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Spinup Dynamics of Axial Dual-Spin Spacecraft

Christopher D. Hall*
Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433

and
Richard H. Randf

Cornell University, Ithaca, New York 14853

We consider spinup dynamics of axial dual-spin spacecraft composed of two rigid bodies: an asymmetric
platform and an axisymmetric rotor parallel to a principal axis of the platform. The system is free of external
torques, and spinup of the rotor is effected by a small constant internal axial torque. The dynamics are described
by four first-order differential equations. Conservation of angular momentum and the method of averaging are
used to reduce the problem to a single first-order differential equation which is studied numerically. This
reduction has a geometric counterpart that we use to simplify the investigation of spinup dynamics. In particular,
a resonance condition due to platform asymmetry and associated with an instantaneous separatrix crossing is
clearly identified using our approach.

Introduction

A DUAL-SPIN spacecraft consists of two bodies con-
strained to relative rotation about a shaft connecting the

bodies but otherwise free to rotate in space. The bodies are in
general flexible and dissipative, as is the connection between
them, and all spacecraft are subject to environmental torques
such as the gravity gradient torque; however, as a first approx-
imation it is useful to model dual-spin spacecraft as two rigid
bodies connected by a rigid shaft and free of external torques.
Such a model is made more tractable by further assuming one
of the bodies is axisymmetric about the axis of relative rota-
tion. This model is called a gyrostat. The axisymmetric body is
called the rotor, or wheel, whereas the other body is called the
platform or core body. For the special class of axial gyrostats,
where the rotor is aligned with a principal axis of the platform,
a closed-form solution for the angular momentum in terms of
Jacobi's elliptic functions has been given by several authors
(see Cochran et al.1 for further references).

Dual spinners are usually placed into orbit with zero relative
angular velocity, then a spinup motor provides an equal and
opposite torque to both bodies along the shaft. The effect of
the axial torque is to spin up the rotor and despin the platform,
thereby transferring all or most of the angular momentum to
the rotor. Usually this torque is constant for simplicity of
control system design. In practice, this maneuver is compli-
cated by resonances due to asymmetries and imbalances of
either or both of the two bodies. Spinup of asymmetric dual-
spin satellites has been investigated by Gebman and Mingori,2

Hubert,3'4 Junkins and Turner,5 and Guelman.6 Gebman and
Mingori2 perturbed from an equilibrium point of the zero axial
torque system using matched asymptotic expansions to obtain
approximate solutions for the flat spin recovery problem for
prolate axial gyrostats with small constant torque. Hubert3'4

and Junkins and Turner5 combined quasistatic analyses with
simulation to investigate more general gyrostats. Guelman6

devised an effective control law for attitude recovery from
arbitrary initial conditions.
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Various related resonance problems have been studied by
numerous authors, with important early work by Scher and
Farrenkopf,7 Cochran,8 and Cochran and Beaty,9 and more
recent studies by Kinsey et al.,10 Or,11 and Rand et al.12 Scher
and Farrenkopf7 were the first to note "resonance traps" due
to asymmetry and imbalance. Cochran8 obtained analytical
results identifying cases in which such resonances may exist,
and Cochran and Beaty9 presented additional results regarding
these resonances. Kinsey et al.10 studied spinup resonance due
to rotor asymmetry, obtaining an approximate solution for the
residual cone angle induced by the passage through resonance.
Or11 investigated resonance due to platform asymmetry and
unbalance of either platform or rotor, using linearized equa-
tions to determine the effects of varying these parameters.
Motivated by analogy with resonance capture in dual-spin
spacecraft, Rand et al.12 used an elliptic function averaging
approach similar to that used in the present work to study the
dynamics of an eccentric wheel on an elastic support.

In this paper, we perturb from the elliptic function solution
for zero axial torque, giving a comprehensive treatment of
spinup of asymmetric axial gyrostats where the axisymmetric
rotor is parallel to a principal axis of the gyrostat, and spinup
is effected by a small constant axial torque. The dynamics are
described by four first-order ordinary differential equations,
and we use a dimensionless form of the equations, equating the
small constant torque to a small parameter e. When e = 0 the
system has a closed-form solution in terms of Jacobi's elliptic
functions as noted previously. Conservation of angular mo-
mentum and the method of averaging are used to obtain a
single first-order nonautonomous differential equation, which
is valid for small e. This equation involves complete elliptic
integrals of the first and third kinds; numerical integration
shows that this single equation captures the salient features of
spinup dynamics.

