A SPINOR FORMALISM FOR DUAL RESONANCE MODELS
 David Gordon and P. Ramond
 National Accelerator Laboratory
 P. O. Box 500
 Batavia, Ill. 60510

ABSTRACT

A spinor formalism for the factorization of dual resonance models is proposed. It is seen to lead to an $\operatorname{SU}(2)$ classification of the states and introduces a new degeneracy. The symmetry of the propagator is discussed.

This past year has seen considerable work devoted to dual resonance mocels. (I) In particular, the factorizability ${ }^{(2)}$ of the ceneral dual n-body scalar anplitude has opened the way for the builcing of a fully unitarized dual theory. Unfortunately, progress in this direction has been hampered by two Gisturbing facts. On the one hand, a new type of divergence was noted ${ }^{(3)}$ to appear in the computation of higher order ditagrams while on the other hand the factorization program revealed ${ }^{(2)}$ the presence of ghost states in the theory. However, the discovery ${ }^{(2)}$ of a non-trivial invariance group for the n-body scalar amplitude led to a natural, albeit partial, ghost compensation mechanism. Although we do not provide an answer to either of these troublesome questions, we believe a necessary first step to lie in the creation of a natural formalism
in which to discuss the intriguing symmetries of the n-body amplitude.

It has been shown ${ }^{(2)}$ that the $(r+1)+(s+1)$-point scalar amplitude

$$
\begin{align*}
& A_{r+1, s+1}=\int_{0}^{1} d \bar{x} \phi(\bar{x}, \bar{p}) \int_{0}^{1} d y \phi(y, q) \int_{0}^{1} d z z^{-\alpha(s)-1}(1-z)^{-c} . \\
& \cdot \exp \sum_{n=1}^{\infty}\left\{\frac{z^{n}}{n} \bar{p}^{(n)} Q^{(n)}\right\} \tag{1}
\end{align*}
$$

corresponding to Figure la, is identical to the "charge-conjugated" amplitude

$$
\begin{gather*}
C A_{r+1, s+1} C^{-1}=\int_{0}^{1} d x \phi(x, p) \int_{0}^{1} d \bar{y} \phi(\bar{y}, \bar{q}) \int_{0}^{1} d z z^{-1-\alpha(s)}(1-z)^{-c} . \\
\cdot \exp \left\{\sum_{n=1}^{\infty} \frac{z^{n}}{n}(n) \bar{Q}^{(n)}\right\} \tag{2}
\end{gather*}
$$

corresponding to Figure 1 b . Here $\phi(\overline{\mathrm{x}}, \overline{\mathrm{p}})$ and $\phi(\mathrm{y}, \mathrm{q})^{*}$ are the usual integrals of the $(x+2)$ - and ($s+2$)-point amplitudes respectively and $P^{(n)}, \overline{\mathrm{P}}^{(n)}, Q^{(n)}, \bar{Q}^{(n)}$ are the four vectors introduced in Ref. (2a).

A particularly simple method has been proposed ${ }^{(4)}$ to study the general factorization properties of the scalar amplitude in which one associates with the vectors $\bar{P}_{\mu}(n)$ and $Q_{\mu}{ }^{(n)}$ (or $P_{\mu}{ }^{(n)}$ and $\bar{Q}_{\mu}{ }^{(n)}$), harmonic oscillator operators a $a_{\mu}(n){ }^{t}$ and $a_{\mu}{ }^{(n)}$. In this letter, we generalize this method to incorporate the "charge-conjugation" symmetry of the scalar amplitude. To wit we introduce a fundamental twocomponent object,

[^0]\[

T_{p}^{(n)} \equiv \frac{1}{2}\left[$$
\begin{array}{l}
p^{(n)}+\bar{p}^{(n)} \tag{3}\\
p^{(n)}-\bar{p}(n)
\end{array}
$$\right]
\]

to which we associate in the manner of Ref. (4a) a spinor harmonies= oscillator operator $a_{\mu \xi}(n)$ where $\mu=0,1,2,3$ is the Lorentz index and $\xi=1,2$ in the spinor index. They obey the usual commutation relations

$$
\begin{equation*}
\left[a_{\mu \xi}(n), a_{\nu \eta}(m) \dagger\right]=g_{\mu \nu} \delta^{n, m_{\delta}} \xi_{, \eta} . \tag{4}
\end{equation*}
$$

