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Abstract

Organizations introducing computer and network systems need to quickly

and accurately respond to information security incidents to counter intense

cyber attacks. However, computer security incident response teams (CSIRTs)

in organizations receive a large amount of alerts and logs that they have to

investigate. Such a situation increases incident handling time. Our previous

research revealed that the triage process in incident handling failed in many

incident cases. In our consideration, the triage process lacks the ability to

assess overall risks to modern cyber attacks. Zoning of local area networks

by measuring internal-network traffic in response to such risks is important.

Therefore, we propose the SPeculating INcident Zone (SPINZ) system for

supporting the triage process. The SPINZ system analyzes internal-network

flows and outputs an incident zone, which is composed of devices related to

the incident. We evaluated the performance of the SPINZ system through

simulations using two incident-flow dataset generated from two types of

internal-network datasets and malicious-activity flows generated from legit-

imate commands. We confirm that the SPINZ system can detect an incident

zone, but removing unrelated devices from an incident zone is an issue

requiring further investigated.
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1 Introduction

Information and communications technology (ICT) systems are essential for

many organizations to fulfill their missions efficiently. One problem they all

face is cyber attacks.Attackers target ICT systems to obtain secret information,

disrupt operations, or harm the reputation of the target. They do this by

using malware and taking advantage of software vulnerabilities. Therefore,

many organizations need a quick and accurate response to computer security

incidents (referred to hereafter simply as incidents).

In view of this, most organizations monitor security alerts to detect whether

they are attacked or if an attacker has already invaded their internal network. If

a critical incident occurs, a computer security incident response team (CSIRT)

member (the responder) generally isolates suspicious devices from the local

network if it is acceptable from the perspective of their business continuation,

acquires log data for a more detailed analysis, and recovers the affected

devices. These CSIRT activities combined are called incident handling [1].

However, the time to detect and contain cyber attacks is too long compared

with the time the attacker needs to achieve his/her objective [2, 3]. To

minimize this gap, it is necessary to develop new technologies and methods

for supporting CSIRT operations. Our previous research [4] revealed that

acquiring log data from both devices and networks and identifying affected

areas for incidents are the main factors in preventing prompt incident handling.

This is caused by the lack of design of and preparedness for incident handling.

If affected areas of an incident are ambiguous, the responder cannot take

accurate countermeasures such as isolating devices from the network and

limiting network access. Deciding the impact of incidents and determining

affected areas have been considered as components of the triage process in

incident handling [5].

Therefore, to address this problem, we propose the SPeculating INcident

Zone (SPINZ) system for supporting this triage process. The SPINZ system

analyzes internal-network traffic and detects the affected area from the incident

(incident zone). The incident zone provides useful information about which

network addresses are affected and which devices must be investigated against

cyber attacks with infection expansion. We evaluated the performance of the

SPINZ system through simulations with two representative incident scenarios

using internal-network traffic.
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2 Incident Handling

Our research has a strong relationship with incident-handling operations that

CSIRTs conduct. Therefore, we first introduce the functions and general

operation flow of incident handling.At the end of this chapter, we also describe

an issue we tackled regarding current incident-handling operations.

In this paper, the meaning of incident handling and its functions are

referred from a book published by Carnegie Mellon University Software

Engineering Institute (CMU/SEI) [5] (CMU/SEI book). This means that

“incident handling” contains all activities related to recovering systems and

processes from an incident conducted by CSIRTs. When an incident occurs,

three functions of incident handling have important roles for recovering a

system. These are explained in the next section.

2.1 Function

In this section, we explain the three functions incident handling provides, i.e.,

triage, handling, and announce, based on the CMU/SEI book.

2.1.1 Triage
Triage determines the threat level of incidents and prioritizes them. It works

as a hub of incident handling and collects information about events related

to the incident. This is also a single point of contact and the focal point

for accepting, collecting, ordering, and passing on received information for

incident handling.

2.1.2 Handling
Handling surveys an incident by collecting log data and analyzing them with

log analysis and digital forensic techniques and determining the severity of the

incident. It also offers countermeasures for recovering devices and networks

from incidents in accordance with an incident response plan. This function

includes a wide range of activities and processes.