The reduction from four differential equations to one has a
geometric counterpart which we have found simplifies the
framework in which to view spinup dynamics. In contrast to
the momentum sphere approach, which requires picturing the
gradual evolution of a set of integral curves drawn on a
sphere,3 our approach permits the spinup dynamics to be de-
scribed by an abbreviated but equivalent flow on a plane.

Equations of Motion

Here we give without derivation the differential equations of
motion for the angular momentum variables of a rigid axial
gyrostat with zero external torque. Referring to Fig. 1, we
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denote the platform by (P, the rotor by (R, and the gyrostat by
(P + (R. For a derivation, see Hughes.13

(1)

(2)

(3)
d

dha
df

(4)

where

= principal axes of (P + (R, / = 1, 2, 3
= torque applied by (P on (R about ^
= 75(oj5 + o>i), angular momentum of (R about ^
= 7/co/, angular momentum of (P + (R about £/, / = 2, 3
= /!Wi +/5co5, angular momentum of (P + (R about ^
= moment of inertia of (P + (R about £/, / = 1, 2, 3
= /! -/5, moment of inertia of (P about £1
- moment of inertia of (R about e\
= time
= angular velocity of (P about £/, / = 1, 2, 3
= angular velocity of (R about £1 relative to (P

Since there are no external moments, angular momentum is
conserved and a first integral of the motion is

h2 = hi + h2 + hi = const (5)

This integral can be used to reduce the number of equations by
one. Furthermore, if ga = 0, there are two additional first inte-
grals which are used to obtain the elliptic function solution.
Before proceeding, we simplify notation by changing to di-
mensionless variables.

Dimensionless Equations

The transformation of Eqs. (1-4) to dimensionless form is
obtained by scaling the four momenta, time, and axial torque
as follows6:

x2 = h2/h

#3 = h^/h

L = ha/h

t = hf/Ip

e = gjp/h2

(6)

Derivatives with respect to / are denoted by an over dot:
(*) = d( )/dt. Furthermore, we define three dimensionless in-
ertia parameters by

7 = 1,2,3 (7)

Carrying out this change of variables leads to the equivalent set
of dimensionless equations:

= 0*2—* (8)

(9)

(10)

(11)
Note that we have assumed h ^0. The h =0 case is called the
zero momentum gyrostat13 and is not considered further here.

Finally, we note that the angular momentum integral, Eq. (5),
becomes

X2 + X2
2 _ (12)

which defines a unit sphere in R
3
, called the momentum

sphere.

Inertia Parameters

Of the three inertia parameters defined by Eq. (7), only /2

and /3 appear in Eqs. (8-11). These parameters define the
shape of the spacecraft, and we adopt the following nomen-
clature to describe the possibilities: An axial gyrostat is oblate
if 7JO>/2>/3, or, equivalently, if /3</2<0; it is prolate if
7 2 >/a> Ip , or if /2>/3>0; and it is intermediate if I2>Ip>h,
or if /3 < 0 < /2. The body axes have been chosen so that 72 > 73.

The other inertia parameter, / j , simplifies to /i = /s//i, the
ratio of the axial moment of inertia of (R to the axial inertia of
(P + (R. Thus, 0< /i < 1, with the limiting cases ii = 0 and /i = 1
corresponding to spacecraft with rod-shaped rotor and rod-
shaped platform, respectively. Note that the definitions for
oblate, prolate, and intermediate used here do not involve ii.
Thus a spacecraft with major axis e\, i.e., / i>/2>/3, may be
either oblate, prolate, or intermediate. Since /i does not appear
in Eqs. (8-11), the dynamics are independent of the inertia

Fig. 1 Gyrostat model of axial dual-spin spacecraft.

