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1 Introduction

In recent years significant progress was achieved in amplitudes’ computations as well as

in understanding of various hidden structures underlying them. This is especially true for

theories of massless particles in four dimensions. For these theories one can choose conve-

nient kinematic variables that lead to what is known as the spinor-helicity formalism. This

formalism allows to compute amplitudes efficiently and produces them in an extremely

compact form. This is typically illustrated by the Parke-Taylor formula [1], which gives a

single-term expression for a tree-level MHV n-point amplitude in the Yang-Mills theory.

The spinor-helicity formalism also fits together nicely with other techniques used for ampli-

tudes’ computations. For review on modern amplitude methods and on the spinor-helicity

formalism, see [2–4]. The success of the spinor-helicity formalism for theories of massless

particles in four dimensions motivated its various extensions — to other dimensions [5–9]

and to massive fields [10–13].

Another line of research that led to important developments in recent years is the

AdS/CFT correspondence. It is a conjectured duality between gravitational theories in

AdS space and conformal theories on its boundary [14–16]. The AdS/CFT correspondence

provides us with new tools to address important problems of quantum gravity and strongly

coupled systems. On the AdS side perturbative observables are computed by Witten dia-

grams, which can be regarded as the AdS counterpart of flat scattering amplitudes. These

diagrams can be expressed in different representations: in terms of boundary coordinates

that label external lines, in terms of the associated Fourier or Mellin space variables or

presented in the form of the conformal block decomposition, see [17–28] for a far from

complete list of references. Each of these representations has its own virtues and for each

of them major progress was achieved in recent years. In particular, more efficient methods

of computing Witten diagrams were developed, relation between the analytic structure and

types of amplitudes were understood, it was found how to take the flat-space limit of Wit-

ten diagrams, thus, reproducing the associated flat scattering amplitudes. Moreover, these

results can be extended to dS space producing de Sitter space correlators, which, in turn,

are closely related to inflationary correlators, see e.g. [29–33]. Despite these successes, the

aforementioned approaches typically require one to deal with complicated expressions, that

involve various special functions. Moreover, the analysis further complicates for spinning

fields due to proliferation of tensor indices. This begs the question: is there any natural

generalization of the spinor-helicity formalism to AdS space, which allows to deal with

amplitudes of massless fields as efficiently as in flat space?

Additional motivation to address this question is related to higher-spin theories. It was

discovered recently [11, 34] that the spinor-helicity formalism allows to construct additional

consistent cubic amplitudes compared to those available within the framework that employs

Lorentz tensors. This observation is based on the comparison of two classifications available

in both approaches. Moreover, it turns out that the associated cubic vertices are crucial

for consistency of higher-spin interactions in flat space [35, 36].1 In particular, these are

1These results were obtained employing the light-cone deformation procedure, which is closely connected

to the spinor-helicity formalism [37–39].
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present in chiral higher-spin theories [40–42] — cubic theories of massless higher-spin fields,

which are consistent to all orders in interactions [40], see also [43] for a related earlier result.

At the same time, the AdS/CFT correspondence implies the existence of higher-spin

theories in AdS space — holographic duals of free O(N) vector models and similar simple

theories [44, 45].2 One may wonder how these theories are related to chiral theories in flat

space. To be able to answer this question, it is important to develop an approach, that

would bridge the gap between the light-cone formulation of chiral theories in flat space and

the usual covariant language in AdS space, which is typically used in holography. This

approach can then be used to generalize chiral higher-spin theories to AdS space and study

their place in the holographic duality. It is also interesting to understand what happens

with the additional vertices provided by the flat-space spinor-helicity formalism in AdS

space. Their presence may play an important role not only in higher-spin theories, but in a

wider context. For example, it would be interesting to understand whether the associated

three-point correlators can appear in conformal field theories or, more generally, whether

the spinor-helicity representation can facilitate the analysis of the crossing equations that

involve spinning operators.

In a recent letter [52] we suggested a natural generalization of the spinor-helicity formal-

ism to AdS4.3 This approach is based on the standard realization of the isometry algebra

so(3, 2) of AdS4 in terms of differential operators acting on sl(2,C) spinors. By employing

this representation, we first found the AdS counterpart of plane waves for field strengths.

These solutions were then used to compute simplest amplitudes. Next, by employing the

symmetry arguments similar to those used in [54] in flat space, we classified three-point am-

plitudes of massless spinning fields in AdS4. As was expected, the spinor-helicity approach

allows to construct amplitudes, that cannot be represented in terms of Lorentz tensors.

This result is consistent with a recent analysis in the light-cone gauge [55, 56].

In the present paper we give technical details that were left implicit in [52]. Moreover,

we expand these results in one important way. Namely, we show how our previous analysis

can be extended to include the potentials of gauge fields. First, we find the plane-wave so-

lutions in terms of potentials. Unlike plane-wave solutions for field strengths, these cannot

be obtained simply by applying Weyl transformations to flat space solutions, because the

description of massless fields in four dimensions in terms of potentials is not conformally

invariant for spin greater than one. We work out in detail spin- 3
2 and spin-2 cases and

then comment on potentials of any spin. Next, we use these potentials to evaluate simple

three-point amplitudes. Unlike amplitudes we computed previously, for which essential

simplification occurred due to conformal invariance of the associated vertices or due to the

possibility to express them in terms of field strengths, in the present paper we deal with the

cases, in which no such simplifications occur. These examples, thus, illustrate a genuine

computation of a three-point amplitude using the spinor-helicity formalism in AdS4.

2An independent bulk formulation of higher-spin theories was proposed in [46, 47]. For recent discussions

of this approach, see [48–51].
3A different version of the spinor-helicity formalism in (A)dS4 was suggested in [29]. Though this

formalism has its own virtues, in some aspects it departs from the spinor-helicity formalism in flat space.

In particular, it does not make the Lorentz symmetry manifest, instead, employing so(3)-spinors. More

recent related results can be found in [53].
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The rest of the paper is organized as follows. In section 2 we review the ingredients of

the spinor-helicity formalism in flat space, that will be generalized to AdS space later. Then,

in section 3 we review the twisted adjoint representation — a representation for massless

fields in AdS4, which is realized in terms of differential operators, that act on sl(2,C)

spinors. In the following section we introduce the necessary objects of the AdS background

geometry. Then, in section 5 we derive plane-wave solutions for field strengths. Next, in

section 6 we discuss how the spinor-helicity formalism in AdS space should be extended

to include potentials and derive the associated solutions for lower-spin cases. In section 7

we use previously derived plane waves to compute amplitudes by the direct evaluation of

bulk integrals. In the next section we classify three-point amplitudes employing symmetry

considerations. In section 9 we discuss how different amplitudes can be generated one from

another by applying helicity-changing operators. Finally, we conclude in section 10 as well

as discuss further open problems. The paper has a number of appendices, in which we

collect our notations and present various technical results.

2 Spinor-helicity representation in flat space

In this section we review some aspects of the spinor-helicity formalism in flat space, that

will be later extended to AdS space. More details can be found in [2–4].

Massless representation of the four-dimensional Poincare algebra can be realized as

Jαβ = i

(
λα

∂

∂λβ
+ λβ

∂

∂λα

)
,

J̄α̇β̇ = i

(
λ̄α̇

∂

∂λ̄β̇
+ λ̄β̇

∂

∂λ̄α̇

)
,

Pαα̇ = λαλ̄α̇,

(2.1)

where λα is an sl(2,C) spinor and λ̄α̇ is its complex conjugate. These spinors are related

to real massless momenta by the standard vector-spinor dictionary

p2 = 0 ⇔ pa = −1

2
(σa)

α̇αλαλ̄α̇, (2.2)

where σµ are the Pauli matrices. To make three-point amplitudes non-vanishing, one allows

momenta to be complex. In this case λα and λ̄α̇ are independent. Below we will use the

vector-spinor dictionary quite extensively. A brief review of this dictionary and related

conventions are given in appendix A.

It is not hard to see that the helicity operator

H ≡ 1

2

(
λ̄α̇

∂

∂λ̄α̇
− λα

∂

∂λα

)
(2.3)

commutes with the generators of the Poincare algebra (2.1). This implies that the repre-

sentation space — that is the space of functions f(λ, λ̄) of λ and λ̄ on which operators (2.1)

act — can be split into a direct sum of representations with a definite value of H. These

representations turn out to be irreducible. The value of operator H on these representations

gives their helicity

H = h, 2h ∈ Z. (2.4)

– 3 –
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2.1 Plane-wave solutions

To give these representations a space-time interpretation one introduces plane waves. These

can be regarded as intertwining kernels between the spinor-helicity (2.1) and space-time

representations of the Poincare algebra

Pa = −i ∂
∂xa

, Jab = −i
(
xa

∂

∂xb
− xb

∂

∂xa

)
, (2.5)

the latter being generated by the algebra of Killing vector fields of the Minkowski

space-time.

To start, we consider plane waves for field strengths. These are gauge invariant and

simpler to find. For a particular helicity 2h = n ≥ 0, we solve for field strength’s plane

waves in the form

Fα̇1...α̇n = λ̄α̇1 . . . λ̄α̇nf(x, λ, λ̄). (2.6)

The prefactor on the right-hand side of (2.6) consisting of the n-fold product of spinors λ̄ was

introduced to saturate the homogeneity degree of F in λ and λ̄ as required by (2.3), (2.4).

Lorentz covariance requires that f may only depend on combinations of λ, λ̄ and x with

all indices contracted covariantly. In other words,

f(x, λ, λ̄) = d(a, b), a ≡ λαλ̄α̇xαα̇, b ≡ xαα̇xα̇α, (2.7)

where d is a new unknown function. Finally, we require that the action of translations on

plane waves agrees in the spinor-helicity and the space-time representations

− i(σa)ββ̇
∂

∂xa
λ̄α̇1 . . . λ̄α̇nd(a, b) = λβλ̄β̇λ̄α̇1 . . . λ̄α̇nd(a, b). (2.8)

This leads to the familiar formula

Fα̇1...α̇n = λ̄α̇1 . . . λ̄α̇ne
− i

2
xα̇αλαλ̄α̇ . (2.9)

Plane-wave solutions for field strengths with negative helicities can be derived analogously.

Once field strengths are known, one can find the potentials. For bosonic fields these

are related by [57–59]

Fa1b1,...,ahbh = ∂a1 . . . ∂ahϕb1...bh + . . . , (2.10)

where ϕa1...ah is a totally symmetric tensor and . . . denotes 2h − 1 terms to be added

to make the expression antisymmetric in each pair of indices {ai, bi}. For a fixed field

strength (2.10) defines the potential up to gauge transformations

δϕa1...ah = ∂a1ξa2...ah + . . . , (2.11)

where ξ is totally symmetric and . . . denotes terms that make the right-hand side totally

symmetric.

In the spinor-helicity formalism, for a field strength given by (2.9) one solves (2.10) for

the potential as

ϕa1...ah = ε+
a1 . . . ε

+
ah
e−

i
2
xα̇αλαλ̄α̇ , (2.12)
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where ε+ is a polarization vector

ε+
a ≡ −

i

2

(σa)
α̇αµαλ̄α̇
µβλβ

, (2.13)

defined in terms of an auxiliary spinor µ. It is not hard to show that changes of µ correspond

to gauge transformations.

The potential (2.12) has a list of remarkable properties: it is traceless

ηabε+
a ε

+
b = 0 ⇒ ϕbba3...ah = 0, (2.14)

divergence-free

∂bϕba2...ah = 0 (2.15)

and obeys

qbϕba2...ah = 0, qa ≡ −
1

2
(σa)

α̇αµαµ̄α̇. (2.16)

Considering that q is null, (2.15) can be regarded as the generalized light-cone gauge

condition with the only difference that in the spinor-helicity formalism we are free to

change q arbitrarily. The potential (2.12), in fact, satisfies

µβ(σb)ββ̇ϕba2ȧh = 0, (2.17)

which is a stronger version of (2.16).

For fermionic fields the field strength is defined by

Fα̇|a1b1,...,ah−1bh−1
= ∂a1 . . . ∂an−1ϕα̇|b1...bh−1

+ . . . , (2.18)

where . . . make the right-hand side antisymmetric in {ai, bi} and ϕ is a totally symmetric

spin-tensor in vector indices. Gauge transformations then read

δϕα̇|a1...ah−1
= ∂a1ξα̇|a2...ah−1

+ . . . , (2.19)

where ξ is totally symmetric in vector indices and . . . make the right-hand side totally

symmetric. Finally, the plane-wave solution (2.9) in terms of the potential reads

ϕα̇|a1...ah−1
= λ̄α̇ε

+
a1 . . . ε

+
ah−1

e−
i
2
xα̇αλαλ̄α̇ . (2.20)

Besides being traceless on vector indices, this potential is also σ-traceless in the sense that

(σb)α̇αϕα̇|ba2...ah−1
= 0. (2.21)

It also satisfies conditions analogous to (2.15)–(2.17).

For negative helicity fields one uses the complex conjugate of (2.13) as a polarization

vector.