2.1.3 Announce
Announce shares information to constituencies on their organization, such as

the tactics, techniques, and procedures of attackers for reported incidents and

countermeasures for them. Sometimes the announce function involves holding

a press conference to explain the outline of incidents or reporting incidents to

a national CSIRT.
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2.2 Operation Flow

In this section, we describe the general operation flow of incident handling

when an incident occurs. Figure 1 shows an example of such a flow we orga-

nized based on the CMU/SEI book. These operations are generally conducted

by a CSIRT. It represents a simple operation flow from incident detection to

system remediation and the reporting by a CSIRT of the incident handling.

Details of operations corresponding to the numbers in Figure 1 are given below.

Figure 1 Example of incident-handling-operation flow.
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1. The triage function receives an incident alert.

2. It determines whether the incident should be responded to.

3. It surveys past incident cases and cyber-threat intelligence.

4. It adds a fixed management number to the incident and manages its status.

5. It sends a request to the incident-response function for analyzing the

incident.

6. The incident response function analyzes and evaluates the incident.

7. It gets a picture of a current situation of the incident.

8. It offers countermeasures for the incident.

9. It conducts countermeasures and removes causes of the incident.

10. It evaluates the results of the countermeasures. A CSIRT loops from (6)

to (9) until the situation is judged that incident handling operations are

not necessary. If a new incident is discovered, return to (2).

11. The announce function summarizes the incident report and shares it to

other organizations.

12. It revises the incident-response plan, security policies, and operation

guidelines if necessary.

2.3 Issues

In our previous research [4], we conducted an interview with five incident

responders and asked them why it takes a long time to finish resolving incidents

during current incident-handling operations.

We organized their answers into three categories. These categories and the

answers are listed below.

• Issues related to log data.

◦ Logs related to the incident are not recorded and investigations can

no longer be conducted.

◦ There are insufficient period logs and detailed logs due to incom-

plete log management.

◦ It is unclear which logs are related to the incident from the incident-

responder perspective with little context.

• Issues related to the work of an incident responder.

◦ It is difficult to clarify the whole incident timeline because only

logs at devices considered to be suspicious are provided to incident

responders and security analysts.

◦ It is difficult to determine whether malware and malicious scripts

can be completely eradicated from local networks.
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• Issues related to a security policy.

◦ An initial response of an incident is careless. Devices necessary

for an incident investigation are frequently restarted or sometimes

cleared of logs.

◦ An insufficient recognition of risks to cyber attacks by management.

In view of these issues, it is considered that technology to support the triage

process by speculating and visualizing a suspicious area related to the incident

is necessary to grasp the current situation and determine the risk before taking

logs from devices and analyzing them. Therefore, we developed the SPINZ

system described in the next chapter.

3 SPINZ System

We developed the SPINZ system to support the triage process during incident

handling. In this chapter, we describe the concept of incident zone, and its

calculation algorithm.

3.1 Incident Zone

Table 1 lists the observable internal-network activities during representative

malware incident [6–8]. The most frequent observation activity is communica-

tions with command & control (C2) servers, but the second most frequent is the

spreading of infections in the local network. This means that it is important to

grasp the status of internal infections as much as monitoring communications

with the Internet at the gateway for detecting and responding to incidents.

However, in the current triage process, a responder tends to only investigate

a device marked with a high-importance alert or one that is obviously

behaving suspiciously. This investigation method leads to failure in incident

Table 1 Observable internal network activities in representative malware incident cases

Activity Stuxnet Duqu Flame Red October Carbanak Petya

Connect to Command & Control

(C2) servers

� � � � � –

Spread infections in internal

network

� � � – – �

Use infected devices for proxy

server

� – – – – –

Construct peer-to-peer network

between infected devices

� � – – – –
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containment when attackers are already in control of multiple devices in

the same local network because they can aware that they were detected by

receiving signals from infected devices. Therefore, attackers can delete their

trails and evade detection by suppressing their activities before an incident

responder’s investigation.

In this situation, it is necessary to conduct triage to determine risks

and countermeasures by defining areas where other devices are susceptible

to incidents, which we call the incident zone. Defining the incident zone

allows responders to control service availability and business continuity while

handling incidents with an accurate risk perception.

3.2 System Design

The SPINZ system is based on the idea that abnormal communications

between the incident device and other devices might be suspicious. It is

composed of agents and an analyzer. Figure 2 illustrates an overview of the

components and process of this system.

