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Spinor Fourier Transform for Image Processing
Thomas Batard, Michel Berthier

Abstract—We propose in this paper to introduce a new spinor
Fourier transform for both grey-level and color image processing.
Our approach relies on the three following considerations:
mathematically speaking, defining a Fourier transform requires
to deal with group actions; vectors of the acquisition space
can be considered as generalized numbers when embedded in
a Clifford algebra; the tangent space of the image surface
appears to be a natural parameter of the transform we define by
means of so-called spin characters. The resulting spinor Fourier
transform may be used to perform frequency filtering that takes
into account the Riemannian geometry of the image. We give
examples of low-pass filtering interpreted as diffusion process.
When applied to color images, the entire color information is
involved in a really non marginal process.

Index Terms—Fourier transform, Scale-space, Riemannian
geometry, Grey-level image, Color image.

I. INTRODUCTION

FROM the mathematical viewpoint, defining a Fourier

transform requires the use of group representations (see

Appendix B or [28]). Let us illustrate this fact on the well

known shift theorem. If f : R −→ R is a function that admits

a Fourier transform and fα : R −→ R is defined by

fα(x) = f(x+ α) (1)

then the Fourier transforms F(f) and F(fα) of f and fα are

linked by

F(fα)(u) = e2iπαuF(f) (2)

The group involved here is the additive group (R,+) of

translations acting on R by

(α, x) 7−→ x+ α := τα(x) (3)

The correspondence

χu : τα 7−→ e2iπαu = χu(α) (4)

is a composition law preserving map from the group (R,+)
to the group S

1 of unit complex numbers acting on C by

multiplication. It is a one-dimensional representation, i.e. a

character, of the group (R,+). It appears that the Fourier

transform is defined on the set of characters, also called the

Pontryagin dual, by

F(f)(u) =

∫

R

f(x)χu(−x)dx (5)

identifying χu with u. The rest of this paper consists in

showing how to generalize the above formula (5) so as to

define a spinor Fourier transform well adapted to grey-level

and color image processing.

Let us first formulate some remarks.

Thomas Batard, Lab. XLIM-SIC, University of Poitiers, France.
Michel Berthier, Lab. MIA, University of La Rochelle, France.

1) Marginal, i.e. componentwise, processing applied on

color images is well known to produce false colors (see

for instance [23] for examples of false colors). But it

is not so clear when dealing with such images, how

to define a Fourier transform which does not reduce to

three Fourier transforms computed marginally and that

takes into account color data.

2) The mathematical framework previously described also

applies for a large range of groups. Considering the

abelian finite group Z/NZ, resp. the abelian rotation

group SO(2,R), leads to the definition of the discrete

Fourier transform, resp. the definition of the Fourier

series. The non abelian case which requires more math-

ematical developments has been considered for instance

in [27] to define generalized Fourier descriptors using

the motion group of the plane and in [10] for the

construction of so-called shearlets.

3) Very few works are devoted to a mixed approach of

signal processing involving both harmonic and Rieman-

nian methods. Although geometric decompositions such

as curvelets take into account structure data (like edges),

they are not directly defined by means of the Riemannian

properties of the image surface.

4) As we are mainly concerned by grey-level and color

image processing, it is important to note that the spinor

Fourier transform we want to define must be computed

with usual complex fast Fourier transforms.

Let us now describe the main underlying key ideas of this

work. The first one is to extend the usual approach mentioned

above to n-dimensional images by replacing the involved

complex characters by characters with values in a group acting

on the acquisition n-dimensional vector space. One way to

proceed is to treat vectors as generalized numbers. This can be

done by embedding the acquisition space in an algebra where

are defined the four usual operations (+,−,×, /) (the inverse

is defined only for invertible elements). As examples, it is well

known that vectors of R2, resp. vectors of R4, can be identified

with complex, resp. hypercomplex (quaternion) numbers (in

both cases all non zero elements are invertible). We propose

here to deal with Clifford algebras of which the complex

and quaternion algebras appear to be particular cases. These

algebras have already been used in many works related to

signal processing (see [17], [14], [3], [2] or [13] for instance).

We are led to consider spin characters, that is composition law

preserving maps from the group (R2,+) with values in spin

groups. These latters act on vector spaces through the standard

representations

ρn : Spin(n) −→ SO(n,R) (6)

that describe the groups Spin(n) as double-sheeted coverings

of the orthogonal groups SO(n,R) (see [25]). By averaging
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this action we define a Clifford Fourier transform which

appears to generalize in a very natural way the formula (5).

The second idea is to involve explicitly the geometry of

the image surface that is embedded for instance in R
3, resp.

