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ABSTRACT

There is growing evidence that broad-line regions (BLRs) in active galactic nuclei (AGNs) have regular substructures, such as spiral
arms. This is supported by the fact that the radii of BLRs measured by reverberation mapping (RM) observations are generally
consistent with the self-gravitating regions of accretion disks. We showed in Paper I that the spiral arms excited by the gravitational
instabilities in these regions may exist in some disk-like BLRs. Here, in the second paper of the series, we investigate the loosely
wound spiral arms excited by gravitational instabilities in disk-like BLRs and present their observational characteristics. We solve the
governing integro-differential equation by a matrix scheme. The emission-line profiles, velocity-delay maps, and velocity-resolved
lags of the BLR spiral arms are calculated. We find that the spiral arms can explain some of the phenomena seen in observations:
(1) different asymmetries in the emission-line profiles in the mean and rms spectra; (2) complex subfeatures (incomplete ellipse) in
some velocity-delay maps, for example that of NGC 5548; and (3) the short timescales of the asymmetry changes in emission-line
profiles (rms spectra). These features are attractive for modeling the observed line profiles and the properties of reverberation, and for
revealing the details of the BLR geometry and kinematics.
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1. Introduction

The broad emission lines with velocity widths of ∼1000–
20 000 km s−1 seen as prominent features in the UV and optical
spectra of active galactic nuclei (AGNs) originate from broad-
line regions (BLRs) photoionized by the continuum radiation
from the central accretion disks around supermassive black holes
(SMBHs). The physics of BLRs (e.g., the geometry, kinemat-
ics, mass distributions, and photoionization properties), which
determines the profiles of broad emission lines, is not only
related to the origin and evolution of the materials in the cen-
tral regions of AGNs, but is also closely related to the mea-
surement of BH masses in reverberation mapping (RM, e.g.,
Blandford & McKee 1982; Peterson 1993). This makes BLRs
one of the core topics in AGN researches.

Reverberation mapping is a technique used to probe the
geometry and kinematics of BLRs and to measure the masses
of SMBHs in AGNs. It has been successfully applied to
more than 100 objects in recent decades (e.g., Peterson et al.
1998; Kaspi et al. 2000; Bentz et al. 2009; Denney et al. 2009;
Barth et al. 2011; Rafter et al. 2011; Du et al. 2014, 2018a;
Fausnaugh et al. 2017; Grier et al. 2017a; De Rosa et al. 2018;
Rakshit et al. 2019; Hu et al. 2021; Yu et al. 2021; Bao et al.
2022). RM measures the delayed response of broad emission
lines with respect to the varying continuum emission. Due to
the limits of spectral resolution and flux calibration precision,
most of the early RM campaigns focused on the average time
lags (τHβ) of the Hβ emission line (e.g., Peterson et al. 1998;

Kaspi et al. 2000). In combination with the velocity widths (VHβ)
of Hβ lines, the masses of SMBHs can be formulated with
M• = fBLRV2

HβRHβ/G, where RHβ = cτHβ is the emissivity-
weighted radius of BLR, c is the speed of light, G is the grav-
itational constant, and fBLR is a parameter called the “virial fac-
tor”, which is controlled by the BLR geometry and kinematics.
Therefore, the accuracy of BH mass measurement is directly
related to our understanding of BLR physics. Furthermore, with
the improvement of flux calibration and spectral resolution in
recent years, velocity-resolved RM, rather than only measuring
an average time lag, is being performed on an increasing num-
ber of objects. The aim of velocity-resolved RM is to measure
the time lag as a function of velocity (e.g., Bentz et al. 2008,
2010a; Denney et al. 2010; Du et al. 2016b, 2018b; Pei et al.
2017; De Rosa et al. 2018; Hu et al. 2020a,b; Brotherton et al.
2020; Lu et al. 2021; Vivian et al. 2022; Bao et al. 2022) or,
more importantly, to reconstruct the “velocity-delay maps”
(also known as transfer functions) of BLRs using model-
independent methods such as the maximum entropy method
(e.g., Bentz et al. 2010b; Grier et al. 2013; Skielboe et al. 2015;
Xiao et al. 2018a,b; Brotherton et al. 2020; Horne et al. 2021)
and to constrain the BLR parameters by Bayesian modeling
through a Markov Chain Monte Carlo approach (MCMC, e.g.,
Pancoast et al. 2012, 2014; Grier et al. 2017b; Williams et al.
2018; Li et al. 2018; Villafaña et al. 2022). The general geom-
etry and kinematics of the BLRs (e.g., disk-like, inflow, or out-
flow) in dozens of AGNs have been successfully revealed (see
the aforementioned references).

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.

