of the pion form fsector Ll set equel to the decay widtn of

- 2W as given by the hard pion method, taking into asccounit that
'? dominance of the electromagnetic cuvrrent 18 ezpected to hold at
lcast nesr the resonance energy and thet the branching ratio for the
2T decezy of the meson is practically 100%. Botk conditions sare
used ta limit the number of undetermined parameters stemming on the
one hand from the parametrization of the primitive vertex function {or
orne vector and two axlial-vector currents, on tho cther hand {rom the
possible subtraction constants for the inverse pion form factor. In
both casesg one has to mkcke agsumptions. For the vertex functicn tae
famous "smootrness™ gssumption Is usually invsked which, when smployed
in its simplest form, leads to the original hard pion model of Dobnilzer
and Weinberg 1) (6. model). As for the gsymptotic beheviour of the
pion form factosr the situation 1s even less clear, since tho proscnt

7),8)

experimental data lie in a very limited region of toe variable

t and are not even there very conclusive.

In Section 1, a brief summary of the basic representation

2)

for the primitive veritex function is glven. For the actual calculation

for the pion form factor F(t) and of the consistency condition

the 6' model of Schnitzer and Welnhberg is used which requirces at least
three subtractions for the inverse pion form factor F_'(Lj. “he vali-
dity of this assumption and its relevance for the form factor in the
regions where date are avallable is discussed in some detail and compared
2),6)

wlth previous celculations where a cut-off was employed for the

-1
ntegral over the absorptive part of T ‘(t).



Comparison of the resulting form factor with experiment
is made in Section 2. The result turns out to depend crucially on the
exact value of ge , the coupling constant of the vector current to
the meson. Using the conslsterncy conditions mentiocned before, as
well as the limited information on the A191r - system and the assump-
tion that the charge radius of the pion is not less than the ? domi -
nance value, only the Orsay value for ge ig ghown toc be consistent
within our approach. The calculated Torm factor is then shown to be in
very good agreement with the Orsay measurements in the timellike region
and tb differ only slightly from the ? doeminance predietion in the

gpacelike region.

Finally, in Section 3, we comment briefly on the shift of
the peak of the form factor with respect to the rezonance position.
This effect is, of course, due to the energy-dependént width which comes
out automatically in this approach. With a simple approximation, this
shift 1s calculated as a function of the parameter 6. and for all
acceptable values of é; it i1s shown t0 be in qualitative agreement
with the prediections of various phenomenclogical expressions for the
form factor in the resonance region. This result is independent of
the number of subtracticns for F_q(t) and therefore provides, at

least in principle, another test for the Schnitzer-Weinberg model.

DERIVATION OF THE FORM FACTOR

The Ward identities for the three-point functions of one
vector and btwo axial-vector currents (Fig. 1), which are a conscguence
of 5U(2)x38U(2) current slgebra, CVG, PCAC, and the assumption of 1o
I =1 operator Schwinger terms in the equal-time commutators, imply

2) *)

the following equation

T T T T T T T T T e T e e e e e e e e e e e e e e ————_— e —————— e — e e

*
) The notation is as in Ref. 6) and differs from that of Ref. 2)
only by the use of the metric (1, -1, -1, -1).
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F‘;‘Z (F;\ (q-vP)_' QA) = qf‘Pv E;,w\ (crwp)"‘ |
~ L [dm* 9“
é‘ m‘(,&z na){_&z&/\ (P )ﬁ,\} (1)

where Ql\ = Py tT dax + Py 185 the pion decay constant, and Fy (q,p),

/LVA (q,p) are related to the proper vertex functions rq (q p),
r}J.VA (a,p) of Bchnitzer and Weinberg ; 9V(m ) is the spectral

funetion of the wvector current propagator.

Writing the most general solution of the Ward identities

for the primitive vertex function I—;IVA (a,p) in the Tform

’;WA (c?., P) = %_- 9}' 3; C: [ A:)uv (Cp - A;;uv (p)} (2)
+ (310 ) :B/w (q P)

where B/uvo- (ayp) is arbitrary except for a boundary condition

at lc2 = 0, and defining the pion form factaor F(t) by

(3)

R gp)= FH)G, /p‘#w’; 1= £

Equation (1) can be written

Fi=1- ,fz(f’iz)) {7‘+3“’ o Fi(f)f (4)

with

P Buva Gp)= 3 RHQ, (5)

for p° = q° = mo b = k°.

T
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With V.(mz) given by ths two-plon contribution one

obtaing an integral eguation for F(t) the most general solution of

which 1is

F“’[f)r- [+ct+. .. +cn_,7‘""’ -

e | e (St ©

g
where the c, are subtraction constante, F_1(O) = 1 1is fixed by
vector current conservation, and 8,4 = ?2ﬂ'F$ .

