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SPINORS AS AUTOMORPHISMS OF THE TANGENT BUNDLE

ALEXANDRU SCORPAN

Abstract. We show that, on a 4-manifold M endowed with a spinC-structure
induced by an almost-complex structure, a self-dual (positive) spinor field
φ ∈ Γ(W+) is the same as a bundle morphism φ : TM → TM acting on the fiber
by self-dual conformal transformations, such that the Clifford multiplication
is just the evaluation of φ on tangent vectors, and that the squaring map
σ : W+ → Λ+ acts by pulling-back the fundamental form of the almost-
complex structure. We use this to detect Kähler and symplectic structures.

1. Introduction

This paper is concerned with spinC-structures on 4-manifolds, when the spinC-
structure is induced from an almost-complex structure. The aim of the paper is
two-fold. On the one hand, we will present a non-standard language for describing
self-dual (= positive) spinor fields as automorphisms of the tangent bundle. On the
other hand, using spinor fields to deform Hermitian structures, we detect Kähler
structures (Theorem 1.2) and characterize symplectic structures (Corollary 1.3),
expanding upon results from [Sco02].

Let M be an oriented 4-manifold, endowed with a metric g. Using this metric,
we can identify g-orthogonal almost-complex structures with self-dual 2-forms of
constant length

√
2. Thus, for example, for a non-zero self-dual 2-form α, we can

define its Chern class c1(α) as the first Chern class of the associated almost-complex
structure.

Choose an almost-complex structure ω. It induces a standard spinC-structure
with spinor bundles denoted W±, with determinant bundle K∗ = detCW± =
detC(TM , ω), and with a Clifford multiplication denoted by TM ×W+ •−→W−. It
is a standard fact that W− ≈ (TM , ω) as complex bundles. A choice of unitary
connection A on K∗, together with the Levi-Cività connection ∇ of g, induces
unique unitary connections ∇A on W+ and ∇̃A on W−, related by

(1) ∇̃A(v • φ) = (∇v) • φ+ v • (∇Aφ).

An important related object is the associated Dirac operator DA : Γ(W+) →
Γ(W−), defined by DAφ =

∑
ek •∇Aekφ for any g-orthonormal frame {ek}. Another

important object is the quadratic map σ :W+ → Λ+, which is famous for appearing
in the Seiberg–Witten equations, but see also [LM89, IV.10].

A section of W+ will be called a self-dual spinor field. (A more customary
terminology would be “positive spinor field”. We prefer to say “self-dual spinor
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2050 ALEXANDRU SCORPAN

field”, which is used in the classical paper [AHS78] and seems better suited to the
peculiarities of dimension 4 and to the phenomena described in this paper.)

A first aim of this paper is to show that self-dual spinor fields φ ∈ Γ(W+) can
be identified with self-dual conformal transformations

φ : TM → TM ,

i.e. with bundle maps that act on each fiber by rotating a pair of orthogonal planes
by the same angle, in directions compatible with the orientation of M , and then
dilate/shrink the fiber by multiplying with a scalar. This bundle identification can
be easily obtained from the starting steps of [Tau95], [Tau00] (see Remark 2.3),
but we strengthen it by noticing that the Clifford multiplication identifies with the
evaluation, as

(2) v • φ ≡ φ(v)

and that the quadratic map σ :W+ → Λ+ can be described as giving the pull-back
of the almost-complex form, as

σ(φ) ≡ 1
4 φ
∗ω

where (φ∗ω)(v, w) = ω(φv, φw). This non-standard language is stated in Theo-
rem 2.1.

Thus, one can use spinor fields to deform almost-complex structures (within a
Chern class; see 2.5).

A second aim of this paper is to expand on the following result:

Proposition 1.1 ([Sco02]). Consider a 4-manifold M endowed with a metric g
and with the spinC-structure induced from an almost-complex structure ω. Assume
that H2(M ;Z) has no 2-torsion. Then the equality α = σ(φ) establishes a bijection
between:

(A) The set of all Kähler forms α with c1(α) = c1(ω) and compatible with a
metric scalar-multiple of g; and the set of all gauge classes of pairs (φ,A) with φ
nowhere-zero and ∇Aφ = 0.

(B) The set of all symplectic forms α with c1(α) = c1(ω) and compatible with
a metric conformal to g; and the set of all gauge classes of pairs (φ,A) with φ
nowhere-zero, DAφ = 0, and

〈
∇Aφ, iφ

〉
R = 0.

(Here, “gauge class” means equivalent with respect to the action of the gauge
group G = {f : M → S1} of K∗. It acts on K∗ and W± by scalar multiplication,
and that induces an action on unitary connections on K∗ and on sections of W±
(and thus on pairs (φ,A)). See also Remark 2.5.)

An immediate remark about Proposition 1.1 is the lack of symmetry of (A) and
(B): one statement deals with metrics scalar-multiple of g, the other with metrics
conformal to g. Another is that the term 〈∇Aφ, iφ〉R, while formally clear, has a
rather obscure intuitive meaning. These remarks will be addressed as follows:

We will extend statement (A) from above to include all Kähler forms compatible
with metrics conformal to g (instead of merely scalar-multiple of g). But the
connections considered so far are not enough. We need a more general set of
connections ∇̃ on W− (called “admissible connections”) that do not relate to any
connections A on K∗, and do not correspond (via (1)) to connections ∇ on W+,
but to connections ∇ on the larger bundle Hom(TM , TM ) ⊃ W+.
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Concretely, using the Hermitian isomorphismW− ≈ TM , a connection ∇̃ onW−
is admissible if it is C-linear for ω and g-metric. (The connections ∇̃A associated
to connections A on K∗ need the extra condition ∇̃A|Λ− = ∇|Λ− ; see Lemma 3.1.)
An admissible connection ∇̃ defines a connection ∇ on Hom(TM , TM ) through
(∇φ)(v) = ∇̃(φv)−φ(∇v). The latter is simply a version of (1) read using (2), and
is natural if we view φ : (TM ,∇)→ (TM , ∇̃).

The extension of 1.1(A) is:

Theorem 1.2. Assume H2(M ;Z) has no 2-torsion. The equality α = σ(φ) estab-
lishes a bijection between: the set of all Kähler forms α with c1(α) = c1(ω) and
compatible with a metric conformal to g; and the set of all gauge classes of pairs
(φ, ∇̃) with ∇̃ admissible, φ nowhere-zero, and with

(∇Xφ)(Y ) = (∇Y φ)(X).

(Here again, the gauge group G acts by scalar multiplication on W− = TM
and thus induces an action on connections ∇̃, and hence on pairs (φ, ∇̃). See also
Remark 2.5.)

Theorem 1.2 above could be read as a strong 4-dimensional spinC cousin of
Proposition 9.10 from [LM89, p. 340]. The latter states: Let Mn be endowed with a
spin-structure, and let φ be a pure spinor. Then φ determines an integrable almost-
complex structure if and only if Y •∇

X
φ = X •∇

Y
φ, for all X,Y from the kernel of

the map TM ⊗ C →W, w 7→ w • φ, and where ∇ is the unique spin-connection on
the spinor bundle W. Notice that this statement mentions only integrability, but
not Kähler.