Noting that**
$F \equiv \exp \left\{\sum_{n} \frac{z^{n}}{n} \bar{P}(n) Q(n)\right\}=\exp \left\{\sum_{n} \frac{z}{n}_{n}^{n}\left(T_{q}(n) \%_{n T}(n)\right)\right\}$
and

where $\eta=\sigma_{3}-i \sigma_{2}$ is a 2×2 matrix, it follows that we can rewrite equations (Sa) and (Sb) as follows ***
$F=<0\left|\exp \left\{\sum_{n}\left(\frac{r^{(n) \dagger}}{\sqrt{n}} a^{(n)}\right)\right\} S(n) \quad z^{R} \exp \left\{\sum_{n}\left(a^{(n) \dagger_{n}} \frac{T_{p}}{\sqrt{n}}\right)\right\}\right| 0>$

where $|0\rangle$ is the ground state of all the a's, i.e. $a_{\mu \xi}{ }^{\text {(i) }}|0\rangle=0$,
${ }^{* *}$ We use the notation $\left\langle x^{\dagger} y\right\rangle \equiv \sum_{\mu, s}\left[x_{1}{ }^{\mu} y_{\mu 1}+x_{2}{ }^{\mu} y_{\mu 2}\right]$
*** We understand $a^{(n)}$ to be a column spinor and $a^{f(n)}$ to be a row spinor.
and use has been macie of the following identities

$$
\begin{align*}
e^{f a} z^{a^{\dagger} a} & =z^{a^{\dagger} a} e^{f a z} \tag{7a}\\
e^{f a} e^{g a^{\dagger}} & =e^{g a^{\dagger}} e^{f a} e^{f g} \tag{7b}\\
<0 \mid \exp \left\{\left(T^{\dagger} \eta a\right)\right\} & =<0 \mid \exp \left\{\left(T^{\dagger} a\right)\right\} s(\eta) \tag{7c}
\end{align*}
$$

where

$$
\begin{equation*}
s(n)=\prod_{n=1}^{\infty}\left\{\frac{\left[\left(a^{\dagger(n)} n a^{(n)}\right)\right]^{\left(a^{(n)^{\dagger}} a^{(n)}\right)}}{\left(a^{\dagger(n)} a^{(n)}\right)!}\right\} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
R=\sum_{n=1}^{\infty} n\left(a^{(n)^{\dagger}} a^{(n)}\right) \tag{9}
\end{equation*}
$$

Inserting F and \bar{F} into equations (1) and (2) and performing the integrations over z, we obtain

$$
\begin{align*}
A_{x+1, s+1} & =\langle 0| G(q, a) S(\eta) D(R, s) G^{\dagger}(p, a)|0\rangle \tag{10a}\\
C A_{r+1, s+1} C^{-1} & =\langle 0| G(q, a) S\left(\eta^{\dagger}\right) D(R, s) G^{+}(p, a)|0\rangle \tag{10b}
\end{align*}
$$

where the new vertex function is

$$
\begin{equation*}
G(q, a)=\int d y \phi(y, q) \exp \sum_{\operatorname{La}}\left\{\frac{1}{\sqrt{n}}\left(T_{q}(n)_{a}^{\dot{\dagger}}(n)\right)\right\} \tag{11}
\end{equation*}
$$

and $D(R, S)$ is the usual propagator introduced in Reference (4a). Clearly this is a factorized form. In contrast with the previous
results, the reflection invariance of the scalar amplitude is clearly and naturally associated with the symetry properties of the propagator and not with the vertex functions G. To bring out the symmetry of the propagator, it is useful to consider the operators $S(\eta)$ and $S\left(n^{\dagger}\right)$ in a more familiar context. Following the elegant work of Schwinger ${ }^{(5)}$, we identify the bilinear form

$$
\begin{equation*}
\left(a^{\dagger(n)} \frac{\sigma}{2} i a^{(n)}\right) \tag{12}
\end{equation*}
$$

with the ith component of the angular momentum operator, $J_{i}{ }^{(n)}$. Clearly we have

$$
\begin{equation*}
\left[J_{i}^{(n)}, J_{k}^{(m)}\right]=i \varepsilon_{i k j} J_{j}^{(n)} \delta_{n, m} \tag{13}
\end{equation*}
$$