R
5 when considering grey-level, resp. color images. The al-

ready mentioned spin characters are parametrized by so-called

bivectors (see [20]). Very roughly speaking these bivectors,

which are elements of the Clifford algebra, encode planes of

R
3 or R

5. By using bivectors corresponding to the tangent

planes of the image surface, one can parametrize the Clifford

Fourier transform so as to take into account the Riemannian

geometry of the image surface. To set up this idea one has to

consider images as sections of associated vector bundles built

from the standard representations of spin groups (see [18]).

These bundles are called spinor bundles and the corresponding

sections spinor fields.

Finally, we introduce a Riemannian harmonic decompo-

sition for images. The usual 2D discrete Fourier transform

provides a basis of decomposition for say grey-level images

given by

(m,n) 7−→ e2iπ(um/M+vn/N) (7)

with u ∈ Z/MZ and v ∈ Z/NZ, in such a way that any

image f of size M ×N can be written as

f(m,n) =
∑

f̂(u, v) e2πi(um/M+vn/N) (8)

the sum running over m ∈ Z/MZ and n ∈ Z/NZ. The

main drawbacks of this basis are that this one neither involves

local geometric data nor extends in a non marginal way to

multi-channel images. Using the spinor Fourier transform and

the Riemannian settings described above allows one to obtain

a decomposition basis for the image surface which takes

into account both local geometric and color information. To

illustrate this approach, we perform frequency filterings and

show applications on well known images.

Let us mention that in this paper we consider the only

standard representations (6) of the spin groups. Other represen-

tations exist beside these which are called spin representations

and that come from the complex representations of Clifford

algebras. These representations do not descend to orthogonal

groups (see [21]). The study of the corresponding Riemannian

harmonic decomposition will appear elsewhere.

II. CLIFFORD FOURIER TRANSFORMS

THERE have been many attempts to generalize the usual

Fourier transform in the framework of quaternion or

Clifford algebras. We mention here briefly some of the already

existing definitions and describe the construction involving the

spin characters. The reader will find in the appendices the

mathematical definitions and results used here.

A. Quaternionic and Clifford Fourier transforms

The quaternionic transform introduced in [26] (see also

[15]) reads

Fµf(U) =

∫

R2

f(X) exp(−µ〈X,U〉)dX (9)

X = (x1, x2), U = (u1, u2), and is defined for a function

(color image) f : R2 −→ H0, where H0 is the set of imaginary

quaternions. The unit imaginary quaternion µ is chosen to be

µ = (i+ j + k)/
√
3 (representing the grey axis) and satisfies

µ2 = −1. The corresponding quaternionic Fourier coefficients

are decomposed with respect to a symplectic split associated

to µ, each one of the factors being expressed in the polar form:

Fµf = A‖ exp[µθ‖] +A⊥ exp[µθ⊥]ν (10)

with ν an imaginary unit quaternion orthogonal to µ. The au-

thors propose a spectral interpretation from this decomposition

(see [26] for details).

In [7] (see also [8]) the approach is quite different since it

concerns mainly the analysis of symmetries of a signal f from

R
2 to R given for example by a grey-level image. For such

a signal, the quaternionic Fourier transform introduced in [7]

reads:

Fijf(U) =

∫

R2

exp(−2πiu1x1)f(X) exp(−2πju2x2)dX

(11)

Note that i and j can be replaced by arbitrary pure imag-

inary quaternions. The choice of this formula is justified by

the following equality:

Fijf(U) = Fccf(U)− iFscf(U)− jFcsf(U) + kFssf(U)
(12)

where

Fccf(U) =

∫

R2

f(X) cos(2πu1x1) cos(2πu2x2)dX (13)

and similar expressions involving sines and cosines for Fscf ,

Fcsf and Fssf .

It is important to note at this stage that the kernels used in

(9) and (11) correspond to rotations in the space R
4 under the

identification of the group Spin(4) with the group H
1 × H

1

where H
1 is the group of unit quaternions (see Appendix A

or [22]).

In [16], the Clifford Fourier transform is defined by

Fe1e2f(U) =

∫

R

exp(−2πe1e2〈U,X〉)f(X)dX (14)

for a function f(X) = f(x)e2 from R to R and by

Fe1e2e3f(U) =

∫

R2

exp(−2πe1e2e3〈U,X〉)f(X)dX (15)

for a function f(X) = f(x1, x2)e3 from R
2 to R. The element

e1e2, resp. e1e2e3, is the so-called pseudoscalar of the Clifford

algebra R2,0, resp. R3,0. These transforms appear naturally

when dealing with the analytic and monogenic signals.

The definition of [14] also uses the kernel of (15). If f is

a function from R
3 to the Clifford algebra R3,0, then

Fe1e2e3f(U) =

∫

R3

f(X) exp(−2πe1e2e3〈U,X〉)dX (16)

Note that if we set

f = f0 + f1e1 + f2e2 + f3e3+

f23i3e1 + f31i3e2 + f12i3e3 + f123i3 (17)
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with i3 = e1e2e3, this transform can be written as a sum

of four complex Fourier transforms by identifying i3 with

the imaginary complex i. In particular, for a function f with

values in the vector part of the Clifford algebra, this reduces

to marginal, i.e. componentwise, processing. This Clifford

Fourier transform is used to analyze frequencies of vector

fields and the behavior of vector valued filters.