Two consistency conditions are now imposed on the form
factor. Firet the I =1 p wave T phase shift goes through
372 at 1 = m? , defining the position of the resonance. Secondly,
the width of the form factor as determined from Eq. (6) is required
to equsl the decay width !_'(P - 2% )} resulting from the usual hard

) . o 6
pion method. The resulting equations are )

Ke F-’(mﬁ) = (7)

m;y(m;) B(mﬁ) =-y (8)

B=1+gig GG , y= 2Fmi/o:

ym)= SRF®)

In deriving (8) it has been assumed that the rcal part of
the pole of F(t) on the second sheet 18 equal toc the resonance value
m% « This is not necessarily true, as will be discussed in more detail

in Sectien 3, but the error is approximately given by the shif't of the
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pesk of the form factor which is certainly much smallcr than any of
the masses squared appearing in the theory. As one wouid expect the

correction to the consistency egquation {8) is indeed negligible.

In order to evaluate the integral in (6) one has to makc
socme assumpbions about the fransverse part of the primitive vertex

function, which determines A{x)}. Although the extrapolations involwod
10}

may be guestioned the most popular assumption ig 8till the originsl
g model of Schnitzer and Welnberg. Without any further input, this
model c¢an only be expected to hold in the resonance region. However,

9)

Schnitzer and Wise have conjectured on the basis of the Bjorken
limit that the only model invelving the polynomial expansion of the
scalar functions appearing in B /1VA (Qsp), which is consistent with
the minimgl aligebra of fields T equal-time commutators, 1is the 6
medel. In their paper this conjecture is proved for polyncrials of
at most the fourth degree in the momenta. This really scems to be the
only hint so Zar whether and under which assumptions the originsl hard

pion model might be valid for high energies.

Thus the situation does not sSeem to be very encouraging.
However, if we look at the integral in (6), it is evident that the
mein contribution for fixed 1t asove threshold will come from the
region in the vicinity of % because of the factor x-t Iin the dc-
nominator, as long as the integrsl converges at all. Thereflore, ane
may expect that with encugh subtractions for the integral to converge,
the resulting form factor should be a rather good approximation for
<1 GeV2 and not be too sensitive to the high energy behaviour of

a(t).

Another possibiliity, which at first sight seems to be
rather reasonable, would be the use of a cut-off in the integral
emphasizing thai the é‘ model i& actually designed to describe Ihe
cehaviour of the vertex functions in the vicinity of the respective
resonances and 18 not necessarily a parametrization for high energies.
This point of view was taken by Brehm, Golowich and Praszd 2), togetheor

with the assumption of only one subtraction for F_T(t). However, this



-6 -

cut-off cannot be chosen arpitrarily because of the consistency con-
ditions (7) ana (8). As a matter of fact, it was shown in Ref. 6)
that the cut-off can be of the order of 100 m? y which is rather
far away from the resonance, for instance. As the integral
diverges linearly, one picks up substantial contributions from
regions where the chosen parametrization is not expected to be
valid. Tt is not too surprising then that one obtains in that case
rather strong disagreement with the accepted values of ék ; more-
over, the consistency conditions put a limit on g? whnich turns

out to exclude the Orsay value.

For the é. model we find

Bx)= |- %5‘2(/+J)x (9)

e

2) and mi = 2m% have been used.

For the vector Schwinger term Gv the narrow width approximation is

where Weinberg's first sum rule

assumed {corrections due to the finite width of the ? are small

for Cv)’ but we do not fix y to be one, which is the KSFR wvalue 13).

In view of the arguments made above we adopt the minimal
number of subtractions so that the dispersion integral converges.
Therefore, three subtraction constants are necessary, one of which is
given by vector current conservation. If one wants to adhere to the
usual philosophy of dispersion theory, one may expect that part of
the uncertainty in the high energy behaviour of A(t) is taken into
account by the remaining two subtraction constants c, and Cpye

The dispersion integral can now be evaluated and the

resulting inverse pion form factor is given by

4
2 z_%& N £ 2 q 2 10
- ,'L'Q“ B(‘,—)!‘hg - 4’""/’r+'7’_‘0“ ‘l-_+ ) [&',I,,,((I,_ z)ﬁ_'#fn‘] (10)

Ffor % 2_4m2 y with the obvicus analytic continuation for 1 < 4m?r.

w
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Although our main interest will be in the region

—20m2 <t g}SOm%., one may note in passing that the asympitotic

beha:;our of F*1(t) for t — -®» is ~t2£n(—t/m$r). However, this
prediction must not be taken oo Seriously, as in this case the
asymptotic behaviour of A(t) and the assumption of minimal subtrac-
tions play a crucial role. It is not easy to compare this asymptotic.
behaviour with the predictions of more reliable models since there hardly
exist any such models. The best reputation at present is probably
enjoyed by the numerous Veneziano models for the pion form factor,

most of which predict an asymptotic behaviour for F(t) of the form
[t|*n/2, where n 1s an odd integer 14). It seems that there are

no theoretical arguments in favour of a certain n, although n = 3

15)

appears to be the preferred choice However, n = 5 has also

been considered 16). Thus, in a way, the present approach "inter-~
polates” between two competing Venezliano expressions, which should

neither be counted as a success nor as a fallure.

