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In this paper we prove two seemingly unrelated theorems. First we establish
the entireness of the spinor L-functions of certain automorphic cuspidal rep-
resentations of the similitude symplectic group of order four over the rational
numbers. We also prove a theorem related to the existence of Bessel models for
generic discrete series representations of the same group over the real numbers.
The two results are linked by the method of proof; in both cases it is based on
the pull-back of an appropriately chosen global Bessel functional via the theta
correspondence for the dual pair (GO(2, 2),GSp(4)).

The first main theorem is related to analytic properties of spinor L-functions.
We prove the entireness of the spinor L-function for those generic automorphic
cuspidal representation which satisfy a condition at the archimedean place (see
below). Our study of the spinor L-function is based on an integral representation
which works for generic representations. These integrals which were introduced
by M. Novodvorsky in the Corvallis conference [26] serve as one of the few
available integral representations for the Spinor L-function of GSp(4). Some
of the details missing in Novodvorsky’s original paper have been reproduced
in Daniel Bump’s survey article [4]. Further details have been supplied by
[40]. Novodvorsky’s integral was first generalized by Ginzburg [10], and further
generalized by Soudry [39], to orthogonal groups of arbitrary odd degree.

In light of the results of [40], it is sufficient to study the integral of Novod-
vorsky at the archimedean place. Archimedean computations are often forbid-
ding, and unless one expects major simplifications due to the nature of the
parameters, the resulting integrals are often quite hard to manage. In our case
of interest, the work of Moriyama [25] benefits from exactly such simplifications
when he treats the case of cuspidal representations with archimedean compo-
nents in the generic (limit of) discrete series. In this work, we concentrate on
those archimedean representations for which direct computations have yielded
very little. For this reason, our methods are a bit indirect, in fact somewhat more
indirect than what at first seems necessary. Our method is based on the theta
correspondence. First we observe in Lemma 2.2 that Novodvorsky’s integral is
in fact a split Bessel functional. Then in 2.1 we pull the Bessel functional back
via the theta correspondence for the dual reductive pair (GO(2, 2),GSp(4)), and
prove that the resulting functional on GO(2, 2) is Eulerian. On the other hand,
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one can prove that the integral of Novodvorsky itself is Eulerian, with an Euler
product involving the Whittaker functions. Next obvious step is to pull back
the Whittaker function via the theta correspondence; we do this in 2.3. Now
we have obtained two different Euler product expansions which represent the
same object, but do not look the same. Then one uses the standard technique
of twisting with highly ramified characters in 2.5 to isolate the archimedean
place to obtain an identity expressing the local Novodvorsky integral at the
archimedean place in terms of an expression which does not go through the
local Whittaker functions for GSp(4). The advantage of using this expression
is that, first it avoids Whittaker functions on a group of rank two, so it is effec-
tively more elementary, and second one can devise a two complex variable zeta
function to study its analytic properties (see 2.2). This identity, at first, is estab-
lished only for those representations which appear as archimedean components
of global theta lifts from GO(2, 2). Then one uses various density arguments
in 2.6 to extend the identity to a larger class of representations, namely the
special representations (see 2.4). At this time, we have not yet been able to give
a reasonable characterization of the class of all special representations; we do
know, however, that it contains discrete series representations, and an infinite
family of principal series representations. We have included some speculations
in 2.7.

The next main theorem of the paper is concerned with the existence of
Bessel models. It is well-known that automorphic representations associated
to holomorphic Siegel modular forms are not generic; that is, they fail to have
Whittaker models. It is also known that the genericity of such representations
specifically fails at the archimedean place. For this reason it is desirable to
determine when holomorphic discrete series representations posses Bessel models
which seem to be the next best thing in applications to L-functions [6, 8].
The conjecture of Gross and Prasad (Conjecture 6.9 of [12]) predicts that the
existence of Bessel models for holomorphic discrete series is intertwined with the
existence of such models for other members of the Vogan L-packet of the given
discrete series representation, in particular the generic discrete series. It will be
clear from the method, however, that the interested mathematician will be able
to derive the desired result for holomorphic representations. In order to make
this more plausible we have kept the result in its naked form (see Theorem 3.1
for exact statement).

We now state our result. Let Π be a generic discrete series representation
of GSp(4,R), with trivial central character. Then there is a pair (Dk, Dl) of
discrete series representations of GL(2,R) with trivial central character such
that Π is obtained by a theta lift from GO(2, 2) by the representation that the
pair (Dk, Dl) defines (see 1.6). In order to land in generic discrete series, we
need to assume that k, l ≥ 2 satisfy k 6= l and they have the same parity. Let
n be an integer with n > max(k, l), and with different parity from k (or l). We

set χn

((
cos θ sin θ
− sin θ cos θ

))
= einθ. With these notations, we prove that Π has

a (
(

1
1

)
, χn, ψ)-Bessel model.
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A few remarks are in order. It is clear from our presentation of the theorem
that our proof of Theorem 3.1 uses theta correspondence; in fact, we will use
global theta correspondence, along with various substantial local and global
results from the theory of automorphic forms [13, 23, 29, 43]. It may be desirable
to find a direct local proof of the existence theorem as in [46]. Our attempts
in this direction, however, have not been successful. Inspired by [36, 37], one
is tempted to write down an integral and try to prove that the integral does
not vanish for the correct choice of the data. There are convergence issues
that one needs to deal with. In the Whittaker situation, what saves the day
is the fact that one can do the analysis of the integrals “one root at a time”;
we have no been able to successfully follow such an approach for the Bessel
integrals. In order to establish the conjecture of Gross-Prasad for the pair
(SO(5),SO(2)) for discrete series packets, one needs to study generic discrete
series representations of PGSp(4), holomorphic discrete series representations
of PGSp(4), and related representations of SO(4, 1). The case of SO(4, 1) is
simpler as the group in question has rank one. Here we have considered the
representations of the group PGSp(4). Thanks to Wallach’s recent paper [46],
the case of holomorphic representations is much better understood. This is the
reason why we can concentrated our efforts on the generic case. Shalika has
informed the author that he can prove the converse statement of our Theorem
3.1 using local methods based on [21]. Consequently, the “if” in the theorem
may be replaced by “if and only if.” Perhaps, it should also be pointed out here
that, in light of Theorem 3.4 of [45], our results automatically extend to generic
limits of discrete series.

As mentioned above, the main contribution of this work, if any, is the
archimedean analysis. Some of the results of this paper, especially in the case
of discrete series representations, were announced in [41]. As stated above,
the appearance of [25] has made our results for discrete series representations
obsolete; Moriyama has obtained better and more explicit results for generic
(limits of) discrete series, and some other representations, using more direct
methods. Also we have recently learned that Asgari and Shahidi have prepared
two manuscripts [1, 2] which contain, among other things, the functorial trans-
fer of generic automorphic forms from spinor groups to general linear groups;
these results have trivialized our theorem on the entireness of the L-function, as
GSp(4) is nothing but GSpin5. With this in mind, our results on the entireness
of L-functions are certainly not new; our result on the existence of Bessel func-
tionals, however, seems to be new. At any rate, we hope that the methods of our
paper would be of interest. For example, it may be possible to use our results to
explicitly compute the Γ-factors at the archimedean place; our attempts in this
direction, however, have yielded very little. Brooks Roberts has used methods
very similar to ours in [31] to study various non-archimedean questions; Roberts
had also, independently of us and around the same time, discovered Lemma 2.2
and had in fact done at least the computations of 2.1 and 2.3. It seems to me
that both of us were influenced by Masaaki Furusawa, and communication with
Furusawa and Shalika was our common source of inspiration. I learned about
Bessel functionals and theta correspondence from J. A. Shalika while a graduate
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student at Johns Hopkins. The idea of pulling back global Bessel functionals
via theta correspondence came up in a conversation with Shalika while trying to
understand a paper of Böcherer and Schulze-Pillot ([3]). Here we thank Shalika
for continued support and encouragement over the past few years. Most of pre-
liminary computations that led to the writing of this paper were also performed
at Johns Hopkins under his supervision. I would like to thank Shalika for sug-
gesting the problems that motivated this research, for useful conversations, and
for lending us his notes on Bessel models. The author has benefited from con-
versations with Jeffrey Adams, Mahdi Asgari, Philippe Michel, Peter Sarnak,
Freydoon Shahidi, Akshay Venkatesh, and especially Brooks Roberts. Com-
ments by Tonomori Moriyama, Ralf Schmidt, and particularly the anonymous
referee on an earlier draft of this paper were quite helpful. The author wishes
to thank the Park City Mathematical Institute where he first met Michel, and
learned of the work of Kowalski, Michel, and Vanderkam on the non-vanishing
of the Rankin-Selberg L-functions at the center of critical strip. He also wishes
to thank the Clay Mathematical Institute and the National Security Agency for
partial support of the project.
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1 Preliminaries on GSp(4)

1.1 The group GSp(4)

In this paper, the group GSp(4) over an arbitrary field K is the group of all
matrices g ∈ GL4(K) that satisfy the following equation for some scalar ν(g) ∈
K:

tgJg = ν(g)J,

where J =


1

1
−1

−1

. It is a standard fact that G = GSp(4) is a

reductive group. The map (F×)3 −→ G, given by

(a, b, λ) 7→ diag(a, b, λa−1, λb−1)

gives a parameterization of a maximal torus T in G. The Weyl group is a
dihedral group of order eight. We have three standard parabolic subgroups:
The Borel subgroup B, The Siegel subgroup P , and the Klingen subgroup Q
with the following Levi decompositions:

B =



a

b
a−1λ

b−1λ




1 x
1

1
−x 1




1 s r
1 r t

1
1


 ,

P =


(
g

α tg−1

)
1 s r

1 r t
1

1

 ; g ∈ GL(2)

 ,

and finally Q is the maximal parabolic subgroup with non-abelian unipotent
radical associated to the long simple root. If ψ is an additive character of the
field K, we define a character θψ of the unipotent radical N(B) of the Borel
subgroup by the following:

θ(


1 x

1
1
−x 1




1 s r
1 r t

1
1

) = ψ(x+ t).

When K is a local field, we take always take ψ to be an unramified Tate char-
acter.

We define various subgroups of the group G = Sp(4) over the real numbers.
We have

G(R) = {g ∈ GL4(R) | tgJg = J},
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where as before J =
(

0 I2
−I2 0

)
. Then the Lie algebra g of G will be the set

of matrices X ∈ sl4(R) such that tXJ + JX = 0. The Cartan involution is
given by θ(X) = − tX. Then we let k and p be the +1 and −1 eigen-spaces of
θ, respectively. We have

k = {
(
A B
−B A

)
|A+ iB ∈ U(2)},

and

p = {
(
A B
B −A

)
|A = tA,B = tB}.

Let K be the analytic subgroup defined by k. Next let

T = {


cos θ1 sin θ1

cos θ2 sin θ2
− sin θ1 cos θ1

− sin θ2 cos θ2

 | θ1, θ2 ∈ R}. (1)

We have T ⊂ K. The Lie algebra of T , denoted by t, is a Cartan subalgebra.
We now describe the root spaces associated with T . Set

Eα =
1
2


1 0 −i 0
0 0 0 0
−i 0 −1 0
0 0 0 0

 ,

Eβ =
1
2


1 0 0 0
0 1 0 −i
0 0 0 0
0 −i 0 −1

 ,

Eγ =
1
2


0 1 0 i
−1 0 i 0
0 −i 0 1
−i 0 −1 0

 ,

Eδ =
1
2


0 1 0 −i
1 0 −i 0
0 −i 0 −1
−i 0 −1 0

 .

Then Eα, Eβ , Eγ and Eδ are elements of gC. Then we have

Ad(t)Eα = e2iθ1Eα,

Ad(t)Eβ = e2iθ2Eβ ,

Ad(t)Eγ = ei(θ1−θ2)Eγ ,
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Ad(t)Eδ = ei(θ1+θ2)Eδ.

One way to verify these identity is to use the Cayley transform. For this, let

C̃ =
(
iI2 −iI2
I2 I2

)
.

Note that C̃ ∈ GSp4(C). One can then verify that

(C̃)−1tC̃ =


eiθ1

eiθ2

e−iθ1

e−iθ2



=


z

w
z−1

w−1

 ,

for obvious choices of z and w. Next we set for each index α, E−α = − T Ēα.
We will then have

E−α =
1
2


1 0 i 0
0 0 0 0
i 0 −1 0
0 0 0 0

 ,

E−β =
1
2


0 0 0 0
0 1 0 i
0 0 0 0
0 i 0 1

 ,

E−γ =
1
2


0 −1 0 i
1 0 i 0
0 −i 0 1
−i 0 −1 0

 ,

E−δ =
1
2


0 −1 0 −i
−1 0 −i 0
0 −i 0 1
−i 0 1 0

 .

If for each index ±α, we set X±α = C̃−1E±αC̃, then X±α will be a root vector
for the with respect to the diagonal Cartan subgroup. The correspondence is
the following

α←→ z2

β ←→ w2

γ ←→ z/w

δ ←→ zw
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Let Xα be a typical root vector. Then

Xα =


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0



Xβ =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0



Xγ =


0 1 0 0
0 0 0 0
0 0 0 0
−1 0 0 0



Xδ =


0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0


One can easily verify that the normalization of Xα’s and Eα’s as above

matches the one in the paper of [21].
Next, we observe that Eα, Eβ , Eδ ∈ p, whereas Eγ ∈ k. This implies that

∆n = {±α,±β,±δ},

∆c = {±γ}

It is clear that W (kC, tC) = {1, w}, with w = (12)(34).
It will then be easy to see that

∆ = {±(2, 0),±(1,−1),±(1, 1),±(0, 2)},

and
∆K = {±(1,−1)}.

1.2 Discrete series

Analytically integral elements of (bC)′ are given by pairs (a, b), and since the
action of WK induced equivalence of discrete series, we can assume that a ≥ b.
Since, we are interested in non-singular pairs, we need to assume a 6= 0, b 6= 0,
a 6= b. There are four cases to be considered:

I. a > b > 0. In this case, we have

∆+
λ = {(2, 0), (1,−1), (1, 1), (0, 2)},
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and
Λ = (a+ 1, b+ 2), λ+ δG = (a+ 2, b+ 1).

II. a > −b > 0. In this case, we have

∆+
λ = {(2, 0), (1,−1), (1, 1), (0,−2)},

and
Λ = (a+ 1, b), λ+ δG = (a+ 2, b− 1).

III. −b > a > 0. In this case, we have

∆+
λ = {(2, 0), (1,−1), (−1,−1), (0,−2)},

and
Λ = (a, b− 1), λ+ δG = (a+ 1, b− 2).

IV. −b > −a > 0. In this case, we have

∆+
λ = {(−2, 0), (1,−1), (−1,−1), (0,−2)},

and
Λ = (a− 2, b− 1), λ+ δG = (a− 1, b− 2).