This paper will also interpret the rather mysterious term 〈∇Aφ, iφ〉R from Pro-
position 1.1(B). It appeared there due to the formula

(3) ‖φ‖2DAφ = i
(
2 d∗σ(φ) + 〈∇Aφ, iφ〉R

)
•φ

from [Sco02].
We will show that the 1-form 〈∇Aφ, iφ〉R measures how close are the connections

∇ and ∇̃A when compared through φ : (TM ,∇)→ (TM , ∇̃A) (see Lemma 3.9). In
standard terms, 〈∇Aφ, iφ〉 measures how far ∇Aφ is from being minimal (when A
varies). (That is, 〈∇Aφ, iφ〉 = 0 if and only if ∇Aφ has pointwise minimal length.)

Underlying the above discussion is the general comparison of ∇ and ∇̃A via φ.
It is governed by an analogue of a “second fundamental form”:

(BAφ)XY = ∇̃AX(φY )− φ(∇XY ).

In standard terms, it is simply

(BAφ)XY = Y •∇AXφ.
It naturally splits as

(4) BAφ = AltBAφ+ Sym0B
Aφ+ g ⊗ 1

4D
Aφ

where AltB is the alternating (skew-symmetric) part, Sym0B is the traceless-
symmetric part, and g ⊗ 1

4DAφ is the trace part of B.
The skew-symmetric part AltB compares through φ the torsions of∇ and ∇̃, and

underlies Theorem 1.2 above. Namely, AltBφ = 0 means (∇Xφ)(Y ) = (∇Y φ)(X),
and in that case σ(φ) = 1

4 φ
∗ω is Kähler for φ∗g. On the other hand, the symmetric

part SymB can be understood as the linear extension of terms like (BAφ)XX , which
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compare geodesics in the X-direction. The trace DAφ can thus be understood as
an average comparison of geodesics.

As mentioned, 〈∇Aφ, iφ〉 vanishes exactly when BAφ is pointwise minimized.
Trying to minimize the other terms appearing in the splitting (4) through variation
of A among unitary connections on K∗, we will show that the various minimizing
connections must all sit on a single affine line and are distanced at fixed ratios (see
Theorem 3.7). Therefore, if two such minimizing connections happen to coincide,
then all of them must coincide.

The conditions from 1.1(B) can be read now as follows: both BAφ and DAφ are
minimized by the same A. But then this A must minimize all terms from (4). In
particular it must minimize AltBAφ, that is, minimize the torsion of the connection
∇̃A when viewed through φ.

In conclusion, Proposition 1.1(B) can be rephrased as: The form σ(φ) = 1
4 φ
∗ω

is symplectic if and only if there is a connection A that simultaneously minimizes
all components of BAφ = ∇Aφ.

In particular, we have: The form φ∗ω is symplectic if and only if there is a
connection ∇̃A on TM which, viewed through φ : (TM ,∇)→ (TM , ∇̃A), simultane-
ously is a closest match to ∇ (i.e. BAφ minimal) and has the torsion minimized
(i.e. AltBAφ minimal). Or even:

Corollary 1.3. The manifold (M, g, ω) is almost-Kähler if and only if there is a
C-linear g-metric connection ∇̃ on TM with ∇̃|Λ− = ∇|Λ− , and that simultaneously
is closest to ∇ and has minimal torsion.

We hope this characterization might shed some new light on the nature of al-
most-complex structures compatible with symplectic structures.

In what follows, Section 2 will deal with proving the non-standard language for
spinors, while Section 3 will detail its geometric ramifications.

2. Dictionary

Let M be a closed oriented 4-manifold, endowed with a fixed Riemannian met-
ric g and its Levi-Cività connection ∇. The same notation “∇” will denote the
connections induced by ∇ on the tensor bundles of M . Using the metric, we will
systematically identify TM and T ∗M , and their corresponding bundles of tensors,
including Λ(TM ) and Λ(T ∗M ). Throughout the paper, a suddenly appearing “x”
will simply mean a generic point of M .

An almost-complex structure is an automorphism J : TM → TM such that J ◦J =
−id. All almost-complex structures considered will be compatible with the chosen
orientation of M , and will be g-orthogonal, i.e. g(v, w) = g(Jv, Jw). The metric
allows us to identify all such almost-complex structures J with self-dual 2-forms
ω ∈ Γ(Λ+) of constant length

√
2 such that ω(v, w) = g(Jv, w). (This is just a

particular instance of the isomorphism Λ2(R4) ≈ so(4), identifying 2-forms with
skew-symmetric endomorphisms.) The complex-line bundle K∗ = detC(TM , ω) is
called the anti-canonical bundle of (M,ω). We denote by c1(ω) the Chern class
c1(K∗) = c1(TM , ω).

A non-degenerate 2-form ω with dω = 0 is called symplectic. If a symplectic form
is self-dual and of constant length

√
2, then we call it a symplectic form compatible

with the metric g (and in that case (M, g, ω) is an almost-Kähler manifold). A
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self-dual 2-form ω of length
√

2 such that ∇ω = 0 will be called a Kähler form
compatible with g (since (M, g, ω) is a Kähler manifold).

The method we choose for proving Theorem 2.1 below employs quaternions, and
is inspired by the exposition from [Akb96].

Denote by H the division algebra of quaternions, and by S3 its unit sphere. The
choice of any isomorphism H ≈ R4 that preserves orientation and inner product
allows us to identify SO(4) = S3 × S3

/
± 1 acting on R4 by

SO(4)× R4 −→ R4 : [ξ+, ξ−] · v = ξ+v ξ
−1
− .

If we further identify H with C2, through z1 + z2j ≡ (z1, z2), then we can identify
SU(2) = S3 acting by

SU(2)× C2 −→ C2 : ξ · v = vξ−1.

The full unitary group can be identified as U(2) = S1 × S3
/
± 1 acting on C2 by

U(2)× C2 −→ C2 : [λ, ξ] · v = λvξ−1.

The complex-spin group is SpinC(4) = S1 × S3 × S3
/
± 1.

Since M is oriented and endowed with a metric, its tangent bundle TM admits
a defining cocycle with values in SO(4). That means that there is a covering of M
by open sets {Uγ} and a collection of transition maps {ταβ : Uα ∩ Uβ → SO(4)}
such that the bundle TM → M can be obtained by gluing trivial-bundle pieces
Uγ×R4 → Uγ through the identification of (x, vα) ∈ Uα×R4 with (x, vβ) ∈ Uβ×R4

when vα = ταβ(x)vβ .
A spinC-structure on M is (the equivalence class of) a lifting of the cocycle {ταβ}

to a cocycle {τ̃αβ} with values in SpinC(4), lifted via the natural map

SpinC(4) −→ SO(4) : [λ, ξ+, ξ−] 7−→ [ξ+, ξ−].