A26, page 1 of 23

https://doi.org/10.1051/0004-6361/202244780
https://www.aanda.org
http://orcid.org/0000-0002-5830-3544
mailto:dupu@ihep.ac.cn
https://www.edpsciences.org
https://creativecommons.org/licenses/by/4.0
https://www.aanda.org/subscribe-to-open-faqs
mailto:subscribers@edpsciences.org


Du, P. and Wang, J.-M.: A&A 671, A26 (2023)

Systematic studies on inhomogeneity and substructures in
BLRs are relatively scarce, but three pieces of evidence may
have indicated their existence: (1) Many AGNs show com-
plex emission-line profiles, even with multiple wiggles or small
peaks, rather than symmetric profiles or simply asymmetric pro-
files with a little stronger red or blue wings in their emission lines
(e.g., the line profiles of Mrk 6, Mrk 715, or NGC 2617 in the
appendix Du et al. 2018b). This indicates that the BLR gas distri-
butions in those objects should be more complex than previously
thought. (2) There is a well-known phenomenon that the line
profiles in the mean and rms spectra of RM are commonly dif-
ferent for the same object (e.g., Peterson et al. 1998; Bentz et al.
2009; Denney et al. 2009; Barth et al. 2013; Fausnaugh et al.
2017; Grier et al. 2012; Du et al. 2018b; De Rosa et al. 2018;
Brotherton et al. 2020). The profiles of the emission lines in rms
spectra represent the geometry and kinematics of the gas that
responds to the continuum variations and is only a portion of the
total BLR gas. The differences between the mean and rms spec-
tra suggest gas inhomogeneity in BLRs. (3) More importantly,
the velocity-delay maps of some objects (e.g., NGC 5548) have
shown complex features (e.g., incomplete ellipse, bright strips)
in comparison with the simple disk, inflow, or outflow models.
These are probably evidence of BLR inhomogeneity and sub-
structures (e.g., Xiao et al. 2018b; Horne et al. 2021).

The radii of BLRs measured by RM mostly span from
103Rg to 105Rg for different objects, where Rg = 1.5 ×
1013M8 cm is the gravitational radius and M8 = M•/108 M�
is the SMBH mass in units of 108 solar masses (Du et al.
2016a). Such a range of radius is consistent with the self-
gravitating region of the accretion disk (e.g., Paczynski 1978;
Shlosman & Begelman 1987; Bertin & Lodato 1999; Goodman
2003; Sirko & Goodman 2003). In addition, a number of objects
(e.g., Arp 151, 3C 120, NGC 5548) show clear RM signa-
tures of Keplerian disks (Bentz et al. 2010b; Grier et al. 2013;
Xiao et al. 2018b; Horne et al. 2021). The heuristic idea that
the origin of BLRs is related to the self-gravitating regions of
accretion disks was initially discussed by Shore & White (1982),
and was further theoretically studied in the subsequent works
(e.g., Collin-Souffrin 1987; Collin-Souffrin & Dumont 1990;
Dumont & Collin-Souffrin 1990a,b). Although the detailed
physics in the self-gravitating region is still far from fully under-
stood, the existence of spiral arms may be a natural consequence
resulting from the gravitational instabilities in this region (e.g.,
Lodato 2007).

On the other hand, the mass ratio of the standard accretion
disk (Shakura & Sunyaev 1973) to SMBH can be expressed as
0.04α−4/5

0.1 M6/5
8 Ṁ 7/10r5/4

4 (or 0.7α−4/5
0.1 M6/5

8 Ṁ 7/10r5/4
5 depending

on the typical radius) if the disk extends to the scale size of the
BLR, where Ṁ = Ṁ•c2/LEdd is the dimensionless accretion
rate, Ṁ• is the mass-accretion rate, LEdd = 1.5 × 1046M8 erg s−1

is the Eddington luminosity of gas of solar composition, α0.1 =
α/0.1 is the viscosity parameter, and r4 = Rout/104Rg (or r5 =

Rout/105Rg) is the outer radius. This ratio is generally similar
to the disk-to-star mass ratios in protoplanetary systems, which
commonly possess spiral-arm structures (e.g., Andrews et al.
2013; Dong et al. 2018). This also leads to the possibility that
BLRs can host spiral arms.

Therefore, it is important to investigate the spiral arms
in BLRs and their potential characteristics in observations.
Horne et al. (2004) calculated the velocity-delay map of a
photoionized disk with two spiral arms mathematically with-
out introducing any precise physics (through “twisting” the
elliptical orbits). Gilbert et al. (1999), Storchi-Bergmann et al.

(2003), Schimoia et al. (2012), and Storchi-Bergmann et al.
(2017) assumed an analytical form for the spiral arms and
explained the double-peaked profiles of the broad emission lines
in AGNs, but similarly did not include any dynamical physics.
As the first paper of this series, Wang et al. (2022) used notions
of density wave theory of spiral galaxies (e.g., Lin & Shu 1964,
1966; Lin et al. 1969), which applies to self-gravitating disks
(Goldreich & Tremaine 1979), to investigate BLRs for the first
time (hereafter Paper I). Paper I explores the possibility of den-
sity waves in BLRs through discussing their physical conditions,
and focuses on the simplest cases of tight-winding arms with
short wavelengths and small pitch angles (adopting the formal-
ism of the tight-winding approximation). However, the loosely
wound spiral arms have more significant features in line profiles
or RM signals than the tightly wound cases (see more details in
Paper I or in the following sections of the present paper). It is
therefore crucial to investigate the loosely wound spiral arms in
BLRs and their characteristics in observations.