If λ = (a, b), with say a > b > 0, then the L-packet of πλ consists of all πλ′
with λ′ in the orbit of λ under WG. Let Φ(πλ) be the L-packet of πλ. Note that
for each J ∈ {I, II, III, IV } as above we have

|Φ(πλ) ∩ J | = 1.

For the case of PSp(4), we will need the parameter to be trivial at −I4. This
would imply a ≡ b mod 2. If we start from a discrete series representation of
GSp(4) and restrict it to Sp(4), the resulting representation will decompose as
the sum of two representations, either I+ IV, or II+III. The I+IV corresponds
to the generic discrete series, and II+III corresponds to the holomorphic (and
anti-holomorphic at the Sp(4) level).

1.3 Whittaker models

As we will primarily be dealing with representations which have Whittaker
models, we take a moment to review basic definition and properties of such
models.

Let π be an automorphic cuspidal representation of the group G. For each
φ ∈ π, we set

Wφ(g) =
∫

(Q\A)4
φ

(
1 x2

1
1
−x2 1




1 x4 x3

1 x3 x1

1
1

 g

)

× ψ−1(x1 + x2) dx1 dx2 dx3 dx4
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Let N be the unipotent radical of the Borel subgroup. For each place v of Q,
the restriction of θ to N(Qv) is denoted by θv. Consider the representation of
G induced from the character θv of N(Qv):

C∞θv
(N(Qv)\G(Qv)) :=

{
W : G(Qv)→ C |

smooth,
W (ng)=θv(n)W (g),
n∈N(Qv),g∈G(Qv)

}
. (2)

The action of G(Qv) on C∞θv
(N(Qv)\G(Qv)) is by right translation.

If v is a finite place of Q, then for any irreducible admissible representation
πv of G(Qv), the intertwining space HomG(Qv)(πv, C∞θv

(N(Qv)\G(Qv))) is at
most one dimensional ([32], Theorem 3). If there is a non-zero intertwining
operator

Ψ ∈ HomG(Qv)(πv, C∞θv
(N(Qv)\G(Qv))) (3)

then we say that πv is generic, and call the image Wu := Ψ(u) of u ∈ πv the
local Whittaker function corresponding to u ∈ πv. The space of all Wu (u ∈ πv)
is called the Whittaker model of πv with respect to θv.

Now let v =∞ be the archimedean place. We say that a C-valued function
W on G(R) is of moderate growth if there exists C > 0 and M > 0 such that
|W (g)| ≤ C‖g‖M for all g ∈ G(R). The form ‖g‖ of g = (gij) is defined by
‖g‖ := max{|gij |, |(g−1)ij}. The space of functions W ∈ C∞θv

(N(Qv)\G(Qv))
which is of moderate growth is denoted by Aθ∞(N(R)\G(R)). Improving Sha-
lika’s local multiplicity one theorem ([38], Theorem 3.1), Wallach ([44], Theorem
8.8 (1)) showed that for an arbitrary (g,K)-module π∞ the intertwining space
Hom(g,K)(π∞,Aθ∞(N(R)\G(R))) is at most one-dimensional. Again, if there is
a non-zero intertwining operator

Ψ ∈ Hom(g,K)(π∞,Aθ∞(N(R)\G(R))), (4)

then we say π∞ is generic and call the image Wu := Ψ(u) of u ∈ π∞ the local
Whittaker function corresponding to u.

1.4 Bessel functionals

We recall the notion of Bessel model introduced by Novodvorsky and Piatetski-
Shapiro [27]. We follow the exposition of [6]. Let S ∈ M2(Q) be such that
S = tS. We define the discriminant d = d(S) of S by d(S) = −4 detS. Let us
define a subgroup T = TS of GL(2) by

T = {g ∈ GL(2) | tgSg = det g.S}.

Then we consider T as a subgroup of GSp(4) via

t 7→
(
t

det t. tt−1

)
,

t ∈ T .
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Let us denote by U the subgroup of GSp(4) defined by

U = {u(X) =
(
I2 X

I2

)
|X = tX}.

Finally, we define a subgroup R of GSp(4) by R = TU .
Let ψ be a non-trivial character of Q\A. Then we define a character ψS on

U(A) by ψS(u(X)) = ψ(tr(SX)) forX = tX ∈ M2(A). Usually when there is no
danger of confusion, we abbreviate ψS to ψ. Let Λ be a character of T (Q)\T (A).
Denote by Λ ⊗ ψS the character of R(A) defined by (Λ ⊗ ψ)(tu) = Λ(t)ψS(u)
for t ∈ T (A) and u ∈ U(A).

Let π be an automorphic cuspidal representation of GSp4(A) and Vπ its
space of automorphic functions. We assume that

Λ|A× = ωπ. (5)

Then for ϕ ∈ Vπ, we define a function Bϕ on GSp4(A) by

Bϕ(g) =
∫
ZARQ\RA

(Λ⊗ ψS)(r)−1.ϕ(rh) dh. (6)

We say that π has a global Bessel model of type (S,Λ, ψ) for π if for some ϕ ∈ Vπ,
the function Bϕ is non-zero. In this case, the C-vector space of functions on
GSp4(A) spanned by {Bϕ |ϕ ∈ Vπ} is called the space of the global Bessel model
of π.

Similarly, one can consider local Bessel models. Fix a local field Qv. Define
the algebraic groups TS , U , and R as above. Also, consider the characters Λ, ψ,
ψS , and Λ⊗ψS of the corresponding local groups. Let (π, Vπ) be an irreducible
admissible representation of the group GSp(4) over Qv, when v is finite, or a
(g,K)-module when v is archimedean. Then we say that the representation π
has a local Bessel model of type (S,Λ, ψ) if there is a non-zero map in

Hom(πv, Ind(Λ⊗ ψ|R,G)). (7)

Here the Hom space is the collection of G(Qv)-intertwining maps when v is
finite, and the collection of all (g,K)-maps when v is archimedean. Also in the
archimedean case, as in the Whittaker case, we work with that subspace of Ind
which consists of functions of moderate growth.

In this work, we will be interested in two different types of Bessel models
corresponding to two choices of the symmetric matrix S. The two choices of S
are:

1. S =
(

1
1

)
,

2. S =
(

1
d

)
, with d a positive square-free rational number.
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Below, we will determine the subgroups TS , and R, and explicitly write down
the corresponding global Bessel functionals. We fix an irreducible automorphic
cuspidal representation π of GSp4(A) and a unitary character ψ of A throughout.

(1) S =
(

1
1

)
. This is the case of interest for us in this work. In this case,

the subgroup TS is equal to the subgroup consisting of diagonal matrices. A
straightforward analysis then shows that for every character Λ of TS(Q)\TS(A)
subject to (5), there is a Hecke character of A× such that the global Bessel
functional (6) is given by

Bsplit
χ (g;ϕ) =

∫
F×\A×

ϕU (


y

1
1

y

)χ(y) d×y.

Here when φ is a cusp form on GSp(4), we have set

φU (g) =
∫

(F\A)3
φ(


1 u w

1 w v
1

1

 g)ψ−1(w) du dv dw.

(2) S =
(

1
d

)
. In this case, the subgroup TS is equal to a non-split torus.

Then there is a Hecke character of the torus TS , say χ, in such a way that

Bχ(g;ϕ) =
∫
TS(F )A×\TS(A)

ϕU (
(
α

detα. tα−1

)
)χ(α) dα,

with φU defined as before. The case of immediate interest is the case where
d = 1, in which case,

TS = {g ∈ GL2 | tg.g = det g }

= {
(
a b
−b a

)
| a2 + b2 ∈ GL1}.

The problems of existence of Bessel functionals for this choice of the matrix S
seem to be more delicate.

1.5 Theta correspondence

In this section we collect various results on theta correspondence that we will
use in the sequel. In fact, this section is a rough review of [29]. We have adapted
the results of that paper to the case of our interest, split orthogonal spaces of
signature (2, 2). Other references of interest are [14, 15].

Let V be the vector space M2, of the two by two matrices, equipped with
the quadratic form det. Let (, ) be the associated non-degenerate inner prod-
uct, and H = GO(V, (, )) be the group of orthogonal similitudes of V , (, ).
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The group GL(2) × GL(2) has a natural involution t defined by t(g1, g2) =
(tb−1

2 ,t b−1
1 ), where the superscript t stands for the transposition. Let H̃ =

(GL(2)×GL(2))o < t > be the semi-direct product of GL(2)×GL(2) with the
group of order two generated by t. There is a sequence

1 −→ Gm −→ H̃ −→ H −→ 1, (8)

where the homomorphism ρ : H̃ → H is defined by ρ(g1, g2)(v) = g1vg
−1
2 , and

ρ(t)v = tv, for all g1, g2 ∈ GL(2) and v ∈ V . Also, Gm → H̃ is the natural map
z 7→ (z, z) × 1. It follows that the image of the subgroup GL(2) × GL(2) ⊂ H̃
under ρ is the connected component of the identity of H.

Let F be a local field of characteristic zero, with F = R if F is archimedean.
Fix a non-trivial unitary character ψ of F . The Weil representation ω of
Sp(4, F ) × O(V,F) defined with respect to ψ is the unitary representation on
L2(V 2) given by

ω(1, h)ϕ(x) = ϕ(h−1x),

ω

((
a

ta−1

))
ϕ(x) = |det a|2 ϕ(xa),

ω

((
1 b

1

))
ϕ(x) = ψ

(
1
2
tr(bx, x)

)
ϕ(x),

ω

((
1

−1

))
ϕ(x) = γϕ̂(x).

Here, ϕ̂ is the Fourier transform defined by

ϕ(x) =
∫
V 2
ϕ(x′)ψ(tr(x, x′)) dx′

with dx′ self-dual, and γ is a certain fourth root of unity on ψ. If h ∈ O(V, F ),
a ∈ GL(2, F ), b ∈ Mn(F ) with tb = b and x = (x1, x2), x′ = (x′1, x

′
2) ∈ V 2,

we write h−1x = (h−1x1, h
−1x2), xa = (x1, x2)(aij), (x, x′) = ((xi, x′j)), bx =

b t(x1, x2).
If F is non-archimedean, ω preserves the space S(V 2); by ω we mean ω

acting on the latter space. When F = R, we will work with Harish-Chandra
modules of real reductive groups. Fix K1 = Sp(4,R) ∩ O(4,R) as a maximal
compact subgroup of Sp(4,R). We denote the Lie algebra of Sp(4,R) by g1 =
sp(4,R). Let V + and V − be positive and negative definite subspaces of X,
respectively, such that V = V +⊥V −. Then a maximal compact subgroup of
O(V,R) is O(V +,R)×V(V −,R) ' O(2,R)×O(2,R). The Lie algebra of O(V,R)
is h1 = o(V,R). Let S(V 2) = Sψ(V 2) be the subspace of L2(V 2) consisting of
the functions

p(x) exp
[
−1

2
|c|
(
tr(x+, x+)− tr(x−, x−)

)]
.

Here p is a polynomial, and (x+, x+) and (x−, x−) are 2×2 matrices with (i, j)-
th entries (x+

i , x
+
j ) and (x+

i , x
+
j ) respectively, where xi = x+

i +x−i corresponding
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to the decomposition of V ; c ∈ R× is such that ψ(t) = exp(ict). Then S(V 2) is
a (g1 × h1,K1, J1) module under ω; this is the Harish-Chandra module we will
work with throughout. Often, for the sake of uniformity in presentation, one
uses the notation and terminology of genuine representations for archimedean
places as well. The reader has to keep on mind, however, that this is just a
matter of convenience.

Let R(O(V,F)) be the set of elements of Irr (O(V,F)) which are non-zero
quotients of ω, and define R(Sp(4, F )) similarly. Again, the reader will have to
keep in mind that at the archimedean place, we are working with underlying
Harish-Chandra modules. Suppose F is real or non-archimedean of odd residual
characteristic. Then the set{

(π, σ) ∈ R(Sp(4, F ))×R(O(V,F)) |HomSp(4,F)×O(V,F)(ω, π ⊗ σ) 6= 0
}

is the graph of a bijection, denoted by θ in either direction, between the cor-
responding sets. When F is non-archimedean of even residual characteristic,
one can establish the same for tempered representations. We refer the reader
to [29], section 1, for more information.

We now recall the extended Weil representation for similitude groups. Define

RV (F ) = {(g, h) ∈ GSp(4, F )×GO(V, F ) | ν(g) = ν(h)} .

The Weil representation of Sp(4, F )×O(V,F) on L2(V 2) extends to a unitary
representation of RV (F ) via

ω(g, h)ϕ = |ν(h)|−2
ω(g

(
1

ν(g)

)−1

, 1)(ϕ ◦ h−1).

We would still like to consider the action of RV (F ) on S(V 2), but one has to
take some care when considering the archimedean place, as in this case S(V 2) is
preserved only at the level of Harish-Chandra modules; we refer the reader to [29]
for details. We denote the resulting genuine representation of RV , in the non-
archimedean case, or the (r∞, L∞) Harish-Chandra module, in the archimedean
case, again by ω.

In analogy with the isometry case, one can ask when HomRV
(ω, π ⊗ σ) 6= 0

for π ∈ Irr (GSp(4,F)) and σ ∈ Irr(GO(V,F)). Here R for each group is the
collection of representations of the similitude group which when restricted to the
corresponding isometry group have a non-zero component in R. Then by theo-
rem 1.8 of [29], parts 1, 3, 5, HomRV

(ω, π ⊗ σ) 6= 0 defines a bijection between
R(GSp(4, F )) and R(GO(V, F )). Again, over a non-archimedean field of even
residual characteristic one has to restrict to an appropriate class of representa-
tions. Again, one denotes the resulting bijection by θ. Proposition 1.11 of [29]
states that θ maps unramified representations to unramified representations.

Let (π1, π2) be a pair of representations of GL2 over the local field F with
ωπ1 .ωπ2 = 1. Roberts [29] has associated to (π1, π2) an L-packet in GSp(4).
Essentially, the idea is to consider the representation π = π1⊗π2 of GSO(V, F )
and then consider all possible extensions of π to GO(V, F ); then consider the
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theta lifts of all such extended representations to GSp(4, F ). We describe the

L-parameter giving this packet in the archimedean situation. If gi =
(
αi βi
γi δi

)
,

i = 1, 2, we set

S(g1, g2) =


α1 β1

α2 β2

γ1 δ1
γ2 δ2

 .

For i = 1, 2, let ρi : WR → GL2(C) be the L parameter of π. Then define an
L-parameter ϕ(ρ1, ρ2) : WR → GSp(4,C) by

ϕ(ρ1, ρ2)(z) = S(ρ1(z), ρ2(z)−1), (9)

z ∈ WR. We take for granted the fact that the L packet defined by Roberts in
the archimedean situation is the L packet associated to ϕ(ρ1, ρ2) by Langlands.
We refer the reader to section 4 of [29], in particular pages 283-285 for basic
properties of the L packets.