A choice of such a lifted cocycle {τ̃αβ} induces, through the two maps

SpinC(4) −→ U(2) : [λ, ξ+, ξ−] 7−→ [λ, ξ±]

defining U(2)-cocycles for two complex-plane bundlesW+ andW−, called the bun-
dles of self-dual and anti-self-dual spinors (or “positive” and “negative spinors”).
Through the map SpinC(4)→ S1, [λ, ξ+, ξ−] 7−→ λ2, the cocycle {τ̃αβ} also induces
a defining cocycle for the complex line bundle L = detCW±, which is called the
determinant line bundle of the spinC-structure. Every 4-manifold admits at least
one spinC-structure.

The spinor bundles also come equipped with a Clifford multiplication TM ×
W+ •−→ W− (and its adjoint TM × W− → W+), characterized by the property
that

v • (v • φ) = −‖v‖2 φ.
This is in fact part of an action of the complexified Clifford algebra bundle C`(TM )⊗
C onW+⊕W− (see [LM89, Ch. II] for details). Since as vector bundles C`(TM ) ≈
Λ(TM ), there is an induced Clifford action of Λ+(TM ) on W+.

It is known that, via Clifford multiplication, we have End0(W+) ≈ Λ+ ⊗ C
(where End0 denotes the set of traceless C-endomorphisms). On the other hand,
for every φ ∈ W+, consider the endomorphism φ⊗φ∗ = 〈·, φ〉φ ofW+. Its traceless
part is φ⊗ φ∗ − 1

2 ‖φ‖
2
id. The latter corresponds to an element of Λ+ ⊗ C, which
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turns out to be purely imaginary, i.e. of the form iσ(φ) for some σ(φ) ∈ Λ+. This
defines the squaring map

σ :W+ → Λ+.

Alternatively, σ is uniquely characterized by its codomain and the property

σ(φ) • φ = −i ‖φ‖
2

2 φ.

This map is involved in the Seiberg–Witten equations, see for example [Wit94],
[Don96], [Mor96].

If (M, g) is endowed with a compatible almost-complex structure ω, then the
cocycle of TM can be reduced to a cocycle with values in U(2). But there is a
natural embedding U(2) ⊂ SpinC(4) given as

U(2) −→ SpinC(4) : [λ, ξ] 7−→ [λ, λ, ξ].

Therefore the U(2)-cocycle of TM lifts to a canonical spinC-structure {τ̃αβ} associ-
ated with the almost-complex structure ω.

Concretely, identify the model-fiber of TM with H. If TM |U ≈ U × H and
TM |U ′ ≈ U ′×H are two bundle-charts, write [λ, ξ] : U ∩U ′ → S1× S3

/
± 1 for the

associated U(2)-transition map, which identifies (x, v) ∈ U×H with (x, v′) ∈ U ′×H
when v′ = λ(x) v ξ(x)−1. The associated spinC-structure will have corresponding
SpinC(4)-transition map [λ, λ, ξ] : U ∩ U ′ → S1 × S3 × S3

/
± 1.

The spinor bundle W+ will have model-fiber H and corresponding U(2)-transi-
tion map [λ, λ] : U∩U ′ → S1×S3

/
±1, identifying (x,w+) with (x,w′+) when w′+ =

λ(x)w+λ(x)−1. The spinor bundle W− will have model-fiber H and corresponding
U(2)-transition map [λ, ξ] : U ∩U ′ → S1×S3

/
± 1 identifying (x,w−) with (x,w′−)

when w′− = λ(x)w−ξ(x)−1. The determinant line bundle L will have model-fiber
C and corresponding U(1)-transition function λ2 : U ∩ U ′ → S1, identifying (x, z)
with (x, z′) when z′ = λ(x)2z. (Note that, although the bundles W± have model-
fiber H, after gluing them up with their respective cocycles, no global quaternionic
structure is preserved, only a complex structure.)

After inspecting the cocycles, immediate consequences are the well-known iso-
morphisms of Hermitian bundles W− ≈ TM and L ≈ K∗.

Suppose now that V is a 4-dimensional vector space, endowed with an inner prod-
uct and with an orientation. Denote by PSO(V ) the group of orientation-preserving
conformal transformations of V (i.e. real multiples of orthogonal transformations
from SO(V )). Further, denote by PSO+(V ) the group of self-dual conformal trans-
formations, that is, those maps V → V which, with respect to orienting orthonormal
bases, are represented by matrices of the form

r cos θ r sin θ
−r sin θ r cos θ

r cos θ r sin θ
−r sin θ r cos θ

 .
Note that the zero map V → 0 is in PSO+(V ), as is the identity id : V → V .

Equivalently: Pick any vector-space isomorphism V ≈ H preserving the inner
product and the orientation. Then, a self-dual conformal transformation is the
same as the map v 7→ ξv defined by multiplying on the left with a quaternion ξ.

A third description: Any linear φ : V → V induces a map φ : Λ2(V ) → Λ2(V )
with φ(v ∧ w) = φ(v) ∧ φ(w). Since V is 4-dimensional, oriented, and has an
inner product, we have a splitting Λ2(V ) = Λ+(V ) ⊕ Λ−(V ). An automorphism

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SPINORS AS AUTOMORPHISMS OF THE TANGENT BUNDLE 2055

φ : V → V is a conformal transformation if and only if it preserves the splitting
Λ2 = Λ+ ⊕Λ−. It is a self-dual conformal transformation if and only if in addition
it acts trivially on the anti-self-dual part, that is, if φ|Λ−(V ) = id.

Let M be a closed oriented 4-manifold, endowed with a fixed metric g. We can
define the bundle PSO+(TM ) as the subbundle of Hom(TM , TM ) containing the
self-dual conformal transformations of the fibers. It is a vector bundle of rank 4. As
a subbundle of Hom(TM , TM ), it comes equipped with a fiber-metric induced from
g, as well as an obvious evaluation map TM ×PSO+(TM ) ev−→ TM , (v, φ) 7−→ φ(v).

Suppose now that M is endowed with some almost-complex structure ω. Then
TM becomes a complex bundle (TM , ω). A complex structure is induced on the
bundle PSO+(TM ) simply by (i · φ)(v) = i · φ(v). Denote the resulting Hermitian
bundle by (PSO+, ω).

More, for any φ ∈ PSO+(TM ), we can define the pull-back φ∗ω of the funda-
mental 2-form ω ∈ Λ+(T ∗M ):

(φ∗ω)(v, w) = ω(φv, φw).

Since φ preserves Λ+, the pull-back φ∗ω will be in Λ+(T ∗M ) as well.

Theorem 2.1. Let M be an oriented 4-manifold endowed with a Riemannian met-
ric and a compatible almost-complex structure ω, which induce a spinC-structure
with spinor bundles W+ and W−.

(A) We have the natural Hermitian bundle isomorphisms

W− ≈ (TM , ω) W+ ≈ (PSO+(TM ), ω).

(B) The Clifford multiplication TM ×W+ •−→W− identifies with the evaluation
map TM × PSO+(TM ) ev−→ TM as

v • φ ≡ φ(v).

(C) The squaring map σ :W+ → Λ+ can be written

σ(φ) = 1
4 φ
∗ω.

Remark 2.2. Varying the almost-complex structure ω does not change the underly-
ing real bundles of the spinor bundles, nor the Clifford multiplication map. It only
changes the complex structures that are laid on them.

