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ABSTRACT 

A spinor formalism for the factorization of dual resonance 

models is proposed. It is seen to lead to an SU(2) classification 

of the states and introduces a new degeneracy. The symmetry of 

the propagator is discussed. 

This past year has seen considerable work devoted to dual re-

sonanC2 moC:els. (1) In particular, the factorizability(2) of the 

ge:'.era-'- dU2.:'. n-!Jody scala:>: 2g:;>li tude has opened the way for the 

!Juilci:'.g 0:: e. fully uni tarized dual theory. Unfortunately, progress 

in this direction ;,as been hampered by two disturbing facts. On 

t~e one hand, a new type of divergence was noted(3) to appear in the 

co"'put:e.tion of his>er order diagrams while on the other hand the 

factorize.tion program revealed (2) the presence of ghost states in 

the theory. However, the C:iscovery(2) of a non-trivial invariance 

group for the n-body scalar am?litude led to a natural, albeit par-

tial, ghost compensation mechanism. Although we do not provide an 

answer to eiLher of these troublesome questions, we believe a 

necessary first step to lie in the creation of a natural formalism 
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in which to discuss the intriguing symmetries of the n-body ampli-

tude. 

It has been sho\'/n(2) that the (r+l)+(s+l)-point scalar ampli-

tude 

Ar+l,s+l =ll dx<jJ (XfP)Jol dy<jJ (y ,q)jo 1 ~zz -o.(s) -1 (l-z) ·-c 

. exp :f{(p(n) Q (n)} 
n=l 

( 1) 

corresponding to Figure la, is identical to the "charge-conjugated" 

amplitude 

-1 
CAr+l,s+lC {

I ,(1 - --11 -1--0.(s) -c 
= dX<jJ(X,P)Jr dy<jJ(y,q) dzz (l-z) 

o 0 0 

. exp/'fc (p(n)Q(n)l 
\L. [ 
n=l 

corresponding to Figure lb. Here <jJ(x,p)and <jJ(y,q)* are the usual 

(2 ) 

integrals of the (r+2)- and (s+2) -point amplitudes respectively and 

P en) -pen) Q(n) -Q(n) 
, I I are the four vectors introduced in Ref. (2a). 

A particularly simple method has been proposed(4) to study the 

general factorization properties of the scalar amplitude in which one 

associates with the vectors P (n) and Q (n) 
11 11 

(or p (n) and Q (n) 
11 -11 

( n) -!" (n) operators a and a . 
11 11 

harmonic oscillator In this letter, we 

generalize this mc,thod to incorporat_c the "charge-conjugation" symmetry 

of the scalar amp Ii tude. '£0 wi t we introduce a fundamental two-

component object, 
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[p en) den] 
T (n) 1 (3) - 2 p 

P (n) -en) p 

to which we associate in the manner of Rpf. (4a) a spinor harmonic; 

oscillator operator a
l1s

(n) where 11 = 0,1,2,3 is the Lorentz index 

and ~ = 1,2 in the spinor index. ~-'hey obey the usual commutation 

relations 

** Noting that 

F - exp{2~{p(n)Q(n)} = exp{I{(Tq(n);nTp(n»} 

n n 

and 

F exp {I {p (n) Q(n)} ~n(T (n)tntT (n»} 
n ,q _p 

n 

(4) 

( Sa) 

(Sb) 

where 11 = 03 - i02 is a 2x2 matrix, it fol10Hs that we can rewrite 

equations (Sa) and (5b) as follO\'/s *** 

F = <0/ ( 
'r (n)t '} 
~__ a (n») 

.In 
n 

F = <0/ 

(n) -;- , 

exp {, (3__ a (n»)J
1 

L .In 
n 

S (n) 

J. 

S (11' ) 

R z 

where /0> is the ground stolte of all the a's, i.e. 