An agent is software installed on a device using the local network. It

records network packet headers communicating with other devices on the

device on which the agent is installed (payload capture is not necessary). The

TCP, UDP, and ICMP are selected as the recorded protocols for the SPINZ

system. Log data are recorded for each communication session, and each

session includes the basic 5-tuple information (source IP, destination IP, source

port, destination port, and protocol number) plus the number of packets, bytes

per session, and session start time and its duration. Logged flows are limited

to internal communications because the SPINZ system focuses on internal

malicious activities such as spreading of infection and lateral movement by

attackers. Once a serious incident occurs, the agent sends logs to the analyzer

in accordance with the analyzer’s order.

Figure 2 Overview of components and process of the SPINZ system. Numbers before each

description indicate SPINZ system processing order.
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The analyzer sends orders to the agents on target devices to collect the

communication log data and analyzes the data to detect the incident zone.

There are three basic steps for this analysis.

(Step 1) The analyzer defines device roles of the target device and devices

communicating with it at regular intervals based on the number of trans-

mission bytes. The device role reflects its function on the local network.

We defined two role types: client and server. Client devices include those

an employee commonly uses. In contrast, server devices include those that

provide particular services, for example, file-sharing servers, internal web

services, and authentication. This step focuses on finding cases in which roles

change on the same device at different intervals. Changing roles on a device

between intervals directly suggests a transition in device behavior. Therefore,

the analyzer gives a high score to these cases.

(Step 2) Next, the analyzer investigates the target device’s traffic log. The

purpose of this step is to find and score uncommon communications in

accordance with the empirical rules. The result is calculated using the rule

set and a change-point-detection method.

(Step 3) The final step combines the results from Steps 1 and 2 to obtain

the activity-change score for the target device. The analyzer compares the

threshold and score to determine whether the target device belongs in the

incident zone. If the target device is put into the incident zone, the analyzer

applies the calculations from Steps 1–3 to the other devices communicating

with the target device. This process loop continues recursively as long as

devices for the next calculation exist.

As a result of the above steps, the incident zone is outputted with devices

which has a high relevance to the incident. The responder can consider incident

risks and respond by referring to this incident zone.

3.3 Scoring Algorithm

Note that with the detailed calculation method, an analysis period is denoted

as AP, split period as SP, a target device to calculate the activity-change score

as x, and devices communicating with x in an AP as y ∈ Yx. Also, α is the

initial device on which an incident was detected (the first detected device is

added to the incident zone automatically). We also represent a slot window

sequence as {w1, w2, · · · , wn}, where n is the number of APs divided by SP,

and w is a time-slot window.
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3.3.1 Step 1: Calculate role-change score
The analyzer first defines a device’s roles, Client or Server, in the local

network at every window. If a Client device exhibits infection activities, its

role might change to Server. Therefore, predicting role change is suitable to

grasp communication-flow changes in a local network. Li et al. [9] studied a

classification method to separate internal-device roles into Client or Server.

Their method applies a statistical classifier to long-term flow data. However,

in the SPINZ system, SP is interchangeable as the demand of a responder

or local network environment. Therefore, we used transmission amounts to

determine a device’s role because their research claimed that the transmission

amount was the most significant variable contributing to a classifier in role

detection. The device role for x at w is expressed by Equation 1.

Rolex,w =

{

Client if send(x, w) < receive(x, w)
Server otherwise

(1)

where send (x, w) and receive(x, w) represent sending and receiving bytes of

x at w from all internal communications. We define all device roles at every

w using Equation 1.

The analyzer then calculates the role-change score Srole of x at every w.

Srole is expressed by

Srole (x) = {0, RoleChange(x, w2), . . . , RoleChange(x, wn)} (2)

where RoleChange is a function that outputs 0 or 1 based on the previous role

of w. If the roles in a previous and current window were the same, RoleChange

outputs 0; otherwise, it outputs 1. RoleChange(x, w1) is always 0 because the

first role of w1 is regarded as a base role. Note that Srole is an array, and its

size is n.

3.3.2 Step2: Calculate communication score
Next, the analyzer investigates the communication between x and y ∈ Yx

at every w. Step 2 calculates the communication score Scomm using the

role-combination rules and change points based on the transmission bytes

per session.