Proof of 2.1(A). We already proved W− ≈ TM . To show W+ ≈ PSO+, we need
only uncover the cocycle of the latter. Identify the model-fiber of TM with H.
Then a self-dual conformal transformation of TM can be represented fiberwise by
left-multiplication with a quaternion. Pick a self-dual conformal transformation
φ : TM → TM , and consider two bundle-charts TM |U ≈ U ×H and TM |U ′ ≈ U ′×H
related by some U(2)-transition map [λ, ξ]. Let x ∈ U ∩ U ′. If in the chart over
U the transformation φ is represented as v 7→ hv for some h : U → H, while in
the chart over U ′ it is represented as v′ 7→ h′v′ for some h : U ′ → H, then, since
the coordinate change is v′ = λvξ−1, we must have λhvξ−1 = h′λvξ−1 for all v.
Therefore h′ = λhλ−1. In conclusion, PSO+(TM ) has the same transition functions
as W+, and hence these Hermitian complex bundles are isomorphic. �
Remark 2.3. The isomorphism W− ≈ TM is well-known, usually written as W− ≈
Λ0,1. The isomorphism W+ ≈ PSO+ follows immediately from the beginning
of [Tau95], [Tau00]. For example: The Clifford action of ω splits W+ into ±1-
eigenbundles as W+ ≈ C ⊕ K∗. But Λ+ = Rω ⊕ K∗. Thus W+ ≈ R ⊕ Λ+.
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Identifying Λ+ with skew-symmetric endomorphisms and writing the trivial com-
ponent as R = R · id, we see that W+ ≈ PSO+ as real bundles. The complex
structures follow as well.

Proof of 2.1(B). The main task here is to concretely define the Clifford multiplica-
tion in such a manner that the identification v • φ = φ(v) become obvious.

The action of the structure group SpinC(4) onW+⊕W− can be extended to an
action of the full complexified Clifford algebra C`(4)⊗C, in a way that respects the
inclusion SpinC(4) ⊂ C`(4). Globalizing, we obtain the extension of the action of
the principal bundle SpinC(TM ) on W+ ⊕W− to an action of the algebra bundle
C`(TM )⊗ C.

But C`(4) is isomorphic with the algebra H(2) of all 2×2 quaternionic matrices,
with Spin(4) embedded as the group of all matrices[

ξ+
ξ−

]
with ξ± ∈ S3. The inclusion of SpinC(4) = Spin(4)×Z2 S1 into C`(4)⊗ C follows
suit.

Identify the model-fiber of W+ ⊕W− with H ⊕H. We define the Clifford mul-
tiplication in local quaternionic coordinates by:

C`(TM ) ⊗ C × W+ ⊕W− •−−−−→ W+ ⊕W−[
a b
c d

]
⊗ λ

[
h+ h−

]
λ ·
[
h+ h−

]
·
[
a c

b d

]
This local description is compatible with the cocycles of TM and W±, and thus
defines a global action of C`(TM )⊗ C on W+ ⊕W−.

The tangent bundle TM embeds into C`(TM ) via a version of the (quaternionic)
Pauli matrices. Namely, for a local identification TM |x ≈ H, we embed TM |x into
C`(TM )|x ≈ H(2) through

1 7→
[
0 −1
1 0

]
, i 7→

[
0 −i
−i 0

]
, j 7→

[
0 −j
−j 0

]
, k 7→

[
0 −k
−k 0

]
.

(These matrices generate H(2) and satisfy the Clifford relations Ek ·Ek = −Id and
Ej · Ek = −Ek · Ej . The above are essentially the negatives of the standard Pauli
matrices.) In short, the embedding is

v 7−→
[

−v
v

]
.

Via this inclusion TM ⊂ C`(TM ), the tangent vectors will act on spinors as follows:

TM × W+ •−−−−→ W− TM × W−
•−−−−→ W+

v h+ h+v v h− −h− v

In particular, v • (v • φ) = −‖v‖2 φ, as needed. If we read TM × W+ −→ W−
through the isomorphisms W− ≈ TM and W+ ≈ PSO+(TM ), we obtain the map
TM×PSO+(TM ) −→ TM given by (v, h+) 7−→ h+v. That is exactly the evaluation
map read in coordinates. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SPINORS AS AUTOMORPHISMS OF THE TANGENT BUNDLE 2057

Proof of 2.1(C). We prove that σ(φ) = 1
4 φ
∗ω. As mentioned before, we use the

metric to identify 2-forms with skew-symmetric endomorphisms. Namely, the form
γ ∈ Γ(Λ2(T ∗M )) will correspond to the endomorphism of TM that satisfies

γ(v, w) = g
(
γ(v), w

)
.

(We will use the same letter for the 2-form and for the morphism. The context or
the specific number of arguments each takes should be enough to distinguish them.)
The essential ingredient of the proof is

Lemma 2.4. For any β ∈ Λ+(TM ) and φ ∈ W+, we have

β • φ = −2φ ◦ β.

Now, the squaring map σ :W+ → Λ+(TM ) is characterized by

σ(φ) • φ = −i ‖φ‖
2

2 φ.

Using 2.4, that translates to φ ◦ σ(φ) = ‖φ‖2
4 iφ, which can be written as

φ ◦ σ(φ) = ‖φ‖2
4 J ◦ φ.

Therefore, thinking of φ as φ : TM → TM , and ignoring the factor ‖φ‖2 /4 for a
moment, we see that σ(φ) must determine the unique almost-complex structure on
TM that will make φ : (TM , σ(φ))→ (TM , J) be C-linear. When φ|x = 0, statement
(C) is immediate, while in general we have

1
4 ω(φv, φw) = 1

4 g(Jφv, φw) = 1
‖φ‖2 g

(‖φ‖2
4 Jφv, φw

)
= 1
‖φ‖2 g

(
φσ(φ)v, φw

)
= g
(
σ(φ)v, w

)
= σ(φ)(v, w)

(where we used that φ is conformal, and hence g(φx, φy) = ‖φ‖2 g(x, y)). Thus
1
4 φ
∗ω = σ(φ). �

Remark 2.5. Statement 2.1(C) interprets the square σ(φ) as a (weighted) pull-back
of the almost-complex structure ω through φ : TM → (TM , ω). On the one hand, it
is worth quoting the following statement:

Let α be a self-dual 2-form, and assume that H2(M \ {zeros of α}; Z) has no
2-torsion. There is a self-dual spinor field φ ∈ Γ(W+) such that α = φ∗ω if and
only if c1(α|off zeros) = c1(ω)|off zeros. [Sco02]

On the other hand, if we fix a suitable self-dual 2-form α, we can ask how unique
is a spinor field φ such that α = φ∗ω. Such a φ : TM → TM has the homothety
ratio prescribed from ‖φ‖2 = 2

√
2 ‖φ∗ω‖, and must map the complex planes of α

onto the complex planes of ω. Nonetheless, it has the freedom of rotating those
planes. Concretely, if φ∗ω|x = ψ∗ω|x, then φ|x = eiθψ|x for some angle θ. This
angular freedom can be factored out using the gauge group G = {f : M → S1}.