**Wc use the notation (xty) -l ..... [ p p ] = Xl Y 1 ~- X2 Y 2 
~. P 11 
11 

/0> 

/0> 

***we understand a(n) to be a column spinor and attn) to be a 

rOH spinor. 

( 6a) 

(6b) 
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and use has been made of the following identities 

where 

n=l 

and 

R = 2 
n=1 

(a (n) t a (n) )1 
[(at (n) na (n) )] 

( t (n) (n)), a a . 

Inserting F and F into equations (1) and (2) and performing the 

integrations over z, we obtain 

Ar + 1 ,S+1 
t = <O[G(q,a)S(n)D(R,s)G(p,a )[0> 

. :r 
= <O[G(q,a)S(nT)D(R,s)G(p,a )[0> , 

where the nevl vertex function is 

f t 1 
exp "",_~ (T (n) a(n))], 

L .. llll q 

and D(R,s) is the usual propagator introduced in Reference (4a). 

Clearly this is a factorized form. In contrast wi th the previous 

(-; a) 

(7b) 

(7c) 

(8) 

(9) 

( lOa) 

(lOb) 

(ll) 
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recsults, the reflection invariancc of the scalar amplitude is 

clearly and naturally associated wi th the symrr.etry properties of 

the propagator and not with the vertex functions G. To bring out 

the symmetry of the propagator, it is useful to consider Ule opera

tors S(n) and s(n t ) in a more familiar context. Following the 

elegant work of Schwinger(S) , we identify the bilinear form 

( t (n) r:J. (n) ) 
a 2~ a 

with the ith component of the angUlar momentum operator, J
i 

(n) 

Clearly we have 

[
J. (n) J (m)] = iE 0 oJ 0 (n) <5 
~ 'k ~kJ J n, m , 

We may, therefore, label our states with the usual SU(2) quantum 

numbers 

o Ij (n) ,men) > _ 

o (n) (n) 
[a/en)] (J -m ) 

[( j (n) -m (n) ) ! r 10> 

(12) 

(13 ) 

( 14) 

which is, of course, appropriate for this infinite dimensional direct-

product representation of SU(2). It follows that 

00 

'" 
( 2 ~ nj (n)n 0 1 j (n),m (n) > 

n=1 

(15) R n 01 j (n) ,In (n) > = 

n=l 

so that OCR,s) is invariant under SU(2) rotations. However, we see 

i o 

that SIn) and SIn ) are just rotation matrices. Thus, the "charge-

conjugation" invariance acquires a natural interpretation as a 

rotation by lr about the 3--axis, i.e. 
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-i 11 
. ~'- J (n) 
111 3 
~ 

s (ll) = e e n 

The Ward-like identities of Ref. (2) can not, be stated in our 

operator langua~e as 

I -i1lJ . i1lJ 
<0 G (q,a)e 3 D (R,S) 5 (Tlle 3 G'i (p,a) 10> = 

< 0 I G (q ,a) D (R, 5 ) 5 (ll ) G ',' (p, a) I 0 > 

where, 
J = 

~-. 

L_, 3 n 

A by-product of this "pinor factorization scheme is the intro-

duetion of an additional degeneracy over that found in Refs. (2) 

and 

new 

(4). Indeed the partition state nlA.> of Reference (4a) is 
l' 1 

(i) This in our formalism n 0~1)-fold degenerate since A. = 2j . 

d . d i 1 h . , b 1 ( i ) Th' egeneracy 1S ue to t e magnet1c quancum num ers m e1r 

physical significance is linked with the transformation properties 

of the states under charge-conjugation. 

At present we are examining more cOI'1plicated vertex functions. 

(16 ) 

(17 ) 

(18 ) 

We hope that the formulation of dual resonance models in the familiar 

5U-(2) language will prove useful in understanding the gauge-like 

problem. In addition the roles the new quantum numbers j(i) , m(i) 

as well as their possible connection with quark models need to be 

assessed. 
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Figure la 

Figure Ib 

FIGURE CAPTIONS 

(r + 1) + (s + 1) - point scalar amplitude. 