– 5 –
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2.2 Amplitudes from space-time integrals

Using the standard Feynman rules, with the external lines represented by the plane-wave

solutions we reviewed above, we can obtain the spinor-helicity representation of any am-

plitude. Below we illustrate this with a simple example of a cubic vertex

S3 =

∫
d4xψµ|α(∂µχαφ− χα∂µφ) + c.c., (2.22)

where c.c. refers to the complex conjugate term, ψ, χ and φ are massless spin- 3
2 , spin-1

2

and spin-0 fields respectively.

It is not hard to see that (2.22) is invariant with respect to spin- 3
2 gauge transformations

provided free equations of motion are taken into account

�χα ≈ 0, �φ ≈ 0. (2.23)

This, in turn, implies that (2.22) can be made gauge invariant up to higher orders in

fields, once φ and χ transform appropriately with the gauge transformations of ψ. In other

words, (2.22) is a consistent vertex to the leading order in interactions.

By substituting the plane-wave solutions into the first term in (2.22) we find the

amplitude

A3

(
−3

2
,−1

2
, 0

)
=

1

2

∫
d4xeip·x

〈12〉
[1µ]

(〈12〉[µ2]− 〈13〉[µ3])

=
(2π)4

2

〈12〉
[1µ]

(〈12〉[µ2]− 〈13〉[µ3]) δ4(p),

(2.24)

where p ≡ p1 + p2 + p3 is the total momentum.4 Next, we would like to eliminate µ-

dependence, to make sure that the amplitude is gauge invariant. To this end we manipulate

the first term in brackets as

〈12〉2[µ2]

[1µ]
δ4(p) =

〈12〉2[µ2]〈23〉
[1µ]〈23〉

δ4(p) = −〈12〉2[µ1]〈13〉
[1µ]〈23〉

δ4(p) =
〈12〉2〈13〉
〈23〉

δ4(p). (2.25)

In the second equality of (2.25) we used the momentum conservation in the form

|2]〈2| = −|1]〈1| − |3]〈3|. (2.26)

The second term in (2.24) is treated similarly. Eventually, we end up with

A3

(
−3

2
,−1

2
, 0

)
= (2π)4 〈12〉2〈13〉

〈23〉
δ4(p). (2.27)

This example illustrates a typical computation of a three-point amplitude from the action.

Higher-point amplitudes will not be discussed in the present paper.

4Though, the momentum-conserving delta function is not, usually, included in the definition of the

amplitude, we do the opposite to facilitate the comparison with the AdS case.
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2.3 Amplitudes from symmetries

Instead of computing amplitudes from the action, one can study constraints imposed on

them by symmetry considerations. It turns out that at the level of three-point amplitudes,

for a fixed triplet of helicities, the amplitude is fixed by symmetries up to an overall factor

— a coupling constant [54]. We will use analogous arguments in AdS space later, so let us

briefly review this analysis in flat space first.

To start, translation invariance

(P1|αα̇ + P2|αα̇ + P3|αα̇) A = 0 (2.28)

implies

A =M (2π)4δ(P ). (2.29)

Lorentz invariance requires that all spinor indices are contracted into spinor products,

hence,

M =M(〈ij〉, [ij]). (2.30)

Next, we further explore the structure of the right-hand side of (2.30).

Momentum conservation together with the on-shell conditions for three-point ampli-

tudes imply pi · pj = 0 for all pairs of particles, which in terms of spinors reads

〈12〉[12] = 0, 〈23〉[23] = 0, 〈31〉[31] = 0. (2.31)

Clearly, this entails that at least two spinor products of the same type are vanishing. Let

us assume that

〈12〉 = 0, 〈23〉 = 0. (2.32)

The spinor product 〈ij〉 vanishes iff |i〉 and |j〉 are parallel. Then (2.32) implies that |1〉 is

parallel to |2〉 and |2〉 is parallel to |3〉. Together this entails that |1〉 is parallel to |3〉 and

〈13〉 = 0. (2.33)

Hence, we conclude that the kinematics of massless three-point amplitudes implies that at

least one type of spinor products vanishes simultaneously for all pairs of particles. For real

momenta [ij] = 0 implies 〈ij〉 = 0 and vice versa. Then all spinor products vanish and M
can only be a constant. Taking into account (2.3), (2.4) one finds that this constant ampli-

tude corresponds to three scalar fields, while all amplitudes for spinning fields are vanishing.

To have non-trivial amplitudes for spinning fields, one allows momenta to be complex.

This leaves one with an option of setting either all 〈ij〉 to zero and leaving [ij] non-vanishing

or vice versa. This, in turn, implies thatM splits into the holomorphic and antiholomorphic

parts

M =M(〈ij〉) +M([ij]). (2.34)

Finally, let us fix helicities hi of particles on external lines. Helicity constraints (2.3),

(2.4) on the fields carry over to the amplitude itself, so we obtain

1

2

(
λ̄iα̇

∂

∂λ̄iα̇
− λiα

∂

∂λiα

)
M(h1, h2, h3) = hiM(h1, h2, h3), ∀i. (2.35)
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This implies

M(h1, h2, h3) = gh[12]d12,3 [23]d23,1 [31]d31,2 + ga〈12〉−d12,3〈23〉−d23,1〈31〉−d31,2 , (2.36)

where gh and ga are two arbitrary coupling constants and

d12,3 ≡ h1 + h2 − h3, d23,1 ≡ h2 + h3 − h1, d31,2 ≡ h3 + h1 − h2. (2.37)

By demanding that the amplitude is non-singular in the limit of real momenta we find

gh = 0 for h < 0,

ga = 0 for h > 0,
(2.38)

where h ≡ h1 + h2 + h3 is the total helicity.

To summarize, Poincare covariance implies that three-point amplitudes of massless

particles are given by (2.29) with M defined in (2.36). Moreover, when the total helicity

is positive, only the antiholomorphic part may be non-vanishing, while for negative total

helicity, only the holomorphic part can be non-trivial. In particular, when the total helicity

is zero, both terms in (2.36) are allowed.

It is interesting to compare (2.38) with the analogous conditions found in the light-cone

deformation procedure [35]. In the light-cone approach analogous conditions result from

imposing locality and differ in one respect: vertices with the total helicity being zero require

non-local boost generators, unless all helicities are vanishing. In other words, unlike the

spinor-helicity approach, in the light-cone deformation procedure vertices with the total

helicity zero are not admissible, unless all fields are scalars.5

3 Massless representations in AdS4

In the following sections we will generalize the flat space discussion reviewed in the previous

section to AdS4 space. Our starting point is a deformation of (2.1) to AdS4 space given by

Jαβ = i

(
λα

∂

∂λβ
+ λβ

∂

∂λα

)
,

J̄α̇β̇ = i

(
λ̄α̇

∂

∂λ̄β̇
+ λ̄β̇

∂

∂λ̄α̇

)
,

Pαα̇ = λαλ̄α̇ −
1

R2

∂

∂λα
∂

∂λ̄α̇
.

(3.1)

It is not hard to check that the generators given above form the familiar algebra of isome-

tries of AdS4 with R being the AdS radius. As in flat space, all generators commute with

the helicity operator (2.3), which allows us to split the representation space into subspaces

with definite helicity. Moreover, it is straightforward to check that h = ±s have the right

5One can argue away these amplitudes in the spinor-helicity representation as well, but this requires to

analyze consistency of higher-point functions [12].
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values of the Casimir operators for a massless spin s representation. In particular, the

value of the quadratic Casimir operator

C2(so(3, 2)) ≡ 1

2
JABJ

AB =
R2

2
εαβεα̇β̇Pαα̇Pββ̇ +

1

4
εαδεβρJαβJδρ +

1

4
εα̇δ̇εβ̇ρ̇J̄α̇β̇J̄δ̇ρ̇, (3.2)

where JAB are the standard so(3, 2) generators, for (3.1) is

C2(so(3, 2)) = 2(h2 − 1). (3.3)

This realization of massless representations in AdS4 is widely used in higher-spin theories

and is often referred to as the twisted adjoint representation [60, 61].

4 AdS4 geometry

Before moving to plane-wave solutions, let us first choose convenient coordinates and in-

troduce the necessary elements of the background geometry.

For our purposes it will be helpful to make Lorentz symmetry manifest. For this

reason we choose coordinates, that may be regarded as a generalization of the stereographic

coordinates on a sphere to AdS space. To be more precise, one can start from the familiar

description of AdS space as a hyperboloid

XMXM = −R2, M = 0, 1, . . . , 4 (4.1)

embedded into a five-dimensional space with flat metric diag(−1, 1, 1, 1,−1). By making the

stereographic projection from (0, 0, 0, 0,−R) to X4 = 0 hyperplane followed by a rescaling

by a factor of two, we end up with new coordinates xa, related to the ambient coordinates by

Xa =
4xaR2

4R2 − x2
, X4 = R

4R2 + x2

4R2 − x2
, (4.2)

xa =
2Xa

1 +X4/R
. (4.3)

In these coordinates the metric reads

ds2 = G−2ηµνdx
µdxν , (4.4)

where

G ≡ 1− x2

4R2
(4.5)

and the AdS boundary is given by x2 = 4R2.

Stereographic projection (4.2), (4.3) maps X4 < −R to x2 > 4R2, −R < X4 < R to

x2 < 0 and X4 > R to 0 < x2 < 4R2. We will refer to x2 < 4R2 and x2 > 4R2 as inner and

outer patches respectively, while their union will be referred to as global AdS. For points of

AdS space with X4 = −R the stereographic map degenerates: each generatrix of this cone

maps to a point at infinity along a null direction in intrinsic coordinates, while genuine

infinite points in intrinsic coordinates correspond to (0, 0, 0, 0,−R) in ambient space.
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To deal with spinors in curved space one introduces a local Lorentz frame by means

of the frame field

gµν = eµ|
aeν|

bηab, ηab = eµ|ae
ν|
bgµν , eµ|

aeν|b = δab . (4.6)

Here µ is a one-form index, while a, b = 0, 1, 2, 3 are local Lorentz indices. We choose the

local Lorentz basis to be

eµ|
a = G−1δaµ. (4.7)

As usual, the frame field is used to convert tensor fields from the coordinate to the local

Lorentz basis and back, e.g.

Aaµ = eµ|
aAµ, Aµ = eµ|aA

a . (4.8)

Moreover, local Lorentz indices are raised and lowered using the Minkowskian metric η.

We will use the following notation for the covariant derivatives of space-time tensors

∇νvλ ≡ ∂νvλ − Γν|
ρ
λvρ, ∇νvλ ≡ ∂νvλ + Γν|

λ
ρv
ρ, (4.9)

where

Γν|
ρ
λ =

1

2R2
G−1

(
xνδ

ρ
λ + xλδ

ρ
ν − xρηνλ

)
(4.10)

are the Christoffel symbols for the torsion-free and metric-compatible connection. Covari-

ant derivatives of Lorentz tensors are given by

∇νva ≡ ∂νva + ων|
a,
bv
b, ∇νva ≡ ∂νva − ων|b,avb = ∂νva + ων|a,

bvb, (4.11)

where ω is the spin connection. Metric compatibility requires that it is antisymmetric

0 = ∇νηab = ∂νηab − ων|c,aηcb − ων|c,bηac = −(ων|b,a + ων|a,b). (4.12)

Moreover, one requires that the frame field is covariantly constant

0 = ∇νeµ|a = ∂νeµ|
a − Γν|

ρ
µeρ|

a + ων|
a,
beµ|

b, (4.13)

or, in other words, covariant derivatives (4.9) and (4.11) are compatible. One can solve (4.13)

for ω, which leads to

ωc|a,d ≡ eµ|cωµ|a,d =
1

2R2
(ηcaxd − ηcdxa). (4.14)

The action of so(3, 2) on space-time tensors is realized by properly normalized Lie

derivatives along Killing vectors. For example, deformed translations act on scalars as

Piϕ = −i
(

1 +
x2

4R2

)
δνi

∂

∂xν
ϕ+ i

xi
2R2

xµ
∂

∂xµ
ϕ. (4.15)

Isometries also act on local Lorentz indices. This action can be derived by requiring

consistency of the action of the isometries on the space-time indices and relations like (4.8)

that connect the two bases. Alternatively, one can notice that our choice of the frame
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field (4.7) is not invariant under isometries unless diffeomorphisms are supplemented with

the appropriate local Lorentz transformations. In particular, considering that the frame

field is a one-form, deformed translations act on it as follows

(Pie)aµ = −G−1 i

2R2
(xνδ

a
i − ηiνxa) . (4.16)

To make the action of deformed translation consistent with our choice of the frame field,

we must supplement them with local Lorentz transformations so that

(Pi + δPL
i )e = 0. (4.17)

This leads to

(δPL
i v)a = (ζi)

a
bv
b, (ζi)

a
b =

i

2R2
(xbδ

a
i − ηibxa). (4.18)

Local Lorentz indices can be converted to local spinor ones using the standard vector-

spinor dictionary. In particular, all formulae of this section can be translated to spinor

notations. These can be found in appendix B.

5 Plane waves for field strengths

As in flat space, to connect representation (3.1) realized in terms of differential operators

in sl(2,C) spinor space with the space-time fields, we need to find plane-wave solutions.

These will serve as intertwining kernels between the spinor-helicity and the space-time

representations.6 In this section we discuss plane-wave solutions for field strengths.