COMPARIZON WITH BYXPERTIMENT

The pion form factor as given by Eg. (10) contains four

parameters, namely the subtraction constants e, and c the

’
Schnitzer-Weinberg parameter &- s and the parameter y,2 which
measures the strength of the vector current coupling to the
meson. Making use of the consistency equations (?) and (8), which
are of course independent, we are left with two parsmeters. Those

parameters are conveniently chosen as y and p, where

c1 = —1/m? (1+p) ; with the pion charge radius ry defined, as
2 2 2
usually, by g = 6(dF(t)/dt)!t=O, we have T = 6/mf (1+p),
so that p measures the deviation from the simple ‘pole predic-—

1
tion for rp , which 1s rg :(6/m§ )¥ = 0.64F.

The consistency equations may now be solved for 6 and
02 as functions of y and p. It turns out that a reality condi-
tion for the sclutions implies an upper hound on ¥ where this upper

bound is a function of p



2
y S CP-OOB\:S_) -+ 094""[3 (11)

LT rge coes not exceed the ? domingnec value by more
Sren 20%, all three values of y, which are either tsken from the
4),5) 13)

colliding-bearn experiments or from theoreticsl predictions
ard waich will be considercd in the following, are below this bound.

The resuiss for <S are given 1n the Table.

do far we have used no experimentsl information on the

A, QT gysten and the tlon crnarge radius. If the Schnitzer-Weinberg

nodel makes ssnse at all, very gehnerous limits on the and AT

widths imply -1 g_&g 0, with J ~ —% being the preferred choice.
7

A recent mecasurensznt 1 of the ratio between the transverse and the

longitudinal coupling constants in the éﬂ ?TF decay 18 also congist-
. i - 18
ent with 6- ~ =z, llowever, an earlier measurement ) of the same

s

quantity gave 6- ~ =, Tunus, the question of the validity of the

model has not been completely settled yew.

The exiziing data on the charge radius of the pion ars
roY very concliuslive, either, mainiy due to theorotical uncertainties
concerning the one-plon exchange mechaniem in plon-electroproduction.
Excluding raplid wvariation of F(t) near t = 0, one may, howevocr,
conclude from the data that rg- 1s not smaller than 0.64F, the ?

dominsnce value.

Lceepting both -1 g_é-g_o and  ree > 0.64', one infers
rom the Table tazt only the Oreay value for y 1is acceptable. OF
courge, ¥ could be bigger than 0.7, but within the above-mentioned

limitg, one has y < 1. It is maybhe interesting to note that the

gclutions are very sensitive to the exaect value of y.
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The pion form factor in the timelike and the spacelike
regions is plotted in Figs. 2 and 3 with y = 0.7, p = 0.1 (rqp = 0.67¢),
6. = -0.45. The curve is in very good agreement with the Orsay data
and does not differ much from the simple ? pole form factor for

spacellke . t.

Two final remarks concern the shape of the form factor.
Choosing a slightly larger value of é~ (and therefore smaller p)
the Orsay peak may be reproduced with a corresponding smaller width.
This 1ls evident from the dependence of rﬂ(.P - 2% ) on d’ s+ the
consistency condition [; = F(P - 29 ), and the equation *)

l—f’ /F(m;')ll""" G}r(a;/-’-_;s (12)
&)

which must hold for all our soclutions

Finally, the asymptotic behaviour of F(t) for large
spacelike t has obviously 1ittle influence on the behaviour for
0= t>= -0.5 GeVz, since the curve in Fig. 3 is very close to
@f;)/(m? ~ %), while on the other hand F_T(t) tq@q)tgﬁn(—t). In

view of the arguments of Section 1, this behaviour was to be expected.

PEAK OF THE FOEM FACTOR AND RESQONAWCE ENERGY

This last Section is devoted to a discussion of the shift
of the peak of the pion form factor with respect to the positlion of the
rescnance, which is defined by the phase shift going through /2 at
that energy. In agreement with most phenomenclogical expressions 19)
for the form factor near the ? resgonance, the present model predicts
such a shift to the left of the resonance energy. In the following an

approximate calculation of the shift is presented.
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As usual, the pion form factor F(z)} is assumed to be an
analytic function in the complex energy plane (with a cut from 4m%
to ® }, which has a pole on the second sheet at a, = to— iuo, where
u %’m? r; and t_ is not much different from m? .