To calculate Scomm, we prepared a variation score var(x, y, w) between

the target device x and communicating device y at window w. We calculated
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var using Equation 3.

var(x, y, w) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 if Comb(x, y, w) = (Client, Client)
1 if Comb(x, y, w) = (Client, Server)

and cdmax(x, y, w) > Thcd

1 if Comb(x, y, w) = (Server, Client)
and cdmax(x, y, w) > Thcd

1 if Comb(x, y, w) = (Server, Server)
0 otherwise

(3)

Equation 3 represents the role-combination rules to derive var values. Note

that Comb(x, y, w) is a function that returns a tuple of roles from x and y at w, and

cdmax(x, y, w) represents the maximum score calculated using a changepoint-

detection method between x and y at w, and Thcd is a threshold to determine if

variations in communication between devices are suspicious enough. In this

paper, role types were limited to two; Therefore, Comb returns one of four

types of tuples. Suspicious or unusual communication in the local network was

detectable looking at the source-device role and that of the destination device.

This suggests that rules for suspicious communication from role combination

can be defined, for example, a communication between Client would be

suspicious because it does not usually occur in a common local area network.

In addition, communications in which large variation was observed were also

considered suspicious, even though role combination is common. Therefore,

we incorporated these ideas into the rule set using a change-point-detection

method. We adopted ChangeFinder [10] to detect variations in transmission

bytes per session between x and y for each w when we receive network sessions

with common role combinations. If the maximum score of ChangeFinder

cdmax exceeds Thcd, var is 1 in specific role combinations. For simplicity,

ChangeFinder scores are normalized from 0 to 1.

Subsequently, the analyzer found a maximum var (denoted as varmax) in

Yx for each w and constructed an n-sized array Scomm arranged in order of w.

varmax(x, w) = max
y∈Yx

{var(x, y, w) × I(x, y)} (4)

I(x, y) = −log2 freq(x, y) (5)

Scomm(x) = {varmax(x, w1), varmax(x, w2), . . . , varmax(x, wn)} (6)

In Equation 5, I (x,y) is self-information [11], freq(x,y) is the frequency

of communication of x to y in communications related x during the

whole AP, and I (x, y) was introduced to take into account the rarity of a

communication in w.
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3.3.3 Step 3: Merge score
The final step combines Srole and Scomm to calculate the activity-change score

Sact, which is calculated by

Sact(x) = [m × Srole(x) + (1 − m) × Scomm(x)] × suphop(x, α) (7)

where m is a mixture ratio, sup is a suppression factor, and hop(x, α) is a

function that returns the number of network hops between x and α. This

function was introduced for the hypothesis that the incident zone is close to

α. The range of m and sup is [0, 1]. If even one Sact(Sact is an n-sized array)

has a larger value than threshold Thact, device x is put into the incident zone,

and devices Yx become the target devices for next calculation. The device

whose score had already been calculated is not selected as next target again.

This calculation loop continues until the next target device no longer existed.

4 Experimental Results

We conducted simulation experiments to evaluate performances of the SPINZ

system. The SPINZ system requires internal-network flows that include

malicious activity. Therefore, we generated two types of incident-flow datasets

to evaluate the SPINZ system by blending normal internal-network datasets

and malicious-activity flows. In this chapter, we describe these two incident-

flow datasets, malicious-activity flows, incident scenarios, and simulation

results of the SPINZ system.

4.1 Dataset

To generate incident-flow datasets, we blended two normal internal-network

datasets and malicious-activity flows. In this section, we describe the spec-

ifications and suitability of normal internal-network datasets and malicious-

activity flows for the evaluation of the SPINZ system.

4.1.1 Normal internal-network datasets
We prepared two normal network-flow datasets.

The first one is an open dataset from Los Alamos National Laboratory

(LANL) [12, 13]. Network flows in this dataset are collected at central routers

in the LANL network. Therefore, it could be considered that it includes

most internal communication sessions between devices in the entire LANL

network. The LANL dataset contains 129,977,412 session flows over 29 days,

and 12,027 IPs. It recorded nine items per line: [start time, duration, source
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Figure 3 Part of logs in LANL dataset.

IP, source port, destination IP, destination port, protocol number, number of

packets, transmission bytes]. Figure 3 shows a part of a log in the LANL

dataset. Each row in the LANL dataset represents a separate communication

session, and attributes in a row are separated by commas. This dataset

represents normal internal-network flows in an organization with traditional

network architecture.