Proof of Lemma 2.4. We show that β • φ = 2φ ◦ β. Through the Clifford action
of 2-forms on W+ ⊕W−, every 2-form acts on a self-dual spinor only through its
self-dual part (the anti-self-dual part acts trivially). For example, if φ ∈ W+|x and
{a1, a2, a3, a4} is any orienting orthonormal basis in TM |x, we have

(a1 ∧ a2) • φ = (a3 ∧ a4) • φ = 1
2 (a1 ∧ a2 + a3 ∧ a4) • φ.
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Through the isomorphism C`(TM ) ≈ Λ(TM ), the algebra multiplication in
C`(TM ) can be expressed as v · γ = v ∧ γ − v y γ, for v ∈ TM and any γ ∈ C`(TM ).
Here y is the interior product v y γ = γ(v, ·, . . . , ·) (identify Λ(TM ) and Λ(T ∗M )). If
v and w are orthogonal, then v yw = 0, and hence v · w = v ∧ w. In particular,
(a1 ∧ a2) • φ = (a1 · a2) • φ and (a3 ∧ a4) • φ = (a3 · a4) • φ.

Therefore we have ψ = 1
2 (a1 ∧ a2 + a3 ∧ a4) • φ if and only if ψ = (a1 · a2) • φ

and ψ = (a3 · a4) • φ. Since ak · ak = −1, that is the same as a1 • ψ = −a2 • φ and
a3 • ψ = −a4 • φ. Using the identification W+ ≈ PSO+(TM ), that becomes

ψ = 1
2 (a1 ∧ a2 + a3 ∧ a4) • φ ⇐⇒ ψ(a1) = −φ(a2) & ψ(a3) = −φ(a4).

The element α = a1∧a2+a3∧a4 of Λ+|x corresponds to the rotation α : TM |x →
TM |x acting by a1 7→ a2, a2 7→ −a1, and a3 7→ a4, a4 7→ −a3. The composition φ◦α
will still be self-dual, and will act by (φ ◦ α)(a1) = φ(a2) and (φ ◦ α)(a3) = φ(a4).
Comparing with ψ, we conclude that

α • φ = −2φ ◦ α.
To get Lemma 2.4, we need only remark that for any β ∈ Λ+|x, there is always a

suitable basis {b1, b2, b3, b4} in TM |x so that β = r(b1∧b2+b3∧b4), with r = 1√
2
‖β‖,

and thus the above applies. �

3. Geometry

Using the language of Theorem 2.1, we view a self-dual spinor field as a bundle
morphism φ : (TM , g,∇) → (TM , g, ω). The connections ∇̃ on W− are seen as
connections on the target of such φ.

Choose any unitary connection A on K∗. This A can be combined with the Levi-
Cività connection ∇ to induce unitary connections ∇A on W+ and ∇̃A on W−.
That is done by lifting A through the map SpinC(4) → U(1), combining with the
lift of ∇ through SpinC(4)→ SO(4), and then projecting the combination through
the two maps SpinC(4)→ U(2). (For details, see [LM89], [Mor96], or the proof of
Lemma 3.1, at the end of this paper.) We call such connections on W± spinorial
connections.

Viewing a spinorial connection ∇̃ onW− as a connection on TM (viaW− ≈ TM ),
it is obvious that ∇̃ is C-linear for ω and g-metric. In fact:

Lemma 3.1. Let D be any connection on TM . There is a connection A on K∗

such that D = ∇̃A (via the identification TM ≈ W−) if and only if D is g-metric,
C-linear for ω, and the induced connection D|Λ− on Λ−(T ∗M ) coincides with the one
induced by the Levi-Cività connection ∇.

Remark 3.2. Given D as above, one can find the suitable A as follows: The fact
that D is C-linear for ω can also be written as D|Λ+ ω = 0. Since Λ+ = Rω ⊕K∗,
that implies that D|Λ+ = ∂ ⊕ A for some unitary connection A on K∗ (where ∂
denotes the trivial connection on the trivialized bundle Rω). If the conditions from
3.1 are met, then D = ∇̃A.

Remark 3.3. The fact that connections D with D|Λ− = ∇|Λ− play such an impor-
tant rôle in spin-geometry could be justified in the language of 2.1 as follows: A
bundle morphism φ : TM → TM is a self-dual spinor field if and only if the induced
map on Λ2 preserves the splitting Λ2 = Λ+⊕Λ− and acts on Λ− as the identity. It is
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thus natural that the most natural connections on the target of φ : (TM ,∇)→ TM
coincide with ∇ on Λ−.

Lemma 3.1 suggests a non-standard approach: Instead of choosing A and build-
ing ∇̃A and ∇A, one could start with a connection ∇̃ on TM which is g-metric,
C-linear, and has ∇̃|Λ− = ∇|Λ− . We know that ∇̃ = ∇̃A for some A, but we do
not determine A. Instead, seeing spinor fields as φ : (TM ,∇)→ (TM , ∇̃) and using
(1) in the form

(5) (∇φ)v = ∇̃(φv) − φ(∇v),

we can define a connection ∇ on the whole Hom(TM , TM ). Because of 3.1, we know
that this ∇ must preserve the subbundle W+ ⊂ Hom(TM , TM ). The restriction of
∇ to W+ is then exactly ∇A.

The Hermitian identification W− ≈ (TM , g, ω) further tempts one to consider
connections ∇̃ on W− that are merely g-metric and C-linear for ω. We call them
admissible connections on W−.

Admissible connections no longer correspond to a connection ∇ on W+. None-
theless, using (5), we can still define a connection ∇ on Hom(TM , TM ), but it will
no longer preserve the subbundle W+. The meaning of ∇ (be it spinorial or not),
as read from (5), is to compare the connections ∇ and ∇̃ through φ : (TM , g,∇)→
(TM , g, ω, ∇̃). For easier manipulation, we introduce the notation(

B∇̃φ
)
XY = (∇Xφ)(Y ) = ∇̃X(φY )− φ(∇XY )

which can be thought of as the analogue of a “second fundamental form” for φ :
TM → TM .

We already encountered the pull-back φ∗ω = 4 σ(φ) of the fundamental form.
We can also pull-back the metric g to φ∗g, given by (φ∗g)(v, w) = g(φv, φw). Since
φ is conformal, it is simply φ∗g = ‖φ‖2 g. We can as well pull-back the unitary
connection ∇̃ to φ∗∇̃, defined by

(
φ∗∇̃

)
XY = φ−1∇̃X(φY ), where φ−1 is the inverse

of φ (defined only off the zeros of φ). Off the zeros of φ, the comparison form B∇̃φ
can then be written (B∇̃φ)XY = φ

(
(φ∗∇̃)XY −∇XY

)
.

The zeros of φ create singularities, but, nonetheless, since g, ω, and ∇̃ were
compatible, so will their pull-backs. Namely: the form φ∗ω is self-dual and has
constant length

√
2 for the (singular) metric φ∗g, and thus corresponds to a (singu-

lar) almost-complex structure; the (singular) connection φ∗∇̃ is Hermitian, i.e. it
is φ∗g-metric and C-linear for φ∗ω.