Let us consider helicity h ≥ 0 field. Then, to saturate the homogeneity degree in spinor

variables according to (2.3), (2.4), we consider an ansatz

Fγ̇1...γ̇2h(x, λ, λ̄) = λ̄γ̇1 . . . λ̄γ̇2hf(x, λ, λ̄), (5.1)

where f has helicity zero. Next, Lorentz invariance requires that all spinor indices are

covariantly contracted. This means that f can only depend on two scalars a and b, see (2.7).

Finally, we have to require that deformed translations act consistently in the space-time

and the spinor-helicity representations(
−i
(

1 +
x2

4R2

)
(σa)αα̇δ

µ
a

∂

∂xµ
+ i(σa)αα̇

xa
2R2

xµ
∂

∂xµ
+ (δPL

αα̇)

)
λ̄γ̇1 . . . λ̄γ̇2hd(a, b)

=

(
λαλ̄α̇ −

1

R2

∂

∂λα
∂

∂λ̄α̇

)
λ̄γ̇1 . . . λ̄γ̇2hd(a, b).

(5.2)

Equation (5.2) has many components and for each of them it should be satisfied. Its

independent components can be systematically found by taking λα, (xλ̄)α ≡ xαα̇λ̄
α̇ to be

the basis for holomorphic spinors and λ̄α̇, (xλ)α̇ ≡ xαα̇λ
α for antiholomorphic ones. In

practice, however, using

xαα̇ =
b

2a
λαλ̄α̇ +

1

a
xαβ̇λ̄

β̇λβxβα̇, (5.3)

6Interpretation of plane waves as intertwining kernels was used in [62, 63] to derive plane-wave solutions

for massive scalar and massive spin- 1
2

fields in AdS4.
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we encounter only three different structures

xαµ̇λ̄
µ̇λ̄α̇λ

βxβγ̇1 λ̄γ̇2 . . . λ̄γ̇2h + . . . , λαλ̄α̇λ̄γ̇1 . . . λ̄γ̇2h , xαα̇λ̄γ̇1 . . . λ̄γ̇2h , (5.4)

which are, clearly, linearly independent. In (5.4) the omitted terms for the first structure

make the expression symmetric in γ̇i.

The equation associated with the first spinor structure reads

∂d

∂a
= − i

2
d, (5.5)

for which the solution is

d(a, b) = g(b)e−
i
2
a. (5.6)

With (5.6) taken into account, the equation for the second structure is satisfied identically.

Finally, considering the last structure, we find(
1 +

b

8R2

)
dg

db
=

1 + h

8R2
g. (5.7)

Within the class of genuine functions, the solution to the above equation is

g(t) = C1

(
1 +

b

8R2

)1+h

. (5.8)

From the analysis of section 8 it will be clear that plane waves associated with solu-

tion (5.8) are not sufficient to generate all amplitudes consistent with symmetries. To be

able to reproduce the missing amplitudes, one should also consider distributional solutions

to (5.7). Namely, this equation can also be solved as

g(t) = C11

(
1 +

b

8R2

)1+h

+

+ C12

(
1 +

b

8R2

)1+h

−
, (5.9)

where x+ ≡ xθ(x) and x− ≡ −xθ(−x). Indeed, (5.7) can be brought to the form

xf ′(x) = λf(x). (5.10)

In the class of distributions, for λ being not a negative integer (5.10) has the general

solution [64]

f(x) = C1x
λ
+ + C2x

λ
−. (5.11)

Discontinuity of solutions at x = 0 is related to the fact that the higher-derivative term of

the differential equation vanishes at this point.

Collecting everything together, we have found the following two independent plane-

wave solutions so far

F
r|i
α̇1...α̇2h

= λ̄α̇1 . . . λ̄α̇2h

(
1− x2

4R2

)1+h

+

eipx,

F
r|o
α̇1...α̇2h

= λ̄α̇1 . . . λ̄α̇2h

(
1− x2

4R2

)1+h

−
eipx.

(5.12)
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Here label r refers to the fact that these solutions are regular in the space-time, while labels

i or o refer to the support of the solutions — that is to the inner or to the outer patches.

Along with these solutions, one can consider7

F
r|g
α̇1...α̇2h

= λ̄α̇1 . . . λ̄α̇2h

(
1− x2

4R2

)1+h

eipx, (5.13)

which is supported on the global patch. It is worth stressing, however, that for fermionic

fields the analytic continuation across the interface between the patches is ambiguous due

to the presence of square roots. Both these continuations are equally consistent with the

analysis of symmetries we performed above.

Besides (5.1), one can consider other ways to saturate homogeneity degrees in spinor

variables required by the helicity constraint. Another way that leads to a solution is

Fγ1...γ2h(x, λ, λ̄) = (xλ̄)γ1 . . . (xλ̄)γ2hd(a, b). (5.14)

Again, we get three independent spinorial structures, which give us three scalar equations.

First, considering the equation for the structure

(xλ̄)αλ̄α̇λγ1(xλ̄)γ2 . . . (xλ̄)γ2h + . . . (5.15)

we find

b
∂d

∂a
= 4R2id, (5.16)

which, in the class of genuine functions, gives

d(a, b) = g(b)exp

(
i
4R2

b
a

)
. (5.17)

With (5.17) taken into account, the equation for

λαλ̄α̇(xλ̄)γ1 . . . (xλ̄)γ2h (5.18)

is trivially satisfied. Finally, the equation for

xαα̇(xλ̄)γ1 . . . (xλ̄)γ2h (5.19)

leads to (
1 +

b

8R2

)
dg

db
= − h

8R2
g − 2h+ 1

b
g. (5.20)

Again, focusing on solutions given by genuine functions, we find

g(t) = C2b
−1−2h

(
1 +

b

8R2

)1+h

. (5.21)

In the distributional sense, solution (5.17), (5.21) is valid everywhere away from singu-

lar points of the equations. These are b = 0 and b = −8R2, where higher derivative terms

7Solution F r|g was found in [65] using different methods. It is also implicitly present in the twistor

literature [66, 67].
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in (5.16), (5.20) vanish. As in the example we considered before, one may expect that this

solution can be truncated to domains, separated by these singularities. However, the fact

that the solution is itself singular at b = 0 further complicates the analysis. Namely, to

solve (5.16), (5.20) in the distributional sense, one has to carefully define the associated

distributions by integrating them against test functions and properly regularizing them.

Then one should study how derivatives act on these distributions and, finally, solve the

equations. We leave this analysis for future research. For now, we will write the solution as

g(t) = C21 b
−h
(

1 +
8R2

b

)1+h

+

+ C22 b
−h
(

1 +
8R2

b

)1+h

−
. (5.22)

The solutions of the second type are then given by

F s|i
α1...α2h

=
(xλ̄)α1 . . . (xλ̄)α2h

(x2)h

(
1− 4R2

x2

)1+h

+

eipx
4R2

x2 ,

F s|o
α1...α2h

=
(xλ̄)α1 . . . (xλ̄)α2h

(x2)h

(
1− 4R2

x2

)1+h

−
eipx

4R2

x2 .

(5.23)

Here the label s refers to the fact that the solutions are singular at x2 = 0. One can also

consider their linear combination of the form

F s|g
α1...α2h

=
(xλ̄)α1 . . . (xλ̄)α2h

(x2)h

(
1− 4R2

x2

)1+h

eipx
4R2

x2 . (5.24)

Again, due to the presence of square roots, analytic continuation across the interfaces is

ambiguous for fermionic fields.

Note that the inversion

xµ ↔ xµ
4R2

x2
(5.25)

maps singular and regular solutions to each other, at least, for x2 < 0, see appendix B for

details. It is easy to see that when translated to ambient space terms, the inversion acts

as the reflection with respect to the origin.

Flat space limit of (5.12), (5.13), (5.23), (5.24) is straightforward. In particular, F r|i

and F r|g reduce to the familiar flat space plane waves when R → ∞. Let us also note

another relation with the flat plane-wave solutions. Massless representations are known

to be conformally invariant in four dimensions [68–70]. So is their description in terms

of fields strengths, while the description in terms of potentials breaks the conformal in-

variance except for the spin one case. Considering that anti-de Sitter space is conformally

equivalent to the Minkowski space, one can anticipate that upon dressing the solutions for

field strengths in flat space with the appropriate powers of the conformal factor one should

produce the associated solutions in AdS. This is exactly what we observe in (5.13): F r|g

is given by the flat space solution times a certain power of the conformal factor, see (4.4).

6 Plane waves for potentials

In the present section we will study plane-wave solutions for potentials associated with the

field strengths found in the previous section. For simplicity, we will focus on solutions of

the type F r|g. Other solutions can be found similarly.
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To find the potentials, we will consider the AdS counterparts of (2.10) and (2.18), take

F to be equal to F r|g and then solve these equations for ϕ. As in flat space, this procedure

allows us to define the potentials up to the gauge freedom. This gauge freedom can be

fixed in many different ways and our goal is to fix it in a way that mimics the flat-space

spinor-helicity gauge (2.12), (2.20) as closely as possible.

As we reviewed in section 2.1, the spinor-helicity gauge has three remarkable properties:

the potentials in this gauge are traceless, divergence-free and transverse to a given null

vector. One can easily suggest natural generalizations of each of these conditions to AdS

space. However, a simple inspection shows, that the resulting conditions in AdS space

cannot be satisfied simultaneously.

Having tried various possibilities, we found it most natural to keep the condition of

transversality to a given null vector intact, that is

qbϕba2...ah = 0, qbϕα|ba2...ah = 0 (6.1)

for bosonic and fermionic fields respectively. There is a couple of reasons to do that. The

main one is that the gauge condition (6.1) can always be achieved and, moreover, fixes the

gauge completely.8 Another reason is that the transversality of the polarization vector to

an auxiliary null vector that can be chosen arbitrarily — in particular, as a momentum

of a particle, appearing on one of the other external lines — is an inherent feature of the

spinor-helicity formalism in flat space and it makes computations of higher-point ampli-

tudes more efficient. Thus, we will require (6.1) in AdS space as well and refer to it as the

spinor-helicity gauge.

In the remaining part of this section we solve for the q-transverse plane wave potentials

with spin up to two. Spin-0 and spin- 1
2 cases are trivial as the potentials coincide with the

field strengths. Due to conformal invariance, the analysis of the spin-1 case is identical to

that in flat space. The remaining spin- 3
2 and spin-2 cases turn out to be non-trivial.

6.1 Spin 1

As a warmup exercise, let us consider the spin-1 case. In AdS space the spin-1 gauge

transformation is

δAµ = ∇µξ = ∂µξ (6.2)

and the associate gauge-invariant field strength reads

Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ. (6.3)

From (5.13) we can see that the AdS field strength Fab is equal to the flat one times G2.

Then, converting its local Lorentz indices to the space-time ones, we find that Fµν in AdS

space is identically equal to the field strength in flat space. So, we can solve (6.3) as in flat

space, that is

Aµ = − i
2

(σµ)α̇αµαλ̄α̇
µβλβ

eipx, Aαα̇ = i

(
1− x2

4R2

)
µαλ̄α̇
µβλβ

eipx. (6.4)

8This is the case when the appropriate boundary conditions are imposed at infinity. Otherwise, there is

a residual symmetry, which will be discussed below.
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6.2 Spin 3
2

There are two spin- 3
2 potentials that we will denote ψν|α and ψ̄ν|α̇. Their gauge transfor-

mations are given by

δψν|α = ∇νξα ±
1

2R
eν|α

α̇ξ̄α̇, δψ̄ν|α̇ = ∇ν ξ̄α̇ ±
1

2R
eν|α̇

αξα. (6.5)

The associated field strengths are

Fµν|α = ∇µψν|α ±
1

2R
eµ|α

α̇ψ̄ν|α̇ − (ν ↔ µ)

F̄µν|α̇ = ∇µψ̄ν|α̇ ±
1

2R
eµ|α̇

αψν|α − (ν ↔ µ).

(6.6)

As usual, both (6.5) and (6.6) can be found by making the most general ansatze involving

no more than one derivative and fixing coefficients by requiring gauge invariance of field

strengths. The sign ambiguity can be absorbed by a redefinition of the frame field. In

what follows we will consider (6.5), (6.6) with the plus sign.