(r + 1) + (s + 1) - point scalar "charge-conjugated" 
amplitude. 



-
Pr -I 

-
Pr 

Fig. 10 

P 
o 

Fig. I b 



2010 

FN-0198-A 
A SPINOR FO&~LISM FOR DUAL RESONANCE MODELS 

David Gordon and P. Ramond 

National Accelerator Laboratory 
P. O. Box 500 

Batavia, Ill. 60510 

ABSTRACT 

A spinor formalism for the factorization of dual resonance 

models is proposed. It is seen to lead to an SU(2) classification 

of the states. The symmetry of the propagator is discussed. 

This past year' has seen considerable work devoted to dual re

sonance models. (1) In par-':.icular, e"1e factorizabili ty(2) of the 

general dual n-boc.y scalar a.:n?li tude has opened the way for the 

buildi~g of a fully unitarized dual theory. Unfortunately, progress 

in this direction has been hamperec. by two.disturbi~g facts. On 

the one hand, a ne\<l type of divergence was noted (3) to appear in the 

computation of higher order c.i~grc!:1B vlhile .on the other hand the 

factorization pr?gram ~evealed(2) the pres~nce of, ghost states in 

the theory. However, the discovery(2) of, a non-trivial invariance 

group for the n-body scalar amplitude led .to a natural, albeit par~ 

tial,. ghost compensation mechanism; Although we do not provide an 

answer to either of these troublesome ques tions, 'l,ve believe a 

necessary first step to lie in the creation of a natural formalism 
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'in which to discuss the intr~gui~g sYIl1_TTlctries of the n-bod::c- ampli-

tude .. 

It has been shown(2) that the (r+l)+(s+l)-point scalar ampli-

tude 

(1) 

correspondi~g to Figure la, is identical to the Ucharge-conjugated ll 

amplitude 

{
I fl ___ f1 -l-o:(s) -c 

= dxcp (X,P)j" dycp (y ,g)j' dzz '.' (l-z) 
00 . 0 ' 

• 

• expJ~ ~np(n)Q(n~ 
\L1 f 
n=l 

(2) 

correspondi~g to Figure lb~ Here ¢(x,p) and ¢(y,q)* are the usual 

integrals of the (r+2)- and (s+2)-point amplitudes respectively and 

p (n), p (n), Q (n) I Q (n) are the four vectors introduced in Ref. (2a). 

A particularly simple method has been proposed(4) to study the 
• 

· general factorization properties of "!:he scalar amplitude in which one 

associates with the vectors P (n) and Q (n)(or 
II . ll' 

p (n) and Q (n» 
II II 

harmonic oscillator operators a (n)t and a (n). 
II II 

In this note, we 

· generalize this lLLethod to incorporate the "charge-conjugation ll sy .. illletry 

of the scalar amplitude. To wit He introduce a fundamental hlO-

· component object, 
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pen) + pen) 

Tp 
(n) 1 (3) - 2 p en) -en) - p 

to \'lhich we associate in the manner of Rp.f. (4a) a spinor harmoni,:: 

oscillator operator aJ..l~(n) where 11 = 0,1,2,3 is the Lorentz index 

and ~ = 1,2 in the spinor index. They obey the usual commutation 

relations 

** Noting that 

F _ exp {I ,~n p (n) Q (n)} = exp {L: ~n (Tq (n) -j' nT",(nf)} 

n n 

and 

F ~ exp {I ~n p (n)Q(n} = 
n 

{>. ~n (T (n) t ntT .. (n) >} 
exp ~=-' . q _p 

n 

(4) 

(Sa) 

(Sb) 

where 11 = (J - i(J2 is a 2x2 matrix, it foll0i-1S that \"e can rewri te . 3 

equations (Sa) and (Sb) as fo11m1s *** 

. T (n) i' 

exp{~ (a (nJt~ (n>)) F <Or {~(q . (n»)) S (n) R 
/0> = exp -- a z 

L rn 
. n / 

e6a) 