Remark 3.4. The zeros of spinors are hard to control. Even in the case of harmonic
spinors (spinor fields φ for which there is an A such that DAφ = 0), the zero-set
is a countable 2-rectifiable set, and thus has Hausdorff dimension as high as 2 (see
[Bär97]).

In general, the connection φ∗∇̃ will have torsion. But if, for example, B∇̃φ = 0,
then ∇φ = 0, and so φ has constant length. If further φ is non-trivial, then φ∗∇̃
is well-defined on all M , and we have φ∗∇̃ = ∇. In this case (M, φ∗g, φ∗ω) is a
Kähler manifold. This suggests that the comparison form Bφ has control over the
geometry of the deformed structure φ∗ω.

If V is a vector space endowed with an inner product q, we have the standard
splitting V ⊗ V = Λ2(V )⊕ S2

0(V )⊕ Rq. The comparison form B∇̃φ is tensorial —
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a section in T ∗M ⊗ T ∗M ⊗ TM . Applying the above splitting on the T ∗M ⊗ T ∗M -factor,
we get the splitting

B∇̃φ = AltB∇̃φ+ Sym0B
∇̃φ+ g ⊗ 1

4 tr(B∇̃φ)

which breaks B∇̃φ into its skew-symmetric, traceless-symmetric, and trace parts.
Concretely, these are defined as

(AltB∇̃φ)XY = 1
2

(
(B∇̃φ)XY − (B∇̃φ)YX

)
,

(SymB∇̃φ)XY = 1
2

(
(B∇̃φ)XY + (B∇̃φ)YX

)
,

Sym0B
∇̃φ = SymB∇̃φ− g ⊗ 1

4 tr(B∇̃φ),

trB∇̃φ =
〈
B∇̃φ, g

〉
=
∑

(B∇̃φ)ekek

where {e1, e2, e3, e4} is any g-orthonormal basis in TM |x. When ∇̃ = ∇̃A is spinor-
ial, we denote B∇̃ by BA, as expected. Notice that in that case tr(BAφ) coincides
with DAφ, the Dirac operator.

The skew-symmetric component AltBφ is easy to interpret. Indeed, off the zeros
of φ, the following calculation holds:

( AltB∇̃)XY = 1
2

(
∇̃X(φY )− ∇̃Y (φX)− φ(∇XY ) + φ(∇YX)

)
= 1

2

(
φφ−1∇̃XφY − φφ

−1∇̃Y φX − φ[X,Y ]− φ(∇XY −∇YX − [X,Y ])
)

= 1
2 φ
(
Torφ

∗∇̃(X,Y )− Tor∇(X,Y )
)

where TorD(X,Y ) = DXY −DYX − [X,Y ] denotes the torsion of a connection D.
Thus AltB∇̃φ is the torsion-comparing component of B∇̃φ. Since ∇ has no torsion,
we simply have

(AltB∇̃φ)XY = 1
2 φ
(
Torφ

∗∇̃(X,Y )
)
.

We are now ready to prove Theorem 1.2, stated as:
The equality α = φ∗ω establishes a bijection between: the set of all Kähler forms

α with c1(α) = c1(ω) and compatible with a metric conformal to g; and the set
of all gauge classes of pairs (φ, ∇̃) with ∇̃ admissible, φ nowhere-zero, and with
AltB∇̃φ = 0.

Proof of Theorem 1.2. We have AltB∇̃φ = 0 if and only if φ∗∇̃ is torsion-free. But
in that case φ∗∇̃ is the Levi-Cività connection of φ∗g, and since it is also C-linear
for φ∗ω, we conclude that the form φ∗ω is Kähler for the metric φ∗g.

Conversely, assume M admits a Kähler form α for a metric g′ conformal to g,
and has the same Chern class as ω. The latter implies (by Remark 2.5) that there
is a nowhere-zero spinor field φ such that φ∗ω = α. Since α has length

√
2 for g′, we

deduce that we must also have φ∗g = g′. If ∇′ denotes the Levi-Cività connection
of g′, then ∇′α = 0. Define ∇̃ = φ∗∇′, where (φ∗∇′)XY = φ∇′X(φ−1Y ). Then ∇̃ is
an admissible connection on TM (it is g-metric and C-linear for ω), and obviously
has φ∗∇̃ = ∇′. The latter being torsion-free, we must have AltB∇̃φ = 0. The
gauge-invariance part follows easily. �

Remark 3.5. Unless φ has constant length, or, equivalently, unless the metric g′ =
φ∗g is a scalar multiple of g (as in 1.1), the connection ∇̃ is not spinorial.
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Combining the bijections from Theorem 1.2 and Proposition 1.1 yields a coarse
constraint that AltB imposes on the whole B:

Lemma 3.6. Assume that, for a spinor field φ, we have AltBAφ = 0. If φ is
non-trivial and has constant length, then BAφ = 0.

We now restrict our attention to the standard spinorial connections ∇A and ∇̃A.
Varying these means varying A. Denote by Conn(K∗) the set of all unitary con-
nections on K∗. Any two connections from Conn(K∗) differ by a global imaginary
1-form. When A varies in Conn(K∗), that is when A changes to A + 2iθ for some
θ ∈ Γ(T ∗M ), then ∇̃A changes to ∇̃A+2iθ = ∇̃A + iθ. The associated tensors change
as follows:

(BA+2iθφ)XY = (BAφ)XY + iθ(X)φ(Y ),

(AltBA+2iθφ)XY = (AltBAφ)XY + i
2θ(X)φ(Y )− i

2θ(Y )φ(X),

(SymBA+2iθφ)XY = (SymBAφ)XY + i
2θ(X)φ(Y ) + i

2θ(Y )φ(X),

DA+2iθφ = DAφ+
∑

iθ(ek)φ(ek) = DAφ+ iθ • φ.

(6)

A simple consequence of these formulae is:
If, for two connections A and A′, we have BAφ = BA′φ, or AltBAφ = AltBA′φ,

or SymBAφ = SymBA′φ, or DAφ = DA′φ, then we must have A = A′ on the
support of φ.

The same formulae also yield:

Theorem 3.7. Let (BAφ)XY = Y •∇AXφ and vary A. For every nowhere-zero
spinor field φ, there are a unique connection A0 on K∗ and a unique 1-form ξ ∈
Γ(T ∗M ) such that

A = A0 is the unique minimum point of BAφ,
A = A0 − 3i ξ is the unique minimum point of SymBAφ,
A = A0 + 5i ξ is the unique minimum point of AltBAφ,
A = A0 + 15i ξ is the unique vanishing point of DAφ = tr(BAφ).

All these minimizing connections lie on a same affine line in Conn(K∗). If any two
of them happen to coincide, then all of them must coincide.

Theorem 3.8. The formula for ξ above is

ξ = − 4
15‖φ‖2 d

∗σ(φ).

Note that d∗σ(φ) = ∗ d σ(φ), since σ(φ) is self-dual.
The minima above are determined pointwise. For a fixed φ, let T denote any

one of Bφ, AltBφ, SymBφ, Sym0Bφ, or g ⊗ 1
4 trBφ. Then the form T A|x is an

element of T ∗M ⊗ T ∗M ⊗ TM |x. The latter has a natural real inner product induced
from g, given by

〈
T1, T2

〉
=
∑4

j,k=1

〈
T1(ej , ek), T2(ej , ek)

〉
for any g-orthonormal

basis {e1, e2, e3, e4} in TM |x. (All inner products that appear in this paper are
real -valued.)