We may, therefore, label our states with the usual SU(2) quantum numbers

$$
\begin{equation*}
\left.\cdot\left|j^{(n)}, m^{(n)}>\equiv \frac{\left[a_{1}^{\dagger(n)}\right]^{\left(j^{(n)}+m^{(n)}\right)}\left[a_{2}^{+(n)}\right]^{\left(j^{(n)}-m^{(n)}\right)}}{\left[\left(j^{(n)}+m^{(n)}\right)!\right]^{\frac{1}{2}}} \frac{\left[\left(j^{(n)}-m^{(n)}\right)!\right]^{\frac{1}{2}}}{}\right| 0\right\rangle \tag{14}
\end{equation*}
$$

which is, of course, appropriate for this infinite dimensional directproduct representation of $S U(2)$. It follows that

$$
\begin{equation*}
\left.R \prod_{n=1}^{\infty} \text { (X)|j} j^{(n)}, m^{(n)}\right\rangle=\left(2 \sum _ { n = 1 } ^ { n } n j ^ { (n) } \prod _ { n = 1 } ^ { \infty } \prod _ { n } \left(j^{(n)}, m^{(n)}>\right.\right. \tag{15}
\end{equation*}
$$

so that $D(R, s)$ is invariant under $S U(2)$ rotations. However, we see that $S(\eta)$ and $S\left(\eta^{\dagger}\right)$ are just rotation matrices. Thus, the "chargeconjugation" invariance acquires a natural interpretation as a rotation by π about the 3 -axis, i.e.

$$
s(n)=e^{-i \pi \sum_{n}^{-6-} J_{3}^{(n)}} S\left(n^{\dagger}\right) \quad e \sum_{n}^{i \pi} J_{3}^{(n)}
$$

The Ward-like identities of Ref. (2) can now be stated in our operator language as

$$
\begin{align*}
& \langle 0| G(q, a) e^{-i \pi J} 3 D(R, S) S(\eta) e^{i \pi J_{3}} G^{\dagger}(p, a)|0\rangle= \\
& \left.<0\left|G(q, a) D(R, S) S(\eta) G^{i}(p, a)\right| 0\right\rangle \tag{17}
\end{align*}
$$

where, $J_{3}=\sum_{n}^{-}, J_{3}^{(n)}$.

A by-product of this spinor factorization scheme is the introduction of an additional degeneracy over that found in Refs. (2) and (4). Indeed the partition state $\pi_{i} \lambda_{i}>$ of Reference (4a) is now in our formalism $\Pi\left(\lambda_{i}+1\right)$-fold degenerate since $\lambda_{i}=2 j$ (i). This new degeneracy is due ${ }^{i}$ to the magnetic quantum numbers m ${ }^{1}{ }^{(i)}$. Their physical significance is linked with the transformation properties of the states under charge-conjugation.

At present we are examining more complicated vertex functions. We hope that the formulation of dual resonance models in the familiar SU-(2) language will prove useful in understanding the gauge-like problem. In addition the roles the new quantum numbers $j^{(i)}, m^{(i)}$ as well as their possible connection with quark models need to be assessed.

REFERENCES

1. For a review of the subject and a complete list of references, see Fi. M. Chan, Report No. TH-1057, preprint, CERN, Geneva, Switzerlanr (1969).
2. a. S. Fubini and G. Veneziano, MIT Preprint No. 81 (1969); b. K. Bardakçi and S. Mandelstam, Berkeley preprint (1969).
3. K. Kikkawa, B. Sakita, G. Veneziano and M. A. Virasoro, to be published, and K. Bardakçi, M. Halpern and J. Shapiro, Berkeley preprint (1969) and D. Amati, C. Bouchiat and J. Gervais, to be published.
4. a. S. Fubini, David Gordon, and G. Veneziano, Phys. Letters 29B, 679 (1969);
b. Y. Nambu, Report No. COO-264-507, Enrico Fermi Institute (1969).
5. J. Schwinger, "On Angular Momentum," Quantum Theory of Angular Momentum, edited by L. C. Biedenharn and H. VanDam, Academic Press (1965).

FIGURE CAPTIONS

Figure la $(x+1)+(s+1)$ - point scalar amplitude.
Figure $1 \mathrm{~b} \quad(r+1)+(s+1)-p o i n t$ scalar "charge-conjugated" amplitude.