As the second paper of this series, here we calculate the
surface density distributions of loosely wound spiral arms in a
numerical manner without the tight-winding approximation, and
their corresponding emission-line profiles, velocity-delay maps,
and velocity-resolved lags. Comparing with Paper I, we adopt
more general radial distributions of the BLR surface density
and sound speed, which are assumed as power laws with free
indexes. This is a natural extension of Paper I. The paper is orga-
nized as follows. In Sect. 2, we briefly introduce the density
wave model and the numerical method. Some fiducial modes
(arm patterns) and their observational signals (in emission-line
profiles, velocity-delay maps, and velocity-resolved lags) for dif-
ferent azimuthal angles of the line of sight (LOS) are provided
in Sects. 3 and 4. We discuss and compare the models with the
observations in Sect. 5. A brief summary is given in Sect. 6.

2. Theoretical formulation

We adopt the density wave formalism given by Lin & Lau (1979)
and the numerical method presented by Adams et al. (1989) to
calculate the spiral arms. The perturbation equations and numer-
ical method in Adams et al. (1989) apply to both tightly and
loosely wound arms, and can also be used to derive the one-
armed density wave (azimuthal wave number m = 1). Details
of the formulae and numerical procedures can be found in these
papers and the references therein. For completeness, we briefly
describe the key points in this section. The general geometry of
the BLR modeled in the present paper is disk-like and the model
can therefore be applied to objects that show clear features of
Keplerian disks in their RM signals (e.g., Arp 151, 3C 120,
NGC 5548 in Bentz et al. 2010b; Grier et al. 2013; Xiao et al.
2018b; Horne et al. 2021).

2.1. Perturbation equations

Here, we adopt the linear normal-mode formalism in
Adams et al. (1989) (we also refer to the more recent work of
Chen et al. 2021). We use the cylindrical coordinates (R, ϕ, z).
In a thin disk, the continuity equation and the motion equations
in radial and azimuthal directions read
∂σ

∂t
+

1
R
∂

∂R
(Rσu) +

1
R
∂

∂ϕ
(συ) = 0, (1)

∂u
∂t

+ u
∂u
∂R

+
υ

R
∂u
∂ϕ
−
υ2

R
= −

∂

∂R
(V0 + ψ + h), (2)
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and
∂υ

∂t
+ u

∂υ

∂R
+
υ

R
∂υ

∂ϕ
+

uυ
R

= −
1
R
∂

∂ϕ
(ψ + h), (3)

respectively, where u(R, ϕ, t) and υ(R, ϕ, t) are the radial and
azimuthal components of velocity, σ(R, ϕ, t) is the surface den-
sity, V0 is the gravitational potential of SMBH, ψ is the gravi-
tational potential of a disk, h is the enthalpy defined by dh =
a2dσ/σ (governed by the thermodynamic property of gas), and
a is the sound speed. It should be noted that the viscosity is
neglected here.

The m-fold linear perturbations of the equilibrium state are
considered. The variables (u, υ, σ, ψ, h) can be expressed as
F(R, ϕ, t) = F0(R) + F1(R)ei(ωt−mϕ), where F is u, υ, σ, ψ, or h.
The subscript 0 represents the variables in the equilibrium state,
and 1 represents the perturbation components. ω = mΩp − iγ is
the complex eigenfrequency; its real part represents the pattern
speed Ωp of the rotating arms, and the imaginary part gives the
exponential growth rate γ of the density waves. The linearized
equations can then be formulated as
1
R

d
dR

(Rσ0u1) −
im
R
σ0υ1 + i(ω − mΩ)σ1 = 0, (4)

i(ω − mΩ)u1 − 2Ωυ1 = −
d(ψ1 + h1)

dR
, (5)

and
κ2

2Ω
u1 + i(ω − mΩ)υ1 = im

ψ1 + h1

R
, (6)

where Ω(r) is the rotation curve and κ is the epicyclic frequency.
The perturbation ψ1 of the gravitational potential can be

given by the integral of the surface density

ψ1(R) = −G
∫ Rout

Rin

dζ
∫ 2π

0

ζσ1(ζ) cos(mϕ)dϕ√
R2 + ζ2 − 2ζR cosϕ

, (7)

where Rin and Rout are the inner and outer radius of the disk.
Combining the above equations, we can obtain the integro-

differential equation of ψ1 and σ1 :[
d2

dR2 +A
d

dR
+ B

]
(h1 + ψ1) = −Ch1, (8)

where

A = −
d

dR
ln

[
κ2(1 − ν2)
σ0R

]
, (9)

B = −
m2

R2 −
4mΩ(Rν′)
κR2 (

1 − ν2) +
2mΩ

R2κν

d ln
(
κ2/σ0Ω

)
d ln R

, (10)

C = −
κ2

(
1 − ν2

)
a2

0

, (11)

h1 = a2
0
σ1

σ0
, (12)

and ν = (ω − mΩ)/κ is the dimensionless frequency.
Equation (8) is the governing integro-differential equation of the
density wave. Solving this equation numerically, if given the
boundary conditions, can provide the perturbation of the surface
density σ1. Considering that the spiral arms in galaxies (e.g.,
Sugai & Iye 1995; Aryal & Saurer 2004, 2005) or protoplane-
tary disks (e.g., Pérez et al. 2016; Huang et al. 2018) are mostly
trailing (trailing waves can transport angular momentum out-
ward; see e.g., Lin & Lau 1979), we only investigate the cases
of trailing waves in BLRs in the present paper.