The definition proposed in [3] relies on Clifford analysis and

involves the so-called angular Dirac operator Γ. The general

formula is

F±f(U) =
(

1√
2π

)n ∫

Rn

exp(∓i
π

2
ΓU )×exp(−i〈U,X〉)f(X)dX (18)

For the special case of a function f from R
2 to C2 = R0,2⊗C,

the transform reads

F±f(U) =
1

2π

∫

R2

exp(±U ∧X)f(X)dX (19)

Let us remark that exp(±U ∧ X) is the exponential of a

bivector, i.e. a spinor. This construction allows to introduce

two dimensional Clifford Gabor filters.

Let us mention that the above transform (19) is a very

special case of a more general transform defined by means

of Clifford analysis. We refer the reader to [4], [11] and [12]

for details. Finally, alternative definitions can be found in [5]

and [6] based on Clifford generalizations of the squared root

of -1.

B. Clifford Fourier transform with spin characters

The transform defined in [1] is based on a spin generaliza-

tion of the usual notion of group characters (see Sec. III.C).

If f is a function from R
2 with values in the vector part of

the Clifford algebra R4,0 then

CFf(u1, u2, u3, u4, D) =
∫

R2

f(x1, x2)⊥ϕ(u1,u2,u3,u4,D)(−x1,−x2)dx1dx2 (20)

with

(x1, x2) 7−→ ϕ(u1,u2,u3,u4,D)(x1, x2) (21)

the spin character that sends (x1, x2) to the product

exp

[
1

2
[x1(u1 + u3) + x2(u2 + u4)]D

]

× exp

[
1

2
[x1(u1 − u3) + x2(u2 − u4)]I4D

]
(22)

where D is a unit bivector of R4,0, I4 is the pseudo scalar and

⊥ is the action of Spin(4) on R
4 (see Appendix A). For the

special case of a color image

f : (x1, x2) 7−→ f1(x1, x2)e1 + f2(x1, x2)e2 + f3(x1, x2)e3
(23)

the Clifford Fourier transform of the function f in the direction

D is given by

CFDf(u1, u2) =∫

R2

f(x1, x2)⊥ϕ(u1,u2,0,0,D)(−x1,−x2)dx1dx2 (24)

Note that formulas (20) and (24) appear as natural gener-

alizations of the usual 2D Fourier transform for an R-valued

function written as

Ff(u1, u2) =
∫

R2

f(x1, x2)⊥ϕ(u1,u2,e1e2)(−x1,−x2)dx1dx2 (25)

where

f(x1, x2) = f1(x1, x2)e1 + f2(x1, x2)e2 (26)

and

ϕ(u1,u2,e1e2)(x1, x2) = exp

[
1

2
(x1u1 + x2u2)e1e2

]
(27)

(compare with equation (5)). In (24) the two frequencies u3

and u4 are chosen to be zero, this corresponds to the fact that

the involved rotations in R
4 are isocline (see [22]).

Applications to color image processing are described in [1].

See also [24] for the construction of generalized color Fourier

descriptors.

The main drawback of this transform is that it is a global

transform with a fixed parametrizing bivector that does not

take into account the geometric data.

III. THE GEOMETRICAL FRAMEWORK

TO tackle this problem, we propose in this section to

introduce a geometrical framework which allows for a

pointwise version of the above transform. We refer the reader

to [18] and [21] for the mathematical definitions and results

used in particular in Sec. III. B.

A. From functions to surfaces

Let

f : (x1, x2) ∈ Ω 7−→ f(x1, x2) (28)

be a grey-level image defined on a domain Ω of R2. Such an

image can be considered as a surface Σ embedded in R
3 by

the parametrization

ϕ : (x1, x2) 7−→ (x1, x2, f(x1, x2)) (29)

that is as a 2-dimensional Riemannian surface with a global

chart (Ω, ϕ). The Riemannian metric on Σ is the one induced

by the Euclidean metric of R3.

Looking at formula (24) it seems natural to try to replace

the parametrizing bivector mentioned above by a unit bivector

field coding the tangent planes to Σ. This is the simplest way

to involve the geometry of Σ. But there are now two problems

to deal with.

1) This bivector field (of the Clifford algebra R3,0) is

clearly no longer constant.

2) To define the ⊥ action in this context, one has to

introduce a varying space of representation.

In the same way, if

f : (x1, x2) ∈ Ω 7−→ (f1(x1, x2), f2(x1, x2), f3(x1, x2))
(30)
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is a color image, it can be considered as a surface Σ embedded

in R
5 by the parametrization

ϕ : (x1, x2) 7→ (x1, x2, (f1(x1, x2), f2(x1, x2), f3(x1, x2))
(31)

and in this case one has to deal with varying bivectors of the

Clifford algebra R5,0.