We now turn our attention to global theta correspondence for the similitude
groups [29], section 5. In order to define global theta correspondence we need
a global Weil representation. Fix a non-trivial unitary character of A trivial on
Q. For a place v of Q, let ωv be the representation defined above. Let x1, . . . , x4

be a vector space basis of M2(Q) over Q. Let (g, h) ∈ RV (A). Then for almost
all places v, ωv(gv, hv) fixes the characteristic function of Ovx1 + · · · + Ovx4.
Let S(V (A)2) be the restricted algebraic direct product ⊗vS(V (Qv)2) which
is naturally an RV (Af ) × (r∞, L∞)-module. For ϕ ∈ S(V (A)2) and (g, h) ∈
RV (A), define

θ(g, h;ϕ) =
∑

x∈V (Q)2

ω(g, h)ϕ(x).

This series converges absolutely and is left R(Q) invariant. Fix a right invariant
quotient measure on O(V,Q)\O(V,A). Let f be a cusp form on GO(V,A). For
g ∈ GSp(4,A) define

θ(f, ϕ)(g) =
∫

O(V,Q)\O(V,A)

θ(g, h1h;ϕ)f(h1h) dh1,

where h ∈ GO(V,A) is any element such that (g, h) ∈ RV (A). This integral
converges absolutely, does depend on the choice of h, and the function θ(f, ϕ)
on GSp(4,A) is left GSp(4,Q) invariant. The function θ(f, ϕ) is an automorphic
function on GSp(4,A) of central character equal to the central character of f .
If V is a GO(V,A)× (h∞, J∞) subspace of the space of cusp forms on GO(V,A)
of central character χ, then we denote by Θ(V ) the GSp(4,Af ) × (g∞,K∞)
subspace of the space of automorphic forms on GSp(4,A) of central character
χ generated by all the θ(f, ϕ) for f ∈ V and ϕ ∈ S(V (A)2).

For computational purposes, we need to make the above considerations ex-
plicit. Here the notation may be slightly different from above. Suppose π1 and
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π2 are two irreducible cuspidal automorphic representations of GL2(A) satisfy-
ing

ωπ1 .ωπ2 = 1.

Then for ϕ1 and ϕ2 cusp forms in the spaces of π1 and π2, respectively, one can
think of

ϕ(h1, h2) = ϕ1(h1)ϕ2(h2),

as a cusp form on the algebraic group ρ(H̃). We extend the definition of ϕ to
H by defining it to be right invariant under the compact totally disconnected
group < t > (A) =

∏
v < t >.

Define the subgroup H1 consisting of elements (h1, h2) satisfying

det(h1) = det(h2).

Then if π1 and π2 are two automorphic cuspidal representations of the group
GL(2) with

ωπ1 .ωπ2 = 1,

and
π1 6= π̃2,

then one can naturally think of the pair (π1, π2) as an automorphic cuspidal
representation of the groupH. If ϕ1 and ϕ2 are cusp forms on GL2(A), belonging
to the spaces of the representations π1 and π2, respectively, we define a cuspidal
function θ(ϕ1, ϕ2; f) on GSp(4,A) by

θ(ϕ1, ϕ2; f)(g) =
∫
H1(F )\H1(A)

θ(g;h1h
1, h2h

2; f)ϕ1(h1h
1)ϕ2(h2h

2) d(h1, h2),

where the pair (h1, h2) is chosen such that

deth1(deth2)−1 = ν(g).

Here f is a Bruhat-Schwartz function on M2(A)×M2(A), and

θ(g;h1h
1, h2h

2; f) =
∑

M1,M2∈M2(F )

ω(g;h1h
1, h2h

2)f(M1,M2),

where ω is the Weil representation of [14]. We note this is different from the
definition given earlier. Let Θ(π1, π2) be the vector space generated by the
functions θ(ϕ1, ϕ2; f) for all choices of ϕ1, ϕ2, and f as above. Then Θ(π1, π2)
is an irreducible generic automorphic cuspidal representation of GSp(4). In fact,
this is the generic element of the global L packet defined by Roberts [29]. If
Θ(π1, π2) = ⊗vΘv(π1, π2), then Θv(π1, π2) depends only on the v components
of π1, π2, and is the generic element of corresponding local L packet.
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1.6 Theta correspondence for (Sp(4, R), O(2, 2))

The result of this subsection is taken from [14]. Let G = Sp(4,R), H = O(2, 2),
K = U(2), and L = O(2)×O(2). Next we have the following:

Proposition 1.1 Let π = πΛ+ρ be the generic discrete series representation
with Harish-Chandra parameter

Λ + ρ =

{
(a+ 2,−b− 1)
(b+ 1,−a− 2)

of G. Then π occurs in the theta correspondence for (G,H), and

θ(π) =

{
π(a+ b+ 4, b− a− 2)
π(a+ b+ 4, a− b+ 2)

1.7 The Spinor L-function for GSp(4)

In this section, we review the integral representation given by Novodvorsky [26]
for G = GSp(4). The details of the material in the following paragraphs appear
in [4, 40].

Let ϕ be a cusp form on GSp(4,A), belonging to the space of an irreducible
cuspidal automorphic representation π. Consider the integral

ZN (s, φ, µ) =
∫

A×/Q×

∫
(A/Q)3

φ

(
1 x2 x4

1
1

z −x2 1



y

y
1

1

)

× ψ(−x2)µ(y)|y|s− 1
2 dz dx2 dx4 d

×y.

Since φ is left invariant under the matrix

w =


1

−1
1

−1

 ,

this integral has a functional equation s → 1 − s. Observe that this choice of
w corrects an inaccuracy in [40]; we thank Brooks Roberts for pointing out this
error. A usual unfolding process as sketched in [4] then shows that

ZN (s, φ, µ) =
∫

A×

∫
A
Wφ


y

y
1

x 1

µ(y)|y|s− 3
2 dx d×y. (10)
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Here the Whittaker function Wϕ is given by

Wφ(g) =
∫

(A/Q)4
φ

(
1 x2

1
1
−x2 1




1 x4 x3

1 x3 x1

1
1

 g

)

× ψ−1(x1 + x2) dx1 dx2 dx3 dx4

Equation (10) implies that, in order for ZN (ϕ, s) to be non-zero, we need to
assume that Wϕ is not identically equal to zero. A representation satisfying this
condition is called “generic.” Every irreducible cuspidal representation of GL(2)
is generic. On other groups, however, there may exist non-generic cuspidal
representations. In fact, those representations of GSp(4) which correspond to
holomorphic cuspidal Siegel modular forms are not generic.

From this point on, we assume that all the representations of GSp(4), local
or global, which appear in the text are generic.

If ϕ is chosen appropriately, the Whittaker function may be assumed to de-
compose locally as W (g) =

∏
vWv(gv), a product of local Whittaker functions.

Hence, for <s large, we obtain

Z(ϕ, s) =
∏
v

Z(Wv, s), (11)

where

ZN (Wv, s) =
∫
F×v

∫
Fv

Wv

(
y

y
1

x 1

)|y|s− 3
2 dx d×y. (12)

As usual, we have a functional equation: There exists a meromorphic function
γ(πv, ψv, s) (rational function in Nv−s when v <∞) such that

ZN (Wv, s) = γ(πv, ψv, s)Z̃(Ww
v , 1− s), (13)

with w as above,

Z̃(Wv, s) =
∫
F×v

∫
Fv

Wv

(
y

y
1

x 1

)χ−1
v (y)|y|s− 3

2 dx d×y,

and χv the central character of πv.
We also consider the unramified calculations. Suppose v is any nonar-

chimedean place of F such that Wv is right invariant by GSp(4,Ov) and such
that the largest fractional ideal on which ψv is trivial is O. Then the Casselman-
Shalika formula [5] allows us to calculate the last integral (cf. [4]). The result
is the following:

Z(Wv, s) = L(s, πv,Spin). (14)
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Let us explain the notation. The connected L-group LG0 is GSp(C). Let LT be
the maximal torus of elements of the form

t(α1, α2, α3, α4) =


α1

α2

α3

α4

 ,

where α1α4 = α2α3. The fundamental dominant weights of the torus are λ1

and λ2 where
λ1t(α1, α2, α3, α4) = α1,

and
λ2t(α1, α2, α3, α4) = α1α

−1
3 .

The dimensions of the representation spaces associated with these dominant
weights are four and five, respectively. In our notation, Spin is the represen-
tation of GSp(4,C) associated with the dominant weight λ1, i.e. the standard
representation of GSp(4,C) on C4. The L-function L(s, π,Spin) is called the
Spinor, or simply the Spin, L-function of GSp(4).

Next step is to use the integral introduced above to extend the definition of
the Spinor L-function to ramified non-archimedean and archimedean places.

Corollary 1.2 Let π be an irreducible generic representation of GSp(4) over a
non-archimedean local field K. Let µ be a quasi-character of K×. If µ is highly
ramified, we have

L(s, π ⊗ µ) = 1.

2 Entireness of the spinor L-function

The purpose of this section is to prove the following theorem:

Theorem 2.1 Let π = ⊗vπv be a generic automorphic cuspidal representation
of GSp(4) over Q. Let π∞ be special as defined in 2.4. Then L(s, π,Spin) is
entire.

The proof of this theorem covers paragraphs 2.1 through 2.6.

2.1 The pull-back

In the global situation, there is a simple relationship between the integral rep-
resentation of the previous section and split Bessel functionals. The following
simple observation which for the ease of reference we separate as a lemma forms
the fundamental idea of the proof of Theorem 2.1:
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Lemma 2.2 We have

Bsplit

µ| . |s−
1
2
(I4;φ) =

∫
A×

∫
A
Wφ



y

y
1

x 1

w−1

µ(y)|y|s− 3
2 dx d×y,

with

w =


1

1
1

−1

 .

This lemma should be compared to equation (16) of [7]. The lemma motivates
the following definition.

Definition 2.3 For ϕ1, ϕ2, and f as above and µ a Hecke character, we define

Z(ϕ1, ϕ2, f ;µ) = Bsplit

µ| . |−
1
2
(I4; θ(ϕ1, ϕ2; f))

=
∫
F×\A×

θ(ϕ1, ϕ2; f)U (


y

1
1

y

)µ(y)|y|− 1
2 d×y.

Here if φ is a cusp form on GSp(4), we have set

φU (g) =
∫

(F\A)3
φ(


1 u w

1 w v
1

1

 g)ψ−1(w) du dv dw.

We prove that the above integral is an infinite product of local integrals. We do
so by finding an expression relating our function Z(ϕ1, ϕ2, f ; s) to the Jacquet-
Langlands zeta functions of ϕ1, and ϕ2.

Before stating our proposition, we recall a notation from [17]. If φ is a cusp
form on GL2(AF ), in the space of a representation π, µ a Hecke character, and
h ∈ GL2(AF ), we set

Z(φ, h, µ) =
∫
F×\A×

φ(
(
a

1

)
h)µ(a)|a|− 1

2 d×a,

and

Z̃(φ, h, µ) =
∫
F×\A×

φ(
(
a

1

)
h)ωπ(a)−1µ(a)|a|− 1

2 d×a

Then, we have the following proposition:
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Proposition 2.4 For ϕ1, ϕ2, and f as above, we have

Z(ϕ1, ϕ2, f ;µ) =
∫
D(A)\H1(A)

Z(ϕ1, h1, µ)Z(ϕ2, h2, µ
−1| . |)

L(h1, h2)f(
(

1 0
0 0

)
,

(
0 0
0 1

)
)dh1 dh2

Proof. First, we obtain an expression for θ(ϕ1, ϕ2; f)U . We start by the follow-
ing:

θ(ϕ1, ϕ2; f)U (g)

=
∫

(F\A)3
θ(ϕ1, ϕ2; f)(


1 u w

1 w v
1

1

 g)ψ−1(w) du dv dw

=
∫

(F\A)3

∫
H1(F )\H1(A)

θ(


1 u w

1 w v
1

1

 g;h1h
1, h2h

2; f)

ϕ1(h1h
1)ϕ2(h2h

2) d(h1, h2)ψ−1(w) du dv dw,

where h1 and h2 are chosen in such a way that

deth1.(deth2)−1 = ν(g).

Next, it follows from the definition of θ that

θ(ϕ1, ϕ2; f)U (g) =∫
H1(F )\H1(A)

ϕ1(h1h
1)ϕ2(h2h

2)Gf (h1h
1, h2h

2; g) dh1 dh2,
(15)

where

Gf (h1h
1, h2h

2; g) =

∑
M1,M2

∫
(F\A)3

ω(


1 u w

1 w v
1

1

 g, h1h
1, h2h

2)f(M1,M2)

ψ−1(w) du dv dw.
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Next, for fixed M1 and M2 we have

∫
(F\A)3

ω(


1 u w

1 w v
1

1

 g, h1h
1, h2h

2)f(M1,M2)ψ−1(w) du dv dw

= ω(g, h1h
1, h2h

2)f(M1,M2)∫
(F\A)3

ψ(tr
(
u w
w v

)(
detM1 B(M1,M2)− 1

2
B(M2,M1)− 1

2 detM2

)
) du dv dw.

Next, we have the following straightforward lemma:

Lemma 2.5 For any 2× 2 matrix A ∈ M2(A), we have∫
(F\A)3

ψ(tr
(
u w
w v

)
A) du dv dw = 0,

unless A =
(

0 0
0 0

)
, in which case the value of the integral is equal to 1.

The lemma implies that

Gf (h1h
1, h2h

2; g) =
∑

(M1,M2)∈S

ω(g, h1h
1, h2h

2)f(M1,M2),

where

S = {(X,Y ) ∈ M2(F )×M2(F ) | detX = 0,detY = 0,det(X + Y ) = 1}.

Lemma 2.6 The set S consists of a single orbit under the action of H1(F ).

The point P = (
(

1 0
0 0

)
,

(
0 0
0 1

)
) belongs to S. The stabilizer of P in H1(F )

is the subgroup D(F ).

Consequently,

Gf (h1h
1,h2h

2; g) =∑
γ∈D(F )\H1(F )

ω(1, γ)ω(g, h1h
1, h2h

2)f(
(

1 0
0 0

)
,

(
0 0
0 1

)
).

Inserting the right hand side of this expression for Gf in equation (15) gives

θ(ϕ1, ϕ2; f)U (g) =∫
D(F )\H1(A)

ϕ1(h1h
1)ϕ2(h2h

2)ω(g, h1h
1, h2h

2)f(
(

1 0
0 0

)
,

(
0 0
0 1

)
) dh1 dh2,

(16)
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We now turn our attention to Z(ϕ1, ϕ2, f ; s). For this purpose, we need to first

simplify ω(g, h1h
1, h2h

2)f(
(

1 0
0 0

)
,

(
0 0
0 1

)
), when g =

(
y

1
1

y

)
, h1 =(

y
1

)
, and h2 = identity, say. We have

ω(


y

1
1

y

 , h1

(
y

1

)
, h2)f(

(
1 0
0 0

)
,

(
0 0
0 1

)
)

= ω(


y

1
1

y




1
1

y−1

y−1

)L(h1

(
y

1

)
, h2)f(

(
1 0
0 0

)
,

(
0 0
0 1

)
)

= |y|2L(h1

(
y

1

)
, h2)f(

(
y 0
0 0

)
,

(
0 0
0 1

)
)

= f(
(
y−1 0
0 1

)
h−1

1

(
y 0
0 0

)
h2,

(
y−1 0
0 1

)
h−1

1

(
0 0
0 1

)
h2)

= f(
(
y−1 0
0 1

)
h−1

1

(
y 0
0 1

)(
1 0
0 0

)
h2,

(
y−1 0
0 1

)
h−1

1

(
y 0
0 1

)(
0 0
0 1

)
h2).