On the other hand, the space Conn(K∗) of all connections A on K∗ is affine,
with model space iΓ(T ∗M ). The map A 7−→ T A|x is an affine map Conn(K∗) →
T ∗M ⊗ T ∗M ⊗ TM |x. The image of Conn(K∗) through this map is an affine subspace
Cx in T ∗M⊗T ∗M⊗TM |x. Thus, the minimum of the map is unique, and is exactly the
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Figure 1. Finding the minimum of A 7−→ T A|x.

point of Cx that is closest to the origin of T ∗M⊗T ∗M⊗TM |x. It is the point where the
perpendicular from the origin hits Cx; see Figure 1. Therefore the map A 7−→ T A|x
attains an absolute minimum at A0 if and only if, for any other connection A, we
have

〈
T A0φ, T A0φ− T Aφ

〉
|x = 0. Or, by decoding the inner product, if we have

(7)
4∑

j,k=1

〈
(T A0φ)ejek, (T A0φ)ejek − (T Aφ)ejek

〉
|x = 0

for some g-orthonormal basis {e1, e2, e3, e4} in TM |x.
Applying the above and using the formulae (6) yields, after some elementary

computations,

Lemma 3.9. Let (BAφ)XY = Y •∇AXφ and vary A. Then:

(A) The comparison form BA0φ|x is minimal in T ∗M ⊗T ∗M ⊗TM |x if and only if,
for all X ∈ TM |x, we have 〈

∇A0
X φ, iφ

〉
|x = 0.

(B) The form SymBA0φ|x is minimal in T ∗M ⊗ T ∗M ⊗ TM |x if and only if, for all
X ∈ TM |x, we have 〈

DA0φ, iφ(X)
〉
|x = 6

〈
∇A0
X φ, iφ

〉
|x.

(C) The form AltBA0φ|x is minimal in T ∗M ⊗ T ∗M ⊗ TM |x if and only if, for all
X ∈ TM |x, we have 〈

DA0φ, iφ(X)
〉
|x = −2

〈
∇A0
X φ, iφ

〉
|x.

(D) Finally, g⊗ 1
4 tr(BA0φ |x) = g⊗ 1

4DA0φ |x is minimal in T ∗M ⊗T ∗M ⊗TM |x if
and only if

DA0φ |x = 0.

Of course, 3.9(D) is utterly trivial. It is included only for completeness.

Remark 3.10. All the above pointwise minima can be realized globally on M if φ
is nowhere-zero. For example, for minimizing Bφ, start with a random connection
A and define θ0(X) = − 1

‖φ‖2
〈
∇AXφ, iφ

〉
. Then A0 = A + 2iθ0 is the unique
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connection that minimizes Bφ. If φ has zeros, though, then the globally minimizing
connection A might explode at the zeros. (Similarly for SymBφ, AltBφ and Dφ.)
Nonetheless, for simplicity from now on we will talk only of global minimizing
connections, implicitly restricting away from the possible singularities.

Proof of Corollary 1.3. Lemma 3.9(A) gives meaning to the condition 〈∇φ, iφ〉 = 0
from Proposition 1.1(B): it insures the minimality of BAφ. Together with the
condition DAφ = 0, it implies that all the minimizing connections from Theo-
rem 3.7 coincide (see also 3.8). We could thus rephrase Proposition 1.1(B) as:

The form φ∗ω is symplectic if and only if there is a connection A that simulta-
neously minimizes BAφ, AltA Bφ, SymA Bφ, and DAφ.

In particular, it is equivalent to:
The form φ∗ω is symplectic if and only if there is a connection A such that BAφ

and AltBAφ are both minimal.
That can be stated as follows:
The form φ∗ω is symplectic if and only if there is a connection ∇̃A on TM =

W− which, through φ, is simultaneously a closest match to ∇ and has the torsion
minimized.

In the special case when φ = id : TM → TM , we read:
The manifold (M, g, ω) is almost-Kähler if and only if there is a C-linear g-

metric connection ∇̃ on TM with ∇̃|Λ− = ∇|Λ− , which is simultaneously closest to
∇ and has minimal torsion.

This last statement is exactly Corollary 1.3. �

Proof of Theorem 3.7. We relate the minimizing connections through the condi-
tions from Lemma 3.9. Assume first that A is the minimizing connection for Bφ,
i.e. assume that, for all X , 〈

∇AXφ, iφ
〉

= 0.

Assume also that A + 2iθ is the minimizing connection for AltBφ, or that, for all
X ,

2
〈
∇A+2iθ
X φ, iφ

〉
+
〈
DA+2iθφ, iφ(X)

〉
= 0.

Since ∇A+2iθ
X φ = ∇AXφ+ iθ(X)φ, we get

2 ‖φ‖2 θ(X) +
〈
DA+2iθφ, iφ(X)

〉
= 0.

Identifying T ∗M and TM , we write θ(X) = 〈θ,X〉, and then we have ‖φ‖2 〈θ,X〉 =〈
iφ(θ), iφ(X)

〉
. Therefore, for all X ,

2
〈
iθ • φ, iφ(X)

〉
+
〈
DA+2iθφ, iφ(X)

〉
= 0,〈

DA+6iθφ, iφ(X)
〉

= 0

since DA+6iθφ = DA+2iθφ+ 2iθ • φ. But then, on the support of φ, we must have

DA+6iθφ = 0

and so we have proved
(α) If A is the minimum point for Bφ, and A + 2iθ is the minimum point for

AltBφ, then DA+6iθφ = 0.
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Assume now that A is the minimizing connection for Bφ, so that, for all X ,〈
∇AXφ, iφ

〉
= 0.

Assume also that A+ 2iη minimizes SymBφ: for all X

6
〈
∇A+2iη
X φ, iφ

〉
−
〈
DA+2iηφ, iφ(X)

〉
= 0,

6 ‖φ‖2 η(X)−
〈
DA+2iηφ, iφ(X)

〉
= 0,〈

6iη • φ, iφ(X)
〉
−
〈
DA+2iη, iφ(X)

〉
= 0,

−
〈
DA−10iηφ, iφ(X)

〉
= 0

and so DA−10iηφ = 0 on the support of φ. We have obtained
(β) If A is the minimum point for Bφ, and A + 2iη is the minimum point for

SymBφ, then we have DA−10iηφ = 0.
If we now combine (α) and (β) above with Remark 3.10, then Theorem 3.7 will

follow. �

Proof of Theorem 3.8. The formula for ξ is obtained by comparing the minimizing
connection for Bφ with the vanishing connection for Dφ. The main ingredient is
formula (3) (from the Introduction; it is proved in [Sco02]), combined with Lem-
ma 3.9(A) and the suitable formula from (6). Concretely, if BAφ is minimal and
DA+2iθφ = 0, then

θ = − 2
‖φ‖2 d

∗σ.