Solving the problems listed above requires the introduction

of some advanced mathematical concepts (such as spinor

bundles). The reader not familiar with these concepts can

skip this part of the paper since we explain later how to

compute practically the new defined spinor Fourier transform.

Let us just mention that because of the desire to use complex

fast Fourier transforms we are led to consider surfaces as

embedded in R
4 for grey-level images and in R

6 for color

images.

B. Images as sections of associated bundles

Let Ω be an open set of R2 (the domain of the image). Let

PSO(En(Ω)) be the principal SO(n,R)-bundle of oriented

frames of the trivial bundle En(Ω) = Ω × R
n. A spin

structure on En(Ω) is a principal Spin(n)-bundle, denoted

PSpin(En(Ω)), together with a 2-sheeted covering

PSpin(En(Ω)) −→ PSO(En(Ω)) (32)

that is compatible with SO(n,R) and Spin(n) actions. We

consider the following action

Spin(n)×PSpin(En(Ω))×R
n −→ PSpin(En(Ω))×R

n (33)

given by

(τ, p, z) 7−→ (pτ−1, ρn(τ)z) (34)

where

ρn : Spin(n) −→ SO(n,R) (35)

is the standard representation of the group Spin(n) (see

Appendix A). The associated bundle PSpin(En(Ω))×ρn
R

n is

the quotient of the product PSpin(En(Ω))×R
n by the action

(33). It is a vector bundle over Ω with fiber Rn.

Let now

f : (x1, x2) ∈ Ω 7−→ f(x1, x2) (36)

be a grey-level image. Such an image is considered as a section

of the associated bundle PSpin(E4(Ω))×ρ4R
4, that is as a map

σ : Ω −→ PSpin(E4(Ω))×ρ4
R

4 (37)

such that

π4 ◦ σ = Id (38)

where

π4 : PSpin(E4(Ω))×ρ4
R

4 −→ Ω (39)

is the vector bundle projection. This section is given by

σ(x1, x2) = f(x1, x2)e3 (40)

In the same way, to a color image

f : (x1, x2) ∈ Ω 7−→ (f1(x1, x2), f2(x1, x2), f3(x1, x2))
(41)

corresponds the section

σ(x1, x2) = f1(x1, x2)e3+f2(x1, x2)e4+f3(x1, x2)e5 (42)

of the associated vector bundle PSpin(E6(Ω)) ×ρ6
R

6. At a

given point (x1, x2) of Ω the value of the section σ belongs

to a representation space on which the spin group consider

as the fiber of PSpin(En(Ω)) at (x1, x2) acts. This allows to

define a new spinor Fourier transform.

Remark. This geometric description applies for n-

dimensional images, n ≥ 3. As we will se later, the necessity

of splitting the new defined transform onto orthogonal planes

to apply complex fast Fourier transforms, impose here to treat

the cases n = 4 and n = 6.

C. Spin characters and tangent planes

Let us first describe the spin characters involved (through

the sections of the bundle PSpin(En(Ω)) in the definition

of the spinor Fourier transform (see [1] for an alternative

approach of the proofs).

Theorem 1: The morphisms from the additive group R
2 to

the spin group Spin(4) (the Spin(4) characters) are given by

(x1, x2) 7−→ exp
1

2

[
(B1 B2)A

(
x1

x2

)]
(43)

where A is a 2× 2 real matrix (the frequency matrix) and

Bi = eifi (44)

for i = 1, 2, with (e1, e2, f1, f2) an orthonormal basis of R4.

Proof: it relies on the following arguments.

1) R
2 is simply connected so that every Lie group mor-

phism from R
2 to Spin(4) is given by the exponenti-

ation of a Lie algebra homomorphism from R
2 to the

Lie algebra spin(4) of Spin(4).
2) The group Spin(4) is isomorphic to the group product

Spin(3)× Spin(3).
3) The abelian Lie subalgebras of the Lie algebra spin(3)

of the group Spin(3) are of dimension 1.

4) The orthogonalization algorithm of Hestenes on bivec-

tors (see [20]) allows to express the morphisms from R
2

to Spin(3)× Spin(3) as in formula (44).

A Spin(4) character is then parametrized by 4 real numbers

(the frequencies) and an orthonormal basis of R4.

Theorem 2: The morphisms from the additive group R
2 to

the spin group Spin(6) (the Spin(6) characters) are given by

(x1, x2) 7−→ exp
1

2

[
(B1 B2 B3)A

(
x1

x2

)]
(45)

where A is a 3× 2 real matrix (the frequency matrix) and

Bi = eifi (46)

for i = 1, 2, 3, with (e1, e2, e3, f1, f2, f3) an orthonormal basis

of R6.