-2

-4

Ob = Oblate

Pr = Prolate

In = Intermediate

- 0.3

J_

-4 -2 0

Fig. 2 Admissible inertia parameters [cf. Eq. (13)].
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ratio /j//i = /i. The importance of /i is in determining initial
conditions for specific cases. In particular, one can show that
the all-spun condition (co5 = 0) corresponds to \i = i\x\.

Another role for i\ is in limiting physically possible values of
1*2 and 1*3 using the triangle inequalities for moments of iner-
tia.13 We have already noted that 0</i< 1, and applying the
triangle inequalities to /2 and /3 restricts physically possible
values of these parameters to a specific region of the /2/3 plane
depending on the value of i\ as shown in Fig. 2. The boundary
curves in Fig. 2 are given by

/3= (13)

( l- / l /2)/(2-/ i- /2)

where the Roman numerals correspond to the labels in the
figure. Note that /2 and /3 are both less than 1 for prolate
gyrostats, whereas they are unbounded for intermediate gy-
rostats. The boundary curve I limits /2 and i'3 for oblate gy-
rostats.

It is shown in Ref. 14 that the equations of motion are
equivalent for oblate and prolate gyrostats. In the present
notation, Eqs. (8-11) are unchanged when (x\, x2, x3, /2, h)
are replaced by ( — x\9x39 -*2, -/3, -/2). Herein we only
treat oblate gyrostats, with prolate gyrostats implicit by this
symmetry transformation. Equivalent results for intermediate
gyrostats are given in Refs. 15 and 16.

Reduction of Order

In case there is no axial torque (e = 0), we can reduce the four
equations, Eqs. (8-11), to a single elliptic integral. Even when
e^O, conservation of angular momentum means we can re-
duce the number of equations from four to three. In this
section we carry out these reductions, beginning with the re-
duction to quadrature for e = 0.

It is well known13 that for e = 0 there are three integrals of
the motion, namely, kinetic energy, angular momentum, and
axial angular momentum of the rotor. Of these three integrals,
only total angular momentum is conserved for e^O; the other
two quantities are slowly varying for small e, and our approach
is to use these slow variables instead of the transverse compo-
nents of the angular momentum, x2 and x3. Kinetic energy is
not, however, the most convenient quantity to use, so we
choose an equivalent quantity which is a combination of ki-
netic energy, angular momentum, and rotor angular momen-
tum.

The dimensionless rotational kinetic energy is given by

T = [(x, - tf + (1 - I2)*2
2 + (1 -13)*3

2 + 0 - 'i)M2//i] /2 (14)

When e^O, the kinetic energy varies according to

(15)

By subtracting (\^/i\ + x1
2 + *2 +*3

2) from 27, and making use
of Eq. (12), we obtain a new first integral of the unperturbed
system

y 2T - /x2//! - 1 = - 2

whose time derivative for e ̂  0 is

/2*2
2 - (16>

(17)

We refer to y as the energy. Our motivation for defining y is
primarily that y is a simpler expression than T9 and we use this
fact subsequently. However, the form of y also allows us to
write the transverse angular momenta as

(18)

where

= - /3

- /2

(19)

(20)

(21)

Note that since /2>/3 , and since x2 and x3 are real, Eqs. (18)
and (19) imply that y3(xi; j*)<j> <y2(x\\ /*)» hence admissible
values of the energy y are bounded by these parabolas in the
x\y plane. Substituting Eqs. (18) and (19) into Eq. (8) gives

Since \L and >> are constants for e - 0, this equation is separable,
and in a later section we give the solution in terms of elliptic
functions.

In case e^O, neither />t nor y is constant and the system is
evidently nonintegrable. However, we can reduce the number
of equations from four to three. Equation (22) for x\ is still
valid, with the additional caveat that y and n depend on time,
so that the equation is not separable. Thus x\, y, and fi are free
of x2 and x3. Having eliminated x2 and x3, from now on we
drop the subscript on x\. Thus we reduce the four differential
equations (8-11) to three:

y=- 2ex

(23)

(24)

(25)

where y2(x,fj,) and y3(x9fjL). are defined by Eqs. (20) and (21).
This set of equations is equivalent to the original system,

even though these are more difficult to integrate numerically
due to the bookkeeping involved in keeping track of which
branch a trajectory is currently on. The significance of these
equations is that they separate the motion into the "fast"
oscillations of x and the "slow" variation of y and ju. Integra-
tion of Eq. (25) gives fi = et plus a constant of integration.
Thus ju, may be regarded as the slow time. Later we will see that
the slow variation of y vs JJL captures most of the dynamics of
the system.