Hence, for the choices of g, h1, and h2 as above, we have

ω(g, h1h
1, h2h

2)f(
(

1 0
0 0

)
,

(
0 0
0 1

)
) =

L(
(
y−1 0
0 1

)
h1

(
y 0
0 1

)
, h2)f(

(
1 0
0 0

)
,

(
0 0
0 1

)
).

This equation combined with equation (16) gives

θ(ϕ1, ϕ2; f)U (


y

1
1

y

) =
∫
D(F )\H1(A)

ϕ1(h1

(
y

1

)
)ϕ2(h2)

L(
(
y−1 0
0 1

)
h1

(
y 0
0 1

)
, h2)f(

(
1 0
0 0

)
,

(
0 0
0 1

)
) dh1 dh2.

Next, we make a change of variables

(h1, h2) 7→ (
(
y

1

)
h1

(
y−1

1

)
, h2)
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to obtain

θ(ϕ1, ϕ2; f)U (


y

1
1

y

) =

∫
D(F )\H1(A)

ϕ1(
(
y

1

)
h1)ϕ2(h2)L(h1, h2)f(

(
1 0
0 0

)
,

(
0 0
0 1

)
) dh1 dh2.

Next,

Z(ϕ1, ϕ2, f ;µ)

=
∫
F×\A×

θ(ϕ1, ϕ2; f)U (


y

1
1

y

)µ(y)|y|− 1
2 d×y

=
∫
F×\A×

∫
D(F )\H1(A)

ϕ1(
(
y

1

)
h1)ϕ2(h2)

L(h1, h2)f(
(

1 0
0 0

)
,

(
0 0
0 1

)
)µ(y)|y|− 1

2 dh1 dh2 d
×y.

At this stage, we use the obvious isomorphism

F×\A× −→ D(F )\D(A),

given by

a 7→ (
(
a

1

)
,

(
a

1

)
)

to obtain

Z(ϕ1, ϕ2, f ;µ)

=
∫
F×\A×

∫
D(A)\H1(A)

∫
F×\A×

ϕ1(
(
y

1

)(
a

1

)
h1)ϕ2(

(
a

1

)
h2)

L(
(
a

1

)
h1,

(
y

1

)
h2)f(

(
1 0
0 0

)
,

(
0 0
0 1

)
)µ(y)|y|− 1

2 d×a dh1 dh2 d
×y

=
∫
F×\A×

∫
D(A)\H1(A)

∫
F×\A×

ϕ1(
(
ya

1

)
h1)ϕ2(

(
a

1

)
h2)

L(h1, h2)f(
(

1 0
0 0

)
,

(
0 0
0 1

)
)µ(y)|y|− 1

2 d×a dh1 dh2 d
×y

=
∫
F×\A×

∫
D(A)\H1(A)

∫
F×\A×

ϕ1(
(
y

1

)
h1)ϕ2(

(
a

1

)
h2)

L(h1, h2)f(
(

1 0
0 0

)
,

(
0 0
0 1

)
)µ(y)|y|− 1

2µ−1(a)|a| 12 d×a dh1 dh2 d
×y,
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after a change of variable y 7→ ya−1. The proposition now follows from a simple
re-arrangement of the last expression. �

2.2 The zeta integral of two complex variables; Euler prod-
uct

In order to study the zeta integral Z(ϕ1, ϕ2, f ;µ), we would have liked to intro-
duce a function of two complex variables s1, s2 as follows: For ϕ1, ϕ2, and f as
above, and µ Hecke character, we set

Z(ϕ1, ϕ2, f ;µ, | . |s1 , | . |s2) =
∫
D(A)\H1(A)

Z(ϕ1, h1, µ| . |s1)Z(ϕ2, h2, µ
−1| . |s2)

L(h1, h2)f(
(

1 0
0 0

)
,

(
0 0
0 1

)
)dh1 dh2,

with s1, s2 ∈ C. Unfortunately, however, this integral is not well-defined for
s2 6= 1− s1. In order to circumvent this problem we proceed as follows.

If φ is a cusp form on GL2(AF ), we define its Whittaker function by

Wφ(g) =
∫
F\A

φ(
(

1 x
1

)
g)ψ(x)−1 dx,

for g ∈ GL2(AF ). Then, we have the Fourier expansion

φ(g) =
∑
α∈F×

Wφ(
(
α

1

)
g),

with the right hand side a uniformly convergent series on compact sets in
GL2(A). It is then a classical observation of [17] that for <s large, we have

Z(φ, h, µ| . |s) =
∫

A
Wφ(

(
a

1

)
h)µ(a)|a|s− 1

2 d×a.

We denote the right hand side of this equation by Z(Wφ, h, s).
We have a formal identity as follows:

Z(ϕ1, ϕ2, f ;µ, | . |s1 , | . |s2) =
∫
D(A)\H1(A)

Z(Wϕ1 , h1, µ| . |s1)Z(Wϕ2 , h2, µ
−1| . |s2)

L(h1, h2)f(
(

1 0
0 0

)
,

(
0 0
0 1

)
)dh1 dh2.

Next, we consider the Euler product. We choose ϕi, for i = 1, 2, so that

Wϕi = ⊗v∈MF
W i
v.

Also, we choose f to be a pure tensor of the form

⊗v∈MF
fv,
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with fv unramified for almost all v.
With this choice of the data, we have yet another formal identity

Z(ϕ1, ϕ2, f ;µ, | . |s1 , | . |s2) =
∏

v∈MF

Zv(W 1
v ,W

2
v , fv;µv, | . |s1v , | . |s2v ). (17)

Here, we have set

Zv(W 1
v ,W

2
v , fv;µv, | . |s1 , | . |s2) =

∫
D(Fv)\H1(Fv)

Z(W 1
v , h1, µv| . |s1v )Z(W 2

v , h2, µ
−1
v | . |s2v )

L(h1, h2)fv(
(

1 0
0 0

)
,

(
0 0
0 1

)
)dh1 dh2.

Also, for Wv a Whittaker function on a local group GL2(Fv), and h ∈ GL2(Fv),
we have used the notation Z(Wv, h, µv) to denote∫

F×v

Wv(
(
a

1

)
h)µv(a)|a|−

1
2 d×a.

The idea is to make sense out of the expression for

Zv(W 1
v ,W

2
v , fv;µv, | . |s1 , | . |s2)

for <s1,<s2 large. For this we use the following lemma:

Lemma 2.7 Let v ∈MF , and Ψ a continuous function of compact support on
D(Fv)\H1(Fv). Choose an arbitrary lift Φ′ of Φ to GL2(Fv) × GL2(Fv). The
functional µ(Φ) defined by∫

Kv

∫
F 2

v

∫
F×v

Φ′(
(

1 u
1

)
k1,

(
ε

ε−1

)(
1 v

1

)
k2)|ε|−1 d×ε du dv dk1 dk2,

for an appropriate choice of a local maximal compact (and open for v non-
archimedean), defines an invariant measure on D(Fv)\H1(Fv). Furthermore,
this measure has the following property: Fix a Haar measure µD on D(Fv), and
for any continuous function of compact support Ψ on H1(Fv), set

ΨD(x) =
∫
D(Fv)

Ψ(yx) dµ1(y),

for x ∈ D(Fv)\H1(Fv). Then the functional µ2 defined by

µ2(Ψ) = µ(ΨD),

with Ψ as above defines a Haar measure on H1(Fv).
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Definition 2.8 We set

Zv(W 1
v ,W

2
v , fv;µv, | . |s1 , | . |s2)

=
∫
u,v∈Fv

∫
ε∈F×v

∫
K2

v

f(k−1
1

(
ε−1 ε−1v
0 0

)
k2, k

−1
1

(
0 −uε
0 ε

)
k2)

ωπ2(ε)|ε|2s2−2(
∫
F×v

W1(
(
α

1

)
k1)e(uα)µ(α)|α|s1− 1

2 d×α)

(
∫
F×v

W2(
(
β

1

)
k2)e(vβ)µ−1(β)|β|s2− 1

2 d×β) du dv d×ε dk1 dk2.

We immediately observe that if the integral is convergent, it is well-defined.

Proposition 2.9 Suppose W1,W2 are two Whittaker functions of GL2(Fv) be-
longing to the spaces of representations π1, π2, respectively, with ωπ1 .ωπ2 = 1.
Then the integral Z(W1,W2, f ;µv, | . |s1v , | . |s2v ) converges absolutely for <s1,<s2 �
0.

Proof. We give a complete proof only for the case where v is a real place, the
proof of the non-archimedean statement being identical. Also it is clear that
we may assume that the quasi-character µv is trivial. By definition, we need to
show that the integral∫

u,v∈R

∫
ε∈R×+

∫
K2

v

f(k−1
1

(
ε−1 ε−1v
0 0

)
k2, k

−1
1

(
0 −uε
0 ε

)
k2)

ωπ2(ε)|ε|2s2−2(
∫

R×
W1(

(
α

1

)
k1)e(uα)|α|s1− 1

2 d×α)

(
∫

R×
W2(

(
β

1

)
k2)e(vβ)|β|s2− 1

2 d×β) du dv d×ε dk1 dk2.

converges absolutely. By lemma 8.3.3 of [18], there are gauge functions ξ1, ξ2
such that

|W1| ≤ ξ1, and |W2| ≤ ξ2.
This implies that∫

R×
|W1(

(
α

1

)
k1)e(uα)|α|s1− 1

2 | d×α ≤
∫

R×
ξ1(
(
α

1

)
)|α|σ1− 1

2 d×α,

and ∫
R×
|W2(

(
β

1

)
k2)e(vβ)|β|s2− 1

2 | d×β ≤
∫

R×
ξ2(
(
β

1

)
)|β|σ2− 1

2 d×β.

The latter integrals converge absolutely for σ1, σ2 large. In order to conclude
the proof, we need to study the convergence of∫

u,v∈R

∫
ε∈R×+

∫
K2

v

f(k−1
1

(
ε−1 ε−1v
0 0

)
k2, k

−1
1

(
0 −uε
0 ε

)
k2)

ωπ2(ε)|ε|2s2−2 du dv d×ε dk1 dk2.
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We claim that this integral converges absolutely for all values of s2. In fact, if
f ∈ S(M2(R)×M2(R)), the function g defined by

g(X,Y ) =
∫
K2

v

f(k−1
1 Xk2, k

−1
1 Y k2) dk1 dk2

is in S(M2(R)×M2(R)). Thus, we must show that∫
u,v∈R

∫
ε∈R×+

f(
(
ε−1 ε−1v
0 0

)
,

(
0 −uε
0 ε

)
)ωπ2(ε)|ε|2s2−2 du dv d×ε

converges absolutely for all s2. The first observation, due to Weil, is that the
absolute value of a Schwartz-Bruhat function is bounded by a Schwartz-Bruhat
function. Consequently, we can assume that f is a positive Schwartz-Bruhat
function. But now it is clear that the function Ξ defined by

Ξ(ε) =
∫
u,v∈R

f(
(
ε−1 ε−1v
0 0

)
,

(
0 −uε
0 ε

)
) du dv

is in the space S(R×). Since our original integral is bounded by∫
R

Ξ(ε)ωπ2(ε)|ε|2σ2−2 d×ε,

the proposition is immediate. �
Then we have the following proposition:

Proposition 2.10 Let v be a non-archimedean place. Let W1 and W2 be given.
Then there is a choice of f such that

Z(W1,W2, f ;µ, | . |s1v , | . |s2v ) = Z(W1, µ| . |s1v )Z(W2, µ
−1| . |s2v ).

Proof. Let M be a very large positive integer. Let f = g ⊗ h be a Schwartz
function such that

Support g ⊂
(

1
0

)
+
(

pM pM

pM pM

)
,

and

Supporth ⊂
(

0
1

)
+
(

pM pM

pM pM

)
.

Then upon setting,

h1 =
(

1 −u
1

)(
α β
γ δ

)−1

,

h2 =
(
ε

ε−1

)(
1 v

1

)(
a b
c d

)
,

we get

f

((
αε(a+ vc) αε(b+ vd)
γε(a+ vc) γε(b+ vd)

)
,

(
cε−1(αu+ β) dε−1(αu+ β)
cε−1(γu+ δ) dε−1(γu+ δ)

))
6= 0.

With the choice of f , it is not hard to draw the following conclusions:
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1. γ, c ∈ pM ,

2. u, v are integral,

3. ε is a unit,

4. b+ vd, αu+ β ∈ pM ,

5. αεa, dε−1δ ∈ 1 + pM .

Next,

Z(W1, h1, µ1| . |s1v ) =
∫

Q×v
W1

((
x

1

)(
1 −u

1

)(
α β
γ δ

)−1
)
µ(x)|x|s1− 1

2 d×x;

but(
1 −u

1

)(
α β
γ δ

)−1

=
(
α−1

α(αδ − βγ)−1

)
×
(

1 −(β + uα)α(αδ − βγ)−1

1

)(
1

−α−1γ 1

)
,

implying that for M large, we have

Z(W1, h1, µ| . |s1v ) =
∫

Q×v
W1

((
xα−1

α(αδ − βγ)−1

))
µ1(x)|x|s1−

1
2 d×x

= (ωπ1µ)(α2(αδ − βγ)−1)Z(W1, µ| . |s1v ).

Similarly, for M large,

Z(W1, h2, µ
−1| . |s2v ) = µ−1(ε−1d(ad− bc)−1)(ωπ2µ

−1)(ε−1d)Z(W2, µ
−1| . |s2v ).

The proposition is now immediate. �

Corollary 2.11 There is a choice of W1,W2, f such that

Z(W1,W2, f ;µ, | . |s1v , | . |s2v ) ≡ 1.