2.2. Rotation curve

For the SMBH and BLR disk system, the rotation curve has three
components (see Adams et al. 1989):

Ω2(r) =
GM•

R3 +
1
R

dψ0

dR
+

1
R

dh0

dR
, (13)

which come from the central SMBH, the unperturbed disk, and
the pressure, respectively. The disk component can be expressed
as

ψ0(R) = −G
∫ Rout

Rin

dζ
∫ 2π

0

ζσ0(ζ)dϕ√
R2 + ζ2 − 2ζR cosϕ

. (14)

Given the rotation curve, the epicyclic frequency can be written
as

κ2 =
1

R3

d(R2Ω)2

dR
. (15)

As is well known, the elliptic integral in the calculation of disk
potential has singularity (e.g., Adams et al. 1989; Laughlin et al.
1997; Huré 2005). Some methods can handle this singularity in
specific cases; for example, the splitting method in Huré et al.
(2007). Here, we follow Adams et al. (1989) and use the soft-
ened gravity method to calculate the disk potential. A softening
term of η2R2 is added into the square root of the denominator at
the singular points. We adopt η = 0.1 in the calculation of the
rotation curve, and checked that the deduced Ω(R) is similar to
that obtained by the splitting method in Huré et al. (2007). For
Eq. (7), we use a smaller value of η = 0.01 similar to Chen et al.
(2021). We also checked that the detailed values of the soft-
ening parameter η do not significantly change the spiral arms,
emission-line profiles, or velocity-delay maps in the following
sections1. However, it should be noted that the softening param-
eter η may influence the growth rate of the density wave (e.g.,
Laughlin et al. 1997), though it may not significantly change the
spiral pattern (particularly away from the corotation or Lindblad
resonances, where ν = 0 or ±1). We mainly focus on the spiral
pattern and the corresponding RM characteristics in the present
paper. The influence of η to the growth rate will be discussed in
a future paper.

2.3. Boundary conditions

The origin of BLRs is still under debate (e.g., Czerny &
Hryniewicz 2011; Wang et al. 2017). Although the emissivity-
averaged radii of BLRs (RBLR) have been measured in more
than 100 AGNs by RM campaigns (see, e.g., Bentz et al. 2013;
Du et al. 2015; Du & Wang 2019; Grier et al. 2017a), the inner
and outer radii of BLRs and their corresponding boundary condi-
tions have large uncertainties so far. However, the radii of dusty
tori in some AGNs have been successfully measured, which give
us strong constraints on the outer radii of their BLRs. Infrared
RM campaigns found a relation between the radius for the inner-
most dusty torus and the optical luminosity, which is written as
Rtorus ≈ 0.1L0.5

43.7 pc (e.g., Minezaki et al. 2019). Here, L43.7 is the
V-band luminosity in units of 1043.7 erg s−1. We adopt a typical
bolometric correction factor of 10 (from bolometric to V-band
luminosity). We set the outer radius of the BLR at the inner edge
of the dusty torus in our calculation (Rout = Rtorus). Consider-
ing Rtorus/RBLR ≈ 3 ∼ 7 (Du et al. 2015; Minezaki et al. 2019),

1 Chen et al. (2021) performed a similar check for the softened grav-
ity η for the protoplanetary disk in their paper, and also found that the
detailed values do not change the arms significantly.
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we adopt Rout/Rin = 20, 50, 100 in the following calculations in
order to ensure that the radial range of our calculation is suffi-
ciently wide, and to check the influence of different Rout/Rin on
the spiral arms.

We adopt the same boundary conditions as in Adams et al.
(1989) for simplicity, but keep in mind that the detailed BLR
boundary conditions are still unknown. At the outer boundary,
we assume that the Lagrangian pressure perturbation vanish,
which means the confining pressure from the external medium
(probably the gas in the torus) is a constant. At the inner bound-
ary, we assume the velocity perturbation u1 = 0, so that the radial
component of the velocity perturbation vanishes at the inner
boundary. Inner and outer boundary conditions can be verified by
comparing the arm patterns and the corresponding emission pro-
files, velocity-resolved lags, and velocity-delay maps with RM
observations in the future.

2.4. Indirect potential for one-armed density wave

Adams et al. (1989) considered the influence of the one-armed
perturbation for the first time, which causes the center of the star
to be displaced from the center of mass of the protoplanetary sys-
tem. We also take this effect into account in our calculation using
the same method, incorporating an indirect potential component
in Eq. (8) as in Adams et al. (1989). The indirect potential can
be expressed as

ψ̃1 =
πω2R

M• + Mdisk

∫ Rout

Rin

ζ2σ1(ζ)dζ, (16)

where Mdisk is the mass of the BLR disk.