. , 

(n)t r 
exp f2' (a (n);: T (ri) )} - <Or exp {I ('f,rn a (n) } S (n T) R 

/0> F :: z 
\~~ -E. 

n n In 

(6b) 

,,,here 10> is the ground state of all the a 1 s, i.e. a (i) /0> = 0, 
J..I~ 

** t - "" l 11 11 J . We use the notation (x y) = L Xl Y 111 + X2 Y 112 

11 
t (n) 

***we understand a{n} to be a column spinor and a to be a 
rm'7 spinor. 
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and use has bee.n made of .t.he fo110\.,ri~lg identities 

where 

and 

fa gat 
e e 

ai·a·faz 
::: Z e 

1-ga fa fg 
::: e e e·. 

<0 ( exp{ (T t 1)a)};",<o lexp{ (T ta) }s (1) 

co 
t 

(a Cn ) a{n» 

sIn) =n [(at (n) 1)a (n) )] 

(at (n) a (n) ) ! 

n=l 

co 

R =2: t 
n (a (n) a (n) ) • 

n=l 

Inserting F and F into equations (1) and .. (2) and performing the 
. 1 

integrations over z, we obtain 

Ar + l ,s+l 

-1 
CAr +l ,s+lC 

. t: 
= <OIG(q,a)S(1)D(R,s}G(p,a )10> 

where the ne..,., vertex fu.nction is 

G(q,a) ==f dy<p (y ,q) exp ~ f 1 (T (n) t a (n) >} , 
L~ lll1 q 

. and D(R,s) is the usual prop~gator introduced in Reference (4a). 

Clearly this is a factorized form. In contrast with the previous 

(7a) 

(7b) 

(7c) 

(8) 

(9) 

(lOa) 

(lOb) 

(11) 
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results, the reflection invariance of the scalar amplitude is 

clearly and naturally associated \'lith the symmetry properties of 

the prop~gator and not with the vertex functions G. To bring out 

the symmetry of the propagator, it is useful to consider the opera

tors S en) and S (£1 t) in a more familiar oontext. Follovling the :, 

el~gant work of Sch"di~ger (5) , we identify the bilinear form 

(at (n) £i a (n) ) 
2 

with the itli. component of the a~gular momentum operator, J
i 

(n) • 

Clearly He have 

[
J. (n) ,J (m)] = if:, ,J, (n) 0 
~ .. k ~kJ J n,m • 

. 
We may, therefore, label our states \'lith the. usual SU(2) quantum 

numbers 

Ijen ) ,men»~ _ 10> 

(12) 

(13) 

(14) 

which is, of course, appropriate for this infinite dimensional direct-

product representation of SU(2). It follows that 

00 

R n 01 j (n) ,m (n) > = (15) 

n=l 

so that D (R, s) is invariant under SU (2) rotations. However, '-Ile see 

that Sen) and sent) are just rotation matrices. Thus, the IIcharge-

conjugation" invariance acquires a natural interpretation asa 

rotation by n about the 3-axis, i.e. 
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.. L J Cn) -1lf 
3 

:= e n SCn·~) 

. L J Cn) 1lf 3 
"-----f 

e n 

The Ward-like identities of Ref. {2} can now be stated in our 

operator language as 

<.oIG(q;a)e -ilfJ 3 D(R,S) S(n)e ilfJ 3 t 
G (p,a) 10> := 

(16) 

. . t 
<o(G (q,a)D (R,S)S (n)G (p;a) 10> (17) 

where, J := 
3 L 

n 
(18 ) 
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Figure 1b 

FIGURE CAPTIONS 

(r + 1) + (s + 1) - point .s~alar amplitude. 

(r + 1) + (s + 1) - point ioa1ar "charge-conjugated" 
amplitude. 
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