Proof: as in the proof of Theorem 1, we have to describe

the Lie algebra homomorphisms from R
2 to the Lie algebra

spin(6) of the group Spin(6). This is done using the following

results:
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1) Spin(6) is isomorphic to SU(4) : consider

Spin(6) ⊂ R
(0)
6,0 ≃ R5,0 ≃ C(4) (47)

so that Spin(6) appears as a subgroup of GL(4,C)
which implies by standard arguments (compactness and

connectedness) the isomorphism.

2) As a consequence, the Lie algebra spin(6) of Spin(6)
is of type E(3) so that it contains maximal abelian Lie

subalgebras of dimension 3.

3) The bivectors Bi form bases of such Lie sub-algebras

(Cartan subalgebras).

A Spin(6) character is then parametrized by 6 real numbers

(the frequencies) and an orthonormal basis of R6.

In the rest of this paper, the spin characters (43) and

(45) are denoted χA,B (A is the involved frequency matrix

and B stands for (B1, B2) or (B1, B2, B3) depending on

the context). Considering images as sections of the bundle

PSpin(En(Ω))×ρn
R

n (n = 4 or n = 6) allows to deal with

actions of sections of the bundle PSpin(En(Ω)). This means

that B is no longer fixed and may depend of the current point.

Let now

ϕ : (x1, x2) 7−→ (x1, x2, f(x1, x2)) (48)

be the graph of a grey-level image. At each point p of Ω, the

space R
3 splits into

R
3 = Tϕ(p)Σ⊕Nϕ(p)Σ (49)

where TΣ, resp. NΣ, denotes the tangent, resp. the normal,

bundle of the surface Σ. Let F4 be the bundle

F4 = TΣ ⊕NΣ ⊕ Re4 (50)

and Cl(F4) be the corresponding Clifford bundle. The degree

one sections of Cl(F4) can be identified with functions from

Ω to R
4 and as mentioned before, we consider the image as

a section σ(x1, x2) = f(x1, x2)e3 of Cl(F4). The tangent

bundle TΣ is encoded by the degree 2 section (the bivector

field)

B1 =
ϕx1

∧ ϕx2

‖ϕx1 ∧ ϕx2‖
(51)

of Cl(F4). Here ϕxi
denotes the partial derivative of ϕ with

respect to xi. More precisely,

B1 = γ1e1e2 + γ2e1e3 + γ3e2e3 (52)

where

γ1 =
1√

1 + f2
x1

+ f2
x2

γ2 =
fx2√

1 + f2
x1

+ f2
x2

(53)

and

γ3 =
−fx1√

1 + f2
x1

+ f2
x2

(54)

In this case B2 is given by I4B1 (I4 is the pseudo scalar of

the Clifford algebra R4,0), that is

B2 = −γ3e1e4 + γ2e2e4 − γ1e3e4 (55)

In the same way, if

ϕ : (x1, x2) 7→ (x1, x2, f1(x1, x2), f2(x1, x2), f3(x1, x2))
(56)

is the graph of a color image, we introduce the decomposition

R
5 = Tϕ(p)Σ⊕Nϕ(p)Σ (57)

the bundle

F6 = TΣ ⊕NΣ ⊕ Re6 (58)

the Clifford bundle Cl(F6) and identify a color image with a

degree one section σ(x1, x2) = f1(x1, x2)e3+f2(x1, x2)e4+
f3(x1, x2)e5 of Cl(F6). In this case the bivector B1 reads

B1 = γ1e1e2 + γ2e1e3 + γ3e1e4 + γ4e1e5 + γ5e2e3

+γ6e2e4 + γ7e2e5 + γ8e3e4 + γ9e3e5 + γ10e4e5 (59)

where

γ1 = 1/δ γ2 = (f1)x2/δ γ3 = (f2)x2/δ γ4 = (f3)x2/δ

γ5 = (−f1)x1/δ γ6 = (−f2)x1/δ γ7 = (−f3)x1/δ

γ8 = [(f1)x1
(f2)x2

− (f1)x2
(f2)x1

]/δ

γ9 = [(f1)x1
(f3)x2

− (f1)x2
(f3)x1

]/δ

γ10 = [(f2)x1
(f3)x2

− (f2)x2
(f3)x1

]/δ (60)

with δ = ‖ϕx1
∧ ϕx2

‖. The bivectors B2 and B3 are deter-

mined using Gram-Schmidt algorithm (see remark 3 below).

D. The spinor Fourier transform

We follow the same procedure as in Sec. II.B. Let σ be

a section of the bundle PSpin(En(Ω)) ×ρn
R

n (n = 4 or

n = 6) and χA,B be a section of PSpin(En(Ω)) where

B = B(x1, x2) is a fixed field of bivectors that satisfies

for each (x1, x2) of Ω the conditions (44) or (46), i.e

Bi(x1, x2) = ei(x1, x2)fi(x1, x2), the vectors ei(x1, x2) and

fi(x1, x2) being orthonormal.