When W1,W2 are spherical, the situation is particularly nice:

Proposition 2.12 Suppose v is a non-archimedean place, and π1, π2 are spher-
ical representations of GL2(Fv) with ωπ1 .ωπ2 = 1. Also, suppose that Wi ∈
W(πi, ψ), i = 1, 2, is the normalized Kv-fixed vector. Furthermore, let f be
the characteristic function of M2(Ov) × M2(Ov). Then for unramified quasi-
character µ we have

Z(W1,W2, f ;µ, | . |s1v , | . |s2v ) = Lv(s1, π1, µ)L(s2, π2, µ
−1).
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Proof. In order to see this, we need to verify that if

L(h1, h2)f(
(

1 0
0 0

)
,

(
0 0
0 1

)
) 6= 0,

for (h1, h2) ∈ H1(Fv), we must have (h1, h2) ∈ D(Fv)(GL2(Ov)×GL2(Ov)). For
this, we start by the observation that one can take as a set R of representatives
for

D(Fv)\H1(Fv)/(GL2(Ov)×GL2(Ov)),

the set of pairs of the form

(
(

1 u
1

)
,

(
ε

ε−1

)(
1 v

1

)
).

Hence, we need to verify our claim only for elements (h1, h2) of the above form.
We have

L(h1, h2)f(
(

1 0
0 0

)
,

(
0 0
0 1

)
) = f(

(
ε εv
0 0

)
,

(
0 −uε−1

0 ε−1

)
).

Since f is the characteristic function of M2(Ov)×Mv(Ov), for this last expres-
sion to be non-zero, we must have ε±1 ∈ Ov, εv ∈ Ov, and ε−1u ∈ Ov. This
in turn implies that ε ∈ O×

v , and u, v ∈ Ov. Now an application of lemma 2.7
gives the result. �

We can now proceed to collect information about the analytic properties of
our two variable zeta function. we prove the following proposition:

Proposition 2.13 For W1, W2 Whittaker functions, and f as above, the func-
tion Z(W1,W2, f ;µ, | . |s1 , | . |s2) has an analytic continuation to a meromorphic
function on C2. Furthermore, the ratio

Ψ(W1,W2, f ;µ, | . |s1v , | . |s2v ) =
Z(W1,W2, f ;µ, | . |s1v , | . |s2v )
L(s1, π1, µ)L(s2, π2, µ−1)

extends to an entire function on the entire C2. There is a choice of W1, W2,
and f such that the above ratio is a nowhere vanishing entire function.

Proof. We prove only the analyticity statement; the non-vanishing follows from
proposition 2.10 and the corresponding GL(2) statement. We write out the
details for the archimedean place. For simplicity, we will assume that π1 and
π2 are irreducible principal series representations. Also we will assume that the
quasi-character µ is trivial. By lemma 2.7, we need to consider the integral∫

u,v∈R

∫
ε∈R×+

∫
K2

v

f(k−1
1

(
ε−1 ε−1v
0 0

)
k2, k

−1
1

(
0 −uε
0 ε

)
k2)

ωπ2(ε)|ε|2s2−2(
∫

R×
W1(

(
α

1

)
k1)e(uα)|α|s1− 1

2 d×α)

(
∫

R×
W2(

(
β

1

)
k2)e(vβ)|β|s2− 1

2 d×β) du dv d×ε dk1 dk2.

(18)
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For this purpose, we use the description of the Whittaker model of a principal
series representation from [17], page 101-102. Suppose π1 = π(µ1, µ2), and
π2 = π(µ3, µ4). Then there is a Schwartz function Pi(x, y), i = 1, 2, such that
W1 = WPi

by the following recipe. Let

f1(g) = (µ1ν
1
2 )(det g)

∫
R×

P1[(0, 1)γg](µ1µ
−1
2 ν)(γ) d×γ,

and
f2(g) = (µ3ν

1
2 )(det g)

∫
R×

P2[(0, 1)δg](µ3µ
−1
4 ν)(δ) d×δ,

when the integrals converge. Next, we set for i = 1, 2

WPi
(g) =

∫
R
fPi

(
(

1
−1

)(
1 x

1

)
g)e(x) dx.

In particular,

WP1(
(
α

1

)
k1) =∫

R

∫
R×

(µ1v
1
2 )(α)(µ1µ

−1
2 ν)(γ)P1((−αγ,−xγ)k1)e(x) dx d×γ,

and

WP2(
(
β

1

)
k2) =∫

R

∫
R×

(µ3v
1
2 )(β)(µ3µ

−1
4 ν)(δ)P2((−βδ,−yδ)k2)e(y) dy d×δ.

These integrals may not converge, but they have analytic continuations to entire
functions of the characters µi, i = 1, . . . , 4.

We need a lemma/notation:

Lemma 2.14 Suppose P1, P2, and f are Schwartz-Bruhat functions as above.
Then the function Γ whose value at

(X,Y,m, n, p, q) ∈ M2(R)×M2(R)× R4

is given by

Γ(X,Y,m, n, p, q) =∫
K2

f(k−1
1 Xk2, k

−1
1 Y k2)P1((m,n)k1)P2((p, q)k2) dk1 dk2

is a Schwartz-Bruhat function.
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The integral (18) is now equal to∫
α∈R×

∫
β∈R×

∫
γ∈R×

∫
δ∈R×

∫
ε∈R×+

∫
u∈R

∫
v∈R

∫
x∈R

∫
y∈R

Γ(
(
ε−1 ε−1v
0 0

)
,

(
0 −uε
0 ε

)
,−αγ,−xγ,−βδ,−yδ)

ωπ2(ε)|ε|2s2−2e(uα)|α|s1− 1
2 e(vβ)|β|s2− 1

2 (µ1v
1
2 )(α)

(µ1µ
−1
2 ν)(γ)e(x)(µ3v

1
2 )(β)(µ3µ

−1
4 ν)(δ)e(y)

dy dx dv du d×ε d×δ d×γ d×β d×α.

=
∫
α∈R×

∫
β∈R×

∫
γ∈R×

∫
δ∈R×

∫
ε∈R×+

∫
u∈R

∫
v∈R

∫
x∈R

∫
y∈R

Γ(
(
ε−1 ε−1v
0 0

)
,

(
0 −uε
0 ε

)
,−αγ,−xγ,−βδ,−yδ)

ωπ2(ε)|ε|2s2−2e(uα)|α|s1e(vβ)|β|s2(µ1)(α)

(µ1µ
−1
2 ν)(γ)e(x)(µ3)(β)(µ3µ

−1
4 ν)(δ)e(y)

dy dx dv du d×ε d×δ d×γ d×β d×α.

(19)

We will abbreviate the inner Γ-expression appearing above to

Γ(ε−1, ε−1v,−uε, ε,−αγ,−xγ,−βδ,−yδ).

Next we consider the integral∫
u∈R

∫
v∈R

∫
x∈R

∫
y∈R

Γ(ε−1, ε−1v,−uε, ε,−αγ,−xγ,−βδ,−yδ)

e(x)e(y)e(uα)e(vβ) dy dx dv du

= |γ|−1|δ|−1

∫
u∈R

∫
v∈R

∫
x∈R

∫
y∈R

Γ(ε−1, v, u, ε,−αγ, x,−βδ, y)

e(−x
γ

)e(−y
δ
)e(−uα

ε
)e(vβε) dy dx dv du

= |γ|−1|δ|−1Γ̃(ε−1,−βε, αε−1, ε,−αγ, γ−1,−βδ, δ−1),

where Γ̃ is the appropriate Fourier transform of Γ.
Going back to (19), we obtain∫

α∈R×

∫
β∈R×

∫
γ∈R×

∫
δ∈R×

∫
ε∈R×+

|γ|−1|δ|−1Γ̃(ε−1,−βε, αε−1, ε,−αγ, γ−1,−βδ, δ−1)

ωπ2(ε)|ε|2s2−2|α|s1 |β|s2µ1(α)(µ1µ
−1
2 ν)(γ)µ3(β)(µ3µ

−1
4 ν)(δ)

d×ε d×δ d×γ d×β d×α.
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=
∫
α∈R×

∫
β∈R×

∫
γ∈R×

∫
δ∈R×

∫
ε∈R×+

Γ̃(ε−1,−βε, αε−1, ε,−αγ−1, γ,−βδ−1, δ)

ωπ2(ε)|ε|2s2−2|α|s1 |β|s2µ1(α)(µ1µ
−1
2 )(γ−1)µ3(β)(µ3µ

−1
4 )(δ−1)

d×ε d×δ d×γ d×β d×α.

=
∫
α∈R×

∫
β∈R×

∫
γ∈R×

∫
δ∈R×

∫
ε∈R×+

Γ̃(ε−1,−βδε, αγε−1, ε,−α, γ,−β, δ)
ωπ2(ε)|ε|2s2−2|α|s1 |γ|s1 |β|s2 |δ|s2µ1(α)µ2(γ)µ3(β)µ4(δ)

d×ε d×δ d×γ d×β d×α

=
∫
α∈R×

∫
β∈R×

∫
γ∈R×

∫
δ∈R×

∫
ε∈R×+

Γ̃(ε−1,−βδε, αγε−1, ε,−α, γ,−β, δ)
(µ1ν

s1)(α)(µ2ν
s1)(γ)(µ3ν

s2)(β)(µ4ν
s2)(δ)(ωπ2ν

2s2−2)(ε)

d×ε d×δ d×γ d×β d×α

(20)

after obvious changes of variables, and simple re-arrangement of terms.
Our result now follows from the following standard lemma:

Lemma 2.15 Let Φ be a Schwartz-Bruhat function on Rn. Suppose γ1, . . . , γn
are quasi-characters. Define the function Z(s1, . . . , sn) = Z(Φ; γ1, . . . , γn; s1, . . . , sn)
of the complex variables s1, . . . , sn by

Z(s1, . . . , sn) =
∫

(R×)n

Φ(α1, . . . , αn)
∏
i

γi(αi)|αi|si d×αi,

whenever the integral converges. Then the integral converges for <si large
enough, for i = 1, . . . , n. The ratio

Z(Φ; γ1, . . . , γn; s1, . . . , sn)∏n
i=1 L(si, γi)

extends to an entire function. If Φ ∈ S(R× × Rn−1), then the ratio

Z(Φ; γ1, . . . , γn; s1, . . . , sn)∏n
i=2 L(si, γi)

has an analytic continuation to an entire function.

�

Corollary 2.16 Let v be a non-archimedean place. Then in the above situation
for µ highly ramified Z(W1,W2, f ;µ, | . |s1v , | . |s2v ) extends to an entire function
of s1, s2.
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Corollary 2.17 Let W1,W2 be flat sections of Whittaker spaces as in the last
section. Then the function Ψ(W1,W2, f ;µ, | . |s1v , | . |s2v ) is holomorphic in the
parameters of W1,W2.

Summarizing,

Proposition 2.18 Let the data be as above. Let S a finite collection of places
containing the archimedean place such that for v /∈ S, the local data at v is
unramified. Then we have

Z(ϕ1, ϕ2, µ| . |s) = L(s, π1, µ)L(1− s, π2, µ
−1){∏

v

Ψ(W1,W2, f ;µv, | . |sv, | . |1−sv )

}
where by lemmas 2.12 and 2.13 the expression in curly braces is a finite product
and is entire.

2.3 The Whittaker function

In this section, we aim to relate the local Euler factor of the integral of Novod-
vorsky at the archimedean place to the corresponding Euler factor of the integral
considered in Section 1.5. For this purpose, we start by studying the Whittaker
function associated to θ(ϕ1, ϕ2; f), and from that we derive formulae for the
corresponding local Whittaker functions.

In the sequel, we first compute the Whittaker function of a cuspidal function
θ(ϕ1, ϕ2; f). Fix a non-trivial character ψ of F\A. Define a character, again
denoted by ψ, of the unipotent radical of the Borel subgroup of GSp(4) by the
following

ψ(


1 v

1
1
−v 1




1 s r
1 r t

1
1

) = ψ(v + t).

Then we set

W (g) =
∫
N(F )\N(A)

θ(ϕ1, ϕ2; f)(ng)ψ−1(n) dn.

The h1 and h2 above can be taken to be
(
v(g)

1

)
and the identity matrix,

respectively. Then we have

Theorem 2.19 If π̃1 6= π̄2, we have

W (g) =
∫
N̂(A)\H1(A)

W1(εh1h
1)W2(h2h

2)

ω(g, h1h
1, h2h

2)f(
(

0 −1
0 0

)
, I2×2) dh1 dh2,
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where

N̂ =
{((

1 x
1

)
,

(
1 x

1

)) ∣∣x ∈ Ga

}
.

Proof. We start by

W (g) =
∫
H1(F )\H1(A)

ϕ1(h1h
1)ϕ2(h2h

2)

(
∑

M1,M2

∫
N(F )\N(A)

ω(ng;h1h
1, h2h

2)f(M1,M2)ψ−1(n) dn)

d(h1, h2).

Therefore, we have to study the expression

I(M1,M2) =
∫
N(F )\N(A)

ω(ng;h1h
1, h2h

2)f(M1,M2)ψ−1(n) dn.

For this we have

I(M1,M2) =
∫
F\A

(
∫

(F\A)3
ω(


1 s r

1 r t
1

1

 , I2, I2)

ω(


1 v

1
1
−v 1

 g, h1h
1, h2h

2)f(M1,M2)ψ−1(t) dr ds dt)

ψ−1(v) dv

=
∫
F\A

ω(


1 v

1
1
−v 1

 g, h1h
1, h2h

2)f(M1,M2)

(
∫

(F\A)3
ψ(tr(

(
s r
r t

)(
detM1 B(M1,M2)

B(M2,M1) detM2 − 1

)
) dr ds dt)

ψ−1(v) dv.

But the inner most integral∫
(F\A)3

ψ(tr(
(
s r
r t

)(
detM1 B(M1,M2)

B(M2,M1) detM2 − 1

)
) dr ds dt = 0

unless detM1 = 0, detM2 = 1, and B(M1,M2) = 0, in which case it is equal to
1.

Lemma 2.20 Under the action of H1(F ), the set S consisting of the pairs of
matrices (M1,M2) satisfying the conditions just mentioned is the union of the
following two orbits:
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1. The orbit of (O, I). The stabilizer of this element is the diagonal embedding
of PGL(2) into H1.

2. The orbit of (
(

1
)
,

(
1

−1

)
). The stabilizer of this element is the

subgroup Ñ of H1 consisting of pairs of matrices of the form

(
(

1 x
1

)
, w

(
1 x
1

)
w−1).

Proof. Since detM1 = 0, there are two cases to be considered:

1. M1 = 0,

2. M1 6= 0.

It’s obvious that the first case corresponds to the first orbit in the statement
of the lemma. Also the statement regarding the stabilizer is immediate. Next
we consider the case when M1 6= 0. It is clear that under the action of H1,

M1 is equivalent to the matrix
(

1 0
0 0

)
. Next suppose M2 =

(
a b
c d

)
. Since

B(M1,M2) = 0 and detM1 = 0, we obtain that det(M1 +M2) = 1. This then
implies that d = 0. But then since detM2 = 1, we obtain c = −b−1. Hence

M2 =
(

a b
−b−1

)
. Next consider the element

h = (
(

1
b−1

)(
b−1 a

b

)
,

(
b−1

1

)
) ∈ H1(F ).

Then it is easy to check that

h.(
(

1 0
0 0

)
,

(
a b
−b−1

)
) = (

(
1 0
0 0

)
,

(
1

−1

)
).