6.2.1 Fixing an ansatz

In the spinor language the transversality condition (6.1) for ψ and ψ̄ reads

µβµ̄β̇ψββ̇|α = 0, µβµ̄β̇ψ̄ββ̇|α̇ = 0. (6.7)

We are going to look for helicity −3
2 solution, which constrains the homogeneity degrees

of both ψ and ψ̄ in λ and λ̄ according to (2.3), (2.4). Moreover, neither the on-shell value

of F nor operations involved in (6.6) depend on µ and µ̄. This implies that ψ and ψ̄ may

only have homogeneity degrees zero in both µ and µ̄. These considerations together fix the

ansatz for the potentials to be

ψββ̇|α = k1

λαλβµ̄β̇
[µλ]

+ k2

λαµβµ̄β̇
[µλ]〈µxλ]

+ k3

λαµβλ̄β̇
〈µxλ]2

〈µλ〉

+ k4

µαλβµ̄β̇
[µλ]〈µxλ]

+ k5

µαµβµ̄β̇
[µλ]〈µxλ]2

+ k6

µαµβλ̄β̇
〈µxλ]3

〈µλ〉
(6.8)

for ψ and

ψ̄β̇β|α̇ = l1
λ̄α̇λ̄β̇µβ

〈µxλ]3
〈µλ〉2 + l2

λ̄α̇µ̄β̇µβ

[µλ]

〈µλ〉
〈µxλ]2

+ l3
λ̄α̇µ̄β̇λβ

[µλ]

〈µλ〉
〈µxλ]

+ l4
µ̄α̇λ̄β̇µβ

[µλ]

〈µλ〉
〈µxλ]2

+ l5
µ̄α̇µ̄β̇µβ

[µλ]2〈µxλ]
+ l6

µ̄α̇µ̄β̇λβ

[µλ]2

(6.9)

for ψ̄. Here ki and li are yet to be determined functions

ki = ki(a, b, c), li = li(a, b, c) (6.10)

of a and b defined in (2.7) and

c ≡ xαα̇µ
αµ̄α̇

µβλβµ̄β̇λ̄β̇
. (6.11)

All these variables have vanishing helicities and homogeneity degrees in µ and µ̄. It is not

hard to show that all other scalar variables satisfying this property can be expressed in

terms of a, b and c.
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6.2.2 Solving for potentials

The strategy of the derivation of ψ and ψ̄ is now straightforward. Namely, we take the

ansatz (6.8), (6.9) for the potentials, evaluate the associated field strengths and equate

them to a regular solution in global AdS space for h = −3
2 , (5.13). To be more precise,

after translating field strengths (6.6) to the local Lorentz frame and converting the result

to spinors, we should obtain

Fβγ|α = λαλβλγ

(
1 +

b

8R2

) 5
2

e−i
a
2 , Fβ̇γ̇|α = 0,

F̄βγ|α̇ = 0, F̄β̇γ̇|α̇ = 0.

(6.12)

Considering that Fβγ|α is symmetric in β and γ, it has six independent components.

The same refers to Fβ̇γ̇|α, Fβ̇γ̇|α̇ and Fβγ|α̇. Hence, in total the field strength has twenty-four

components. As for the potentials, we use λ, λ̄, µ and µ̄ as a basis for tensor structures.

To obtain the contribution associated with each individual structure one can contract an

expression with the appropriate combination of spinors, that annihilates all structures

except a given one. For example, contraction with µαµβµγ annihilates all components of

Fβγ|α except the one, proportional to λαλβλγ .

Proceeding along these lines, (6.12) gives twenty-four differential equations for twelve

unknown functions ki and li of three variables a, b and c, which then should be solved.

This computation is straightforward, but tedious. We give it in some detail in appendix C,

while here we only quote the result. Namely, we find that a particular solution for the

potential is given by (6.8), (6.9) with

k1 = −i
√

1 +
b

8R2

(
1 +

b

8R2
− 1

2R2
ic

)
e−

ia
2 ,

k4 = − 1

4R2
(b− 2ac)

√
1 +

b

8R2
e−

ia
2 ,

l6 =
1

R

√
1 +

b

8R2
e−

ia
2

(6.13)

and other coefficient functions vanishing. The general solution of (6.12) is given by (6.13)

plus the general solution of the homogeneous equation, that is when the field strength is

identically zero. Obviously, the latter solution corresponds to residual gauge transforma-

tions (6.5) for the gauge condition (6.7). As we demonstrate in appendix C, these have

different functional dependence on a, b and c compared to (6.13), in particular, they do

not allow exponential dependence on a. Based on these considerations we make our choice

of the particular solution (6.13) of the inhomogeneous equation.

Finally, we note that the solution that we found, in fact, satisfies a stronger condition

than (6.7), namely,

µ̄β̇ψββ̇|α = 0, µ̄β̇ψ̄ββ̇|α̇ = 0. (6.14)

The same is also true in flat space. Given that (6.14) does not involve µ, it makes sense

to expect that the potentials do not depend on µ at all, while they still may depend on µ̄.
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Indeed, trading the holomorphic spinor basis {λα, µα} for {λα, (xλ̄)α}, we find

ψββ̇|α = −

(
i

(
1 +

b

8R2

) 3
2

+
1

4R2

b

a

(
1 +

b

8R2

) 1
2

)
e−i

a
2

λαλβµ̄β̇
[µλ]

+
1

2R2

1

a

(
1 +

b

8R2

) 1
2

e−i
a
2

xαα̇λ̄
α̇λβµ̄β̇

[µλ]2
〈µxλ],

ψ̄β̇β|α̇ =
1

R

(
1 +

b

8R2

) 1
2

e−i
a
2

µ̄α̇µ̄β̇λβ

[µλ]2
.

(6.15)

6.3 Spin 2

To find the helicity-2 potential we proceed in a similar manner. The gauge transformations

are given by

δhµν = ∇µξν +∇νξµ (6.16)

and the gauge-invariant field strength is

Fµνρλ = ∇ρ∇µhνλ −∇ρ∇νhµλ −∇λ∇µhνρ +∇λ∇νhµρ

− 1

R2
(gνλhµρ − gνρhµλ − gµλhνρ + gµρhνλ) .

(6.17)

Next, we make the most general ansatz for the potentials in the spinor form that satisfies

µβµ̄β̇hαα̇ββ̇ = 0 (6.18)

and has the appropriate homogeneity degrees in λ, λ̄, µ and µ̄. This gives

hαβ,α̇β̇ = k1

µαµβλ̄α̇λ̄β̇
〈µλ〉2

+ k2

µαµβ(µ̄α̇λ̄β̇ + µ̄β̇λ̄α̇)

〈µλ〉2〈λxµ]
+ k3

µαµβµ̄α̇µ̄β̇
〈µλ〉2〈λxµ]2

+ k4

(µαµ̄β̇λ̄α̇λβ + µ̄α̇µβλαλ̄β̇)

〈µλ〉〈λxµ]2
[µλ] + k5

µ̄α̇µ̄β̇(µαλβ + µβλα)

〈µλ〉〈λxµ]3
[µλ]

+ k6

µ̄α̇µ̄β̇λαλβ

〈λxµ]4
[µλ]2

(6.19)

with ki being arbitrary functions of a, b and c.

Then we evaluate the field strength (6.17) for this ansatz and require that all its

components are vanishing except

F̄α̇β̇γ̇δ̇ = λ̄α̇λ̄β̇λ̄γ̇ λ̄δ̇

(
1− x2

4R2

)3

eipx. (6.20)

The solution is then defined up to a residual gauge freedom that we fix in the same way

as for the spin-3
2 case. Finally, as in the spin- 3

2 case we find that the solution, actually,

satisfies

µβhαα̇ββ̇ = 0 (6.21)
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and that the µ̄ dependence can be entirely eliminated. The end result is

hαα̇,ββ̇ = −
(

1 +
b

8R2
− i

2R2

b

a

)
e−i

a
2

µαµβλ̄α̇λ̄β̇
〈µλ〉2

− i

2R2

1

a
e−i

a
2

µαµβ(λγxγα̇λ̄β̇ + λγxγβ̇λ̄α̇)

〈µλ〉3
〈µxλ]

(6.22)

Further details of this analysis are given in appendix D.

6.4 Higher-spin potentials

A method of derivation of the plane-wave solutions in terms of potentials we employed above

was straightforward, but tedious. Further generalizations of our results to the higher-spin

case along the same lines are possible, but are expected to be even more complex, especially,

due to the complicated form of the field strengths in AdS space, see e.g. [71]. At the same

time, simple form of plane-wave solutions for the potentials that we obtained in the lower-

spin case suggests that there could be alternative and more economical approaches to a

given problem.

For example, one may attempt to construct higher-spin potentials from lower-spin ones

by applying helicity-changing operators. To be more precise, by making an ansatz for the

most general operator with the right index structure and homogeneity degrees in λ, λ̄, µ and

µ̄ and requiring that it commutes with Pαα̇, one should be able to construct an operator that

raises or lowers helicity of the potential by one. Then, by applying such operators multiple

times to known potentials, one can generate a potential of any given helicity. One can

further simplify this analysis by taking into account our observation that the dependence

on one of the reference spinors drops out. The idea of helicity-changing operators will be

successfully applied to generate three-point amplitudes in section 9. Explicit analysis of

the helicity-changing operators for the potentials will be given elsewhere.

Finally, we mention that in a different gauge a somewhat implicit solution for the

potentials associated with plane waves F r|g was given in [65].

7 Scattering amplitudes from space-time integrals

In anti-de Sitter space tree-level scattering amplitudes can be defined as the classical action

evaluated on the solutions to the linearized equations of motion. The solutions of the

linearized equations that we will be using in this computation are the plane waves that

we derived in the previous section. This definition of amplitudes in AdS space can be

regarded as a straightforward generalization of the associated definition in flat space. It

is also related to the holographic amplitudes computed by Witten diagrams by a mere

change of a basis for the states appearing on external lines. In the following we will focus

on amplitudes involving regular plane-wave solutions.
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All integrals that we will encounter will be of the following type [64]

Ir|i
λ ≡

∫
d4x

(
1− x2

4R2

)λ
+

eipx

= 2λ+6Γ(λ+ 1)πiR4

[
e−iπ(λ− 1

2
)Kλ+2(−2iR(p2 + i0)

1
2 )

(−2iR(p2 + i0)
1
2 )λ+2

− c.c.

]
,

Ir|o
λ ≡

∫
d4x

(
1− x2

4R2

)λ
−
eipx

= 2λ+6Γ(λ+ 1)πiR4

[
ei
π
2
Kλ+2(−2iR(p2 + i0)

1
2 )

(−2iR(p2 + i0)
1
2 )λ+2

− c.c.

]
,

(7.1)

where c.c. denote complex conjugated terms. This formula is valid for all λ except negative

integers, for which the above integrals diverge. Somewhat formally, these integrals can be

evaluated as

Ir|i
λ = (2π)4

(
1 +

�p

4R2

)λ
+

δ4(p), Ir|o
λ = (2π)4

(
1 +

�p

4R2

)λ
−
δ4(p), (7.2)

which is the result of performing the Fourier transform according to a rule x2 → −�P . We

will be primarily interested in the case of λ being non-negative integer, λ = n. Then one

can show that the formal computation

Ir|g
n = Ir|i

n + (−1)nIr|o
n = (2π)4

(
1 +

�p

4R2

)n
δ4(p), (7.3)

is consistent with the rigorous formula (7.1), once the right-hand sides of (7.1) are under-

stood as distributions and appropriately regularized [64].

7.1 Simple examples

In this section we evaluate a number of amplitudes, which, in effect, do not require the

knowledge of the potentials in AdS space and for that reason can be computed easily.

Scalar self-interactions. Consider a theory of a scalar field ϕ with self-interaction

Sn =
1

n!

∫
d4x
√
−gϕn. (7.4)

We would like to compute the contact n-point diagram. Substituting regular global

plane-wave solutions (5.13) with helicity zero and computing the integral with the aid

of (7.1)–(7.3), we find

Ar|g
n = Ir|g

n−4. (7.5)

Similarly, for regular plane-wave solutions supported on the inner and outer patches we

obtain

Ar|i
n = Ir|i

n−4, Ar|o
n = Ir|o

n−4. (7.6)
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As it was noted before, singular solutions are related to regular ones by the inversion.

Making the associated change of variables, one can compute amplitudes that involve only

singular plane-wave solutions. In particular, one finds that

Ar|g
n = As|g

n . (7.7)

Similar relations hold for other patches. Amplitudes involving simultaneously regular and

singular solutions are harder to compute.

Interactions involving field strengths. Consider a theory with a vertex

S3 =
1

2

∫
d4x
√
−gϕF̄ α̇β̇F̄α̇β̇ + c.c.. (7.8)

Proceeding in a similar manner, for an antiholomorphic three-point amplitude on different

patches we find

Ar|i
3 = [23]2Ir|i

1 , Ar|o
3 = [23]2Ir|o

1 , Ar|g
3 = [23]2Ir|g

1 (7.9)

and similarly for the complex conjugate part. This example can be straightforwardly

extended in two ways: to include higher-spin field strengths and to increase the number of

fields in a vertex. Computation of amplitudes in all these examples is similar.

Yang-Mills theory. The Yang-Mills theory is classically conformally invariant, so one

may expect that its amplitudes, at least at tree-level, are identical to those in flat space.9

Indeed, making the computation for lower-point cases, we find that all conformal factors

cancel out and the AdS result coincides with the flat one. In particular, for the three-point

amplitude we find

Ar|g
3 =

[12]3

[23][31]
Ir|g

0 (7.10)

and, similarly, for its complex conjugate.

7.2 Genuine three-point amplitudes

In the present section we will study more complicated examples. The interaction vertices

we will consider cannot be written in terms of field strengths, nor are they conformally

invariant. Our goal here is to illustrate the genuine AdS spinor-helicity machinery, that is

relevant for amplitudes that do not involve internal propagators.

9The validity of this statement certainly depends on issues such as the choice of labelling of the AdS

plane-wave solutions and the choice of the AdS patch we integrate over. As we mentioned before, F r|g differ

from the standard plane-wave solutions in the Minkowski space by a certain power of the conformal factor.