Fig. $1 a$

Fig. 1 b

A SPINOR FORMALISM FOR DUAL RESONANCE MODELS

David Gordon and P. Ramond

National Accelerator Laboratory
P. O. Box 500

Batavia, Ill. 60510

Abstract

A spinor formalism for the factorization of dual resonance models is proposed. It is seen to lead to an $S U(2)$ classification of the states. The symmetry of the propagator is discussed.

This past year has seen considerable work devoted to dual resonance models. (1) In parivcular, the factorizability ${ }^{(2)}$ of the general dual n-boay scalar anplitude has opened the way for the building of a fully unitarized dual theory. Unfortunately, progress in this direction has been hampered by two disturbing facts. On the one hand, a new type of divergence was noted ${ }^{(3)}$ to appear in the computation of higher order ciagrams while on the other hand the factorization program revealed ${ }^{(2)}$ the presence of ghost states in the theory. However, the discovery ${ }^{(2)}$ of a non-trivial invariance group for the n-body scalar amplitude led to a natural, albeit partial, ghost compensation mechanism. Although we do not provide an answer to either of these troublesome questions, we believe a necessary first step to lie in the creation of a natural formalism
in which to discuss the intriguing symmetries of the n-body amplitude.

It has been shown ${ }^{(2)}$ that the $(r+1)+(s+1)$-point scalar amplitude

$$
\begin{align*}
& A_{r+1, s+1}=\int_{0}^{1} d \bar{x} \dot{\varphi}(\bar{x}, \bar{p}) \int_{0}^{1} d y \phi(y, q) \int_{0}^{1} d z z^{-u(s)^{-1}(1-z)^{-c}} \\
& \cdot \exp \sum_{n=1}^{\infty}\left\{\sum_{n}^{n} \bar{p}(n) Q^{(n)}\right\} \tag{1}
\end{align*}
$$

corresponding to Figure la, is identical to the "charge-conjugated" amplitude

$$
\begin{gather*}
C A_{r+1, s+1} c^{-1}=\int_{0}^{1} d x \phi(x, p) \int_{0}^{1} d \bar{y} \phi(\bar{y}, \bar{q}) \int_{0}^{1} d z z^{-1-\alpha(s)}(1-z)^{-c} . \\
\cdot \exp \left\{\sum_{n=1}^{\infty} \frac{z^{n}}{n} p^{(n)} \bar{Q}^{(n)}\right\} \tag{2}
\end{gather*}
$$

corresponding to Figure 1 b . Here $\phi(\bar{x}, \bar{p})$ and $\phi(y, q)^{*}$ are the usual integrals of the $(r+2)$ - and (s+2)-point amplitudes respectively and $P^{(n)}, \bar{P}^{(n)}, Q^{(n)}, \bar{Q}^{(n)}$ are the four vectors introcuced in Ref. (2a).

A particularly simple method has been proposed ${ }^{(4)}$ to study the general factorization properties of the scalar anplitude in which one associates with the vectors $\bar{P}_{\mu}(n)$ and $Q_{\mu}{ }^{(n)}$ (or $P_{\mu}{ }^{(n)}$ and $\bar{Q}_{\mu}^{(n)}$) harmonic oscillator operators $a_{\mu}(n) \dagger$ and $a_{\mu}(n)$. In this note, we generalize this method to incorporate the "charge-conjugation" symetry of the scalar amplitude. To wit we introduce a fundamental twocomponent object,

[^1]\[

T_{p}^{(n)} \equiv \frac{1}{2}\left[$$
\begin{array}{ll}
p^{(n)} & +\bar{P}^{(n)} \tag{3}\\
p^{(n)} & -\bar{P}^{(n)}
\end{array}
$$\right]
\]

to which we associate in the manner of Ref. (Aa) a spinor harmonic= oscillator operator $a_{\mu \xi}(n)$ where $\mu=0,1,2,3$ is the Lorentz index and $\xi=1,2$ in the spinor index. They obey the usual commutation relations

$$
\begin{equation*}
\left[a_{\mu \xi}(n), a_{\nu \eta}^{(m) \dagger}\right]=g_{\mu \nu} \delta^{n, m_{\delta, \eta}}{ }_{\xi,} \tag{4}
\end{equation*}
$$