Before to give the precise definition, let us make an impor-

tant remark. As we want to define an invertible transform, this

one has to preserve the fibered structure we have introduced.

This means that we need to distinguish (x1, x2) as the variable

of the image (or of the corresponding section) and (x1, x2) as

the position of the fiber. To do this we introduce

σ̃(x1, x2, y1, y2) =
∑

i

δi(y1, y2)ei(x1, x2) +
∑

i

τi(y1, y2)fi(x1, x2) (61)

where

δi(y1, y2) = σ(y1, y2) · ei(y1, y2) (62)

and

τi(y1, y2) = σ(y1, y2) · fi(y1, y2) (63)

Definition 1 (Spinor Fourier transform): with the previous

notations, the spinor Fourier transform of σ = σ(y1, y2) is

given by

FBσ(A) =
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∫

R2

σ̃(x1, x2, y1, y2)⊥χA,B(x1,x2)(−y1,−y2)dy1dy2 (64)

where B1 = B1(x1, x2) is given by (51). Note that we do not

integrate the bivector field B in formula (64).

Let us make explicit the computation for a grey level image.

We have:

FBσ(u1, v1, u2, v2) =∫

R2

e−(u1y1+v1y2)B1(x1,x2) [δ1(y1, y2)e1(x1, x2)+

τ1(y1, y2)f1(x1, x2)] dy1dy2 +
∫

R2

e−(u2y1+v2y2)B2(x1,x2) [δ2(y1, y2)e2(x1, x2)+

τ2(y1, y2)f2(x1, x2)] dy1dy2 (65)

Each one of the integrals
∫

R2

e−(uiy1+viy2)Bi(x1,x2) [δi(y1, y2)ei(x1, x2)+

τi(y1, y2)fi(x1, x2)] dy1dy2 (66)

for i = 1, 2, can be identified with
∫

R2

e−(uiy1+viy2)
√
−1

[
δi(y1, y2) +

√
−1τi(y1, y2)dy1dy2

]

(67)

so that the result of the integration doesn’t depend on (x1, x2)
(recall that Bi(x1, x2)

2 = −1). The formula (65) can be

written as

FBσ(u1, v1, u2, v2) =∫

R2

e−(u1y1+v1y2)B1(x1,x2)fB1(x1,x2)(y1, y2)dy1dy2 +

∫

R2

e−(u2y1+v2y2)B2(x1,x2)fB2(x1,x2)(y1, y2)dy1dy2 (68)

where, for i = 1, 2,

fBi(x1,x2)(y1, y2) = δi(y1, y2)ei(x1, x2)+τi(y1, y2)fi(x1, x2)
(69)

is the projection of the section on the Bi(x1, x2)-plane.

Remarks.

1) The computation above shows that the spinor Fourier

transform is invertible. More precisely:

σ(y1, y2) =∫

R2

e(u1y1+v1y2)B1(x1,x2)FB1
(fB1

)(u1, v1)du1dv1 +

∫

R2

e(u2y1+v2y2)B2(x1,x2)FB2(fB2)(u2, v2)du2dv2

(70)

where

FBi
(fBi

)(ui, vi) =∫

R2

e−(uiy1+viy2)Bi(x1,x2)fBi(x1,x2)(y1, y2)dy1dy2

(71)

for i = 1, 2.
2) The formula (67) shows also that the spinor Fourier

transform can be computed using usual complex fast

Fourier transforms.

3) The computations necessitate to introduce first an or-

thonormal frame field adapted to the B1 and B2-planes,

which is denoted (ν11, ν12, ν21, ν22) in the algorithm of

Sec. IV. This is done using Gram-Schmidt algorithm

starting with the vectors ϕx1
and ϕx2

.

The procedure is the same for a color image.

IV. SPINOR FOURIER TRANSFORM AND SCALE SPACE

WE begin this section by discussing the links between

the previously defined spinor Fourier transform and the

scale space of the heat equation. Then, we deal with low-pass

filtering interpreted as diffusion for both grey-level and color

images.

A. Spinor Fourier transform and diffusion

Let σ0 be a section corresponding to a grey-level image

and (ν11, ν12, ν21, ν22) be the frame field adapted to B1 and

B2 = I4B1 where B1 encodes the tangent plane of the

image surface. Let also H be the Euclidean Laplacian in this

frame field. We denote ∆B1 , resp. ∆B2 , the restriction of H
to the B1-plane, resp. B2-plane, and f0,B1 , resp. f0,B2 , the

corresponding projections of σ0. The solutions of the couple

of PDEs

∂fB1

∂t1
= ∆B1fB1 , fB1 |t1=0 = f0,B1 (72)

∂fB2

∂t2
= ∆B2fB2 , fB2 |t2=0 = f0,B2 (73)

are given by

fB1
(·, ·, t1) = f0,B1

∗Kt1 (74)

fB2(·, ·, t2) = f0,B2 ∗Kt2 (75)

where Kti , i = 1, 2, denote the Gaussian kernels. This means

that the solution of the above system of PDEs is

f(·, ·, t1, t2) = F−1
B (FB1

f0 ×FKt1 +FB2
f0 ×FKt2) (76)

The solution of the PDE

∂σ

∂t
= Hσ, σ|t=0 = σ0 (77)

reads

σ(·, ·, t) = F−1
B (FBσ0 ×FKt) (78)

that is coincides with the restriction on the diagonal t1 = t2
of the solution (76).