2.5. Numerical method

Exact numerical schemes for solving Eq. (8) were presented in
Pannatoni & Lau (1979) or Adams et al. (1989) for example. In
the present paper, we adopt the matrix scheme in Adams et al.
(1989) for searching the eigenvalues of ω and solving the gov-
erning integro-differential equation. The details of the matrix
scheme can be found in Adams et al. (1989). We only briefly
describe the general idea and some key points here. The integral
and differential operators in Eq. (8) can be expressed as matrices.
By introducing the dimensionless surface-density perturbation
S (R) defined by σ1(R) = σ0(R)S (R) and dividing the radial axis
into N grid in logarithmic space, the integro-differential equation
can be reduced to the form

Wik(ω)S k = 0, (17)

where i, k = 1, . . . ,N are the indices of the radial grid. The
repeated subscript implies summation over its range as the con-
vention in matrix manipulation. The first and last row of the
matrix Wik(ω) are determined by the inner and outer boundary
conditions. Equation (17) is a homogeneous system with N equa-
tions and N unknowns, and only has nonzero solutions if the
matrix Wik(ω) has a vanishing determinant, which can yield the
eigenvalue of ω. The matrix Wik(ω) is a fifth-order function of
ω.

To find all of the eigenvalues simultaneously, Eq. (17) is
rewritten into a 5N × 5N matrix equation

W̃ 1
nl S
∗
l = ωW̃ 2

nl S
∗
l , (18)

where n, l = 1, . . . , 5N are indices, W̃ 1
nl and W̃ 2

nl are two matri-
ces regrouped from Wik(ω) in light of the coefficients of ω with

different orders, and S ∗l is a rearrangement of S k (see its detailed
form in Adams et al. 1989 and Appendix B). We can obtain the
eigenvalues ω and eigenvectors S by solving this generalized
eigenvalue problem. Equation (18) has 5N eigenvalues, which
corresponds to 5N modes. Most of the modes have zero growth
rate (imaginary part; see Sect. 2.1 and Appendix A) and are not
physically relevant. We select the lowest-order mode with sig-
nificant growth rate, which will span the largest radial range and
can be self-excited to become significant. For efficiency in cal-
culations, we use N = 500 in the present paper.

3. Patterns of spiral arms

3.1. Fiducial models

Before solving the governing equation, the equilibrium state of
the BLR is required. The emissivity distributions of BLRs have
been preliminarily reconstructed through BLR modeling in sev-
eral objects (e.g., Pancoast et al. 2012, 2014; Grier et al. 2017b;
Williams et al. 2018; Li et al. 2018); however, the real surface
density distributions are still unclear because the reprocessing
coefficient distributions are not known. In Paper I, we adopt the
polytropic relation as the prescription of the disk. Here, we gen-
eralize and assume that the distributions of the surface density
and sound speed are power laws, which follow

σ0(R) = σ̂0

(
R

Rin

)−p

, (19)

and

a0(R) = â0

(
R

Rin

)−q/2

. (20)

We use q/2 rather than q as the index of a0 in order to remain
consistent with the approach taken by Adams et al. (1989).

The stability of a disk can be quantified by the parameter
Q = κa0/πGσ0 (Toomre 1964). The disk is stable if Q � 1, and
very unstable if Q is far smaller than unity. Here, we consider a
quasi-stable BLR disk with average Q parameter value, which is
defined by

Q̄ =

∫ Rout

Rin
2πRQσ0dR∫ Rout

Rin
2πRσ0dR

, (21)

which is close to unity. We set Q̄ as a free parameter in the fol-
lowing sections.

In total, the model used here has seven parameters: the
mass of SMBH M•, the mass ratio between disk and SMBH
Mdisk/M•, the dimensionless accretion rate Ṁ , the power law
indices p and q, parameter Q̄, and the ratio of outer and inner
radii Rout/Rin. Among them, M• and Ṁ determine the outer
radius, and the other five parameters control the pattern of spi-
ral arms (see Adams et al. 1989). Changing Mdisk/M• is equiva-
lent to adjusting σ0. The value of Q̄ determines a0 if Mdisk/M•
(equivalently σ0) is fixed2. Our purpose is not to explore the
entire parameter space but to demonstrate the observational char-
acteristics for some typical cases of the BLR arms. Comparing

2 In practice, we adopt Q = Ωa0/πGσ0 when we set the scale of a0,
which is similar to Adams et al. (1989). Because the deviation of κ from
Ω in the motion equations are treated consistently, Q̄ is only slightly
smaller than its true value and does not influence the arm patterns and
the conclusions.
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Table 1. Parameters of Models A and B.