Noting that**
$F \equiv \exp \left\{\sum_{n} \sum_{n}^{n} \frac{z}{\bar{p}}^{n}(n) Q^{(n)}\right\}=\exp \left\{\sum_{n} \frac{z^{n}}{n}\left(T_{\dot{q}}(n) t_{n T}(n)\right)\right\}$
and
$\bar{F} \equiv \exp \left\{\sum_{n} \frac{2}{n}^{n} P^{(n)} \bar{Q}^{(n)}\right\}=\exp \left\{\sum_{n} \frac{2}{n}^{n}\left(T \cdot q^{\left.\left.(n) \dagger_{n}{ }^{\dagger} T P^{(n)}\right)\right\}}\right.\right.$
where $\eta=\sigma_{3}-i \sigma_{2}$ is a 2×2 matrix, it follows that we can rewrite equations (5a) and (bb) as follows ***
$F=\left\langle 0 \left\lvert\, \exp \left\{\sum_{n}\left(\frac{T q^{(n) t}}{\sqrt{n}} a^{(n)}\right)\right\} S(n) z^{R} \exp \left\{\sum_{n}\left(a^{(n) \dagger} \frac{T_{p}}{\sqrt{n}}(n)\right)\right\} 10\right.\right\rangle$
$\left.\stackrel{F}{F}=<0\left|\exp \left\{\sum_{n}\left(\frac{T_{g}^{(n) t}}{\sqrt{n}} a^{(n)}\right)\right\} S\left(n^{\dagger}\right) \quad z^{R} \exp \left\{\sum_{n}\left(a^{(n) \dagger} \underset{\frac{T}{\sqrt{n}}}{(n)}\right)\right\}\right| 0\right\rangle$
where $|0\rangle$ is the ground state of all the a's, i.e. $a_{\mu \xi}{ }^{(i)}|0\rangle=0$,
${ }^{* *}$ We use the notation $\left(x^{\dagger} y\right) \equiv \sum_{\mu}\left[x_{1}{ }^{\mu} y_{\mu 1}+x_{2}{ }^{\mu} y_{\mu 2}\right]$
*** We understand $a^{(n)}$ to be a column spinor and $a^{t(n)}$ to be a row spinor.
and use has been made of the following identities

$$
\begin{align*}
e^{f a} z^{a^{\dagger} a} & =z^{a^{\dagger} a} e^{f a z} \tag{Ta}\\
e^{f a} e^{g a^{\dagger}} & =e^{g a^{\dagger}} e^{f a} e^{f g} \tag{Tb}\\
<0 \mid \exp \left\{\left(T^{\dagger} n a\right)\right\} & =<0 \mid \exp \left\{\left(T^{\dagger} a\right)\right\} s(\eta) \tag{Tc}
\end{align*}
$$

where

$$
\begin{equation*}
s(n)=\prod_{n=1}^{\infty}\left\{\frac{\left[\left(a^{\dagger(n)} \eta a^{(n)}\right)\right]^{\left(a^{(n)^{\dagger}} a^{(n)}\right)}}{\left(a^{\dagger(n)} a^{(n)}\right)!}\right\} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
R=\sum_{n=1}^{\infty} n\left(a^{(n)^{\dagger}} a^{(n)}\right) \tag{9}
\end{equation*}
$$

Inserting F and \bar{F} into equations (1) and. (2) and performing the integrations over z, we obtain

$$
\begin{align*}
A_{r+1, s+1} & =\langle 0| G(q, a) S(\eta) D(R, s) G^{\dagger}(p, a)|0\rangle \tag{10a}\\
C^{C A}{ }_{r+1, s+1} C^{-1} & =\langle 0| G(q, a) S\left(\eta^{\dagger}\right) D(R, s) G^{\dagger}(p, a)|0\rangle \tag{10b}
\end{align*}
$$

where the new vertex function is

$$
\begin{equation*}
G(q, a)=\int d y \phi(y, q) \exp \sum\left\{\frac{1}{\sqrt{n}}\left(T_{q}(n)^{\dot{\dagger}} a^{(n)}\right)\right\}, \tag{11}
\end{equation*}
$$

and $D(R, s)$ is the usual propagator introduced in Reference (Aa). clearly this is a factorized form. In contrast with the previous
results, the reflection invariance of the scalar amplitude is clearly and naturally associated with the symmetry properties of the propagator and not with the vertex functions G. To bring out the symmetry of the propagator, it is useful to consider the operators $S(\eta)$ and $S\left(\eta^{\dagger}\right)$ in a more familiar oontext. Following the s elegant work of Schwinger ${ }^{(5)}$, we identify the bilinear form

$$
\begin{equation*}
\left(a^{\dagger(n)} \frac{\sigma}{2} i \quad a^{(n)}\right) \tag{12}
\end{equation*}
$$

with the i th component of the angular momentum operator, $J_{i}{ }^{(n)}$. Clearly we have

$$
\begin{equation*}
\left[J_{i}(n), J_{k}^{(m)}\right]=i \varepsilon_{i k j} J_{j}^{(n)} \delta_{n, m} \tag{13}
\end{equation*}
$$