In the case of color images, the system splits into three

PDEs since the embedding space is of dimension 6.
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B. Experiments

The algorithm (for grey-level image) is the following one:

1) Compute the bivector B1 encoding the tangent plane

(formula (51)).

2) Construct an orthonormal frame field (ν11, ν12, ν21, ν22)
adapted to the B1-plane and the B2 = I4B1-plane.

3) Compute the expression of the section σ in the frame

field (ν11, ν12, ν21, ν22).
4) In the frame field (ν11, ν12, ν21, ν22), the spinor Fourier

transform splits into two usual complex Fourier trans-

forms (cf. formula (65)).

5) Multiply the Fourier spectra with Gaussians of variance

t1 and t2 for t1, t2 ∈ R.

6) Compute the inverse Fourier transforms.

7) Change the frame field (ν11, ν12, ν21, ν22) to the

standard one.

We test the algorithm on the grey-level images ’Barbara’

(Fig. 1) and ’Lake’ (Fig. 2). We first show the projections of

the images on the tangent and normal bundles. As expected,

the tangent bundle component (top-center images) encodes

information about the local variations of the image. Indeed,

we observe that the higher is the gradient of the original

image, the higher is the grey level of the tangent bundle part.

Hence, homogeneous regions are represented in black and

strongest contours in white. The normal bundle component

(top-right images) corresponds to the original image where

the contours have been thickened and darkened. It provides a

highlight of the local variations of the original image.

Then, we show the result of the diffusion process along the

diagonal at different times (t = 0.0001, t = 0.1 and limt→∞).

We observe that the diffusion combines two behaviours: an

Euclidean heat diffusion and a preservation of the contours.

The first behaviour comes from the fact that the differential

operator involved in the PDE is the Euclidean Laplacian (in

a moving frame) and the diffusion process does not affect the

moving frame. The second behaviour might be explained by

the chosen moving frame that encodes the local variations of

the image. When t → ∞ (bottom-right images), the result

is the superposition of the contours on the mean grey level

of the image, the latter being the limit when t → ∞ of the

Euclidean heat diffusion.

The algorithm above might be extended in a straightfor-

ward way to color images. We test this algorithm on the

color versions of the image ’Barbara’ (Fig. 3) and ’Lake’

(Fig. 4). As for the case of grey-level images, the tangent

bundle component (top-center images) encodes information

about the local variations of the image. Whereas homogeneous

regions still appear in black, the contours are now colored;

the interpretation here is more complicated than in the case of

grey-level images since the color of the contour depend not

only of magnitude of the color variation but also of the colors

making the contour in the original image. The normal bundle

component (top-right image) still provides a highlight of the

local variations of the original image.

We perform the diffusion process and show results along the

diagonal at the times (t = 0.0001, t = 0.1 and limt→∞). The

diffusion combines two behaviours: a marginal Euclidean heat

diffusion and a preservation of the contours. When t → ∞
(bottom-right images), the result is the superposition of the

contours on the mean color of the image, the latter being the

limit when t → ∞ of the marginal Euclidean heat diffusion.

Finally, the experiments on color images confirm that our

approach is non marginal since the contours (computed in

a non marginal way) are preserved all along the diffusion

process.

V. CONCLUSION

We have shown in this paper how to define a spinor Fourier

transform that allows to analyze frequencies of grey-level

or color images taking into account the geometric data of

the corresponding image surfaces. When dealing with color

images, this new defined transform treats all the colorimetric

information in a really non marginal way.

The construction involves group actions via spin characters,

these ones being parametrized by bivectors of the Clifford

algebra. A natural choice for the bivectors is the one corre-

sponding to the tangent planes of the image surface. But other

bivectors can be considered.

We have proposed applications to low-pass filtering inter-

preted as diffusion process with heat equation. Other types of

filtering can be envisaged. One may also consider applications

for instance to color image compression, deblurring or to

generalized color Fourier descriptors (as in [24]).

In this work, we have only treated the case of standard

representations of the spin groups. As mentioned before there

exist other representations called spin representations that do

not descend to the orthogonal groups. Dealing with these rep-

resentations necessitates to introduce complex representations

of Clifford algebras. This will be the subject of a forthcoming

paper.