F_j(z) ig developed into a power series arcund gz = te

F(2)= F ) + (- 1) & FiQ . oo

Now we assume that to evaluate F_1(z) at z =z , Ed. (13) with only
the first two terms 1n the expansion taken along can bhe used. This
approximation will be reascnable as long as the form factor does not

differ too drastically from a simple Breit-Wigner expression.

Because of F_1(Zo) =0

Re F(4)+ u, G- Fm F'(%)= 0 (1)

It

mFh)-wdRFUt)<0

To this order of approximation

NPT - - x g
d(Fif], =2{RFl)dRF Wi Flighrtolo

because of Eqs. (14), (15), so that |F{t)| has its maximum at
t = Re z_.
o 0

As the phase of P{t) is egual to the I = 1 p wave
T phase shift because of elastic unitarity, the rescnance energy

t is defined by Re F (%

*
res ) = 0, or, again using (13)

res

If Eg. (13) can be used at z = z,, 1t will be an even better

approximation at 2z = % because 1 —tol << IZO'“tOJ = m?f; .

res? res



Re F &) + (£, - 7‘) zReF(1)=0 (17)

Thus

by~ he-REGR _ 2 g o FG)
Aes d -7 0 my
<R F () I FI(1)

(18)

This eguation reproduces the well-known fact that the
energy shift is caused by the energy dependence of the width. What
1s maybe not as well-known is that the sign of (d/dt)Im Fﬁ (t ),
to the order of this approxlmatlon, determines the sign of the shift,
since Im F 1(t ) = —[im F{t )/JF(t )[ :I is negative because of

elastic unitarity.

Below the inelastie threshold-

Il i Ol B op gy

6)

and with

[M(p—2r) = e [B(mj'.:)]z

Y ciy (20)

one obtains

t- 1 y‘a,‘,‘ [B(m;ﬂ [3("‘;’5)*%373( ")] (21)

neglecting orders of m%./m? in (19).
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Defining the mass shift Am = “)tres ~Jt,, we finally
get

A= Z{F[B(m;)][B&vfﬁmﬁﬁB(mp] (2

It should be emphasized that to the order of approximation
made above, Bg. {22) is irdependent of both higher mass contributions
to S]v (m2) and the high energy behaviour of the primitive vertex
function I;“’/\ {(qy,p). Thus it provides a direct check on the para-
metrization of C;;VA in the resgnance region, 1if ZSIn Ls Enown to

gufficient aceuracy from exXperiment.

To get an idea of the maghitude of the shift as predicted
by (22) let us specialize to the §  model with the Orsay value for
g? . It is easily shown that An is positive for 6 <0.5 (i.e., the
peak is shifted to the left for all acceptable values of J ) and that
Am increases rapidly with decreasing J y With Am(J:O) = 2.5 MeV,
An(f =<%) = 9.5 Mev, and An(d =-1) = 23.4 MeV. & fit of the Orsay
data 20 using the phenomenoclogical form factor of Gounaris and
Sakurai 19) gives a shift of ~10 MeV to the left.

A final check on our approximation assumptiocn can be made
by comparing tae prediction (22) with the explicitly calculated form
factor of Sections 1, 2. It turns out that for the acceptable values
of J the difference is always smaller than 15%. As an example, the
peak of the form factor plotted in Fig. 2 is shifted 9.5 leV instead
of 8.5 MeV predicted by Eq. (22).
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P
\ -0.3 ~0.2 -0.1 0.0 0.1 0.2 0
0.7 4 0.4 0.2 0.0 0.1 0.4 0.8 -1
5 b 5 5 5
o o2 |oows 0.8, | -1.3 ~1.9 2.7 4.0
1.2 ) 0.8, | ~1.3 —1.9 2.6 -3.5 5.0 7.

TABLE : Solutions of Egs. (7) and (8] for the Schnitzer-Weinberg

parameter 5 .

= 2F7mi o 2. 6
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FIGURE CAPTIONGS

Vertex for one vector (V) and two axial-vector currents

(a).

Absolute square of the pion form factor in the timelike
region for y = 0.7, p = 0.1. Data points are from

Ref. 4) (circles) and Ref. 5) (triangles).

F(t) for spacelike + with the same parameters as in
Fig. 1. Data are from Hef. 7) {open circles) and

fef. 8) (black circles and triangles). The dashed curve
is the ? pole prediction.
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