Graphical Representations

There are several ways to depict graphically the dynamics
of gyrostats. We begin with a brief discussion of the e = 0
dynamics, then discuss the e^O case. As noted previously, we
only treat oblate gyrostats, with prolate gyrostats implicitly
included by a symmetry transformation. See Refs. 15 and 16
for equivalent results for intermediate gyrostats. _

As was shown in the previous section, when e = 0 the motion
is essentially one dimensional [Eq. (22)]. Since the motion is
confined to the surface of the momentum sphere, trajectories
are one-dimensional constant energy curves on the sphere. The
topology of the phase space on the sphere depends on the
constant value of /x, as shown in the left half of Fig. 3. For
fixed /*, there is a range of possible j' values, with each integral
curve corresponding to a constant value of y; and there are
either two, four, or six equilibrium points on the sphere. The
point at the north pole of the sphere, (xi,x2,x3) = (l,Q9 0), is
an equilibrium point for all values of /* and is the point at
which an oblate dual-spinner typically operates. The notation
OM denotes this equilibrium point, with the subscript ^ indicat-
ing that the dynamics depend on the value of \L. For example,
Oi denotes the north pole of the momentum sphere for /*= 1.
Similarly, with the symmetry transformation of Ref. 14, the
equilibrium at the south pole is associated with the operating
condition of a prolate spacecraft, hence the notation PM.

The saddle points correspond roughly to unstable transverse
spin motions and are denoted by £/„. Note that these equilibria
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do not exist in the lower two spheres in Fig. 3; at //, = -1'2, the
two saddles U^ coalesce with the center P^ in a pitchfork bifur-
cation,17 creating a saddle at the south pole. This value of /* is
identified by the symbol /*2. The equilibria in the "eyes" of the
saddle connections correspond roughly to transverse spin
about the £3 axis and are denoted by T^. At /*= -/3, these
centers coalesce with the saddle at the south pole in another
pitchfork bifurcation, creating a center there. We denote this
bifurcation value of /z by /*3.

We now introduce the xy plane which we relate directly to
the momentum sphere. Using Eqs. (20) and (21) we have plot-
ted y2=y2(x', M) and y^=y^(x\ M) m tne riSnt half of FiS- 3

using the same values of /*, /2, and /3 as for the spheres. Recall
that y3 <y <^2, so the motion is confined to the closed region
between the two parabolas. The parabolas intersect at x = ± 1,
with^2(+ 1; At)=j>3(+ 1; M)= ~2A*» and>>2(- 1; M)=^(- 1; /*)
= + 2jLt. This is expected since x = ± 1 are equilibrium points
(OM and PM) for all /*, and these intersections correspond to
those equilibria. This also implies that the energy at O^ is - 2/A,
whereas the energy at PM is + 2/x.

The extrema of the two parabolas are y2(^/hl /*)= ~G*2/
/3 + /3) and y^(\i/ii\ n)= -(M2/*2 + '2) and are maxima for
oblate gyrostats. The maximum of y2 corresponds to the two
centers TM, whereas the maximum of y3 corresponds to the two
saddles £/M. The dashed line passing through the maximum of
V3 for jLt<M 2= -/2 represents the separatrices of the two sad-
dles U^ The dashed line y =2jn for ^2</*<ju3 represents the
separatrices of the saddle P^.

-1 -0.5 0 0.5 1

-1 -0.5 0 0.5 1

-1 -0.5 0 0.5 1

Fig. 4 The A>V phase space and AO' plane.

-2 -

Fig. 3 Momentum spheres and xy plane (1*2 = - 0.3, 13 = - 0.7,
^=(0.1,0.4,0.8)).