These conformal factors eventually go away for amplitudes in conformal theories. For other labelings and

patches the result is different.
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7.2.1 Spin 0 − 1
2
− 3

2
amplitude

Below we consider the AdS space version of the flat space computation presented in sec-

tion 2.2. The AdS deformation of vertex (2.22) is given by

S3 =

∫
d4x
√
−g
(
ψµ|α∇µχαφ− ψµ|αχα∇µφ−

1

2R
ψ̄µ|α̇e

µ|α̇
αχ

αφ

)
+ c.c.. (7.11)

It is straightforward to check that it is invariant with respect to spin- 3
2 gauge transforma-

tions (6.5), once the free equations of motion are taken into account(
� +

2

R2

)
φ ≈ 0,

eµ|αα̇∇µχα ≈ 0 ⇒
(
� +

3

R2

)
χα ≈ 0.

(7.12)

Interaction vertex (7.11) is present in gauged supergravities [72].

It is easy to see that (7.11) cannot be expressed in terms of field strengths. Indeed,

on-shell the only non-vanishing component of the field strength for ψ carries three spinor

indices that have nothing to be contracted with. One can also see that (7.11) is not confor-

mally invariant simply by counting scaling dimensions. Hence, none of the simplifications

encountered before take place in a given example and we have to deal with the full-fledged

AdS spinor-helicity machinery.

Now we move on to the evaluation of the amplitude. First we plug explicit expres-

sions for the metric, frame field and connections of the background geometry into (7.11).

This yields

S3 =

∫
d4x

(
1− x2

4R2

)−4 [
−
(

1− x2

4R2

)
ψββ̇|α

∂

∂xββ̇
χαφ

+

(
1− x2

4R2

)
ψββ̇|αχα

∂

∂xββ̇
φ− 1

8R2
ψγγ̇|γxβγ̇χ

βφ

− 1

8R2
ψγγ̇|αxαγ̇χγφ−

1

2R
ψ̄α̇α|α̇χ

α

]
+ c.c..

(7.13)

Next, we substitute plane-wave solutions (6.15). A somewhat lengthy computation gives

Ar|g
3 =−

∫
d4xeipx

(
1− x2

4R2

)−1

[µ1]−2[
i

2

(
i

(
1− x2

4R2

)
+

x2

4R2p1x

)(
1− x2

4R2

)
〈12〉[µ1](〈12〉[µ2]− 〈13〉[µ3])

+
i

2

1

4R2p1x

(
1− x2

4R2

)
〈2x1]〈1xµ](〈12〉[µ2]− 〈13〉[µ3])

+ 〈12〉〈1xµ][µ1]

(
− i

4R2

(
1− x2

4R2

)
− x2

32R4p1x

)
− 1

32R4p1x
〈2x1]〈1xµ]2 − 1

16R4
〈2xµ]〈1xµ]

]
.

(7.14)
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One can evaluate the x integral in (7.14) by a formal replacement x → −i∂p. The result

can then be regarded as the AdS counterpart of (2.24). However, to avoid derivatives

in the denominator, we keep the integral in the form (7.14) and proceed with further

simplifications.

Our goal is to make manipulations analogous to (2.25) in flat space. To this end we

need to understand how the momentum conservation (2.26) translates to AdS space. First,

we note a trivial identity

− 2

i

∂

∂xαα̇
eipx = (λ1αλ̄1α̇ + λ2αλ̄2α̇ + λ3αλ̄3α̇)eipx. (7.15)

Now, suppose, we would like to eliminate |2〉|2] in favor of |1〉|1] and |3〉|3] as in flat space.

In order to do that we just use

λ2αλ̄2α̇e
ipx =

(
−λ1αλ̄1α̇ − λ3αλ̄3α̇ −

2

i

∂

∂xαα̇

)
eipx. (7.16)

Then the last term on the right-hand side of (7.16) needs to be integrated by parts, thus

differentiating the remaining part of the integrand. In flat space, due to translation invari-

ance this contribution vanishes. Instead, in AdS space we have an explicit x-dependence,

which results into additional non-trivial terms.

With this clarified, we proceed as in section 2.2, except that we use the general for-

mula (7.16) when the momentum conservation needs to be used. Namely, to eliminate [µ2]

in the numerators of the second and the third lines of (7.14), we multiply the expression by

〈23〉/〈23〉 and then integrate |2〉|2] by parts using (7.16). Similar manipulations are then

done with terms involving [µ3].

The remaining terms are simplified using the Schouten identities, see (A.10). In par-

ticular, in a given computation the following identities are used

〈2xµ]〈1x1]− 〈2x1]〈1xµ] +
1

2
xαα̇x

αα̇[µ1]〈12〉 = 0,

〈12〉〈3xµ] + 〈1xµ]〈23〉 − 〈13〉〈2xµ] = 0.
(7.17)

Eventually, one finds

Ar|g
3

(
−3

2
,−1

2
, 0

)
=

∫
d4x

(
1− x2

4R2

)
〈12〉2〈31〉
〈23〉

eipx =
〈12〉2〈31〉
〈23〉

Ir|g
1 . (7.18)

A similar result holds for the complex conjugate amplitude. As we will see in the next

section, (7.18) is consistent with so(3, 2) covariance. This serves as a check of spin- 3
2

potentials we found before.

7.2.2 Spin 0 − 0 − 2 amplitude

Another example that we consider here is a cubic vertex that originates from the minimal

coupling of a scalar field to gravity, see e.g. [73],

S3 =

∫
d4x
√
−ghµνjµν , (7.19)
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where

jµν = 2(∇µφ)(∇νφ)− 2φ(∇µ∇νφ)− 3

R2
gµνφ

2, (7.20)

hµν denotes the fluctuation of gravitational field around the AdS background gµν and φ

is a scalar field. This vertex is not conformally invariant, neither it can be written in

terms of field strengths. Hence, we have to deal with all the technicalities of a genuine

spinor-helicity computation.

The analysis proceeds along the same lines as in the previous section. By substituting

the plane-wave solutions and explicit expressions for the background geometry, we find

Ar|g
3 =

1

4

∫
d4xeipx[(
i

2R2

x2

p3x
+

x2

4R2
−1

)
1

〈µ3〉2
(
〈µ1〉2[31]2 +〈µ2〉2[32]2−2〈µ1〉〈µ2〉[31][32]

)
+

i

R2

(
i

2R2

x2

p3x
+

x2

4R2
−1

)(
1− x2

4R2

)−1 〈µx3]〈µ1〉[31]+〈µx3]〈µ2〉[32]

〈µ3〉2

− 1

2R4

(
x2

4R2
−1

)(
1− x2

4R2

)−2 〈µx3]2

〈µ3〉2

+
i

2R2

〈µx3]

p3x〈µ3〉3
(
〈µ1〉2〈3x1][31]+〈µ2〉2〈3x2][32]

− 〈µ1〉〈µ2〉〈3x1][32]−〈µ1〉〈µ2〉〈3x2][31])

− 1

4R4

(
1− x2

4R2

)−1 〈µx3]

p3x〈µ3〉3
(
x2〈3µ〉〈µ1〉[31]

+〈µ1〉〈µx3]〈3x1]+x2〈3µ〉〈µ2〉[32]+〈µ2〉〈µx3]〈3x2]
)]
.

(7.21)

Next, using integration by parts, we trade 〈µ1〉 and 〈µ2〉 in the numerators for 〈µ3〉 as in

section 7.2.1. Along the way we used the Schouten identities

2p3x〈µx1] + x2〈µ3〉[31] + 〈µx3]〈3x1] = 0,

2p3x〈µx2]− x2〈µ3〉[23] + 〈µx3]〈3x2] = 0,

〈3x3][12] + 〈3x1][23] + 〈3x2][31] = 0,

〈µx3][12] + 〈µx1][23] + 〈µx2][31] = 0.

(7.22)

Eventually, after a lengthy computation, we find

Ar|g
3 (0, 0, 2) = −(2π)4 [23]2[31]2

[12]2

(
1 +

�P

4R2

)
δ4(p) = − [23]2[31]2

[12]2
Ir|g

1 . (7.23)

A similar result holds for the complex conjugate amplitude. As for the previous ampli-

tude, (7.23) together with the analysis of the next section serves as a non-trivial consistency

test of our formula for the spin-2 potential.

It would be interesting to extend the results of this section to the case of truncated

potentials, that is to the potentials associated with the solutions of the type F r|i and F r|o

in (5.12). In this case, the amplitudes involve integrations over a patch of the AdS space
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and, as a result, one may expect that integrations by parts give rise to additional boundary

terms, which, in turn, may prevent the dependence on reference spinors from cancelling

out. Though, AdS covariance of vertices and potentials that we employ suggests that this

does not happen, it would be interesting to verify this explicitly.

8 Three-point amplitudes from symmetries

In the previous section we computed several simple amplitudes in AdS4 using the spinor-

helicity representation. In this section we will consider constraints imposed on three-point

amplitudes purely from symmetry considerations. Our goal is to obtain a classification of

three-point amplitudes analogous to that reviewed in section 2.3.

To start, we remark that as in flat space, Lorentz invariance can be made manifest by

contracting all spinor indices in a Lorentz-covariant manner. Next, we consider constraints

imposed by requiring fixed helicities hi on external lines, (2.35). They can be solved as

A(h1, h2, h3) = [12]d12,3 [23]d23,1 [31]d31,2f(x, y, z), (8.1)

where

x ≡ [12]〈12〉, y ≡ [23]〈23〉, z ≡ [31]〈31〉 (8.2)

and d’s were defined in (2.37). What remains is to require invariance with respect to

deformed translations, that is

(P1|αα̇ + P2|αα̇ + P3|αα̇)A(h1, h2, h3) = 0. (8.3)

This analysis is technically involved, so here we will just review the key steps, while further

details can be found in appendix E.

Invariance with respect to deformed translations (8.3) gives four second order differen-

tial equations for one unknown function f of three variables, see (E.4). We were not able

to find a systematic approach to solve them. Still, from direct computations of amplitudes

in the previous section, one can anticipate that

AI(h1, h2, h3) = [12]d12,3 [23]d23,1 [31]d31,2Ir|i
h−1,

AII(h1, h2, h3) = [12]d12,3 [23]d23,1 [31]d31,2Ir|o
h−1,

AIII(h1, h2, h3) = 〈12〉−d12,3〈23〉−d23,1〈31〉−d31,2Ir|i
−h−1,

AIV(h1, h2, h3) = 〈12〉−d12,3〈23〉−d23,1〈31〉−d31,2Ir|o
−h−1

(8.4)

gives four solutions to (8.3), which are, moreover, linearly independent. In this context,

I’s should be understood in the form (7.1) with p2 = −(x + y + z). Next, we managed

to show that (8.3) do not have any other solutions in the class of genuine functions than

those presented in (8.4).

To do that we consider an arbitrary non-singular point (x0, y0, z0) — a point for which

coefficients of higher-derivative terms in the equations do not vanish. Then, we consider

equations (8.3) together with their derivatives and regard them as algebraic equations,
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expressing higher derivatives of f at (x0, y0, z0) in terms of lower ones. The goal is to find

how much of the initial data one has to specify at a given point, so that all derivatives of

f at this point and, hence, f itself, are completely determined. Proceeding in this manner,

one can show that f is uniquely specified by its value at (x0, y0, z0) and by values of its

three derivatives. This implies that there are four linearly independent solutions to (8.3),

which was to be demonstrated.

This argument is applicable once we are looking for solutions, given by genuine func-

tions. At the same time, we may expect that (8.3) also has distributional solutions. Lorentz

invariance imposes constraints on the domain on which these solutions are supported. Con-

sidering also constraints from fixed helicities on external lines, an ansatz supported on

p = 0 reads

A(h1, h2, h3) = [12]d12,3 [23]d23,1 [31]d31,2g(�p)δ(p). (8.5)

Imposing (8.3), we get a differential equation on g, which is a function of one variable.

This approach also leads to (8.4), where, I’s appear in the form (7.2). Further details can

be found in appendix E.

To summarize, we find that in AdS4 once helicities are fixed, symmetry consideration

alone leave room for only four consistent three-point amplitudes AI, AII, AIII and AIV

given in (8.4). This result differs from the flat space classification discussed in section 2.3

in, essentially, one respect. Namely, the flat space momentum-conserving delta functions

in AdS space get replaced with I’s, for which we have two linearly independent possibili-

ties (7.2) associated with two complementary patches of global AdS space. In addition, it

is worth emphasizing that, though, we were able to generate amplitudes of the form AI, AII

from vertices only when the total helicity h is positive and amplitudes of the form AIII, AIV

when h is negative, all four solutions are consistent with symmetry arguments indepen-

dently of the value of h. This situation is reminiscent of that in flat space, where to reduce

the number of solutions consitent with symmetries from two to one, we had to account for

addition considerations, namely, to require smooth limit for real momenta. Similarly, we

can rule out AI, AII for h < 0 and AIII, AIV for h > 0 by demanding regular flat limit.

Note that these amplitudes are also divergent, which can be seen from the gamma function

factor in (7.1).

9 Helicity-changing operators

Once a consistent amplitude is known, one can act on it with operators preserving back-

ground covariance, thus, generating other consistent amplitudes. This idea was used to

establish relations between amplitudes in different theories in flat space, see e.g. [74–78].

