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ABSTRACT

This paper looks at optimising the energy costs for storing
user-generated content when accesses are highly skewed to-
wards a few “popular” items, but the popularity ranks vary
dynamically. Using traces from a video-sharing website and
a social news website, it is shown that the non-popular con-
tent, which constitute the majority by numbers, tend to have
accesses which spread locally in the social network, in a viral
fashion. Based on the proportion of viral accesses, popular
data is separated onto a few disks on storage. The popular
disks receive the majority of accesses, allowing other disks
to be spun down when there are no requests, saving energy.

Our technique, SpinThrift, improves upon Popular Data
Concentration (PDC), which, in contrast with our binary
separation between popular and unpopular items, directs
the majority of accesses to a few disks by arranging data
according to popularity rank. Disregarding the energy re-
quired for data reorganisation, SpinThrift and PDC display
similar energy savings. However, because of the dyamically
changing popularity ranks, SpinThrift requires less than half
the number of data reorderings compared to PDC.

Categories and Subject Descriptors

C.5.5 [Computer System Implementation]: Servers; D.4.2
[Operating Systems]: Storage Management—Secondary
storage

General Terms

Measurement, Performance
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1. INTRODUCTION
The mushrooming of HD quality user-generated content1

is increasing both the amount of storage required, as well
as the energy costs of maintaining the stored content on the
Web. To illustrate, consider the following statistic recently
announced by YouTube2: every minute, over 24 hours of
videos are being uploaded. At a conservative (for HD) bi-
trate estimate of 3-5Mbps, this translates to 44-74 TB of
data per day. Using conventional 512 GB SATA disks with
a 12 W operating power, merely storing one day’s uploads
for an hour costs 1.056-1.776 kWh, more than the quar-
terly consumption of a household in Scotland3. Note that
YouTube’s current limits of 2GB file uploads and 10 minute
long videos allows for a full HDV encoding of 27.3 Mbps.
Thus, the required storage capacity and energy could be up
to 9 times larger.

This paper presents an approach to conserve energy by
exploiting the access patterns of user-generated content. We
use data drawn from Vimeo, a video-sharing website with
an active social aspect, and digg, a social news website, as
examples of such access patterns. On both sites, we observe
the following:

• Popularity distribution is highly skewed—a few stories
are accessed many more times than others.

• The set of items accessed, as well as their popularity
ranks, vary over successive time windows.

• Accesses to popular content tend to occur over large
time windows in comparison with non-popular content,
which experience brief periods of interest.

Based on the above findings, we design SpinThrift, a strat-
egy for saving energy in the storage subsystem. The core
idea, similar to Popular Data Concentration (PDC) [12], is
to exploit the skewed access pattern and intelligently ar-
range the data by periodically migrating popular content to
a subset of disks. This allows the other disks to be spun
down to a low power mode, when not accessed.

Maintaining a strict popularity-based data ordering as in
PDC would require a large number of migrations because
of the changes in popularity ranks and the set of items ac-
cessed. Instead, we make a binary classification separating

1e.g. See http://youtube-global.blogspot.com/2009/11/
1080p-hd-comes-to-youtube.html
2
http://youtube-global.blogspot.com/2010/03/oops-pow-

surprise24-hours-of-video-all.html
3
http://www.sesg.strath.ac.uk/Reasure/Info_pack/RE_info/

hec.htm
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the popular content from the non-popular. Because popular
items see accesses over large time windows, the number of ac-
cesses seen during any given migration period is not a good
indicator of long-term popularity, and might increase the
number of data migrations. Similarly, because the popular-
ity distribution has a high variance, the cumulative accesses
seen until a given time point is not truly representative of
eventual popularity rank.

SpinThrift addresses the above problems by employing in-
formation from the social network to identify popular items.
If an item is accessed by a user after a direct friend on the
social network has accessed it, we term the access as viral.
In contrast, if no direct friend has accessed the item, then
the access is termed as non-viral. Relative proportions of
viral and non-viral accesses are used to infer popularity.

Contrary to expectation, our traces show that items that
predominantly propagate virally, from friend to friend, do
not lead to popularisation of the item. Rather, stories that
become popular are typically independently (non-virally) in-
troduced at different points in the social network, by differ-
ent people. Intuitively, an item which is globally popular
becomes interesting to people in unrelated parts of the so-
cial network, whereas virally propagating items tend to be
localised to parts of the network because of effects like ho-
mophily.

SpinThrift exploits this phenomenon and uses the relative
proportion of non-viral to viral accesses to separate popu-
lar content from unpopular content. Simulations show that
SpinThrift achieves a similar energy consumption as Pop-
ular Data Concentration while requiring less than half the
number of migrations.