Model p q Note

A 3/4 3/4 Standard accretion disk
B 3/2 1/2 Self-gravitating disk

Notes. Two fiducial configurations adopted in this paper. p and q are
the power law indexes of surface density and sound speed, respectively
(see Eqs. (19) and (20)).

with the standard accretion disks (Shakura & Sunyaev 1973),
the surface density distributions in self-gravitating accretion
disks are proposed to be steeper and p ≈ 1 ∼ 3/2 is
always adopted in theoretical works (e.g., Lin & Pringle 1987;
Goodman 2003). In addition, the sound speed distributions of
self-gravitating disks are probably flatter (q = 0 ∼ 3/4; see
e.g., Goodman 2003; Sirko & Goodman 2003; Rice et al. 2005).
We adopt (p = 3/4, q = 3/4) and (p = 3/2, q = 1/2) as
two fiducial configurations, which correspond to the distribu-
tions in the standard accretion disk and self-gravitating disk,
respectively. We refer to these as Models A and B hereafter
(see Table 1). We fix M• = 108 M� and Ṁ = 1.0, and
leave the other parameters (Mdisk/M•, Q̄, and Rout/Rin) as free
parameters. M• and Ṁ determine the outer radius Rout. After
Rout is determined, the parameter Rout/Rin controls the inner
radius.

3.2. Spiral arms with m = 1

Self-regulation (e.g., compression or shocks induced by
the gravitational instabilities, see Bertin & Lodato 1999;
Lodato & Rice 2004; Lodato 2007) has been proposed to main-
tain the Toomre parameter Q so that it is not far smaller than
unity. In the present paper, we do not aim to investigate the
detailed self-regulation mechanisms, but simply assume that Q̄
is a little larger than unity (see, e.g., Lodato & Rice 2004). This
means that the disk is quasi-stable but the instabilities can still
be self-excited (Q̄ = 1.5, 2.0, 2.5).

It is intuitively expected that the one-armed density pertur-
bation can produce the most significantly asymmetric emission-
line profiles and velocity-delay maps. We first calculate the spiral
arms of Model A with m = 1. For each set of parameters,
there is more than one eigenvalue and more than one solution
(mode). We adopt the mode with the lowest order and most
significant growth rate because it will span the largest radial
range and can grow at a relatively rapid rate (see the eigenval-
ues in Appendix A). It is still difficult to observationally deter-
mine the exact value of Mdisk/M• in AGNs, especially for the
self-gravitating regions where the BLRs may reside. However,
as mentioned in Sect. 1, it is possible to obtain a rough esti-
mate from a standard accretion disk model (Shakura & Sunyaev
1973), and we find Mdisk/M• is in the range of ∼0.04−0.7
(corresponding to Rout from 104Rg to 105Rg). Similarly, from
the marginally self-gravitating disk model of Sirko & Goodman
(2003), Mdisk/M• in quasars can be as high as a few times
0.1 (see Fig. 2 in Sirko & Goodman 2003). Here we select
Mdisk/M• = 0.2 and 0.8 as two representatives in the present
paper . It should be noted that the disks for Models A and
B are both relatively thin with H/R ∼ 0.04 (Mdisk/M• =
0.2) and ∼0.15 (Mdisk/M• = 0.8), given the current disk
configurations.

The arm patterns are shown for different parameters in
Fig. 1. Six cases for Mdisk/M• = 0.2 and another six cases

Table 2. Parameters of Ξ.

Case I Case II
Model µU σ̃U S max µU σ̃U S max

A 0.60 0.10 0.10 2.00 0.05 0.10
A 1.00 0.10 0.10 1.20 0.05 0.10
B 0.60 0.15 0.20 2.00 0.20 0.20
B 1.00 0.15 0.20 1.20 0.20 0.20

Notes. All of the parameters are in units of RBLR = 33 ×
(L5100/1044 erg s−1)0.5 lt−days. For the typical SMBH mass M• =
108 M� and accretion rate Ṁ = 1.0 adopted in the present paper,
RBLR = 40.4 lt−days. For each case of Model A or B, we calculate the
line profiles for two sets of parameters in order to simulate the mean and
rms spectra with different widths (see Sect. 4.1). For the velocity-delay
maps, we adopt the same parameters for comparison.

for Mdisk/M• = 0.8 are demonstrated (in the lower right
and upper left corners of Fig. 1). By comparing the cases
with different disk-to-SMBH mass ratios, it is obvious that
the more massive disks have more loosely wound spiral arms
(see more discussions in Sect. 5.5). In addition, the arms in
the more massive disks tend to be located at larger radii. For
the cases with the same disk-to-SMBH mass ratio, the arms
are wound more loosely if Q̄ is larger (see further discus-
sions in Sect. 5.5). The influence of Rout/Rin appears very
weak.

We also present the spiral arms of Model B in Fig. 2 (the
corresponding eigenvalues are also provided in Appendix A). In
general, the spiral arms of Model B are more loosely wound
than those in Model A. Moreover, similarly, the arms in more
massive disks are more loosely wound. If Q̄ is smaller, the
spiral arms wind more tightly. The influence of Rout/Rin on
the primary arms in the outer part of the disk is still weak,
but the inner part of the disks with larger Rout/Rin show some
weak small arms in the less massive disks. More importantly,
in comparison with Model A, the spiral arms of Model B are
more “banana”-like (see Adams et al. 1989). From the inside
out, the arms in Model B do not extend continuously but
show several gaps and wiggles. In contrast, this phenomenon is
weaker in Model A. The arms in Model A extend outward more
continuously.