Similar phenomenon takes place for cubic vertices and three-point amplitudes of massless

fields of any spin: all of them quite manifestly appear in the form of a seed scalar self-

interaction acted upon by a sequence of differential operators, see e.g. [35, 54, 79–81]. The

same idea can also be used to generate more complicated Witten diagrams and confor-

mal correlators from simpler ones [22, 82–85]. In the present section we will demonstrate

how this approach can be implemented for three-point amplitudes in AdS4 in the spinor-
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helicity representation. We will call operators mapping one AdS4 spinor-helicity amplitude

to another helicity-changing operators.

The basic requirement for the helicity-changing operator is that it is Lorentz invari-

ant. Taking into account that the sl(2,C)-invariant metric is antisymmetric, one quickly

finds that one cannot construct non-trivial helicity-changing operators acting only on one

external line. Focusing on the operators acting on two external lines, we construct

D+
ij ≡ [ij] +

1

R2
εαβ

∂

∂λiα

∂

∂λjβ
,

D−ij ≡ 〈ij〉+
1

R2
εα̇β̇

∂

∂λ̄iα̇

∂

∂λ̄jβ̇
.

(9.1)

These operators are manifestly Lorentz-covariant. Moreover, the relative coefficients be-

tween the terms in D’s are chosen so that

[Pi|αα̇ + Pj|αα̇, D±ij ] = 0. (9.2)

Property (9.2) ensures that

(· · ·+ Pi|αα̇ + Pj|αα̇ + . . . )A = 0 ⇒ (· · ·+ Pi|αα̇ + Pj|αα̇ + . . . )D±ijA = 0. (9.3)

In other words, once a consistent amplitude A is available, D’s allow us to generate two

other consistent amplitudes D±ijA. Homogeneity degrees in spinors carried by D±ij imply

that D+
ij raises hi and hj by 1

2 , while D−ij lowers them by 1
2 . Operators D+

ij and D−ij can be

regarded as the AdS counterparts of flat space operators that multiply the amplitude with

[ij] and 〈ij〉 respectively.

Of course, one can apply helicity-changing operators in succession still producing con-

sistent amplitudes. In particular,

[D+
ij , D

−
ij ] =

2

R2
(Hi +Hj),

[D+
ik, D

−
jk] =

2

R2
Hij , i 6= j

(9.4)

where Hi was defined in (2.35) and

2Hij ≡ λ̄iα̇
∂

∂λ̄jα̇
− λjα

∂

∂λiα
. (9.5)

By construction, Hij is another helicity-changing operator. It raises hi by 1
2 and lowers hj

by 1
2 .

A direct computation shows that

D+
12AI(h1,h2,h3) =AI

(
h1+

1

2
,h2+

1

2
,h3

)
,

D−12AI(h1,h2,h3) =− 1

R2
(h1+h2−h3)(h1+h2+h3−1)AI

(
h1−

1

2
,h2−

1

2
,h3

)
.

(9.6)

Similar expressions can be found for AII, AIII and AIV. In other words, we confirm that

acting on a consistent three-point amplitude the helicity-changing operators allow us to
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generate other consistent amplitudes. This also serves as a consistency check for our

derivation of three-point amplitudes using other methods.

Though, we tested the idea of helicity-changing operators for three-point amplitudes

only, property (9.2) guarantees that it should be valid for higher-point functions as well.

It would be interesting to explore this further in future.

10 Conclusion and outlook

In a recent letter [52] we suggested a natural spinor-helicity formalism in AdS4 and made

first steps in developing it. In particular, we suggested a convenient way of labelling the

states appearing on the external lines of amplitudes by sl(2,C) spinors. This labelling is

defined by AdS4 plane-wave solutions, which naturally extend the standard plane waves

in flat space. With the plane-wave solutions available, we computed several simple ampli-

tudes. Next, we classified all consistent three-point amplitudes by requiring appropriate

transformation properties with respect to the AdS4 isometry algebra so(3, 2).

In the present paper we give technical details and proofs that were omitted in [52].

Moreover, previously, we only found plane-wave solutions for field strengths. In the present

paper we proposed the AdS counterpart of the flat spinor-helicity representation for the

potentials. The key property of this representation that we kept in AdS space is that

the potentials are transversal to an auxiliary light-like vector, see (6.1). Once this gauge

is fixed, we solved for the potentials associated with the plane-wave solutions for field

strengths we found before. We carried out the analysis for fields of spin up to two. Then

we used these potentials to compute amplitudes for more non-trivial vertices. These com-

putations illustrate all technical aspects relevant for the computation of diagrams without

internal lines in our approach. Overall, this analysis is very reminiscent to the flat space

one, except that in AdS space, due to the absence of translational invariance, the action

explicitly depends on coordinates. This modifies the usual momentum conservation — or,

equivalently, integration by parts — with extra terms, as well as requires to account for

additional Schouten identities, involving space-time coordinates.

The classification of three-point spinor-helicity amplitudes that we obtained is very

similar to the flat-space one [54]. In particular, as expected, it contains additional ampli-

tudes compared to those available in the approach that employs Lorentz tensors.10 This

result is also consistent with the analysis in the light-cone gauge [55]. The resulting am-

plitudes are also very reminiscent of those in flat space: they only differ by what can be

regarded as the AdS conformal factor raised to the power, that is defined by helicities on

external lines. This suggests that the associated cubic vertices can be made conformally

invariant by multiplying them with the appropriate power of the scalar field. It is nat-

ural to expect that chiral higher spin theories can be made conformally invariant in the

same way. If this is true, one would obtain a new and simple way to relate higher-spin

theories in flat and in AdS spaces: by promoting them to a parent conformal theory and

then switching between the backgrounds by means of the Weyl transformations. Let us

10For an incomplete list of references on cubic vertices in AdS, see [86–92]. Conformal three-point

correlators of conserved currents were studied in [93, 94].
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remind the reader, that the naive flat limit of higher-spin theories in AdS space is singular

as the action contains negative powers of the cosmological constant. The approach that

we sketched above may be free of this problem.

Another related problem that would be interesting to explore is the following. In [90]

the complete cubic action for higher spin theories in AdS was defined from holography.

For a vertex with a fixed triplet of spins, one can take the flat space limit smoothly if

one first rescales it by the appropriate power of the cosmological constant [95, 96]. Then,

in this limit only the highest derivative terms survive. The resulting highest derivative

vertex in flat space can be compared to the cubic action derived independently in the

light-cone gauge [35]. In [90] it was found that the coupling constants of higher-derivative

vertices in AdS4 and in four-dimensional flat space agree in the above sense.11 The spinor-

helicity formalism can be used to extend this analysis beyond the sector of higher-derivative

vertices. Indeed, since spin corresponds to a pair of helicities, labeling of amplitudes with

helicities is a more refined one than labelling with spins. In particular, for a fixed triplet

of helicities we have a single consistent three-point amplitude, which is not the case for a

triplet of spins. Using this observation, one can further split an AdS vertex with fixed spins

into parts and rescale each part separately with the appropriate power of the cosmological

constant, so that each part remains finite in the flat space limit. This would enable us

to compare all the cubic action derived from holography and the flat space action in the

light-cone gauge. In addition to the approach we suggested in the previous paragraph, this

provides another way to relate higher spin theories in flat and AdS space backgrounds. More

generally, it would be interesting to carry out the holographic reconstruction of higher-spin

theories along the lines of [90, 97, 99], but in the spinor-helicity representation. This may

be instructive to learn how the locality obstruction can be circumvented in flat space.

An obvious direction to extend our results is to include higher-point functions. Already

for four-point amplitudes at tree level we have two types of processes — contact interactions

and exchanges — and it would be interesting to see how this difference manifests itself in

the analytic structure of the associated amplitudes. Based on that one may then develop

on-shell methods similar to those available in flat space. It would also be interesting to

extend other modern methods used for amplitudes’ computations to AdS space. One step in

this direction we have undertaken in the present paper: in section 9 we introduced helicity-

changing operators, which are analogous to transmutation operators in flat space [74]. In

this context, it is also worth noting that three-point amplitudes for the Yang-Mills theory

and gravity satisfy a form of the double-copy relation [100, 101] in AdS space: a combination

of spinor products entering the gravity amplitude is just the square of the analogous factor

for the Yang-Mills theory. Similar results were observed for other representations for (A)dS

amplitudes and CFT correlators, see [102, 103].

The amplitudes we derived appear to be in the same representation as amplitudes

computed using the twistor space techniques, see [104, 105] for a general introduction to

twistors and [106–112] for computations of amplitudes of massless fields in AdS4 space using

11Based on the results for cubic couplings involving two scalar fields obtained in [97], the conjecture that

this matching should hold in general was put forward in [98].
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this formalism. The reason is that the plane-wave solutions we use for external lines are

the same. The difference between our approaches is that we compute amplitudes from the

usual space-time action, while in the twistor-space approach the amplitudes are computed

from the twistor-space action. From this point of view, our approaches can be regarded

as complementary. It is also worth noting that reformulation of the action in the twistor

form is not always a simple task and such actions are not always available.

Another related approach was developed in [113–115], where instead of so(3, 2) the

whole higher spin symmetry was made manifest. The resulting amplitudes correspond to

the scattering of the complete higher-spin multiplets. It would be interesting to decompose

them into our basis and, in particular, identify cubic couplings of higher-spin fields in this

way. Another closely related approach was recently discussed in [116].

Finally, we comment on the relation of our approach to the usual holography. The main

difference between the Witten diagrams and the amplitudes that we compute is that we

use plane waves instead of bulk-to-boundary propagators for external lines of the diagrams.

Both plane waves and bulk-to-boundary propagators provide a basis for solutions to free

equations of motion. However, unlike bulk-to-boundary propagators, plane waves do not

give a delta-function in a near-boundary limit, which means that the former should be

identified not with local operators, but with operators smeared over the boundary.12 At

the same time, our plane waves have an intuitive flat space limit, which makes this limit

also straightforward at the level of amplitudes. In this regard, our plane-wave solutions can

be regarded as the scattering states [20, 117–119], suitable for accessing flat-space physics

from holography. They may also turn out to be convenient to deal with cosmological

correlators upon the appropriate extension to de Sitter space.
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A Notations and conventions

The Pauli matrices are given by

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.1)

These can be used to convert a vector index to a pair of spinor ones according to

pαα̇ ≡ pa(σa)αα̇. (A.2)

Here and throughout the paper we use Latin letters for Lorentz vector indices, while Greek

letters from the beginning of the alphabet are used for spinor indices. Base indices are

12It is worth emphasizing another important difference: while we are dealing with the Lorentzian signa-

ture, most of the literature on the AdS/CFT correspondence employs the Euclidean signature.
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denoted by Greek letters from the middle of the alphabet. In flat space we use Cartesian

coordinates, so we do not distinguish between local Lorentz and base indices.

For p null, its spinor representation (A.2) factorizes

papa = 0 ⇒ pαα̇ = λαλ̄α̇. (A.3)

To raise and lower spinor indices we use the following convention

λα = εαβλβ , λβ = εβγλ
γ , (A.4)

where

εαβ = εα̇β̇ =

(
0 1

−1 0

)
= −εαβ = −εα̇β̇ . (A.5)

The same rule is used to raise and lower indices of the Pauli matrices.

Relation (A.2) can be inverted to give

pa = −1

2
(σa)

α̇αpαα̇. (A.6)

To this end one needs to use

(σa)αα̇(σa)ββ̇ = −2εαβεα̇β̇ , (σa)αα̇(σa)
ββ̇ = −2εαβεα̇β̇ . (A.7)

It is worth reminding the reader that antisymmetry of the sl(2,C)-invariant met-

ric (A.5) leads to somewhat unusual properties of the spinor algebra. For example,

λαψ
α = −λαψα. (A.8)

Clearly, this implies that the product of a spinor with itself vanishes.

From the fact that the space where each spinor takes values is two-dimensional, it

follows that antisymmtrization of a tensor with respect to a pair of indices is proprtional

to the Levi-Civita tensor. The precise coefficient can be reconstructed by taking the trace

of both parts. As a result, we get

Aαβ −Aβα = εαβA
γ
γ . (A.9)

Another consequence of the fact that the space of spinors is two-dimensional is the Schouten

identity

λαµανβ + ναλαµβ + µαναλβ = 0. (A.10)

It follows from (A.9) and the fact that antisymmetrization over three indices in two-

dimensional space vanishes.

We define derivatives with respect to spinors in a natural way

∂λα

∂λβ
= δαβ ,

∂λα
∂λβ

= δβα. (A.11)

Then we find that
∂λα
∂λβ

= εαβ ,
∂λα

∂λβ
= εαβ . (A.12)
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By comparing (A.11) with (A.12), we obtain

∂

∂λα
= −εαβ

∂

∂λβ
, (A.13)

which shows that indices of derivatives are lowered with an extra minus sign compared to

indices of spinors themselves (A.4). The same refers to raising indices and to antiholomor-

phic spinors.