The rest of this paper proceeds as follows: Section 2 dis-
cusses access pattern trends seen in our traces. Section 3
applies the findings about access patterns and proposes the
SpinThrift scheme to save energy. Section 4 discusses related
work. Section 5 concludes.

2. TRENDS IN CONTENT ACCESS
This section focuses on identifying trends in access pat-

terns, using data from a social news site and a video sharing
sites. First, we describe the data sets. Following this, we
discuss the popularity distribution. Then we discuss the so-
cial network aspects of popularity.

2.1 Datasets
Our first trace is based on one week of data from Aug 29,

2008-Sep6, 2008 from Digg.4. Digg is a social news website:
Users submit links and stories. Digg users collectively de-
termine the popularity of a story by voting for stories, and
commenting on it. Voting for a story is termed as “digging”,
and the votes are called “diggs”. Collectively, “diggs” and
comments are termed item activities. Some stories are iden-
tified as “popular” by digg, using an undisclosed algorithm.
We use these for ground truth about popularity values5.

Digg also has a social networking aspect. Users can follow
the activities of other users by “friending” them. Note that
these are one way links, and are frequently not reciprocated.
The Digg website highlights friends’ activities and stories
“dugg” by friends.

4
http://www.digg.com

5Our results are qualitatively similar if we equivalently use
the method described below for vimeo on the digg data.

Our second trace is sampled from videos and user ids
found in all the groups and channels of the video-sharing
website Vimeo6. Similar to digg, users can “like” videos;
these are counted as story activities. A story whose “likes”
number more than one standard deviation in excess of mean
is counted as “popular”. Users also have contacts, similar to
digg friends. The vimeo website highlights the activities of
contacts by allowing users to follow their friends’ channels,
subscriptions, likes etc. The details of both data sets are
summarised in Table 1.

digg vimeo
Item statistics
Number of items 163,582 443,653
“Popular” items 17,577 7,984

item activities 2,692,880 2,427,802
Graph statistics
Number of users 155,988 207,468
directional links 1,516,815 718,457

Table 1: Trace details

2.2 Popularity trends
In this section, we examine the popularity distribution of

data activities to determine how best to optimise storage.
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Figure 1: Popular items have sustained period of in-

terest: CDF of time window of interest (time of last access
minus time of first access) shows that unpopular items have
much briefer windows of interest than popular items.

Fig 1 shows that popular stories get accessed over a much
longer time window than unpopular stories. For instance,
nearly 80% of unpopular stories in digg have a time window
of less than 2 days, whereas the time window for popular
stories is spread nearly uniformly over the entire duration of
the trace.

This implies that for most popular stories, there is a sus-
tained period of interest rather than a brief surge. This in
turn suggests that a disk management strategy which treats
popular stories differently from unpopular stories. In the
next section, we develop a simple scheme to predict which
stories will be popular and have a different window of inter-
est than other stories.

It must be noted that there is a boundary effect at play.
Some of the digg news articles (similarly videos) could have
a longer interest span than the one week we consider. It
is equally possible that interest in an old article could have

6
http://www.vimeo.com
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Figure 2: CCDF of number of accesses suggests a power-law.
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Figure 3: Dynamic popularity: CDF of difference in pop-
ularity ranks between two successive days shows that ranks
can vary dramatically in digg (left) and vimeo (right)

just ended one or two days into our study. Regardless, it is
easy to see that there is a significant difference in the distri-
butions of the time windows of interest between popular vs.
unpopular stories.

Next, we look at the number of accesses received by a story
through the entire duration of our trace. Fig 2 depicts the
complementary cumulative distribution of the number of the
accesses, showing a distinct power law-like distribution—a
select few stories receive well over 10,000 accesses whereas a
large number of stories receive very few (< 100) accesses.

Fig 2 by itself would suggest placing the popular stories on
“hot” disks, and storing the unpopular stories on other disks
that can be switched off or put into a low-power mode when
not being accessed. However, this ignores the dynamics of
popularity rankings. We examine this further by looking at
the evolution of popularity between two successive one-day
windows (chosen randomly) in the traces. Stories are first
ranked by the number of accesses. If a story is accessed in
only one of the days, it is assigned a maximum rank equal
to the number of stories seen across both time periods.