APPENDIX A

CLIFFORD ALGEBRAS AND SPIN GROUPS

We only give here the basic notions used throughout the text,

more details can be found for instance in [9]. We denote Rp,q

he Clifford algebra of the vector space R
n equipped with the

non degenerate quadratic form Qp,q of signature (p, q). Let us

mention that R0,1 is isomorphic to C and R0,2 is isomorphic

to the algebra H of quaternions.

The group Spin(n) of the Clifford algebra Rn,0 is defined

by

Spin(n) = {τ ∈ Rn,0, α(τ) = τ, ττ † = 1,

τuτ−1 ∈ R
n ∀u ∈ R

n} (79)

where α is the main involution and † is the reversion of Rn,0.

We denote

u⊥τ := τuτ−1 (80)

the action of Spin(n) on R
n. The map

ρn : Spin(n) −→ SO(n,R) (81)

defined by ρn(τ)(u) = u⊥τ is an onto group morphism with

kernel Z2. It is the standard representation of Spin(n).
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It can be checked that Spin(2) is isomorphic to S
1 (S1 is

the group of unit complex numbers), Spin(3) is isomorphic

to H
1 (H1 is the group of unit quaternions) and Spin(4) is

isomorphic to H
1 × H

1. It is well known that Spin(n) is

a compact connected Lie group of dimension n(n − 1)/2.
The Lie algebra spin(n) of Spin(n) is the vector space of

bivectors of Rn,0, denoted R
2
n,0, with the Lie bracket given

by the commutator. Since the exponential map is onto (see

[19]), every element τ of Spin(n) can be written as

τ =
∑

i≥0

1

i!
Bi (82)

for some B in R
2
n,0.

Hestenes algorithm (see [20]) states that every bivector B
of R2

n,0 can be written as

B = B1 +B2 + · · ·+Bm (83)

where m ≤ n/2, Bj = ‖Bj‖ajbj for j in {1, 2, . . . ,m}, and

{a1, . . . , am, b1, . . . , bm} is a set of orthonormal vectors of

R
n. Thus,

BjBk = BkBj = Bk ∧Bj (84)

for j 6= k and

B2
k = −‖Bk‖2 < 0 (85)

This means that the Bj-planes are orthogonal and implies

eB1+···+Bm = eBσ(1) · · · eBσ(m) (86)

for all permutation σ. Since B2
j is negative, we have

eBj = cos(‖Bj‖) +
sin(‖Bj‖)Bj

‖Bj‖
(87)

The corresponding rotation

RBj
: u 7−→ e−BjueBj = u⊥eBj (88)

acts in the oriented Bj-plane as a plane rotation of angle

2‖Bj‖. The vectors orthogonal to Bj are invariant under RBj
.

APPENDIX B

ABSTRACT FOURIER TRANSFORM

Let G be a locally compact unimodular group. The Pontrya-

gin dual of G, denoted Ĝ, is the set of equivalent classes of

unitary irreducible representations of G. The Fourier transform

of a function f of L2(G,C) is defined on Ĝ by

F(f)(ϕ) =

∫

G

f(g)ϕ(g−1)dν(g) (89)

where ν is a Haar measure on G.

It appears that when G is abelian, every irreducible repre-

sentation of G is of dimension 1. Such a unitary representation

is thus a group morphism from G to S
1 and is called a

character of G. As an example, let us mention that the

Pontryagin dual R̂n of the additive group R
n is R

n itself and

that the corresponding Fourier transform, given by formula

(89), is the usual Fourier transform on R
n. Dealing with the

rotation group SO(2,R) leads to the theory of Fourier series

(the Pontryagin dual is Z) and dealing with the finite group

Z/NZ leads to the definition of the discrete Fourier transform

(the Pontryagin dual is Z/NZ).
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Fig. 1. Top: Grey-level image ’Barbara’ (Left) and its projection on the tangent bundle (Center) and the normal bundle (Right). Bottom: Diffusion of the
Image ’Barbara’ at the times t = 0.0001 (Left), t = 0.01 (Center) and limt→∞ (Right).

Fig. 2. Top: Grey-level image ’Lake’ (Left) and its projection on the tangent bundle (Center) and the normal bundle (Right). Bottom: Diffusion of the Image
’Lake’ at the times t = 0.0001 (Left), t = 0.01 (Center) and limt→∞ (Right).
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Fig. 3. Top: Color image ’Barbara’ (Left) and its projection on the tangent bundle (Center) and the normal bundle (Right). Bottom: Diffusion of the Image
’Barbara’ at the times t = 0.0001 (Left), t = 0.01 (Center) and limt→∞ (Right).

Fig. 4. Top: Color image ’Lake’ (Left) and its projection on the tangent bundle (Center) and the normal bundle (Right). Bottom: Diffusion of the Image
’Lake’ at the times t = 0.0001 (Left), t = 0.01 (Center) and limt→∞ (Right).




