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ABSTRACT
A spinor formalism for the factorization of dual resonance
models is proposed. t is seen to lead to an SU(2) classification
of the states and introduces a new degeneracy. The symmetry of

the propagator is discussed.

This past year has seen consicderable work devoted to dual re-

(1) (2) of the

sonance mocels. In particular, the factorizability
general dual n-bhody scalar envlitude has opened the way for the
ouilding of a fully unitarized dual theory. Unfortunately, progress
in this direction has been hampered by two disturbing facts. On

the one hand, a new type of divergence was noted(3) to appear in the
computation of hicher order diagrams while on the other hand the
factorization program revealed(z) the presence of ghost states in

(2}

the theory. However, the discovery of a non-trivial invariance
~group for the n-bhody scalar amplituce led to a natural, albeit par-
tial, ghost compensation mechanism. Although we do not provide an

answer to either of these troublesome questions, we believe a

necessary first step to lie in the creation of a natural formalism
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in which to discuss the intriguing symmetries of the n-body ampli-
tude.

(2)

It has been shown that the (r+1l)+(s+l)-point scalar ampli-

tude
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corresponding to Figure 1lb. Here ¢(§,§)and ¢(y,q)* are the usual

integrals of the (r+2)- and (s+2)-point amplitudes respectively and
P(n), ﬁ(n), Q(n)' ﬁ(n) are the four wvectors introduced in Ref. (2a).

A particularly simple method has been proposed(4) to study the

general factorization properties of the scalar amplitude in which one

) ana o (n) 5 ()

associates with the vectors FU (or Pp and Q, )
(n)

and a (n).
L

generalize this method to incorporate the "charge-conjugation"” symmetry

harmonic oscillator operators au In this letter, we

of the scalar amplitude. To wit we introduce a fundamental two-

component object,

Fand (x,p) = dxo(X,p): dyé(y,q) = dyé(y,q)
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to which we associate in the manner of Ref. (4a) a spinor harmoniec

(n)

oscillator operator aUE where y = 0,1,2,3 is the Lorentz index
and £ = 1,2 in the spinor index. They obey the usual commutation
relations
(n) {(m}t n,m
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where n = Oy ~ io2 is a 2x2 matrix, it follows that we can rewritc

equations (5a) and (5b) as follows wx
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where |0> is the ground state of all the a's, i.e. aug(l)|0> = 0,
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We understand a( )

row spinor.

to be a column spinor and a to be a
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and use has been made of the feollowing identities
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Inserting F and F into equaticns (1) and (2) and performing the

integrations over z, we obtain

o
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where the ney vertex function is

and D{(R,s) 1s the usual propagator introduced in Reference (4a).

Clearly this is a factorized form.
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results, the reflection invariance of the scalar amplitude is
clearly and naturally associated with the symmetry properties of
the propagator and not with the vertex functions G. To bring out
the symmetry of the propagator, it is useful to consider the opera-
tors S(n) and S(n+) in a more familiar context. Following the

(5)

elegant work of Schwinger , we ldentify the bilinear form

(al (?) g5 alnly (12)

with the ith component of the angular momentum operator, Ji(n).

Clearly we have

{n) (m) | _ (n)
[Ji ,Jk } = 1Eiijj Gn,m ) (13)

We may, therefore, label cur states with the usual SU{(2) guantum

numbers
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which is, of course, appropriate for this infinite dimensional direct-

product representation of SU(2). It follows that

oo

Rﬂ 13 ™ > (Zan(n))ﬂ®lj(“’,m(n)> - as)
) n=1 n=1

n=1
so that D{R,s) 1s invariant under 8U(2) rotations. However, we see
that s{n) and S(nj) are just rotation matrices. Thus, the "charge-

conjugation" invariance acguires a natural interpretation as a

rotation by w about the 3-axis, i.e.
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The Ward-like identities of Ref. (2) can now be stated in our

operator language as

<0[G(q,a}e _iWJB D{R,S) Si(n)e lﬂJB GT(p,a)|o> =

<0[G(q,a)D(R,8)S (MG (p,a) o> (17)
where, . Zz (n)

J 3= o930, (18)

A by-product of this spinor factorization scheme is the intro-
duction of an additional degeneracy over that found in Refs. (2)

and (4). Indeed the partition state Hﬂli> of Reference (4a) is
2j(1). This
(i)

now in our formalismn H(%fl)—fold degenerate since A, =
new degeneracy is due®to the magnetic quantum numbers m Their
pﬁysical significance is linked with the transformation properties
of the states under charge-conjugation.

At present we are examining more complicated vertex functions..
We hope that the formulation of dual resonance nmodels in the familiar
SU-(2) language will prove useful in understanding the gauge—like-
problem. In addition the roles the new guantum numbers j(i), m(i)

as well as their possible connection with guark models need to be

assessed.
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FIGURE CAPTIONS

Figure la {(r + 1) + {s + 1) - point scalar amplitude.

Figure b {r + 1) + (s + 1) - point scalar "charge-conjugated"
amplitude.
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A spinor formalism for the factorization of dual resonance
‘models is proposed. It is seen to lead to an SU(2) classification

of the states. The symmetry of the propagator is discussed.

This past year has seen considerablée work devoted to duvual re-

(1)

sonance models. In particular, the factorizability(z) of the

general dual'n—body scalar amplitude has opened the way for the

~building of a fully unitarizéd dual theori. Unfortunately, progress
in this direction hés been hampered by two‘diéturbing facts. On
the one hand, a new type of divergence was noted(3) to appear in the
computation of higher order diagrams while on the other hand the
factorization program fevealed(Z) the presénce of ghost states in
tﬁe theory. Howeve?, the discovery(z) of-a non-trivial invariance
group'for the n-body scalar amplitucde led to a natural, albeit par-
tial, ghost compensation mechanism. Although we do not provide an

answer to either of these trovblesome questions, we believe a

necessary first step to lie in the creation of a natural formalism



——Z-—
in which to discuss the intriguing symmetries of the n-body ampli-
tude.
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It has been shown that the (r+l)+(é+l)-point scalar ampli-
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A particularly simple method has been proposed

~general factorization properties of the scalar amplitude in which one

to study the

ass001ates with the vectors PU( n) and Qufn) {or Pu(n) and §u(n))

(n)t and a (n)' In this note, we

v
~generalize this wethod to incorporate the "charge-conjugation" sy.metry

harmonic oscillator operators au

of the scalar amplitude. To wit we introduce a fundamental two-

" component object,

*dx¢ (x,p) = dx¢(X,p); dy¢ly,q) = dyé(¥.q)
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Clearly this is a factorized form. In contrast with the previous
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clearly and naturaliy associated with the symmetry properties of
~ the propagator and not with the vertex functions G. To bring out
the symmetry of the propagator, it is useful to consider the opera-
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FIGURE CAPTIONS

Figure 1la (r + 1) + (s + 1) - point,sgélar amplitude.

Figure 1b (r + 1) + (s + 1) - point scalar "charge-conjugated"
: - amplitude.
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