The statement regarding the stabilizer is straightforward. �
Next we study the contribution of each orbit to the Whittaker integral. Corre-
sponding to the two orbits obtained above, we have the following two integrals:

I1(g) =
∫
G(F )\H1(A)

∫
F\A

ω(


1 v

1
1
−v 1

 g, h1h
1, h2h

2)

f(
(

0 0
0 0

)
,

(
1

1

)
)ϕ1(h1h

1)ϕ2(h2h
2)ψ−1(v) dv d(h1, h2),

and

I2(g) =
∫
Ñ(F )\H1(A)

∫
F\A

ω(


1 v

1
1
−v 1

 g, h1h
1, h2h

2)

f(
(

1 0
0 0

)
,

(
1

−1

)
)ϕ1(h1h

1)ϕ2(h2h
2)ψ−1(v) dv d(h1, h2).
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Then it is clear that
W (g) = I1(g) + I2(g).

Lemma 2.21 We have
I1(g) = 0,

except when π̃1 = π̄2.

Proof. By [14], we have

I1(g) =
∫
G(F )\H1(A)

∫
F\A

ω(


1 v

1
1
−v 1

 g

(
I

ν(g)−1I

)
)

L(h1h
1, h2h

2)f(
(

0 0
0 0

)
,

(
1

1

)
)ϕ1(h1h

1)ϕ2(h2h
2)

ψ−1(v) dv d(h1, h2)

=
∫
G(A)\H1(A)

∫
PGL2(F )\PGL2(A)

∫
F\A

ω(


1 v

1
1
−v 1

 g

(
I

ν(g)−1I

)
)

L(γh1h
1, γh2h

2)f(
(

0 0
0 0

)
,

(
1

1

)
)ϕ1(γh1h

1)ϕ2(γh2h
2)

ψ−1(v) dv dγ d(h1, h2)

=
∫
G(A)\H1(A)

∫
F\A

ω(


1 v

1
1
−v 1

 g

(
I

ν(g)−1I

)
)

L(h1h
1, h2h

2)f(
(

0 0
0 0

)
,

(
1

1

)
)ψ−1(v)(∫

PGL2(F )\PGL2(A)

ϕ1(γh1h
1)ϕ2(γh2h

2) dγ

)
dv d(h1, h2).

The inner most integral∫
PGL2(F )\PGL2(A)

ϕ1(γh1h
1)ϕ2(γh2h

2) dγ =

< π1(h1h
1)ϕ1, π2(h2h2)ϕ2 >L2(PGL2(F )\PGL2(A)) .

The statement of the lemma is now obvious. �

Next we study the contribution of the second orbit.
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Lemma 2.22 We have

I2(g) =
∫
N̂(A)\H1(A)

Wϕ1(
(

1
−1

)
h1

(
ν(g)

1

)
)Wϕ2(h2)

ω(g, h1

(
ν(g)

1

)
, h2)f(

(
0 −1
0 0

)
, I) d(h1, h2).

In this lemma, N̂ is the diagonal embedding of the unipotent upper triangular
matrices in GL(2) in H1. Also if ϕ is a cuspidal automorphic function on
GL2(A), we have set

Wϕ(g) =
∫
F\A

ϕ(
(

1 x
1

)
g)ψ−1(x) dx.

Proof. The proof consists of simple manipulations of the original expression for
I2(g). We have

I2(g) =
∫
Ñ(F )\H1(A)

∫
F\A

ω(


1 v

1
1
−v 1

 g, h1h
1, h2h

2)

f(
(

1 0
0 0

)
,

(
1

−1

)
)ϕ1(h1h

1)ϕ2(h2h
2)ψ−1(v) dv d(h1, h2).

We recall that Ñ(F ) = {(
(

1 x
1

)
, w

(
1 x

1

)
w−1)}, and also that h1 =

(
ν(g)

1

)
and h2 = I. Using the formulae in [14], we have

ω(


1 v

1
1
−v 1

 g,h1h
1, h2h

2)f(
(

1 0
0 0

)
,

(
1

−1

)
) =

ω(g, h1h
1, h2h

2)f(
(

1 0
0 0

)
,

(
1 −v

1

)(
1

−1

)
).

Hence

I2(g) =
∫
Ñ(F )\H1(A)

∫
F\A

ω(g, h1h
1, h2h

2)f(
(

1 0
0 0

)
,

(
1 −v

1

)(
1

−1

)
)

ϕ1(h1h
1)ϕ2(h2h

2)ψ−1(v) dv d(h1, h2)

=
∫
Ñ(A)\H1(A)

∫
F\A

∫
F\A

ω(g,
(

1 u
1

)
h1h

1, w

(
1 u

1

)
w−1h2h

2)

f(
(

1 0
0 0

)
,

(
1 −v

1

)(
1

−1

)
)ϕ1(

(
1 u

1

)
h1h

1)ϕ2(w
(

1 u
1

)
w−1h2h

2)

ψ−1(v) du dv d(h1, h2)
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Next by definition and Lemma 5.1.2 of [14]

ω(g,
(

1 u
1

)
h1h

1, w

(
1 u

1

)
w−1h2h

2)

= ω(g
(
I

ν(g)−1I

)
)L(
(

1 u
1

)
h1h

1, w

(
1 u

1

)
w−1h2h

2)

= L(
(

1 u
1

)
h1h

1, w

(
1 u

1

)
w−1h2h

2)ω(
(
I

ν(g)−1I

)
g).

This identity implies that

ω(g,
(

1 u
1

)
h1h

1, w

(
1 u

1

)
w−1h2h

2)f(
(

1 0
0 0

)
,

(
1 −v

1

)(
1

−1

)
)

= L(h1h
1, h2h

2)ω(
(
I

ν(g)−1I

)
g)f(

(
1 0
0 0

)
,

(
1 −v

1

)(
1

−1

)
)

= L(h1h
1,

(
1 −v

1

)(
−1

1

)
h2h

2)ω(
(
I

ν(g)−1I

)
g)f(

(
0 −1
0 0

)
, I)

= ω(g, h1h
1,

(
1 −v

1

)(
−1

1

)
h2h

2)f(
(

0 −1
0 0

)
, I).

Going back to I2(g), we obtain

I2(g) =
∫
Ñ(A)\H1(A)

∫
F\A

∫
F\A

ω(g, h1h
1,

(
1 −v

1

)
wh2h

2)f(
(

0 −1
0 0

)
, I)

ϕ1(
(

1 u
1

)
h1h

1)ϕ2(w
(

1 u
1

)
w−1h2h

2)ψ−1(v) du dv d(h1, h2)

Next we make a change of variables (h1, h2) 7→ (h1, w
−1

(
1 v

1

)
h2), to obtain

I2(g) =
∫
N̂(A)\H1(A)

∫
F\A

∫
F\A

ω(g, h1h
1, h2h

2)f(
(

0 −1
0 0

)
, I)

ϕ1(
(

1 u
1

)
h1h

1)ϕ2(
(

1 u+ v
1

)
h2h

2)ψ−1(v) du dv d(h1, h2).

Now a change of variables v 7→ v − u and re-arranging the order of integrals
gives the result. �

Combining everything finishes the proof of the theorem. �
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2.4 Local Whittaker functions

In this paragraph, we study the integrals of the previous section in some detail.
Suppose π1 and π2 are two generic irreducible admissible representations of

the group GL(2) over a local field, such that π̃1 6= π2, π̄2, and ωπ1 .ωπ2 = 1. For
Wi ∈ W(πi, ψ), for i = 1, 2, set

Wv(W1,W2; f)(g) =
∫
N̂(Fv)\H1(Fv)

W1(εh1

(
ν(g)

1

)
)W2(h2)

ω(g, h1

(
ν(g)

1

)
, h2)f(

(
0 −1
0 0

)
, I2×2) dh1 dh2.

Proposition 2.23 For all Wi ∈ W(πi, ψ), i = 1, 2, K-finite f in the space of
Schwartz-Bruhat functions, and g ∈ GSp4(Fv), the integral defining W(W1,W2; f)(g)
is absolutely convergent.

Proof. As usual we prove the proposition for the archimedean place. It is clear
that we only need to prove the absolute convergence for g = I4×4. In order to do
this, we start by identifying a measurable set of representatives for N̂(R)\H1(R),
and identifying the corresponding measure. On H1(R), we have the following
natural set of representatives

(
(

1 x
1

)
k1,

(
1 y

1

)(
η

η−1

)
k2),

with x, y ∈ R, ε ∈ R×, and k1, k2 ∈ SO(2). Also the corresponding measure is

|η|−2 dx dy d×η dk1 dk2.

This statement implies that the set of elements of the form

(
(

1 x
1

)
k1,

(
η

η−1

)
k2),

constitutes a measurable set of representatives for N̂(R)\H1(R). Also with this
normalization the measure is

|η|−2 dx d×η dk1 dk2.

Hence we are reduced to proving the convergence of the following integral:∫
K

∫
K

∫
R

∫
R×

∣∣∣∣W1(ε
(

1 x
1

)
k1)W2(

(
η

η−1

)
k2)
∣∣∣∣ .∣∣∣∣f(k−1

1

(
1 −x

1

)(
0 −1
0 0

)(
η

η−1

)
k2, k

−1
1

(
1 −x

1

)(
η

η−1

)
k2)
∣∣∣∣

d×η dx dk1 dk2.
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Next we observe that in order to prove the absolute convergence of this integral,
we just need to prove the absolute convergence of the integral over η and x. Also
since

W1(ε
(

1 x
1

)
k1) = ψ(−x)W1(εk1),

we obtain ∣∣∣∣W1(ε
(

1 x
1

)
k1)
∣∣∣∣ = |W1(εk1)| .

Hence we are reduced to proving the convergence of the following integral:

I =
∫

R

∫
R×

∣∣∣∣W2(
(
η

η−1

)
)
∣∣∣∣ .∣∣∣∣f(

(
1 −x

1

)(
0 −1
0 0

)(
η

η−1

)
,

(
1 −x

1

)(
η

η−1

)
)
∣∣∣∣ d×η dx.

But this integral is equal to

I =
∫

R

∫
R×

∣∣∣∣ωπ2(η
−1)W2(

(
η2

1

)
)f(
(

0 −η−1

0 0

)
,

(
η −xη−1

0 η−1

)
)
∣∣∣∣ d×η dx

Now we write

f(
(

0 −η−1

0 0

)
,

(
η −xη−1

0 η−1

)
) = q(η, η−1, xη−1),

where q is some Schwartz-Bruhat function in three variables. We then need to
prove the convergence of the integral

I =
∫

R

∫
R×

∣∣∣∣ωπ2(η
−1)W2(

(
η2

1

)
)q(η, η−1, xη−1)

∣∣∣∣ d×η dx,
which after a change of variables x 7→ xη and integration over x is equivalent to
the convergence of an integral of the form∫

R×+

∣∣∣∣W (
(
η

1

)
ξ(η)

∣∣∣∣ ησ d×η
for ξ ∈ S(R×). Such an integral always converges by the moderate growth of
the Whittaker function. �

We denote byWθ(π1, π2) the collection of all Whittaker functions W(W1,W2; f)
for all choices of W1,W2, f . In the archimedean situation, this is a (g,K)-
module. We call a representation of π of GSp4(R) special if it is irreducible
generic, and its Whittaker model is isomorphic as a (g,K)-module to aWθ(π1, π2)
for π1, π2 with π̃1 6= π2, π̄2, and ωπ1 .ωπ2 = 1; notice that this is not standard
terminology.

Going back to the global situation, we choose ϕi, for i = 1, 2, so that

Wϕi
= ⊗v∈MF

W i
v.
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We also choose f to be a pure tensor of the form ⊗vfv. Then theorem 2.19 can
be written in the form

W (g) =
∏
v

Wv(W 1
v ,W

2
v ; fv)(gv).

under appropriate conditions. This implies that for each local place v, if Wv is
a Kv-finite vector in the local Whittaker model, there is a choice of the data
such that Wv = Wv(W 1

v ,W
2
v ; fv). It is clear from the construction that, in the

archimedean situation, the space of all such W’s forms a (g,K)-module.

2.5 Archimedean Zeta function

In this section, we use the results of the previous paragraphs to obtain informa-
tion about the archimedean zeta function. We have by lemma 2.2

B(φ, χs) =
∫

A×

∫
A
Wφ



y

y
1

x 1

w−1

µ(y)|y|s− 3
2 dx d×y, (21)

with

w =


1

1
1

−1


and

χs(y) = µ(y)|y|s− 1
2 .

If we set φ = θ(ϕ1, ϕ2; f), the left hand side of the above identity will be equal
to what we have called Z(ϕ1, ϕ2, f ;µ| . |s). We saw in 2.18 that

Z(ϕ1, ϕ2, µ| . |s) = L(s, π1, µ)L(1− s, π2, µ
−1){∏

v

Ψ(W v
1 ,W

v
2 , f ;µv| . |sv, µ−1

v | . |1−sv )

}
.

If we choose our vectors appropriately, that is factorizable, the right hand side
of (21) is now equal to∏

v

Zv,N (s, πv(w−1)Wv(W 1
v ,W

2
v ; fv), µ∞)

= Z∞,N (s, π∞(w−1)W∞(W 1
∞,W

2
∞; f∞), µ∞)

× LS(s,Π, µ)
∏

v∈S\{∞}

Zv,N (s, πv(w−1)Wv(W 1
v ,W

2
v ; fv), µv)

By the main result of [40], for each local place v ∈ S\{∞}, we can choose
W

sp
v ∈ W(Πv) in such a way that

Zv,N (s,Π−1
v (w−1)W sp

v , µv) = Lv(s,Πv, µv).
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By the remark at the end of 2.4, we can choose the local data such that

Wv(W 1
v ,W

2
v ; fv) = W sp

v .

With this choice of the local data, we have

Z∞,N (s, π∞(w−1)W∞(W 1
∞,W

2
∞; f∞), µ∞)

= Φfinite
S (π1, π2, µ, s;W1,W2, f)L∞(s, π1, µ)L∞(1− s, π2, µ

−1)

×Ψ(W∞
1 ,W∞

2 , f∞;µ∞| . |s∞, µ−1
∞ | . |1−s∞ ),

(22)

with

Φfinite
S (π1, π2, µ, s;W1,W2, f)

=
L∞(s, π1, µ)L∞(1− s, π2, µ

−1)
L∞(s,Π, µ)

∏
v∈S\{∞}

Ψ(W v
1 ,W

v
2 , f ;µv| . |sv, µ−1

v | . |1−sv )

=
∏

v∈S\{∞}

Ψ(W v
1 ,W

v
2 , f ;µv| . |sv, µ−1

v | . |1−sv ),

if µ is chosen in such a way that for v ∈ S\{∞}, the local quasi-character
µv is highly ramified. Combining everything proves the first statement of the
following theorem. We observe that in the case of interest of [25] the proof of
the corresponding theorem is quite technical.