Our goal is to investigate the observational characteristics
of the loosely wound spiral arms. We focus on the cases with
(Q̄,Mdisk/M•,Rout/Rin) = (2.5, 0.8, 100) and calculate their pro-
files of emission lines, the velocity-delay maps, and the velocity-
resolved lags in Sects. 4.1–4.3.

3.3. Spiral arms with m = 2

We also calculate the two-armed density waves (m = 2). The
m = 2 spiral arms of Models A and B with Mdisk/M• = 0.8
and Rout/Rin = 100 are shown in Fig. 3. Similar to m = 1
modes, the m = 2 modes wind more loosely if Q̄ is larger.
Comparing with the m = 1 modes, the arms in the m = 2
modes can extend inward to smaller radii. The outer parts of
the disks tend to be loosely wound, while the inner parts wind
more tightly. In comparison with Model A, the pitch angles
of the arms in Model B are larger and the “banana” shape of
the arms is more significant. In Sect. 4.2, we also present the
velocity-delay maps of the m = 2 spiral arms for the cases of
(Q̄,Mdisk/M•,Rout/Rin) = (2.5, 0.8, 100).
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Fig. 1. Dimensionless surface density of spiral arms (m = 1) for Model A. The six panels in the upper left corner are the spiral arms for more
massive disks (Mdisk/M• = 0.8), and the six panels in the lower right corner are those for less massive disks (Mdisk/M• = 0.2). The values of Q̄,
Mdisk/M•, and Rout/Rin are marked on the top of each panel. In general, more massive disks have more loosely wound spiral arms (see more details
in Sect. 3.2). The eigenvalues (real and imaginary parts) of ω are also provided in each of the panels.

4. Observational characteristics

4.1. Emission-line profiles

In our models, the surface density distributions are assumed
to be power laws (see Sect. 3.1). However, the emissivities of
broad emission lines do not necessarily follow the same rules.
The locally optimally emitting clouds (LOC) scenario (e.g.,
Baldwin et al. 1995; Korista et al. 1997) has been successfully
applied to investigate and reproduce the observed flux ratios
of the prominent broad emission lines (e.g., Korista & Goad
2000; Leighly 2004; Nagao et al. 2006; Marziani et al. 2010;
Negrete et al. 2012; Panda et al. 2018). The main concept of

the LOC scenario is that, although the BLR gas covers a wide
range of physical conditions (e.g., density, ionization parame-
ter), emission lines always tend to emit from their own optimal
places (e.g., Baldwin et al. 1995; Korista et al. 1997). Following
Paper I, we simply assume that the emission-line emissivity Ξ is
a Gaussian function of the ionization parameter U of the BLR
gas with the form of

Ξ ∝
1

√
2πσU

e−(U−Uc)2/2σ2
U , (22)

where Uc = U(R = µURBLR) is the ionization parameter cor-
responding to the most efficient reprocessing (at the radius of

A26, page 6 of 23



Du, P. and Wang, J.-M.: A&A 671, A26 (2023)

−200 −100 0 100 200

X (lt−days)

−200

−150

−100

−50

0

50

100

150

200

Y
(l

t−
d

ay
s)

ω = (0.84× 10−1yr−1,−2.23× 10−3yr−1)

Q̄ = 2.5 Mdisk/M• = 0.8 Rout/Rin = 20.0

−0.0100

−0.0075

−0.0050

−0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

D
im

en
si

on
le

ss
S

u
rf

ac
e

D
en

si
ty

(S
)

−200 −100 0 100 200

X (lt−days)

−200

−150

−100

−50

0

50

100

150

200

Y
(l

t−
d

ay
s)

ω = (0.75× 10−1yr−1,−1.27× 10−3yr−1)

Q̄ = 2.5 Mdisk/M• = 0.8 Rout/Rin = 50.0

−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

D
im

en
si

on
le

ss
S

u
rf

ac
e

D
en

si
ty

(S
)

−200 −100 0 100 200

X (lt−days)

−200

−150

−100

−50

0

50

100

150

200

Y
(l

t−
d

ay
s)

ω = (0.70× 10−1yr−1,−0.92× 10−3yr−1)

Q̄ = 2.5 Mdisk/M• = 0.8 Rout/Rin = 100.0

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

D
im

en
si

on
le

ss
S

u
rf

ac
e

D
en

si
ty

(S
)

−200 −100 0 100 200

X (lt−days)

−200

−150

−100

−50

0

50

100

150

200

Y
(l

t−
d

ay
s)

ω = (0.70× 10−1yr−1,−2.44× 10−3yr−1)

Q̄ = 2.0 Mdisk/M• = 0.8 Rout/Rin = 20.0

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

D
im

en
si

on
le

ss
S

u
rf

ac
e

D
en

si
ty

(S
)

−200 −100 0 100 200

X (lt−days)

−200

−150

−100

−50

0

50

100

150

200
Y

(l
t−

d
ay

s)

ω = (0.63× 10−1yr−1,−1.91× 10−3yr−1)