Fig 3 shows the distribution of the change of popularity
ranks. Fig. 3 (a) shows the signed change in rank for digg.
Fig. 3 (b) provides a different perspective and shows the
absolute rank change for vimeo as a percentage. Both views
depict rapidly changing popularity ranks. For instance, in
vimeo, nearly half the videos have a rank change of more
than 60%. This dramatic change in ranks is driven by the
large numbers of new items that are added each day. This
implies that a strict popularity ordering of items across disks
would require excessive shuffling of items.

2.3 Social network aspects of popularity
Crucially, both the vimeo and digg data sets have infor-

mation about the social network of the users as well as their

access patterns. We next examine how the social network
impacts on the popularity. Inspired by theories of viral prop-
agation of awareness about stories, products, etc. that have
become prominent recently (e.g. [8]), we tested the hypoth-
esis that the stories which become popular are the ones that
spread successfully within the social network. Fig 4 presents
a set of results that collectively suggest (contrary to expecta-
tion) that stories are extremely unlikely to become popular
when viral accesses predominate over non-viral accesses.

Fig. 4 (a) bins videos in vimeo by the ratio of viral accesses
to non-viral accesses (rounded to one decimal place). It
then measures the number of popular stories, counted as
the number of stories with more than the average number
of likes. It can be seen that as the ratio of viral to non-
viral accesses increases, the number of popular stories falls
drastically. A qualitatively similar result can be obtained
for digg.

Note that digg, vimeo and many other websites hosting
user-generated content typically highlight a few items on
the front page. Such items can be expected to be popular
in terms of number of accesses. Furthermore, many of the
accesses are also likely to be from people unrelated to each
other (non-viral). To discount this effect, Fig. 4 (b) examines
stories on digg before they are highlighted on the front page
as“popular”stories. Digg denotes a small subset of stories as
“popular” using an undisclosed algorithm that reportedly [6]

“takes several factors into consideration, includ-
ing (but not limited to) the number and diversity
of diggs, buries, the time the story was submitted
and the topic.”

Fig. 4 (b) shows that even in this subset of“yet to be marked
popular” stories, a predominance of viral accesses greatly
decreases the possibility that a story is popular.

We conjecture that while there may be individual suc-
cesses of “viral marketing” strategies, in general, a story
which spreads only by viral propagation remains stuck in one
part of the social network. In contrast, an inherently popular
story is independently seeded at several places in the social
network and therefore becomes popular. Note that even the
local success of viral strategies could be partly attributed to
homophily, the tendency of friends to like the same things,
rather than users actively influencing their friends to watch
a video or news story [1].

Finally, Fig. 4 (c) counts the ratio of viral/non-viral ac-
cesses in stories deemed by digg to be popular. Interestingly,
this graph has a knee around a viral to non-viral ratio of 1.
There are hardly any popular stories with this ratio greater
than 1, i.e., when a story has more viral than non-viral ac-
cesses, the probability that the story is popular is almost
negligible. When the viral to non-viral access ratio is less
than one, the probability that the story is popular is pro-
portional to the ratio7. This is clearly seen from the inset
graph which zooms in on the gray region (between 0 and 1
on the x-axis) shown on the main graph. In other words,
it appears that digg’s well-tuned algorithm for marking a
story as popular can be closely approximated by a simple
algorithm that marks a story as popular with a probability
proportional to the ratio of viral to non-viral accesses. In
the next section, we will adopt a similar strategy to mark a
story as popular or unpopular in SpinThrift.

7The actual counts shown in the figure can be re-scaled by
the total number of popular stories to obtain the probability.
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Figure 4: Non-viral accesses predominate in popular stories: x-axis shows ratio of number of viral accesses to non-viral
accesses. Y axis shows the number of popular stories that have the corresponding ratio. To clearly show zero valued points,
the origin (0,0) is slightly offset from the corners of each graph.

3. DATA ARRANGEMENT SCHEMES
In this section, we investigate the use of intelligent data

arrangement to save energy in the storage sub-system. The
basic idea is to arrange data so as to skew the majority of
access requests towards a small subset of disks. Other disks
can then be put in an idle mode at times when there are no
access requests for content on those disks.

The highly skewed nature of the number of accesses (Fig 2)
suggests the basic data arrangement strategy of organising
data according to their popularity. Within this space, we
explore two alternatives: The first, Popular Data Concen-
tration, uses the Multi Queue algorithm to maintain a pop-
ularity ordering over all files. The second, SpinThrift, uses
the relative proportions of viral and non-viral accesses to
distinuish popular and unpopular data. Within each class,
data is ordered so as to minimise the number of migrations.