0 0.2 0.4 0.6 0.8 1

Fig. 5 The w plane (|2 = - 0.3, 13 = - 0.7).

In analogy with the momentum spheres, fixing />t fixes the
parabolas y2 and y3, giving a specific region in the xy plane,
and fixing y defines a particular one-dimensional path which
x(t) must follow, i.e., the straight line y-const. The equi-
librium points in the xy plane are labeled using the same nota-
tion as used for the spheres.

When e ?f 0 the dynamics on the momentum sphere become
piore complicated. In particular, the transverse (TJ and saddle
(Up) equilibria are no longer fixed points of the governing
equations; however, O^ and P^ are equilibria. Furthermore,
when e = 0 the saddle connections are true separatrices, sepa-
rating qualitatively different motions, but for e^O, trajecto-
ries can cross the "instantaneous" separatrices.18 An instanta-
neous separatrix crossing occurs when a trajectory of the
perturbed (e^O) system crosses a separatrix of the unper-
turbed (e = 0) system. Although one could generate a sequence
of instantaneous spheres valid for fixed values of ju, the path
followed by a particular initial condition would be unknown.

Our approach is to construct a sequence of instantaneous xy
planes for fixed values of /x, then project the critical points of
the instantaneous >>2 and y^ curves onto the py plane. This is
done in Fig. 4, with a view of the py plane given in Fig. 5. Solid
curves in the \iy plane represent centers on the momentum
sphere, whereas dashed curves represent saddles and their sep-
aratrices.

The \iy plane is a simple graphical device for depicting
spinup dynamics of axial dual-spin spacecraft. When com-
pared with the momentum sphere approach, the py plane has
the advantage of only requiring one figure to show an entire
spinup trajectory, as we illustrate in the next section. In the
remainder of this paper, we prove the general validity of pro-
jecting the solutions of the original fourth-order system onto
this two-dimensional figure. As will be shown, for small
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-1

-2 -

0 0.2 0.4 0.6 0.8 1

Fig. 6 The py plane with spinup trajectories (12 = - 0.3, 13 = - 0.7).

spinup torques, an initial condition in the p,y plane has an
approximately unique solution in the plane as long as no in-
stantaneous separatrix crossings occur.

The py plane is useful not only as the slow state space, but
also as a bifurcation diagram for investigating e = 0 dynamics.
For e = 0, a given point in the \*y plane corresponds to a specific
constant energy curve (y = const) on a specific momentum
sphere (^ = const). The missing information is the phase or
location of a point on the constant energy curve. Note that the
[iy plane is symmetric about n = 0, since the equations of mo-
tion are unchanged when (x, /*, t) are replaced by
.(-x, - ju, —t); thus we only need to consider /*>0. Also, for
jLt>jit3, there are no additional bifurcations: the momentum
spheres, the xy planes, and the \iy plane remain qualitatively
the same.

Spinup Problems
A spinup maneuver for a dual-spin satellite typically begins

with the vehicle operating near a stable equilibrium point, i.e.,
near O^P^ or 7^, depending on the type of spacecraft. The
initial condition also usually corresponds to an all-spun condi-
tion, with rotor and platform spinning as a single rigid body
with no relative rotation, in which case p,=-i\x\. The spinup
torque e is then used to increase the rotor momentum p to the
desired operating value, typically near /*= 1, after which the
motor is turned off. An energy dissipation mechanism then
reduces the final cone angle to zero by damping the transverse
momentum (x2 = *3 = 0). To obtain an inertially fixed platform
(coi = 0), it is necessary to spin up the rotor until /*= 1. To see
this, refer to the original variables, where /z2 = /z3 = 0 implies
wi = (/z -ha)/Ip = (1 — n)/(Ip/h). Hence, o>i = 0 implies /*=!.
Thus we restrict our attention to the interval 0 < JLI < 1.

Referring to Fig. 6, we define three kinds of spinup prob-
lems, based on which type of equilibrium the initial condition
is near. The flow, i.e., solutions to Eqs. (8-11), for each of the
three spinup problems is shown projected onto the \iy plane.
The energy y is calculated using Eq. (16), after numerically
integrating Eqs. (8-11).