The second dataset is a hand-made dataset from our enterprise network

flows (enterprise dataset). Figure 4 shows a simple network architecture

representing a part of our enterprise network. Network flows in the enterprise

dataset are collected between the target-network segment and other networks

(Packet Capture Point in Figure 4). Such an environment is common in

enterprise networks. A certain network segment is a virtual-machine cluster

on a hypervisor or servers on a cloud. In such networks, it is difficult to capture

internal communications within all network segments all the time due to

performance problems. Therefore, security analysts and incident responders in

organizations are forced to collect network flows between network segments.

This dataset represents normal internal-network flows in an organization with

a modern network architecture. The enterprise dataset contains 103,020,857

session flows from Oct 1 to Oct 31, 2017 (one month), and 24,428 IPs.

It recorded the same items and formats as the LANL dataset.

The enterprise dataset only contains internal communications with the

TCP and UDP packets. Note that DNS and ICMP packets were dropped

from the enterprise dataset in accordance with our network-operation policy.

Furthermore, session flows with IPs related to incidents were excluded from

this dataset. Therefore, we consider that the enterprise dataset represents

normal internal-network flows.
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Figure 4 Simple network architecture for part of our enterprise network.

For the evaluation, we removed traffic flows related to core service servers

from the two normal network-flow datasets because core service servers,

such as authentication servers and mail servers, are generally monitored.

Therefore, they were outside the scope of the SPINZ system. In general,

core service servers communicate with the huge number of devices in the

local area network. Thus, there is a possibility that core service servers and

other devices in the local area network could be distinguished by the number

of communications with other devices (degrees). we made a discrimination

based on degrees for each IP in both datasets. Figures 5 and 6 show the degree-

distribution plot when a graph was constructed with each IP as a node and each

communication between different IPs as an edge in the LANL and enterprise

datasets. The x-axis represents the degree of each IP, and the y-axis represents

the fraction of nodes in the graph with the corresponding degrees. We found

that almost all IPs had less than 120 degrees and few IPs had extremely high

degrees. This means that core service servers can be divided from all IPs by

the degree on both datasets.

For the LANL dataset, we defined that the top 0.5% of IPs, which had

more than 204 degrees, as core service servers, and the remaining 95%, which

had less than 24 degrees, as common devices, and 4.5% as common servers.

Similarly, for the enterprise dataset, we defined that top 0.5% IPs, which

had more than 1002 degrees, as core service servers, and the remaining 95%,
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Figure 5 Degree distribution in LANL dataset.
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Figure 6 Degree distribution in enterprise dataset.

which had less than 152 degrees, as common devices and 4.5% as common

servers.

Finally, we removed flows with core service servers from both normal

network-flow datasets.

4.1.2 Malicious activity flows
We also prepared typical lateral-movement flows from a closed experimental

network. We observed scan and file-sharing flows using net command and

PsExec [14] between two machines installed with Windows 7. Detailed

commands we inputted are described below.



SPINZ: A Speculating Incident Zone System for Incident Handling 355

1. net view [Target]

2. psexec [Target] -u [user name]-p [password] xcopy

“[Source]\share\\malware” “c:\\”

[Source] was an IP address trying to infect other devices, and [Target] was

an IP address infected from the [Source]. [user name] and [password] were

[Target]’s authentication information. In addition, Emdivi RAT T17.08.34,

which is malware used for actual advanced persistent threat (APT) attacks,

was chosen as a file to be transmitted. The net command and PsExec are

general tools found in APT incident cases [15]. Therefore, we regarded these

flows as typical malicious-activity flows. These session flows were recorded

in the same format as the LANL and enterprise datasets.

We then mixed malicious-activity flows into the normal internal-network

flows we described above. A dataset having flows in which normal internal-

network and malicious-activity flows are mixed is called an incident-flow

dataset. For the evaluation, we generated two types of incident-flow datasets

from the LANL and enterprise datasets. Note that mixed malicious-activity

flows could not be distinguished from normal flows in an incident-flow dataset.

What time and how many malicious-activity flows are added to the two normal-

internal network datasets depended on the incident scenario, which we explain

in the next section.