Theorem 2.24 In the above situation, for each K-finite W ∈ W(Π∞), the
ratio

Z(s,W, µ∞)
L∞(s, π∞1 , µ∞)L∞(s, π̃∞2 , µ∞)

extends to an entire function of s. Furthermore, for each s, there is a choice of
W such that the above expression does not vanish at s.

Proof. We only need to prove the second statement. In order to do this, we
prove the existence of an entire function Φ(s) such that

Z∞,N (s, π∞(w−1)W∞(W 1
∞,W

2
∞; f∞), µ∞)

=
1

Φ(s)
L∞(s, π1, µ)L∞(1− s, π2, µ

−1)

×Ψ(W∞
1 ,W∞

2 , f∞;µ∞| . |s∞, µ−1
∞ | . |1−s∞ ).

(23)

By proposition 2.13 there is a choice of the data with the required property.
Again we assume that µ is highly ramified for non-archimedean v ∈ S, and
unramified outside S. In order to show the existence of Φ(s) it is not hard to
see that if we can show the existence of local non-archimedean data with the
property that

Lv(s, π1, µ)Lv(1− s, π2, µ
−1)Ψ(W v

1 ,W
v
2 , f ;µv| . |sv, µ−1

v | . |1−sv )
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is a constant, then we can take

Φ(s) = C
∏

v∈S\{∞}

Zv,N (s, πv(w−1)Wv(W 1
v ,W

2
v ; fv), µv),

with C the obvious non-zero constant. The existence of such data is the state-
ment of Corollary 2.11.

We claim that the function Φ(s) is nowhere vanishing. To see this, we set

F1(W 1
∞,W

2
∞, s) =

Z∞,N (s, π∞(w−1)W∞(W 1
∞,W

2
∞; f∞), µ∞)

L∞(s, π1, µ)L∞(1− s, π2, µ−1)

F2(W 1
∞,W

2
∞, s) = Ψ(W∞

1 ,W∞
2 , f∞;µ∞| . |s∞, µ−1

∞ | . |1−s∞ ).

So far we know that given any W 1
∞,W

2
∞, the complex functions F1(s), F2(s) are

both entire. Next, let s0 be given and suppose Φ(s0) = 0; but,

F2(s) = Φ(s)F1(s), (24)

which would then imply that for all choices of data we must have F2(s0) = 0
which, by proposition 2.13, is not true. This finishes the proof of the theorem. �

Remark 2.25 We observe that the function Φ(s) defined in the proof of the
theorem does not depend on W 1

∞,W
2
∞, and its dependence on π∞1 , π∞2 is merely

through the non-archimedean components of the automorphic representations
π1, π2. As Φ(s) is the product of polynomials of q−sv , for v ∈ S, and as it
nowhere vanishing, it is a function of the form

AB−s

with B rational. Also prime numbers appearing in the decomposition of B are
all from the set S. We will see later that Φ(s) is in fact a constant.

2.6 Analytic continuation

Let τ be a complex number with <τ > 0. Then one can consider the archimedean
principal series representation π(τ) = Ind(| . |τ ⊗| . |−τ ). Let ρτ : WR → GL2(C)
be the L parameter associated with the representation π(τ). We observe that
if π(τ) is irreducible, the corresponding L packet has a single element. Then as
described in [5] one can consider a continuous map

P (τ) : S(GL2(R)) −→ π(τ).

Also for v ∈ π(τ), we set

W (v, g) =
∫
N(R)

v(ng)ψ−1(n) dn
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when the integral converges. Fix a Schwartz function f , and set

Wτ (f ; g) := W (P (τ)(f), g).

A theorem of Shahidi asserts thatWτ extends to an entire function of τ . Usually,
suppressing f , we simply write Wτ . Fix two sections of Wτ , say Wτ1 and Wτ2 .
Next, consider the function

Wf (τ1, τ2) := W(Wτ1 ,Wτ2 ; f)

as before. We write Fi(τ1, τ2, s), i = 1, 2, instead of the functions of the previous
paragraph.

Let Caut be the collection of those complex numbers τ with the property
that π(τ) occurs as the archimedean component of some automorphic cuspidal
representation of the group GL(2). It is well-known that Ctemp := Caut ∩ iR is
dense in iR.

The function Wf (τ1, τ2) is entire on C2, and for fixed (τ1, τ2) ∈ C2 defines
a Whittaker function on GSp(4,R). Also by construction if τ1, τ2 ∈ Ctemp, the
function Wf (τ1, τ2) will make up the K-finite Whittaker model of the unique
element of the local L packet ϕ(ρτ1 , ρτ2). In fact, if we stay away from the
points of reducibility, the unique element of the L packet given by ϕ(ρτ1 , ρτ2) is
generic.

We have established the identity

F1(τ1, τ2, s) = Φ(s)F2(τ1, τ2, s)

whenever (τ1, τ2) ∈ Caut × Caut, and <s > b(τ1, τ2). Presumably, the function
Φ(s) depends on s, and, though we have suppressed the dependence, on τ1, τ2.
We now show that for τ1, τ2 ∈ Ctemp, Φ(s) is an absolute constant independent
of all variables. For this we follow the argument of lemma 5 of [42], which is
in the spirit of Burger-Li-Sarnak. The proof of Lemma 5 of [42] implies that
given τ ∈ iR one can find an automorphic cuspidal representation of GL(2)
with archimedean component arbitrarily close to π(τ) and ramified only at one
prescribed place. This, applied to a pair of tempered representations of GL(2)
considered as a representation of GO(2, 2), implies that given a tempered repre-
sentation of GO(2, 2)(R) one can find two automorphic cuspidal representations
with disjoint sets S. This observation combined with remark 2.25 proves that
Φ(s) must be a constant. Next, we have

F1(τ1, τ2, s) = ΦF2(τ1, τ2, s)

whenever τ1, τ2 ∈ Ctemp and <s > b(s1, s2). The density of Ctemp in iR then
implies that the identity must hold for all τ1, τ2, whenever <s > b(τ1, τ2). But
we have seen that F2 is entire as a function of three complex variables; conse-
quently, as F1 and F2 agree on an open set, F2 is the analytic continuation of
F1. Consequently, whatever we proved about F2 carries over to F1.

This finishes the proof of Theorem 2.1.
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2.7 Special representations

In 2.4 we defined the so-called special representations. It seems that the class
of special representations is the same as the collection of generic elements of
L-packets defined by Roberts with parameters of the form (9). This is in part
inspired by the above considerations, especially in 2.6, and the global results of
[29]. If this speculation is correct, then the class of the representations covered
by the above analysis is quite large. In order to explain by what we mean by
“large” we proceed by studying the L-parameters of GSp(4,R) representations
as follows. The following results, especially Proposition 2.26 and its proof, were
kindly provided to us by Brooks Roberts ([30]).

In [29], Roberts defines two types of L-parameters for GSp(4,R). The first
kind of parameter ϕ(η, ρ) is associated to a two dimensional representation

ρ : WC → GL(2,C)

whose determinant is Galois invariant, i.e., invariant under conjugation by the
element j of WR (see [20]), and a continuous homomorphism

η : WC → C×

that extends det ρ; observe that there are two such η. As a representation,
ϕ(η, ρ) is IndWR

WC
ρ; if V is the space of ρ and one regards as usual the space of

IndWR
WC
ρ as V ⊕ V , via the map

f 7→ f(1)⊕ f(j),

then the symplectic form is given by

〈v1 ⊕ v2, v′1 ⊕ v′2〉 = η(j)〈v1, v′1〉+ 〈v2, v′2〉.

Here we have fixed a symplectic form on the space of V ; there is only one such
symplectic form up to multiplication by nonzero scalars. The second kind of
parameter ϕ(ρ1, ρ2), which we already defined in (9), is associated to a pair ρ1

and ρ2 of two dimensional representations of WR. As a representation ϕ(ρ1, ρ2)
is ρ1 ⊕ ρ2; the symplectic form is given by

〈v1 ⊕ v2, v′1 ⊕ v′2〉 = 〈v1, v′1〉1 + 〈v2, v′2〉2,

where we have fixed symplectic forms 〈·, ·〉1 and 〈·, ·〉2 on the spaces of ρ1 and
ρ2. We now have the following result:

Proposition 2.26 ([30]) Every L-parameter ϕ : WR → GSp(4,C) is equiva-
lent to a parameter of the form ϕ(η, ρ) or a parameter of the form ϕ(ρ1, ρ2).

Proof. Let V be the space of ϕ; it is equipped with a symplectic form. As all
representations of WR of dimension greater than two are reducible (see [20]),
V admits a two dimensional WR-subspace W ⊂ V . As a first case, suppose
some such W is non-degenerate as a symplectic space, i.e. not totally isotropic.
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Then we can write V = W ⊕W⊥ as WR representations. The two dimensional
representations W and W⊥ have the same determinant λ◦ϕ, and ϕ ∼= ϕ(ρ1, ρ2)
with ρ1 and ρ2 the representations of WR on W and W⊥, respectively.

Next suppose that all two dimensional WR subspaces W ⊂ V are totally
isotropic. Write V = V1 ⊕ · · · ⊕ Vt as a sum of irreducible WR subspaces; each
subspace has dimension one or two. Using this, we can write V = W ⊕W ′,
where W and W ′ are two dimensional WR subspaces, and by our assumption,
totally isotropic. We can find a basis w1, w2 for W and a basis w′1, w

′
2 for W ′

such that w1, w2, w
′
1, w

′
2 is a symplectic basis for the symplectic form on V , i.e.

the form has matrix (
0 12

−12 0

)
with respect to this basis. Using this basis, for x ∈WR write

ϕ(x) =
(
π(x) 0

0 π′(x)

)
where π(x), π′(x) ∈ GL(2,C). We must have

π′(x) = λ(ϕ(x))tπ(x)−1.

The representation π is irreducible; otherwise, V admits a nondegenerate two
dimensional WR subspace. Now define η : WR → C× by η = λ ◦ ϕ. Also let
α : WC = C× → C× be a continuous homomorphism such that

π = IndWR
WC
α.

Define α′ : WC = C× → C× by α′ = α−1η|WC . Set ρ = α ⊕ α′. Then det ρ = η
is invariant under conjugation by j, and η extends det ρ. Then we claim that
ϕ ∼= ϕ(µ, ρ). To see this, let V = C⊕C be the space of ρ. Set ϕ1 = ϕ(η, ρ). As
a model for ϕ1 we take, as usual (see [29]), V ⊕ V with the action

ϕ1(z)(v ⊕ v′) = ρ(z)v ⊕ ρ(jzj−1)v′, z ∈WC (25)

ϕ1(j)(v ⊕ v′) = v′ ⊕ ρ(j2)v = v′ ⊕ ρ(−1)v. (26)

The symplectic form on V ⊕ V is given by

〈v1 ⊕ v2, v′1 ⊕ v′2〉 = η(j)〈v1, v′1〉+ 〈v2, v′2〉.

Here, the symplectic form on V = C ⊕ C is the standard one. Consider the
following subspaces of ϕ1:

W = C⊕ 0⊕ C⊕ 0, W ′ = 0⊕ C⊕ 0⊕ C.

These are both totally isotropic WR subspaces, and ϕ1 = W ⊕ W ′. Fix the
following basis for W :

1⊕ 0⊕ 0⊕ 0, 0⊕ 0⊕ 1⊕ 0.
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With respect to this basis, the action of WR is given by

ϕ(η, ρ)(z)|W =
(
α(x) 0

0 α(z̄)

)
, z ∈WC, ϕ(η, ρ)(j)|W =

(
0 1

α(−1) 0

)
.

This immediately gives that W ∼= π as representations of WR. As in the proof
of the first part, then ϕ1

∼= ϕ. �

If our speculation at the beginning of this paragraph is correct, then we have
treated generic elements of packets of the form ϕ(ρ1, ρ2). Observe that packets of
the form ϕ(ρ1, ρ2) may also come from GO(4), but such representations will not
be generic. It remains to consider packets of the form ϕ(η, ρ). This is naturally
related to GO(3, 1). This case has been, for a different purpose, considered in
[15]. Inspired by the computations of [15], we believe results analogous to ours
can be obtained for packets of the form ϕ(η, ρ).

3 Existence of Bessel functionals for generic dis-
crete series

Let Dn be the irreducible representation of GL2(R) with trivial central charac-
ter whose restriction to SL2(R) contains the discrete series representation with
Blattner parameter n ≥ 2. Suppose Dk and Dl are two such representations. As
will be explained later in the text, one can view the representation Dk⊗Dl as a
representation of the group SO(2, 2), and, extended trivially, as a representation
of O(2, 2). Next, we consider the theta lift of the Dk ⊗Dl to Sp(4,R), denoted
by θ(Dk × Dl). Let Πk,l be the representation of GSp(4,R) obtained from
θ(Dk ×Dl) via the usual process. It is well-known that every generic discrete
series representation of GSp(4,R) can be obtained as one such representation
Πk,l. Our main result is the following:

Theorem 3.1 Let ψ(x) = e2πix and χn

((
cos θ sin θ
− sin θ cos θ

))
= einθ. Suppose

k, l ≥ 2 have the same parity, and n > max(k, l) has different parity. Then Πk,l

has a (
(

1
1

)
, χn, ψ)-Bessel model.

As is clear of our presentation of the theorem that our method of proof uses the
theta correspondence for the dual reductive pair (O(2, 2),Sp(4)). The method
of proof is roughly the following. We will use the theta correspondence to con-
struct automorphic cusp forms on GSp(4) which have Πk,l as their archimedean
component. The construction is the obvious one: almost by definition, there
are holomorphic cusp forms on the upper half space which have Dk and Dl

as their real components; since by Deligne’s celebrated theorem such forms
are globally tempered, the construction of Roberts [29] goes through and we
obtain forms on GSp(4,R) that have Πk,l at the archimedean place. Then
we consider all global Bessel functionals that have the χn-Bessel functional as
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their archimedean component. If we can show that one of these Bessel func-
tionals evaluated at one of our automorphic forms is non-zero, our result will
clearly follow. In order to prove the existence of such functionals and such func-
tions, we pull back the Bessel functional via the global theta construction to
the GL(2,A)×GL(2,A) level. Here, we use the theorem of Waldspurger [43] to
translate the non-vanishing problem to a statement regarding L-function at the
center of critical strip. The desired non-vanishing statement then follows from
a refinement of the results of [22] as explained in the appendix by P. Michel.