The vector-spinor dictionary (A.2), (A.6) can be extended to include tensors of any

rank and symmetry. For example, for antisymmetric rank two tensor Cab = −Cba one has

Cαα̇,ββ̇ ≡ C
ab(σa)αα̇(σb)ββ̇ . (A.14)

One can then show that antisymmetry of Cab implies that Cαα̇,ββ̇ is of the form

Cαα̇,ββ̇ = εαβC̄α̇β̇ + εα̇β̇Cαβ , (A.15)

with Cαβ and C̄α̇β̇ symmetric. Here

Cαβ = Cβα ≡
1

2
(σa)α

γ̇(σb)βγ̇C
ab,

C̄α̇β̇ = C̄β̇α̇ =
1

2
(σa)

γ
α̇(σb)γβ̇C

ab.

(A.16)

For real Cab, Cαβ and C̄α̇β̇ are complex conjugate to each other. One can invert (A.16),

which leads to

Cab =
1

4
(σa)

α̇α(σb)
β̇β(εαβC̄α̇β̇ + εα̇β̇Cαβ). (A.17)

Analogously, more general tensors can be treated, see e.g. [61] for details.

Some other useful formulae in our conventions include

(σa)αα̇(σb)α̇α = −2δba, (σa)αα̇(σa)β̇β = −2δβαδ
β̇
α̇,

(σa)α̇β(σb)ββ̇ + (σb)α̇β(σa)ββ̇ = −2ηabδα̇
β̇
.

(A.18)

We will often use the standard shorthand notation

〈ij〉 ≡ λiαλjα = λiαλ
j
βε
αβ , [ij] ≡ λ̄iα̇λ̄jα̇ = λ̄iα̇λ̄

j

β̇
εα̇β̇ , (A.19)

where i and j label particles. Moreover, we will also use notations of the following type

〈ixj] ≡ λαi xαα̇λ̄α̇j , 〈λxµ] = λαxαα̇µ̄
α̇. (A.20)

B AdS4 and spinors

In this appendix we give some of the formulae presented in section 3 in terms of spinors.

To start, we note that if

(δv)a = ωa,bv
b (B.1)

then

(δv)αα̇ =
1

2
ω̄α̇

β̇vαβ̇ +
1

2
ωα

βvβα̇, (δv)α̇α = −1

2
ω̄α̇β̇v

β̇α − 1

2
ωαβv

α̇β . (B.2)
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Here ωa,b is an antisymmetric tensor and we use the standard vector-spinor dictionary

reviewed in appendix A. From (B.2) one can see that the action of an infinitesimal Lorentz

transformation in spinor notations decomposes into two pieces each acting only on one type

of spinor indices13

(δλ)α =
1

2
ωα

βλβ , (δλ̄)α̇ =
1

2
ω̄α̇

β̇λ̄β̇ . (B.3)

By raising indices on both sides we can find how Lorentz transformations act on spinors

with upper indices.

Compatibility with vector formulae (4.11) then requires that covariant derivatives act

on spinor indices as follows

∇µλα = ∂νλα +
1

2
ωµ|α

βλβ , ∇µλ̄α̇ = ∂µλ̄α̇ +
1

2
ω̄µ|α̇

β̇λ̄β̇ . (B.4)

Similar formulae hold for spinors with upper indices.

Now, let us find the spin connection in spinor notations. We start from (4.14) and

convert the antisymmetric pair of indices to spinor ones using the standard dictionary.

This gives

ωc|αβ =
1

4R2

(
(σc)α

γ̇xβγ̇ − xαγ̇(σc)βγ̇
)
,

ω̄c|α̇β̇ =
1

4R2

(
(σc)α̇

γxγβ̇ − xα̇
γ(σc)β̇γ

)
.

(B.5)

In the following, we will find it convenient to convert the remaining Lorentz index to spinors

too. This gives

ωγγ̇|αβ =
1

2R2
(εγαxβγ̇ + εγβxαγ̇),

ω̄γγ̇|α̇β̇ =
1

2R2

(
εγ̇α̇xβ̇γ + εγ̇β̇xα̇γ

)
.

(B.6)

Finally, we present the spinor version of (4.18)

(δζPαα̇ · λ̄)β̇ =
i

4R2

(
δβ̇α̇xαγ̇ + εβ̇δ̇xαδ̇εγ̇α̇

)
λ̄γ̇ ,

(δζPαα̇ · λ)β =
i

4R2

(
δβαxγα̇ + εβδxδα̇εγα

)
λγ .

(B.7)

Inversion. The change of coordinates

x′µ = xµ
4R2

x2
(B.8)

induces the following action on tangent vectors

A′µ
′
(x′) =

∂x′µ
′

∂xµ
Aµ(x). (B.9)

13Of course, there is an ambiguity in this decomposition. To be precise, one can add iϕ(x)λα to (δλ)α
and −iϕ(x)λ̄α̇ to (δλ̄)α̇ with ϕ(x) real. This addition drops out from (B.2).
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Explicit computation shows that

∂x′µ
′

∂xµ
=

4R2

x2

(
δµ
′
µ − 2

xµ
′
xµ
x2

)
. (B.10)

By plugging (B.10) into (B.9) and going to the local Lorentz basis, we get

A′a
′
(x′) = −

(
δa
′
a − 2

xa
′
xa

xbxb

)
Aa(x). (B.11)

This relation can be converted to spinor notations to give

A′αα̇(x′) = −

(
δαβ δ

α̇
β̇
−
xαα̇xββ̇
xbxb

)
Aββ̇(x) = 2

xαβ̇x
α̇
β

xγγ̇xγγ̇
Aββ̇(x). (B.12)

This action should be factorized into two pieces, each acting only on one type of spinor

indices. This gives

λα =
√

2
xαβ̇√
xγγ̇xγγ̇

λ̄β̇ , xγγ̇xγγ̇ > 0, (B.13)

and the action on holomorphic spinors is obtained by complex conjugation. It is not hard

to see that for xγγ̇xγγ̇ < 0, (B.12) cannot be factorized into a product of transformations

acting on individual spinors so that they remain complex conjugated to each other.

C Details on spin 3
2

potential

To start, we convert field strengths (6.6) to the spinor notations. To be more precise, each

pair of antisymmetric indices in Fµν|α and F̄µν|α̇ should be first transformed to the local

Lorentz basis via (4.8) and then converted to spinors using the standard dictionary (A.16).

As a result, we get

Fβγ|α =

(
1− x2

4R2

)
∂

∂xβε̇
ψγ

ε̇
|α +

2

8R2
xγ

δ̇ψβδ̇|α

+
1

8R2

(
εβαx

δ̇σψγδ̇|σ − x
δ̇
αψγδ̇|β

)
± 1

2R
εβαψ̄γδ̇|

δ̇ + (β ↔ γ),

(C.1)

F̄β̇γ̇|α =

(
1− x2

4R2

)
∂

∂xτ β̇
ψτ γ̇|α +

2

8R2
xσβ̇ψσγ̇|α

+
1

8R2

(
xσβ̇ψαγ̇|σ + xαβ̇ψ

δ
γ̇|δ

)
± 1

2R
ψ̄αγ̇|β̇ + (β̇ ↔ γ̇).

(C.2)

Making the complex conjugation of (C.1) and (C.2), we find the remaining components

of the field strength. To achieve (C.1), (C.2) we needed to use explicit expressions for

the frame field and the connection in spinor language, see appendix B. Also note that

derivatives are understood as follows

∂

∂xa
f = (σa)

αα̇ ∂f

∂xαα̇
. (C.3)
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Similarly, one finds a formula for gauge transformations of ψ

δψββ̇|α = −2

(
1− x2

4R2

)
∂ξα

∂xββ̇
− 1

4R2
εβαxβγ̇ξ

γ − 1

4R2
ξβxβ̇α −

1

R
εαβ ξ̄β̇ . (C.4)

Gauge variations of ψ̄ can be obtained by the complex conjugation.

As was explained in the main text, we then make an ansatz (6.8), (6.9) for the potential

and evaluate the field strength. The computation turns out to be rather tedious, so we use

computer algebra. Then we equate the field strength found to its on-shell value component

by component. For example, the equation resulting from setting the λαλβλγ component

of the field strength to its on-shell value gives

λαλβλγ :
c

4R2
k1−4c

(
1+

b

8R2

)
∂bk1−2

(
1+

b

8R2

)
∂ak1 =

(
1+

b

8R2

) 5
2

e−i
a
2 . (C.5)

Similarly, for the µαλβλγ component we find

µαλβλγ :
b−2ac

4R2
k1−

3c

4R2
k4−

1

R
l3+4c

(
1+

b

8R2

)
∂bk4+2

(
1+

b

8R2

)
∂ak4 = 0. (C.6)

Equations associated with other 22 components are similar.

To solve these equations, we first consider the homogeneous system, that is when the

right-hand sides in (6.12) are absent. In terms of component equations this implies that

the right-hand side of (C.5) should be set to zero, while all the remaining equations remain

intact. Solutions of these equations, by construction, correspond to pure gauge modes.

To find these pure gauge solutions, we make a general ansatz for gauge parameters,

similar to the one we made for potentials

ξα = m1
λα〈µλ〉
〈µxλ]

+m2
µα〈µλ〉
〈µxλ]2

,

ξ̄α̇ = n1
λ̄α̇〈µλ〉2

〈µxλ]2
+ n2

µ̄α̇〈µλ〉
〈µxλ][µλ]

.

(C.7)

Here ni and mi are arbitrary functions of a, b and c. By making a gauge variation (C.4) and

requiring (6.7) — which boils down to the vanishing of the components of ψ along λβλ̄β̇λα
and λβλ̄β̇µα — we find two equations for ni and mi of residual gauge transformations. By

imposing (6.7) for ψ̄, we get another two equations. Solving these equations, we find

m1(a,b,c) =−m
r
1(c,b−2ac)√
b+8R2

,

m2(a,b,c) =−(b−2ac)mr
1(c,b−2ac)+2c(b+8R2)mr

2(c,b−2ac)+4Rnr1(c,b−2ac)

2c
√
b+8R2

n1(a,b,c) =
nr1(c,b−2ac)√

b+8R2
,

n2(a,b,c,) =
2Rmr

1(c,b−2ac)−nr1(c,b−2ac)+c(b+8R2)nr2(c,b−2ac)

c
√
b+8R2

.

(C.8)

Here mr
i and nri are four arbitrary functions of two variables c and b− 2ac.
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Having clarified how residual gauge transformations act, we proceed with solving equa-

tions for the potentials. Inhomogeneous equation (C.5) involves only k1 and can be solved

as follows

k1 = −i
√

1 +
b

8R2

(
1 +

b

8R2
− 1

2R2
ic

)
e−i

a
2 +

√
1 +

b

8R2
r(c, b− 2ac), (C.9)

with r being an arbitrary function of c and b − 2ac. Clearly, the r-term in (C.9) gives a

general solution of the homogeneous equation, that is when the right-hand side of (C.5) is

set to zero. These solutions should correspond to pure gauge potentials and we checked

that, indeed, variation (C.4) with parameters given by (C.7), (C.8) contributes such a

term. So, by further fixing the gauge symmetry, we can adjust r in (C.9) in any convenient

way. We find it convenient to set r to zero. One reason for that is that r does not allow

exponential dependence, exp(−ia/2), typical of plane waves, instead, featuring a only in

combination b− 2ac.

Then we proceed with the remaining equations one after another. These can be solved

systematically, as the system of equations admits “lower-triangular form”. To be more

precise, some of them involve only one unknown function and can be immediately solved

like (C.5). Each time we pick a particular solution so that terms without exponential

behavior in a are absent. Plugging these solutions into remaining equations we again find

equations with only one unknown function and solve them. We proceed like that until all

unknown functions are solved for. The end result is given in (6.13)

Finally, we note that the solution (6.8), (6.9), (6.13) satisfies a stronger gauge condi-

tion (6.14), which suggests that it is, actually, µ-independent. Using

µα =
〈µλ〉
〈λxλ]

xαα̇λ̄
α̇ +
〈µxλ]

〈λxλ]
λα (C.10)

to eliminate µ in the k4 and employing

b− 2ac = −2
〈λxµ]〈µxλ]

〈µλ〉[µλ]
(C.11)

we find that, indeed, µ-dependence cancels. The final result is given in (6.15).

D Details on spin 2 potential

Here we give some intermediate results of the computation of the spin-2 potential.

First, we convert both the potential and the field strength to local Lorentz indices and

then to spinor ones. For the spin-2 potential the standard dictionary reads

hab =
1

4
hαβ,α̇β̇(σ̄a)

α̇α(σ̄b)
β̇β , hαβ,α̇β̇ = (σa)αα̇(σb)ββ̇hab. (D.1)

The field strength has the symmetry of a window-shaped Young diagram. Namely, it

satisfies

Fab,cd = −Fab,dc, Fab,cd = −Fba,cd, Fab,cd = Fcd,ab (D.2)
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and the Young symmetry condition. Converting each pair of antisymmetric indices to

spinor ones using (A.16), we get

F̄α̇β̇γδ =
1

4
(σa)βα̇ (σb)ββ̇ (σc) δ̇

γ (σd)δδ̇ Fab,cd,

Fα̇β̇γ̇δ̇ =
1

4
(σa)βα̇ (σb)ββ̇ (σc)δ γ̇ (σd)δδ̇ Fab,cd

(D.3)

and two other field strengths, that can be found by the complex conjugation of (D.3).