We may, therefore, label our states with the usual $S U(2)$ quantum numbers

$$
\begin{equation*}
\left|j^{(n)}, m^{(n)}\right\rangle \equiv \frac{\left[a_{1}+(n)\right]^{\left(j^{(n)}+m^{(n)}\right)}\left[a_{2}^{+(n)}\right]^{\left(j^{(n)}-m^{(n)}\right)}}{\left[\left(j^{(n)}+m^{(n)}\right)!\right]^{\frac{1}{2}}} \frac{\left[\left(j^{(n)}-m^{(n)}\right)!\right]^{\frac{1}{2}}}{}|0\rangle \tag{14}
\end{equation*}
$$

which is, of course, appropriate for this infinite dimensional directproduct representation of $\mathrm{SU}(2)$. It follows that

$$
\begin{equation*}
R \prod_{n=1}^{\infty}(x)\left|j^{(n)}, m(n)\right\rangle=\left(\left.2 \sum_{n=1}^{(n)} n j^{(n)} \prod_{n=1}^{\infty} 冈\right|_{j} ^{(n)}, m(n)>\right. \tag{15}
\end{equation*}
$$

so that $D(R, s)$ is invariant under $S U(2)$ rotations. However, we see that $S(\eta)$ and $S\left(\eta^{\dagger}\right)$ are just rotation matrices. Thus, the "chargeconjugation" invariance acquires a natural interpretation as a rotation by π about the 3 -axis, i.e.

$$
\begin{equation*}
s(n)=e^{-i \pi} \sum_{n} J_{3}^{(n)} s\left(n^{\dagger}\right) \quad e \sum_{n}^{i \pi} J_{3}^{(n)} \tag{16}
\end{equation*}
$$

The Ward-like identities of Ref. (2) can now be stated in our operator language as

$$
\begin{align*}
& <0 \mid G(q, a) e^{-i \pi J_{3} D(R, S) S(n) e^{i \pi J_{3}} G^{i}(p, a)|0\rangle}= \\
& \left.<0\left|G(q, a) D(R, S) S(n) G^{\dagger}(p ; a)\right| 0\right\rangle \tag{17}
\end{align*}
$$

where, $\quad J_{3}=\sum_{n}, J_{3}^{(n)}$.

REFERENCES.

1. For a review of the subject and a complete list of references, see H. M. Chan, Report No. TH-l057, preprint, CERN, Geneva, Switzerlanc (1969).
2. a. S. Fubini and G. Veneziano, MIT Preprint No. 81 (1969); b. K. Bardakçi and S. Mandelstam, Berkeley preprint (1969).
3. K. Kikkawa, B. Sakita, G. Veneziano and M. A. Virasoro, to be published, and K. Bardakçi, M. Halpern and J. Shapiro, Berkeley preprint (1969) and D. Amati, C. Bouchiat and J. Gervais, to be published.
4. a. S. Fubini, David Gordon, and G. Veneziano, Phys. Letters 29B, 679 (1969);
b. Y. Nambu, Report No. COO-264-507, Enrico Fermi Institute (1969) .
5. J. Schwinger, "On Angular Momentum," Quantum Theory of Angular Momentum, edited by L. C. Biedenharn and H. VanDam, Academic Press (1965).

FIGURE CAPTIONS

Figure la $(r+1)+(s+1)$ - point.scalar amplitude.
Figure $1 \mathrm{~b} \quad(r+1)+(s+1)$ - point scalar "charge-conjugated" amplitude.

Fig. 10

Fig. Ib

[^0]: * $d x \phi(x, p)=d \bar{x} \phi(\bar{x}, \bar{p}) ; \quad d y \phi(y, q)=d \bar{y} \phi(\bar{y}, \bar{q})$

[^1]: ${ }^{*} d x \phi(x, p)=d \bar{x} \phi(\bar{x}, \bar{p}) ; \quad d y \phi(y, q)=d \bar{y} \phi(\bar{y}, \bar{q})$