3.1 Non-vanishing of period integrals

Before we get to the proof of the theorem we need some preparation. Let q be
a prime number of the form 4k + 1, and suppose f ∈ Sk(Γ0(q)) is a primitive
new form. Let πf be the automorphic cuspidal representation associated to f
via the standard process. Let λ be a grössencharacter of Q(i). We identify Q(i)
with a subgroup T of GL(2)/Q via the following map

a+ bi 7→
(
a b
−b a

)
. (27)

Denote by λ, again, the character of T (A) obtained by transferring λ from Q(i)
to T . Assume we have the following compatibility condition:

λ|Z(A) ≡ 1. (28)

Write
λ = ⊗vλv, πf = ⊗vπv. (29)

Here the restricted tensor products are over the set of places of Q. Also, since

T (R) = S1 × R×+, (30)

the character λ∞ will be the product of two group homomorphisms

λ0
∞ : S1 → C× (31)

and
λ1
∞ : R×+ → C×. (32)

Next we have the following lemma:

Lemma 3.2 Suppose

dimC Hom T (R)(π∞, λ∞) 6= 0.

Then there is a ϕ ∈ Vπf
satisfying∫

TQZA\TA

ϕ(t)λ(t)−1 dt 6= 0, (33)

if and only if L( 1
2 , BCQ(i)/Q(πf )× λ−1) 6= 0.
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Proof. By a theorem of Waldspurger ([43]), the period integral (33) is not
identically zero, if and only if L( 1

2 , BCQ(i)/Q(πf )×λ−1) 6= 0, and for every place
v, we have

dimC Hom T (Qv)(πv, λv) 6= 0. (34)

We will show that with our choices of πf and λ, the local conditions (34) are
always satisfied. For this we recall the following dichotomy theorem of Tun-
nell, as described in [13]: For every place v, and every irreducible admissible
representation Πv of GL2(Qv), we have

dimC HomT (Qv)(Πv, λv) + dimC HomT (Qv)(ΠJL
v , λv) = 1. (35)

Here ΠJL
v is the Jacquet-Langlands lift of Πv to the unique quaternion al-

gebra Dv at v. If ΠJL
v does not exists, we define it to be zero. Hence,

dimC HomT (Qv)(ΠJL
v , λv) = 0 if Πv is unramified, or T (Qv) is split.

Applying Tunnell’s theorem to our πv implies that if v 6= q,∞, since πv is
unramified, the local condition (34) is satisfied at v. Also, if v = ∞, the local
condition is the assumption of the lemma.

If v = q, since q ≡ 1 mod 4, the local torus T (Qq) is split, and consequently
by the observation following the statement Tunnell’s theorem, we have the local
condition. This finishes the proof of the lemma. �

We will use the result of the appendix in the following form:

Theorem 3.3 ([23]) We can choose λ subject to the above conditions in such
that for q large enough, there is a primitive f ∈ Sk(Γ0(q)) such that

L(
1
2
, BCQ(i)/Q(πf )× λ−1) 6= 0.

3.2 Proof of the theorem

Now we can present the proof of the main theorem:

Proof of Theorem 3.1. Let λ be a grössencharacter of Q(i) such that λ0
∞ = χn

and λ1
∞ ≡ 1. Suppose that the grössen-character of Q given by λ|Z(A) is triv-

ial. Then for p, q large enough, with p, q ≡ 1 mod 4, there are primitive new
form f1 ∈ Sk(Γ0(p)) and f2 ∈ Sl(Γ0(q)) with the following property: There are
vectors ϕi ∈ Vπfi

, i = 1, 2, satisfying∫
ZATQ\TA

ϕ1(t)λ(t)−1 dt 6= 0

and ∫
ZATQ\TA

ϕ2(t)λ(t) dt 6= 0.
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Also we observe that if p 6= q, then πf1 � π̃f2 . We now fix a pair of vectors ϕ1,
ϕ2, and we will show the existence of a Schwartz-Bruhat function f such that

BΦ(I4) 6= 0, (36)

with Φ = θf (ϕ1, ϕ2). For this, we proceed as follows. First, we obtain an
expression for θ(ϕ1, ϕ2; f)U . We start by the following:

θ(ϕ1, ϕ2; f)U (g)

=
∫

(F\A)3
θ(ϕ1, ϕ2; f)(


1 u w

1 w v
1

1

 g)ψ−1(u+ v) du dv dw

=
∫

(F\A)3

∫
H1(F )\H1(A)

θ(


1 u w

1 w v
1

1

 g;h1h
1, h2h

2; f)

ϕ1(h1h
1)ϕ2(h2h

2) d(h1, h2)ψ−1(u+ v) du dv dw,

where h1 and h2 are chosen in such a way that

deth1.(deth2)−1 = ν(g).

Next, it follows from the definition of θ that

θ(ϕ1, ϕ2; f)U (g) =∫
H1(F )\H1(A)

ϕ1(h1h
1)ϕ2(h2h

2)Gf (h1h
1, h2h

2; g) dh1 dh2,
(37)

where

Gf (h1h
1, h2h

2; g) =

∑
M1,M2

∫
(F\A)3

ω(


1 u w

1 w v
1

1

 g, h1h
1, h2h

2)f(M1,M2)

ψ−1(u+ v) du dv dw.

Next, for fixed M1 and M2 we have

∫
(F\A)3

ω(


1 u w

1 w v
1

1

 g, h1h
1, h2h

2)f(M1,M2)ψ−1(u+ v) du dv dw

= ω(g, h1h
1, h2h

2)f(M1,M2)∫
(F\A)3

ψ(tr
(
u w
w v

)(
detM1 − 1 B(M1,M2)
B(M2,M1) detM2 − 1

)
) du dv dw.

Next, we have the following straightforward lemma:
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Lemma 3.4 For any 2× 2 matrix A ∈ M2(A), we have∫
(F\A)3

ψ(tr
(
u w
w v

)
A) du dv dw = 0,

unless A =
(

0 0
0 0

)
, in which case the value of the integral is equal to 1.

The lemma implies that

Gf (h1h
1, h2h

2; g) =
∑

(M1,M2)∈S

ω(g, h1h
1, h2h

2)f(M1,M2),

where

S = {(X,Y ) ∈ M2(F )×M2(F ) | detX = 1,detY = 1, B(X,Y ) = 0}.

Lemma 3.5 The set S consists of a single orbit under the action of H1(F ).

The point P = (
(

1 0
0 1

)
,

(
0 −1
1 0

)
) belongs to S. The stabilizer of P in H1(F )

is the subgroup D(F ) to be defined in the proof.

Proof. Since detX = 1, we have X ∼
(

1
1

)
under the action of H1. Next,

B(
(

1
1

)
,

(
α β
γ δ

)
) =

1
2
(α+ δ).

In particular, B(
(

1
1

)
, Y ) = 0 implies that trY = 0. Next the set of elements

of H1 that fix
(

1
1

)
is the diagonal subgroup ∆ = {(g, g) | g ∈ PGL2}. Next,

our lemma will follow from the statement that any matrix Y subject to detY = 1

and trY = 0 is in the orbit of
(

−1
1

)
underH1. For this, we recall the theorem

of Skolem-Noether: Let A be a central simple algebra, and B a simple algebra.
If f , g are algebra homomorphisms B → A, then there exists an invertible
element s ∈ A such that f(b) = s−1g(b)s, for all b ∈ B. To apply the theorem,
consider the following two copies of Q(i) in M2(Q):

1. 1 7→
(

1
1

)
, i 7→

(
−1

1

)
,

2. 1 7→
(

1
1

)
, i 7→ Y .

Now it is an easy exercise to see that D = ∆ ∩ T × T is the stabilizer of P . �
Consequently,

Gf (h1h
1,h2h

2; g) =∑
γ∈D(F )\H1(F )

ω(1, γ)ω(g, h1h
1, h2h

2)f(
(

1 0
0 1

)
,

(
0 −1
1 0

)
).
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Inserting the right hand side of this expression for Gf in equation (37) gives

θ(ϕ1, ϕ2; f)U (g) =∫
D(F )\H1(A)

ϕ1(h1h
1)ϕ2(h2h

2)ω(g, h1h
1, h2h

2)f(
(

1 0
0 1

)
,

(
0 −1
1 0

)
)

dh1 dh2.

(38)

We then obtain the following identity

B(I4) =
∫
ZATQ\TA

∫
D(Q)\H1(A)

ϕ1(h1

(
detα

1

)
)ϕ2(h2)χ−1(α)

ω(
(
α

detα. tα−1

)
, h1

(
detα

1

)
, h2)f(P ) dh dα.

(39)

Next we simplify the integrand:

ω(
(
α

detα. tα−1

)
, h1

(
detα

1

)
, h2)f(P )

= ω(
(

α
tα−1

)
)L(h1

(
detα

1

)
, h2)f(P )

= |detα|2L(h1

(
detα

1

)
, h2)f(P.α),

(40)

where it is easily seen that

P.α = (α, α.
(

−1
1

)
).

Thus, (40) is equal to

|detα|2L(h1

(
detα

1

)
, h2)f(α, α.

(
−1

1

)
)

= |det(h1h
−1
2 )|−2f(

(
detα

1

)−1

h−1
1 αh2,(

detα
1

)−1

h−1
1 α

(
−1

1

)
h2).

(41)
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We then get

B(I4) =
∫
ZATQ\TA

∫
D(Q)\H1(A)

ϕ1(h1

(
detα

1

)
)ϕ2(h2)χ−1(α)

|det(h1h
−1
2 )|−2f(

(
detα

1

)−1

h−1
1 αh2,(

detα
1

)−1

h−1
1 α

(
−1

1

)
h2) dh dα

=
∫
ZATQ\TA

∫
D(Q)\H1(A)

ϕ1(αh1)ϕ2(h2)χ−1(α)

|det(h1h
−1
2 )|−2f(h−1

1 h2, h
−1
1

(
−1

1

)
h2) dh dα,

(42)

after a change of variable

(h1, h2) 7→ (αh1

(
detα

1

)−1

, h2).

Next, we have the natural isomorphisms

D(Q)\H1(A) ∼= (D(Q)\D(A))\(D(A)\H1(A)),

and
D(Q)\D(A) ∼= ZATQ\TA.

Hence,

B(I4) =
∫
ZATQ\TA

∫
ZATQ\TA

∫
D(A)\H1(A)

ϕ1(αβh1)ϕ2(βh2)χ−1(α)|

det(h1h
−1
2 )|−2f(h−1

1 h2, h
−1
1

(
−1

1

)
h2) dh dα dβ

=
∫
ZATQ\TA

∫
ZATQ\TA

∫
D(A)\H1(A)

ϕ1(αh1)ϕ2(βh2)χ−1(α)χ(β)

|det(h1h
−1
2 )|−2f(h−1

1 h2, h
−1
1

(
−1

1

)
h2) dh dα dβ,

(43)

after the change of variable α 7→ αβ−1. After re-arrangement, we get

B(I4) =
∫
D(A)\H1(A)

Ξ1(h1)Ξ2(h2)f(h−1
1 h2, h

−1
1

(
−1

1

)
h2) dh, (44)

with
Ξ1(h1) =

∫
ZATQ\TA

ϕ1(αh1)χ−1(α) dα,

and
Ξ2(h2) =

∫
ZATQ\TA

ϕ1(βh2)χ(β) dβ.
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By our choice of ϕ1, ϕ2, we know that Ξi(I2) 6= 0, i = 1, 2. The theorem now
follows from the following lemma:

Lemma 3.6 Suppose Ψ is a function on D(A)\H1(A) such that∫
D(A)\H1(A)

Ψ(h1, h2)f(h−1
1 h2, h

−1
1

(
−1

1

)
h2) dh = 0, (45)

for every K-finite Schwartz function f . Then Ψ ≡ 0.

Proof of the lemma. We have∫
X

Ψ(x)f(γ(x) dx =
∫
γ(X)

f(y)

(∫
γ−1(y)

Ψ(x) dx

)
dy.

Then the claim is that if (h1, h2), (g1, g2) ∈ H1(A), and

(h−1
1 h2, h

−1
1

(
−1

1

)
h2) = (g−1

1 g2, g
−1
1

(
−1

1

)
g2),

then (h1, h2) = (tg1, tg2) for some t ∈ TA. This claim is obvious, and implies
the lemma.�

The theorem now follows.�
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[3] S. Böcherer and R. Schulze-Pillot, The Dirichlet series of Koecher and
Maaßand modular forms of weight 3/2, Math. Z. 209 (1992), 273-287.

[4] D. Bump, The Rankin-Selberg Method: A survey, Number Theory, trace
formulas, and discrete groups (K. E. Bombieri and D. Goldfeld, eds.), Aca-
demic Press, San Diego, 1989.

[5] W. Casselman and J. Shalika, The unramified principal series of p-adic
groups. II. The Whittaker function. Compositio Math. 41 (1980), no. 2,
207–231.

[6] M. Furusawa, On L-functions for GSp(4)×GL(2) and their special values.
J. Reine Angew. Math. 438 (1993), 187–218.

[7] M. Furusawa, On the theta lift from SO2n+1 to S̃pn. J. Reine Angew. Math.
466 (1995), 87–110.

55



[8] M. Furusawa, and J. A. Shalika, On central critical values of the degree
four L-function for GSp(4): The fundamental lemma, Mem. of the AMS,
vol 782, 2003.

[9] S. Gelbart and F. Shahidi, Analytic Properties of Automorphic L-Functions,
Prospectives in Mathematics, Academic Press, 1988.

[10] D. Ginzburg, L-functions for SOn × GLk, J. Reine Agnew. Math,
405(1990), 156-180.

[11] B. Gross and D. Prasad, On the decomposition of a representation of SOn

when restricted to SOn−1. Canad. J. Math. 44 (1992), no. 5, 974–1002.

[12] B. Gross and D. Prasad,On irreducible representations of SO2n+1× SO2m.
Canad. J. Math. 46 (1994), no. 5, 930–950.

[13] M. Harris, Nonvanishing of L-functions of 2 × 2 unitary groups. Forum
Math. 5 (1993), no. 4, 405–419.

[14] M. Harris and S.S. Kudla, Arithmetic automorphic forms for non-
holomorphic discrete series of GSp(2), Duke Math. J. 66 (1992), 59-121.

[15] M. Harris, D. Soudry, and R. Taylor, l-adic representations associated to
modular forms over imaginary quadratic fields I: lifting to GSp4(Q), Invent.
Math. 112 (1993), 377-411.

[16] R. Howe and I. Piatetski-Shapiro, Some examples of automorphic forms on
Spb4. Duke Math. J. 50 (1983), no. 1, 55–106.

[17] H. Jacquet and R. Langlands, Automorphic Forms on GL(2), Lecture Notes
in Mathematics, Vol. 114, Springer, New York, 1970.

[18] H. Jacquet, I. Piatetski-Shapiro, and J. A. Shalika, Automorphic Forms on
GL(3) I, Ann. of Math., 109 (1979), 169-212.

[19] A. Knapp, Representation theory of semisimple groups. An overview based
on examples. Reprint of the 1986 original. Princeton Landmarks in Math-
ematics. Princeton University Press, Princeton, NJ, 2001. xx+773 pp.

[20] A. Knapp, Local Langlands correspondence: the Archimedean case. Motives
(Seattle, WA 1991), 393-410, Proc. Symp. Pure Math., 55, Part 2, Amer.
Math. Soc., Providence, RI, 1994.
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