Oblate spinup (OSU) starts near OM, in the all-spun state,
with x « 1, fjL * /!, and y « - 1i\. As may be seen in Fig. 6, the
oblate spinup trajectory in the py plane is nearly a straight line,
and does not cross either of the dashed lines representing the
separatrices.

Prolate spinup (PSU) starts near the south pole, or PM, with
x « 1, JLI «/i, and y « 2i\. Unlike the oblate case, however, the
y vs ^ trajectory is not nearly a straight line. Near /-i = /i2, the
trajectory crosses two instantaneous separatrices. These cross-
ings account for the sharp bend in the path shown in Fig. 6,

with the physical interpretation of a large increase in the cone
angle.

Transverse spinup (TSU) begins with the vehicle spinning
about the £3 axis, with x « 0, #3« ± 1, \i« 0, and y» - /3. This
type of trajectory includes both flat spin recovery, which was
investigated in Ref. 2 for the specific initial condition *3 = 1,
/i = 0, and the dual-spin turn described in Ref. 3. As shown in
Fig. 6, the trajectory follows the locus ofTM equilibria, then
crosses the dashed line which represents the locus of saddles at
the south pole and their separatrices.

Whereas our definitions of the three types of spinup prob-
lems are based on the initial conditions, it is also possible to
categorize the three cases by the number of instantaneous sep-
aratrix crossings that occur. Oblate spinup trajectories cross
no separatrices, whereas transverse spinup trajectories cross
one instantaneous separatrix and prolate spinup trajectories
cross two.

At this point a remark is in order regarding the effect of the
magnitude of the spinup torque e on the nutation or cone angle
at the conclusion of spinup. The final values of y and JLI for a
particular trajectory may be used directly to compute an aver-
age residual nutation angle as will be seen presently. The closer
the final point is to P^ (for prolate spacecraft) or OM (for oblate
spacecraft), the smaller the cone angle. Note that in Fig. 6, the
final cone angle for prolate spinup is greater than for trans-
verse spinup. This illustrates an important difference between
these two types of trajectories: For transverse spinup, making
the torque smaller generally decreases the residual cone angle,
whereas for prolate spinup smaller torque generally increases
the cone angle. Therefore, for transverse spinup, the small
torque assumption is relevant in a practical sense. For prolate
spinup, however, one would expect a large torque to be used
to obtain a smaller final cone angle.

e = 0 Solution

The closed-form solution to Eq. (22) depends on the roots
of the quartic polynomial in x

-y] [y - = o (26)

where y2(x'9 /*) and y$(x\ /x) are quadratics given in Eqs. (20)
and (21). The roots in turn depend on the constant values of \i
and>>, as well as on the parameters /2 and /3. Since the solution
is well known,1 we only give the form of the solution here. For
further details, see Refs. 15 and 16. The integral tables in
Ref. 19 were used extensively in developing the solutions given
here and in the next section.

When the roots of Eq. (26) are real, the e = 0 solution is

(27)
l-cx2sn2(w;A:).

where u =\t + u0 and the parameters /3, a2, a2, X, and k de-
pend only on the roots. When two of the roots of Eq. (26) are
complex, the solution has the form

; k)

1 +acn(w; k)
(28)

where again /* = \t + UQ and the parameters /3, a2, a2, X, and k
depend only on the roots.

In the elliptic function solutions just given, sn(w; k) and
cn(w; k) are the sine amplitude and cosine amplitude, respec-
tively; u is the argument or phase, and k is the modulus. It can
be shown that on the solid curves in the py plane, k = 0,
whereas on the dashed curves, k = 1. These functions are peri-
odic in u, with period 4K(k), where K(k) is the complete
elliptic integral of the first kind, with Ar(0) = 7r/2, and
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Table 1 Representative relative error (%) of averaged solution vs exact solution

Spinup
problem

OSU
TSU
PSU

0.0001

0.000033953
0.0037780
2.8468

0.001

0.00025270
0.49726

18.471

e

0.01

0.0017994
3.8177

a

0.1

0.078469
a

a

1.0

1.3351
a

a

a% error > 50%.