4.2 Incident Scenario

Two parameters, i.e., infection count (IC) and infection frequency (IF), were

required to generate the incident-flow datasets based on incident cases. The IC

represents the total infected count in the incident scenario, and IF represents

the interval between infected flows. These two parameters have the relation

IF = IC/Tatk (Tatk represents the total attack period, we assumed that all

attacks were conducted during an AP in this experiment).

We used two incident scenarios: shallow infection and deep infection.

Shallow infection is a scenario assuming a malware-infection method,

such as traditional bots or ransomware, with which infections spread from an

infected device to many local devices in a short time. In this scenario, we set

IC to 37 (from the National Audit Office report [16]) and IF to 1 second.

Deep infection is a scenario assuming an infection method of a typical

APT attack, where an infection spreads from an infected device to a specific

target device in accordance with the purpose of the attacker over a long time.

In this scenario, we set IC to 5 and IF to 24 hours. This means the attacker

infected another device once a day and repeated this five times. This behavior
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Figure 7 Shallow-infection scenario (IC = 5).

Figure 8 Deep-infection scenario (IC = 3).

simulated an attacker’s “deep” movement in the local network and is difficult

to detect using statistical anomaly-detection methods.

Figures 7 and 8 are example visualizations of the shallow and deep incident

scenarios, respectively. The black node shows the initially infected device,

which spreads to other devices (gray nodes) for each infection frequency.

4.3 Simulations

Finally, we evaluated the SPINZ system through simulations using the

incident-flow datasets with the two incident scenarios. The purpose was to

confirm the reliability of outputted incident zones. Therefore, we adopted

recall and precision as performance measures. Both measures are described

with Equations 8 and 9.

Recall =
TP

TP + FN
(8)

Precision =
TP

TP + FP
(9)

In both equations, TP is the true positive rate, FP is the false positive rate,

and FN is the false negative rate from the simulation results. Recall is how

much the incident zone contained actual related devices, and precision is how

close the size of the incident zone was to an actual zone. The initially infected

device and attacked devices were randomly selected in each simulation. The

initially infected device was limited to a common device because attackers
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Table 2 Parameters for simulation

Parameter Value

AP 14 days

Thcd 0.75

Thact 0.4

m 0.5

sup 0.95

Attack Start Time 7.5 days

r (for ChangeFinder) 0.1

generally infect common devices via email or those with critical vulnerabilities

to modern cyber attacks [17]. Table 2 shows the parameters for the SPINZ

system. We set the same parameters for both incident scenarios and incident-

flow datasets, but IC and IF were dependent on the incident scenario. Note

that we used the first 14-day sessions from the original normal-flow dataset in

accordance with the AP. Although the size of the final incident-flow datasets

inputted to the SPINZ system was smaller than the individual datasets, the

14-day sessions in the incident-flow dataset with the LANL dataset contained

11,504 IPs and 114,560,974 flows. The 14-day sessions in the incident-

flow dataset with the enterprise dataset contained 16,734 IPs and 49,265,542

sessions. Therefore, we determined that these sessions on both datasets were

sufficient as a dataset of a large local area network.

The ChangeFinder parameters were the same as in the original paper [10]

(k = 2, T = 5), but the discounting parameter r was 0.1, as shown in Table

2. We also changed SP to 1, 3, 6, 12, and 24 hours to evaluate performance

change. For each SP parameter, simulations were conducted 20 times and the

average values are plotted in Figures 9 and 10.

Figure 9 and Figure 10 show the simulation results in shallow- and deep-

infection scenarios, respectively. The left y-axis represents the average recall,

right y-axes represents the average precision, and the x-axes represents SP.

In both figures, the line at Recall (LANL) and that at Precision (LANL)

represent the respective values during the simulations with the incident

flow dataset using the LANL dataset in each incident scenario. Similarly,

in both figures, the line at Recall (enterprise) and that at Precision (enterprise)

represent the respective values during simulations with the incident-flow

dataset using the enterprise dataset in each incident scenario.

The average recall was quite high, and a large change was not observed in

each SPgraph. However, the average precision was overall low. In the incident-

flow dataset with the LANL dataset, all average recall and precision values

through SPs were (0.989, 0.013) (Figure 9) and (0.997, 0.168) (Figure 10).
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Figure 9 Simulation results in shallow-infection scenario (simulation time N = 20).

Figure 10 Simulation results in deep-infection scenario (simulation time N = 20).