Fitting θ to ξ from Theorem 3.7 yields the result. �

Proof of Lemma 3.9(A). The minimality formula (7) applied to T = Bφ becomes
the condition that, for all θ ∈ T ∗M |x, we have∑4

j,k=1

〈
(BA0φ)ejek, iθ(ej)φ(ek)

〉
|x = 0,∑4

j,k=1 θ(ej)
〈
(BA0φ)ejek, iφ(ek)

〉
|x = 0.

Since that must happen for all θ ∈ T ∗M |x, we must have, for all j,∑4
k=1

〈
(BA0φ)ejek, iφ(ek)

〉
|x = 0,∑4

k=1

〈
ek •
−→∇A0
ej φ, ek • iφ

〉
|x = 0,∑4

k=1

〈−→∇A0
ej φ, iφ

〉
|x = 0

which means that
〈−→∇A

ejφ, iφ
〉

= 0 and thus concludes the proof of 3.9(A). �

Proof of Lemma 3.9(B). The minimality condition for SymBAφ is∑4
j,k=1

〈
(SymBA0φ)ejek, (SymBA0φ)ejek − (SymBAφ)ejek

〉
|x = 0

for all θ ∈ T ∗M |x. That is,∑4
j,k=1

〈
(BA0φ)ejek + (BA0φ)ekej , iθ(ej)φ(ek) + iθ(ek)φ(ej)

〉
|x = 0,∑4

j=1 θ(ej)
(∑4

k=1

〈
(BA0φ)ejek, iφ(ek)

〉
+
〈
(BA0φ)ekej , iφ(ek)

〉
|x
)

= 0.
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Therefore, for all j,∑4
k=1

〈
(BA0φ)ejek, iφ(ek)

〉
+
〈
(BA0φ)ekej , iφ(ek)

〉
|x = 0,∑4

k=1

〈
ek •
−→∇A0
ej φ, ek • iφ

〉
+
〈
ej •
−→∇A0
ek φ, ek • iφ

〉
|x = 0.

But 〈ej • a, ek • b〉 = −〈ek • a, ej • b〉 when j 6= k. So, for every j,

5
〈−→∇A0

ej φ, iφ
〉
−
∑

k 6=j
〈
ek •
−→∇A0
ek
φ, ej • iφ

〉
|x = 0,

6
〈−→∇A0

ej φ, iφ
〉
−
〈
DA0φ, ej • iφ

〉
|x = 0

which concludes the proof of 3.9(B). �

Proof of Lemma 3.9(C). Minimality of AltBAφ is insured by∑
j 6=k
〈
(BA0φ)ejek − (BA0φ)ekej , iθ(ej)φ(ek)− iθ(ek)φ(ej)

〉
|x = 0,∑

j 6=k θ(ej)
(〈

(BA0φ)ejek, iφ(ek)
〉
−
〈
(BA0φ)ekej , iφ(ek)

〉
|x
)

= 0.

Then, for all j,∑
k 6=j
(〈
ek •
−→∇A0
ej φ, ek • iφ

〉
−
〈
ej •
−→∇A0
ek
φ, ek • iφ

〉
|x
)

= 0,

3
〈−→∇A0

ej φ, iφ
〉

+
∑
k 6=j
〈
ek •
−→∇A0
ek φ, ej • iφ

〉
|x = 0,

2
〈−→∇A0

ej φ, iφ
〉

+
〈
DA0φ, ej • iφ

〉
|x = 0

which concludes the proof of Lemma 3.9(C). �

Proof of Lemma 3.1 (and construction of ∇A and ∇̃A). In order to prove 3.1, we
need to clearly explain how ∇ and A induce the connections ∇A and ∇̃A. In tune
with the rest of the paper, we will use the language of quaternions.

The group SO(4) = S3 × S3
/
± 1 acts on R4 ≈ H by [ξ+, ξ−] · v = ξ+v ξ

−1
− . Its

Lie algebra is so(4) = ImH ⊕ ImH and its adjoint action on R4 is (q+ ⊕ q−) · v =
q+v− v q−. Therefore, any g-metric connection D on TM can be written locally as
Dv = ∂v+ b+v− v b− for suitable local 1-forms b± ∈ Γ(T ∗M ⊗ ImH). In particular,
we write the Levi-Cività connection ∇ on TM locally as ∇v = ∂v+ a+v− v a−, for
some a± ∈ Γloc(T ∗M ⊗ ImH). The connection D induces connections on all tensor
bundles of M , and in particular on Λ±(T ∗M ); the latter can be written locally as
D|Λ±f = ∂f + b±f − f b±.

The group U(1) = S1 acts on C by left multiplication, and its Lie algebra is
u(1) = iR. Thus, any unitary connection on the complex line bundle K∗ can be
written locally as Az = ∂z + 2iαz, for some suitable α ∈ Γloc(T ∗M ).

The group U(2) = S1 × S3
/
± 1 acts on C2 ≈ H by [λ, ξ] · w = λwξ−1. Its Lie

algebra is u(2) = iR⊕ ImH and its adjoint action on C2 is (i`⊕ q) ·w = i`w−wq.
Hence, any unitary connection onW± can be written locally asDw = ∂w+iβw−wδ
for some suitable β ∈ Γloc(T ∗M ) and δ ∈ Γloc(T ∗M ⊗ ImH).

The group SpinC(4) = S1 × S3 × S3 has Lie algebra spin
C(4) = iR ⊕ ImH ⊕

ImH. The canonical maps SpinC(4)→ SO(4), SpinC(4)→ S1, and the two maps
SpinC(4)→ U(2) have the Lie algebra versions

u(1) ←−−−− spin
C(4) −−−−→ so(4) spin

C(4) −−−−→ u(2)

2i` i`⊕ q+ ⊕ q− q+ ⊕ q− i`⊕ q+ ⊕ q− i`⊕ q±
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The consequence is that, if one chooses a unitary connection Az = ∂z+ 2iαz on
K∗, then, combining with the Levi-Cività connection ∇ and using the above maps,
A determines unique unitary connections onW±, namely ∇Aw = ∂w+ iαw−w a+

on W+, and ∇̃Aw = ∂w + iαw − w a− on W−.
The fact that∇ and ∇̃A share the coefficient-form a− can be expressed as∇|Λ− =

∇̃A|Λ− . Indeed the bundle Λ−(T ∗M ) has model-fiber ImH with structure group
SO(3) = S3

/
± 1 acting as [ξ] · a = ξaξ−1. The Lie algebra so(3) is ImH and

its adjoint action is h · a = ha − ah. The cocycle of Λ− is induced from the
cocycle of TM via the map SO(4) → SO(3), [ξ+, ξ−] 7−→ [ξ−]. Thus, a connection
Dv = ∂v + b+v + v b− induces on Λ− the connection D|Λ−a = ∂a+ b−a− a b−.

Assume that D is a g-metric connection on TM that has D|Λ− = ∇|Λ− . Then
Dv = ∂v+b+v−v a−. If further D is C-linear, then the quaternionic-imaginary form
b+ must in fact be just complex-imaginary, and thus b− = iα for some α ∈ Γloc(T ∗M ).
But it can be verified that these forms α define a unitary connection Az = ∂z+2iαz
on K∗ (compare with Remark 3.2). �
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