Averaging

Recall that the equations y = - 2ex and ji = e represent the
slow flow of the system, whereas Eq. (23) for x describes the
fast dynamics. The slow equations are in the correct form for
averaging,20 and solutions to the averaged equations remain
within 0(e) of solutions to the unaveraged equations on a time
scale of 0(l/e). Although the method of averaging can be
extended to higher order to obtain more accurate approximate
solutions on an 0(l/e) time scale, we demonstrate subse-
quently that first-order averaging is accurate as long as trajec-
tories do not cross the instantaneous separatrices of the unper-
turbed system. Furthermore, higher order averaging will not
alleviate the separatrix crossing problem, for reasons discussed
in the following section.

We form the averaged equations by replacing the right-hand
sides of y and /t by their averages over one period of the e = 0
solution for x

= -2ex

where x=x(y, /*) is defined by

1 f
x = — \ x(u; k) du

(29)

(30)

(31)

depends on the form of the e = 0 solution, and y is the averaged
energy. While evaluating the integral in Eq. (31) we hold both
y and /* fixed, since they are constants in the unperturbed sys-
tem. Eliminating / from Eqs. (29) and (30), and using ( )' for
d( )/d/A, we obtain

y' = -2x (32)

Equation (32) is a single first-order differential equation for
the slow trajectories in the py plane.

Recall that k = 1 at the energy levels associated with the
saddles and separatrices on the sphere, or equivalently, with
the dashed lines in the py plane. Since K(\) = oo, the method of
averaging is not applicable at the separatrix crossings; thus, we
expect Eq. (32) to be inaccurate in a neighborhood of the
separatrix crossings.

When the roots of the quartic are all real, x(u; k) is given by
Eq. (27), and Eq. (31) becomes

(33)
2>2(l-c*2)(cx2-A:2)

where \l/ = sin~ V(l - cx2)/(l - k2), and A0(^, k) is Heuman's
lambda function. When two of the roots are complex, x(u; A:)
is given by Eq. (28), and x is given by

(34)

where E(a2, k) is a complete elliptic integral of the third kind
with parameter 6i2 = ot2/((x2- 1). Details regarding the elliptic
integrals in Eqs. (33) and (34) may be found in Ref. 19.

-1

-2

............... exact
- ———— averaged

1L _L

0 0.2 0.4 0.6 0.8 1

Fig. 7 Comparison of averaged and exact trajectories.

Fig. 8 Two trajectories near an instantaneous separatrix crossing.

Note that since the cone angle (see Fig. 1) is the angle be-
tween h and e\, it follows that in the dimensionless variables,
the cone angle is 77 = cos ~ lx. For given y and n the average cone
angle is

^ = cos-1jc (35)

Thus Eq. (33) or (34) may be used with Eq. (35) to compute the
average cone angle.

Numerical integration of Eq. (32) with initial values of /* and
y generates a trajectory in the ny plane, which according to the
averaging theorem remains within G(e) of the exact solution on
a time scale of 0(l/e). Recall however, that the dashed lines in



36 HALL AND RAND: SPINUP DYNAMICS

the py plane represent instantaneous separatrices, where the
period of the e = 0 solution becomes infinite and averaging is
not valid. Although separatrix crossings present no difficulty
in numerically integrating Eq. (32), we will see in what follows
that the divergence between solutions of the averaged and
unaveraged equations is due to this separatrix crossing.

Comparisons and Discussion

In Fig. 7 we compare averaged solutions [Eq. (32)] with "ex-
act" solutions of Eqs. (8-11), for /2= -0.3, /3= -0.7, and
e = 0.01. For oblate spinup, the two solutions shown in Fig. 7
are indistinguishable. Note that, since oblate spinup trajecto-
ries in the py plane are nearly straight lines, Eq. (32) implies
*« const, and Eq. (35) implies ij« const. Thus spinup has little
effect on the nutation angle for oblate spacecraft. Transverse
and prolate spinup, however, show a notable divergence of the
two solutions. For transverse spinup the error is small, but for
prolate spinup it can become large. Of course, decreasing e
improves the agreement, as shown in Table 1, where the per-
cent relative error is given as 1001 (y —y)/y\ evaluated at n= 1
for the three spinup problems and for five values of e.