Our simplified simulations indicate that both Popular Data
Concentration and SpinThrift end up with similar energy
consumptions, ignoring energy involved in periodically mi-
grating data. SpinThrift results in significantly fewer data
migrations, thereby requiring lesser energy overall, as com-
pared to Popular Data Concentration.

3.1 Popular Data Concentration
We use Popular Data Concentration (PDC) as specified by

Pinheiro and Bianchini, with minor changes8. PDC works
using the Multi Queue (MQ) cache algorithm to maintain
popularity order. The MQ cache works as follows [14]:

There are multiple LRU queues numbered in Q0, Q1,. . . ,
Qm−1. Following Pinheiro and Bianchini, we set m = 12.
Within a given queue, files are ranked by recency of access,
according to LRU.

Each queue has a maximum access count. If a block in
queue Qi is accessed more than2i times, this block is then
promoted to Qi+1. Files which are not promoted to the
next queue are allowed to stay in their current LRU queue
for a given lifetime (The file-level lifetime is unspecified by
Pinheiro and Bianchini. We use a half hour lifetime). If a
file has not been referenced within its lifetime, it is demoted
from Qi to Qi−1. Deviating from PDC, we do not reset the

8PDC is specified in detail for handling block-level requests.
At the file level, it is only specified that the operation is
analogous to the block-level case. Details which are left
unspecified for the file case are filled in by us.

access count to zero after demoting a file. Instead, we halve
the access count, giving a file a more realistic chance of being
promoted out of its current queue during our short half-hour
lifetime period. In our method, all files within a queue Qi

obey the invariant that their access count is between 2i−1

and 2i.
Periodically (every half hour, in PDC), files are dynam-

ically migrated according to the MQ order established as
above. Thus, the first few disks will end up with the most
frequently accessed data and will remain spinning most of
the time. Disks with less frequently accessed data can be
spun down to an idle power mode, typically after a thresh-
old period of no accesses (17.9 seconds, as used by Pinheiro
and Bianchini).

3.2 SpinThrift
The periodic migration of PDC, coupled with the chang-

ing nature of popularity ranks (see Fig. 3) can lead to a
large number of files being moved across disks at each mi-
gration interval. To alleviate this, we propose SpinThrift,
which separates the popular data from the unpopular, with-
out imposing a complete ordering.

We use results from Section 2.3 to find popular data:
SpinThrift uses the social network graph of the users, and
keeps track of whether an access to a story is viral or non-
viral. An access by a user is viral if one of the friends of
the user has accessed the same story before. In contrast, if
the user who is accesssing a story has no friends amongst
previous users of the data, we deem that access as non-viral.

SpinThrift implements a policy of labeling a story as pop-
ular when the number of non-viral accesses exceeds the num-
ber of viral accesses. Popular stories are much fewer in num-
ber than unpopular ones. Therefore unpopular data is sub-
classified based on the median of the median hour of access
of previous users. Since the window of interest for unpopular
stories is much smaller than for popular stories (see Fig 1),
this organisation could reap additional locality benefits from
time of day effects in user accesses.

The above classification is used to construct a ranking
scheme for data, which is then used to periodically migrate
data to different disks. The ranking works as follows: At the
top level, popular stories are ranked above unpopular ones.
Unpopular data are further ranked based on the median
hour of previous accesses as above. Data within each sub
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Figure 5: Relative energy profiles: SpinThrift consumes roughly same energy as Popular Data Concentration (PDC),
without taking migration energy or number of migrations into account.

group maintain the same relative ranking to each other as
before, thereby reducing the number of migrations required.

Just as with PDC, a migration task runs every half hour,
rearranging stories according to the above order. Similarly,
disks which do not receive any access requests are spun down
to an idle power mode after a threshold period of 17.9 sec-
onds. The migration interval and idle threshold values were
chosen to be the same as PDC for ease of comparison below.

3.3 Evaluation

Operating power 12.8 Watts
Idle power 7.2 Watts

Idle threshold 17.9 Secs
Transition power 13.2 Watts
Transition time 6.0 Secs

Table 2: Power parameters

In this section, we investigate the relative merits of PDC
and SpinThrift using a simplified simulation scheme, similar
to that used by Ganesh et al. [7]. We assume that there is
an array of disks, sufficient to hold all data. A disk moves
into operating mode when there is an access request for data
held in that disk. After an idleness threshold of 17.9 seconds,
the disk is moved back into an idle mode. Disks consume
12.8 Watts when operating at full power, as compared to 7.2
Watts in idle mode. The transition between modes consumes
13.2 * 6 = 79.2 Joules. These details are summarized in
Table 2.