By using explicit expressions for the background frame field and the spin connection

in our coordinates, after a lengthy computation we find

Fα̇β̇γ̇δ̇ =

(
1− x2

4R2

)2

εαβεγδ
∂

∂xα̇α
∂

∂xγ̇γ
hβδ,β̇δ̇

− 1

4R2

(
1− x2

4R2

)
εα̇δ̇ε

βγxσ̇σ
[

∂

∂xγ̇γ
hσβ,σ̇β̇+

∂

∂xβ̇β
hσγ,σ̇γ̇

]
+

1

4R2

(
1− x2

4R2

)(
−2+xσ̇σ

∂

∂xσ̇σ

)
εβ̇δ̇ε

αγ hαγ,α̇γ̇

− 1

8R4
εα̇δ̇εβ̇γ̇x

σ̇σxε̇εhσε,σ̇ε̇+(α̇↔ β̇)+(γ̇↔ δ̇)+(α̇γ̇↔ β̇δ̇),

(D.4)

F̄α̇β̇γδ =

(
1− x2

4R2

)2

εαβεγ̇δ̇
∂

∂xα̇α
∂

∂xγ̇γ
hβδ,β̇δ̇−

1

2R2

(
1− x2

4R2

)
xσ̇σ

∂

∂xα̇γ
hσδ,σ̇β̇

+
1

4R2

(
1− x2

4R2

)(
−2+xσ̇σ

∂

∂xσ̇σ

)
hδγ,α̇β̇+(α̇↔ β̇)+(γ↔ δ)+(α̇γ↔ β̇δ)

(D.5)

and similarly for the complex conjugate components. Gauge variation in our coordinates

reads

δhαα̇,ββ̇ = −2

(
1− x2

4R2

)(
∂ξαα̇

∂xβ̇β
+
∂ξββ̇
∂xα̇α

)
+

1

2R2

(
2εαβεα̇β̇(xσσ̇ξ

σ̇σ)− xαα̇ξββ̇ − xββ̇ξαα̇
)
.

(D.6)

With these explicit formulas at hand, we evaluate field strengths using the ansatz (6.19)

for the potential. Then we solve the resulting equations, fixing the residual gauge symmetry

as in the spin-3
2 case. Eventually, we find

hαβ,α̇β̇ = e−i
a
2

(
8ic− b

8R2
− 1

)
µαµβλ̄α̇λ̄β̇
〈µλ〉2

+ ie−i
a
2

(
b− 2ac

4R2

)
µαµβ(µ̄α̇λ̄β̇ + µ̄β̇λ̄α̇)

〈µλ〉2〈λxµ]
. (D.7)

Again, we observe that a stronger condition (6.21) is satisfied. Eliminating µ-dependence,

we, finally, get (6.22).

E Details on amplitudes from symmetries

In this appendix we give details on how the deformed momentum conservation condition

for the three-point amplitudes (8.3) is analyzed.
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First, we consider the case of genuine functions (8.1). Evaluating the action of P, (3.1),

on the ansatz (8.3), we find(
Dxf + d12,3

∂f

∂x
+Dzf + d31,2

∂f

∂z

)
λ1
αλ̄

1
α̇ +

(
Dxf + d12,3

∂f

∂x
+Dyf + d23,1

∂f

∂y

)
λ2
αλ̄

2
α̇

+

(
Dyf + d23,1

∂f

∂y
+Dzf + d31,2

∂f

∂z

)
λ3
αλ̄

3
α̇ −
〈23〉
〈31〉

(
z
∂2f

∂z∂y
+ d31,2

∂f

∂y

)
λ1
αλ̄

2
α̇

− 〈31〉
〈23〉

(
y
∂2f

∂z∂y
+ d23,1

∂f

∂z

)
λ2
αλ̄

1
α̇ −
〈31〉
〈12〉

(
x
∂2f

∂x∂z
+ d12,3

∂f

∂z

)
λ2
αλ̄

3
α̇

− 〈12〉
〈31〉

(
z
∂2f

∂z∂x
+ d31,2

∂f

∂x

)
λ3
αλ̄

2
α̇ −
〈12〉
〈23〉

(
y
∂2f

∂y∂x
+ d23,1

∂f

∂x

)
λ3
αλ̄

1
α̇

− 〈23〉
〈12〉

(
x
∂2f

∂x∂y
+ d12,3

∂f

∂y

)
λ1
αλ̄

3
α̇ −R2(λ1

αλ̄
1
α̇ + λ2

αλ̄
2
α̇ + λ3

αλ̄
3
α̇) = 0, (E.1)

where

Dx ≡ x
∂2

∂x2
+

∂

∂x
. (E.2)

This equation has four independent components. To make this manifest, we use the

Schouten identities

λ3
α =
〈32〉
〈12〉

λ1
α +
〈31〉
〈21〉

λ2
α,

λ̄3
α̇ =

[32]

[12]
λ̄1
α̇ +

[31]

[21]
λ̄2
α̇,

(E.3)

to eliminate λ3 and λ̄3. Then, the basis is generated by four structures λ1
αλ̄

1
α̇, λ1

αλ̄
2
α̇, λ2

αλ̄
1
α̇

and λ2
αλ̄

2
α̇ and (E.1) requires that the coefficient of each structure vanishes. As a result,

we end up with four single-component equations

Dxf +
y

x
Dyf +

(
1 +

y

x

)
Dzf + 2y

∂2f

∂x∂y

+ (d12,3 + d23,1)

(
∂f

∂x
+
y

x

∂f

∂y

)
+ d31,2

(
1 +

y

x

)
∂f

∂z
−R2

(
1 +

y

x

)
f = 0

Dxf +

(
1 +

z

x

)
Dyf +

z

x
Dzf + 2z

∂2f

∂x∂z

+ (d12,3 + d31,2)

(
∂f

∂x
+
z

x

∂f

∂z

)
+ d23,1

(
1 +

z

x

)
∂f

∂y
−R2

(
1 +

z

x

)
f = 0

1

x
Dyf +

1

x
Dzf +

∂2f

∂x∂z
+

∂2f

∂x∂y
− ∂2f

∂y∂z
+
d31,2

z

∂f

∂x
+
d31,2

x

∂f

∂z

+

(
d12,3

x
+
d23,1

x
− d31,2

z

)
∂f

∂y
− R2

x
f = 0

1

x
Dyf +

1

x
Dzf +

∂2f

∂x∂z
+

∂2f

∂x∂y
− ∂2f

∂y∂z
+
d23,1

y

∂f

∂x
+
d23,1

x

∂f

∂y

+

(
d12,3

x
+
d31,2

x
− d23,1

y

)
∂f

∂z
− R2

x
f = 0.

(E.4)
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Solving these equations may seem a formidable problem. We can, however, use the

knowledge gained from direct computations of amplitudes in particular cases in section 7.

Let us first consider the amplitudes with holomorphic products of spinors in the prefactor,

as in our ansatz (8.1). Then we can anticipate that AI and AII lead to two independent

solution of (E.4). For simplicity, we focus on the domain p2 > 0, so that i0-prescription

in (7.1) can be ignored. We find that, indeed,

f = C1 · (R2w)−
∑
h+1
2 I∑h+1(2R

√
w) + C2 · (R2w)−

∑
h+1
2 K∑

h+1, (2R
√
w) (E.5)

where

w ≡ x+ y + z (E.6)

solves (E.4).

Similarly, one can consider candidate amplitudes AIII and AIV. Bringing them to the

form (8.1) and focusing on p2 > 0, we find

f = C3x
−d12,3y−d23,1z−d31,2 · (R2w)

∑
h−1
2 I∑h+1(2R

√
w)

+ C4x
−d12,3y−d23,1z−d31,2 · (R2w)

∑
h−1
2 K∑

h+1(2R
√
w).

(E.7)

It is straightforward to see that they also solve (E.4).

In total, we found four solutions to (E.4) so far. It is also straightforward to see that

these solutions are linearly independent. Now we would like to show that (E.4) do not

have other solutions. To see that, we will consider (E.4) in the neighborhood of some

regular point (x0, y0, z0) and count how many integration constants have to be specified,

to determine all derivatives of f at a given point from (E.4).

To start, we note that by combining the last two equations of (E.4) we can get a first

order equation

∂f

∂x

(
d23,1

1

y
− d31,2

1

z

)
+
∂f

∂z

(
d12,3

1

x
− d23,1

1

y

)
+
∂f

∂y

(
d31,2

1

z
− d12,3

1

x

)
= 0. (E.8)

This, in turn, can be used to eliminate all z derivatives of f in favor of other derivatives.

It turns out that after this is done only two equations from (E.4) are independent. For

definiteness, we pick the first two. With z-derivatives eliminated, they acquire the form

axx∂
2
xxf + axy∂

2
xyf + ayy∂

2
yyf + ax∂xf + ay∂yf + af = 0,

bxx∂
2
xxf + bxy∂

2
xyf + byy∂

2
yyf + bx∂xf + by∂yf + bf = 0.

(E.9)

These equations can be regarded as equations at fixed z. Once these are solved, z-

dependence can be reconstructed from (E.8), so we will only focus on (x, y)-dependence.

Let us now regard {f, ∂xf, ∂yf, ∂yyf} as the initial data at (x0, y0, z0). Then, we can

use (E.9) to solve for ∂xxf and ∂xyf algebraically in terms of the initial data, so these

derivatives are not independent. One can explicitly check, that for genuine (x0, y0, z0) the

matrix of coefficients of ∂xxf and ∂xyf is non-degenerate, so this is, indeed, possible.

To simplify the analysis, we may focus on solutions of (E.4) up to linear combinations of

four linearly independent solutions in (E.5) and (E.7) that we already know. In particular,
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by subtracting an appropriate linear combination of the known solutions, we can always

achieve

{f, ∂xf, ∂yf, ∂yyf} = {0, 0, 0, 0} (E.10)

for new solutions we are looking for. Then (E.9) implies that for solutions with (E.10)

satisfied, one also has

{∂xxf, ∂xyf} = {0, 0}. (E.11)

Proceeding further, we consider all consequences of (E.9) obtained by applying one

derivative. We get four equations of the form

axx∂
3
xxxf + axy∂

3
xxyf + ayy∂

3
xyyf + . . . = 0,

axx∂
3
yxxf + axy∂

3
yxyf + ayy∂

3
yyyf + . . . = 0,

bxx∂
3
xxxf + bxy∂

3
xxyf + byy∂

3
xyyf + . . . = 0,

bxx∂
3
yxxf + bxy∂

3
yxyf + byy∂

3
yyyf + . . . = 0,

(E.12)

where . . . denotes lower-derivative terms. We find that the matrix of coefficients in front

of four highest-derivative terms is non-degenerate for genuine (x0, y0, z0). Hence, consider-

ing (E.10), (E.11), we find that all third-order derivatives of f also vanish.

This analysis should be repeated iteratively for higher orders as well. Differentiat-

ing (E.9) n times, we obtain 2(n+1) equations for n+3 derivatives of f of (n+2)’th order.

So, for n > 1 the system of equations will be overdetermined. The matrix of coefficients of

highest-derivative terms still consists of a’s and b’s defined by the original equation (E.9).

It is not hard to see that it has rank (n + 3),14 so each time highest derivatives of f can

be expressed in terms of lower ones and, hence, set to zero. Thus, we find that if (E.10)

is imposed, all derivatives of f at (x0, y0, z0) are vanishing. Putting differently, (E.4) has

only four solutions given in (E.5) and (E.7).

Let us now consider a distributional ansatz (8.5). Substituting it into (8.3) and sim-

plifying we get

[12]d12,3 [23]d23,1 [31]d31,2
(
pc +

3 + h

2R2

∂

∂pc
+

1

2R2
pa

∂

∂pa
∂

∂pc
− 1

4R2
pc�p

)
g (�p) δ

(4)(p) = 0.

(E.13)

Commuting pc trough derivatives to the left gives((
�p + 4R2

)
g′ (�p) + (1− h)g (�p)

) ∂δ(4)

∂pc
= 0. (E.14)

By requiring the left-hand side to be zero, we get a first order differential equation on g.

Solving it, we obtain the amplitude

A = C1[12]d12,3 [23]d23,1 [31]d31,2
(

1 +
�p

4R2

)h−1

+

δ(4)(p)

+ C2[12]d12,3 [23]d23,1 [31]d31,2
(

1 +
�p

4R2

)h−1

−
δ(4)(p).

(E.15)

14To start, it has four independent rows by virtue of non-degeneracy of the matrix in (E.12). Moreover,

a simple inspection shows that one can add to these four rows other n − 1 rows, so that each time when

we are adding a new row it has a non-zero element in a column, in which previously considered raws had

vanishing entires. This ensures that the matrix has n+ 3 linearly independent rows.
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Analogously, one can find distributional solutions by isolating a prefactor that saturates

the homogeneity degrees in spinors required by the helicity constraint with products of

undotted spinors.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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restricted to its Poincaré or Weyl subgroups remain irreducible, J. Math. Phys. 13 (1972)

23 [INSPIRE].

[70] E. Angelopoulos, M. Flato, C. Fronsdal and D. Sternheimer, Massless Particles, Conformal

Group and de Sitter Universe, Phys. Rev. D 23 (1981) 1278 [INSPIRE].
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