The reason for the significant error in transverse and prolate
spinup is the separatrix crossings discussed in previous sec-
tions. The averaged and unaveraged paths begin to diverge
when the trajectory reaches the vicinity of the instantaneous
separatrix, where the period of the unperturbed oscillation of
x becomes infinite and averaging is not applicable.18 This sep-
aratrix crossing is sometimes called passage through reso-
nance, and the region where the unperturbed period becomes
infinite is called the resonance manifold.20 Here the resonance
manifold consists of the energy levels associated with the in-
stantaneous separatrices, i.e., the dashed lines in the py plane.

It is important to note that the error depends on the phase
u of a trajectory as it crosses the instantaneous separatrix.
Recall that fixing y and p defines a particular integral curve on
the momentum sphere, whereas u determines where a point is
on the integral curve. Since the averaged system is independent
of initial phase, averaging maps all points on an initial integral
curve to a single final integral curve. However, the behavior of
trajectories of the unaveraged system may be quite different
due to the separatrix crossing. This is illustrated in Fig. 8,
where we show two trajectories with initial conditions on the
same constant energy curve but with slightly different initial
phases. The instantaneous separatrices are superimposed onto
the figure to aid in visualization of the separatrix crossing. The
two trajectories are represented as dotted and dashed curves,
and the large dots on the trajectories indicate where the trajec-
tories pass through the planes of the instantaneous separa-
trices. It is evident that after the separatrix has "disappeared,"
the two trajectories are quite different: the dotted trajectory
crosses the separatrix far from the saddle point and has a large
residual cone angle, whereas the dashed trajectory gets delayed
near the saddle and has a smaller residual cone angle. Accord-
ing to a theorem of Neishtadt as found in Ref. 21, the set of
initial conditions which get delayed near the saddle has small
measure m for small e, i.e., m =0(Ve).

Actually, the averaged equation is quite accurate almost
arbitrarily close to the separatrix; the large error is due to the
fact that the separatrix crossing is extremely sensitive to the
phase. To improve the agreement between Eq. (32) and
Eqs. (8-11) for those trajectories that cross a separatrix, one
could introduce an equation for the fast variation of u, by
applying variation of parameters to Eq. (23), then develop a
"separatrix crossing model" valid in an 0(e) neighborhood of
the resonance manifold, taking into account the additional
phase information.16 Such a procedure would yield an accurate
description of most trajectories; however, no separatrix cross-
ing model, however accurate, can accurately connect the aver-
aged equations across the separatrix for all initial conditions.
This is true because of the combined effects of two phenom-
ena: 1) the method of averaging introduces a small [0(e)] error

in amplitude and phase and 2) the small [G(Ve)] set of trajecto-
ries that get delayed near the saddle point during the separatrix
crossing is extremely sensitive to changes in initial phase.

Conclusions

We have shown that the equations of motion for spinup of
axial dual-spin spacecraft can be approximately reduced to a
single first-order ordinary differential equation which de-
scribes the slow variation of energy during spinup of the rotor
by a small constant torque. This equation governs the dynam-
ics on the py plane, the introduction of which simplifies the
geometrical depiction of spinup dynamics, which previously
required one to picture solutions on a sequence of spheres. Our
derivation used conservation of angular momentum and the
method of averaging applied to the elliptic function solution of
the unperturbed problem. The averaged equation accurately
describes spinup dynamics outside a neighborhood of the reso-
nance manifolds, the latter consisting of curves in the py plane
corresponding to separatrices of the unperturbed system. We
showed that oblate spinup can be described accurately by the
averaged equation since this problem does not require that a
trajectory cross the resonance manifolds. The final outcome of
transverse spinup can be less accurately predicted by our
method, since in this case a resonance manifold, i.e., a separa-
trix of the e = 0 problem, must be crossed once. In the case of
prolate spinup, the motion must pass through a resonance
manifold twice, and so the results of using the simplified strat-
egy presented in this paper are in poorer agreement with nu-
merical integration of the exact equations.
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