Our simulations are driven by access requests from the
data sets described before. Note that our data set does not
indicate the sizes of the data as stored on the disk. We ac-
count for this using disks of different capacities, by counting
the number of data items that fit on each disk. We use con-
servative numbers of between 1000 and 10,000 data items
per disk9.

9These are quite realistic: Extending the example from the
introduction, only about 1400 10 minute long clips can be
stored on a 512 GB disk if the bitrate is 5 Mbps.

Our first simulation uses requests drawn from a random 3
day interval from the digg trace, and measures the average
power consumption on the final day after an initial warm
up period. For the vimeo trace, a random 30-day interval
is used, and the average power consumption on the final
day is measured. Fig 5 shows the relative power profiles
for disk arrays using disks of different sizes. Observe that
both PDC and SpinThrift require similar power, with PDC
doing slightly better because it tracks the popularity more
accurately.

The above experiment does not take into account the en-
ergy involved in data migration. The next simulation, in
Fig. 6, plots the number of files needing to be migrated for
a disk which can accommodate 5000 data items. The num-
ber of files migrated at every half-hourly migration point is
shown as a fraction of the total number of new articles that
arrived during the interval.

Observe that after an initial warm up period, the num-
ber of files requiring migration under PDC keeps growing
continuously. This is a result of the changing popularity of
content items – as new articles are introduced into the sys-
tem and become popular, they move to the head of the list,
requiring all articles before them to be moved lower on the
ranking list. In contrast, SpinThrift requires many fewer
migrations.

In summary, the simple evaluation above suggests that
SpinThrift is able achieve a similar power profile as PDC,
with many fewer migrations. We emphasise that our sim-
ulations are highly simplified. In particular, they do not
consider the effect of repeated data migration or power cy-
cling on disk reliability. We also assume that disks are not
bandwidth constrained, i.e., that the most popular disks can
support all the data requests without increasing request la-
tency. We also do not model the costs of increased latency
for accesses directed at disks in idle/low-power mode.

4. RELATED WORK
While it is hard to make concrete claims about the rep-

resentativeness of our data set for access patterns involving
other kinds of user-generated content, various trends such as
skewed access distributions and dynamically changing popu-
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Figure 6: SpinThrift has significantly fewer migrations than Popular Data Concentration (PDC).

larity have been found to hold for other user-generated con-
tent as well [2].

Our scheme improves upon Popular Data Concentration,
which was designed explicitly for highly skewed, zipf-like
work loads [12]. Popular Data Concentration, in turn im-
proves upon an older scheme, Massive Array of Idle Disks
(MAID), which attempts to reduce disk energy costs by us-
ing temporal locality of access requests [5]. The above fam-
ily of disk energy conservation techniques look at read-heavy
work loads, and can be viewed as orthogonal to techniques
which look at write work loads (e.g. [11] [7]).

Our work looks at the trade-off between saving energy
in the storage subsystem using intelligent data arrangement
policies, and the number of file migrations that the policy
requires. Various other trade-offs exist in the space of disk
energy savings and could be applied in addition to our tech-
nique, depending on the work load. For example, Guru-
murthi et al. [9] looks at the interplay between performance
and energy savings. Zheng et al. [4] examine the trade-off
between dependability, access diversity and low cost.

To the best of our knowledge, our work is one of the first
to look at work loads caused partly by viral propagation of
information. In a related piece of work, we have previously
looked at replica placement for similar work loads [13].

An important contribution of this paper is the study of
information propagation on digg and vimeo. Others have
looked at information propagation in Flickr [3], Amazon [10]
etc. In both, as in our study, there is evidence that purely
viral propagation of information is largely ineffective.

5. CONCLUSION
This work presented SpinThrift, a technique designed to

mitigate the energy costs of operating hard drives containing
user-generated content. Such strategies would be useful both
on server systems specialising in rich-media user-generated
content, as well as on proxies, content-delivery networks,
and other intermediary caches that store the content closer
to users.

SpinThrift exploits the observation that accesses are skewed
towards a subset of popular items and periodically re-arranges
data so as to direct the majority of access requests to a small
subset of disks. Disks containing unpopular items can then

be put in an idle mode, at times when there are no access
requests for content on those disks.

SpinThrift re-arranges data by using a novel social-network
based predictor for identifying popular data items and sep-
arating them from the rest. Our evaluations show that this
binary separation of items achieves a power consumption
comparable to a scheme that computes an optimal ordering
of items based on strict popularity ranking. Furthermore,
the binary separation significantly decreases the number of
data items that need rearrangement as compared to a strict
popularity ranking-based scheme.
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