In the incident-flow dataset with the enterprise dataset, all average recall

and precision values through SPs were (0.953, 0.007) (Figure 9), and (0.985,

0.001) (Figure 10).

5 Discussion

The SPINZ system exhibited good recall values for both incident scenarios

with both incident-flow datasets. This means that the SPINZ system outputted

incident zones that included almost all devices related to the incident by

analyzing the internal-network flows without any specific knowledge about

the incident and cyber attacks. The SPINZ system would be quite helpful to
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responders when they make initial decisions about an incident during triage

because missing devices related to an incident leads to failure in incident

handling.

However, precision values were markedly low in the shallow-and deep-

infection scenarios with the incident-flow dataset using the enterprise dataset,

and the shallow-infection scenario with the incident-flow dataset using the

LANL dataset. A low precision value indicates that the SPINZ system out-

putted an inaccurate incident zone with unrelated devices. This was caused by

the system by only taking into account the role of devices, role-combination

rules, and communication fluctuation. Interestingly, the precision values were

relatively better in the deep-infection scenario with the incident-flow dataset

using the LANL dataset. This was because there were few communication

devices in the initial incident device, and the expansion of the incident

zone was suppressed. The internal-network flow generally fluctuates daily

because when employees process different tasks, they generate different

communication patterns. We considered that the easiest solution to improve

precision was to limit the number of flows inputted to the SPINZ system. For

example, it was conceivable to input only the flow whose destination port

was 445 into the SPINZ system. Considering actual operation, the size of the

incident zone could be smaller as the responder proceeds in the investigation

because the responder could mark devices investigated in detail as related

devices or not. Thus, the SPINZ system could shrink the incident zone by

cutting nodes spread out from innocent nodes.

6 Related Work

With increased damage due to APT and zero-day vulnerability attacks,

traffic monitoring and measurement of local networks have become manda-

tory to understand cyber-attack outlines. Threat-detection methods with

malware using internal-network flows are mainly divided into botnet and

lateral-movement detection.

Botnet-detection methods focus on anomalies in device behavior [18,

19]. These methods use the correlation between communication trends or

bot patterns. This is because bots belonging to the same bot family have the

same or similar behaviors according to their architecture.

Detecting lateral movement differs from detecting botnets. Fawaz et al.

[20] proposed a framework to detect lateral movement using distributed data

fusion in a large network. Their architecture has three communication graphs



360 D. Hasumi et al.

at the host, cluster, and global levels. Agents at these three levels cooperate to

detect lateral-movement activity.

Alternatively, Hasegawa et al. [21] proposed an adaptive network-control

method to minimize damage from APT attacks after detecting an incident.

They introduced an infection suspicious level (ISL) for each network segment.

Their method isolates network segments and devices in the entire network to

suppress an attacker’s activity, if necessary.

To protect internal networks, a unified system to detect and respond to

both botnets and lateral movements is required. However, current research

has only considered one threat on either side or focused on a detection phase.

On the other hand, the SPINZ system takes into account both threats when an

incident is detected and provides support with the triage process to the area

affected by the incident.

7 Conclusion and Future Work

Triage is a significant process for successful incident handling. However, the

triage process lacks the ability to recognize risk in other devices and the local

network against cyber attacks. We considered zoning a local area network with

risk recognition by measuring internal-network traffic as important for incident

handling. Therefore, we proposed the SPeculating INcident Zone (SPINZ)

system, which analyzes internal-network flows and outputs an incident zone

that includes devices related to the incident. By defining high-risk devices as

part of an incident zone, a responder can appropriately recognize a risk and

prompt an initial countermeasure to the incident.

We also evaluated the performance of the SPINZ system through simu-

lations with two representative incident scenarios. We created two types of

incident-flow datasets from normal internal-network dataset and malicious-

activity flows. As a result, the SPINZ system outputted incident zones that

included devices related to the incident in both scenarios with each incident-

flow dataset. However, we also found that a large number of unrelated devices

were included in the incident zone.

In this paper, we conducted fundamental evaluations and discussions

through simulation experiments for a system which speculates an affected

area of incidents for supporting triage process in incident handling. We will

put this system on the real network and will conduct further evaluation.

We are also going to work on issues discovered during actual incident

handling operations, to realize more effective response solution for cyber

attacks.
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