Q̄ = 2.0 Mdisk/M• = 0.8 Rout/Rin = 50.0

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

D
im

en
si

on
le

ss
S

u
rf

ac
e

D
en

si
ty

(S
)

−200 −100 0 100 200

X (lt−days)

−200

−150

−100

−50

0

50

100

150

200

Y
(l

t−
d

ay
s)

ω = (0.56× 10−1yr−1,−2.14× 10−3yr−1)

Q̄ = 1.5 Mdisk/M• = 0.8 Rout/Rin = 20.0

−0.04

−0.02

0.00

0.02

0.04

D
im

en
si

on
le

ss
S

u
rf

ac
e

D
en

si
ty

(S
)

−200 −100 0 100 200

X (lt−days)

−200

−150

−100

−50

0

50

100

150

200

Y
(l

t−
d

ay
s)

ω = (0.34× 10−1yr−1,−0.61× 10−4yr−1)

Q̄ = 2.5 Mdisk/M• = 0.2 Rout/Rin = 100.0

−0.02

−0.01

0.00

0.01

0.02

D
im

en
si

on
le

ss
S

u
rf

ac
e

D
en

si
ty

(S
)

−200 −100 0 100 200

X (lt−days)

−200

−150

−100

−50

0

50

100

150

200

Y
(l

t−
d

ay
s)

ω = (2.67× 10−2yr−1,−0.58× 10−3yr−1)

Q̄ = 2.0 Mdisk/M• = 0.2 Rout/Rin = 50.0

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

D
im

en
si

on
le

ss
S

u
rf

ac
e

D
en

si
ty

(S
)

−200 −100 0 100 200

X (lt−days)

−200

−150

−100

−50

0

50

100

150

200

Y
(l

t−
d

ay
s)

ω = (2.59× 10−2yr−1,−0.58× 10−3yr−1)

Q̄ = 2.0 Mdisk/M• = 0.2 Rout/Rin = 100.0

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

D
im

en
si

on
le

ss
S

u
rf

ac
e

D
en

si
ty

(S
)

−200 −100 0 100 200

X (lt−days)

−200

−150

−100

−50

0

50

100

150

200

Y
(l

t−
d

ay
s)

ω = (2.90× 10−2yr−1,−0.80× 10−3yr−1)

Q̄ = 1.5 Mdisk/M• = 0.2 Rout/Rin = 20.0

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

D
im

en
si

on
le

ss
S

u
rf

ac
e

D
en

si
ty

(S
)

−200 −100 0 100 200

X (lt−days)

−200

−150

−100

−50

0

50

100

150

200

Y
(l

t−
d

ay
s)

ω = (2.70× 10−2yr−1,−0.67× 10−3yr−1)

Q̄ = 1.5 Mdisk/M• = 0.2 Rout/Rin = 50.0

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

D
im

en
si

on
le

ss
S

u
rf

ac
e

D
en

si
ty

(S
)

−200 −100 0 100 200

X (lt−days)

−200

−150

−100

−50

0

50

100

150

200

Y
(l

t−
d

ay
s)

ω = (2.61× 10−2yr−1,−0.59× 10−3yr−1)

Q̄ = 1.5 Mdisk/M• = 0.2 Rout/Rin = 100.0

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

D
im

en
si

on
le

ss
S

u
rf

ac
e

D
en

si
ty

(S
)

Fig. 2. Dimensionless surface density of spiral arms (m = 1) for Model B. Similar to Fig. 1, the six panels in the upper left corner are the spiral
arms for more massive disks (Mdisk/M• = 0.8), and the six panels in the lower right corner are those for less massive disks (Mdisk/M• = 0.2). The
values of Q̄, Mdisk/M•, and Rout/Rin are marked on the top of each panel. The eigenvalues of ω are also provided in each of the panels.

R = µURBLR), σU = σ̃U × (U0,max − U0,min) represents the
range of efficient reprocessing, U0,max and U0,min are the max-
imum and minimum ionization parameters in the unperturbed
disk, and µU and σ̃U are two dimensionless parameters. The ion-
ization parameter of the BLR gas is defined as

U =
QH

4πR2cnH
, (23)

where QH is the number of hydrogen-ionizing photons, nH =
ρ/mH is the number density, ρ = (σ0+σ1)/2H = (σ0+σ1)Ω/2a0
is the hydrogen density, and mH is the mass of hydrogen. The line

profile can be expressed as

F`(λ) =

∫ Rout

Rin

RdR
∫ 2π

0
Ξg(R, υ) δ

[
λ − λ0

(
1 +
υ · nobs

c

)]
dϕ, (24)

where λ0 is the central wavelength of the emission line, υ(R, ϕ)
is the velocity of the BLR gas, g(R, υ) is the velocity distribution
at R, and nobs is the unit vector pointing from the observer to the
source (LOS).

Many RM campaigns have demonstrated that the line widths
of rms spectra are different (narrower or broader) from those of
the mean spectra (e.g., Peterson et al. 1998; Bentz et al. 2009;
Denney et al. 2009; Barth et al. 2013; Fausnaugh et al. 2017;
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Fig. 3. Dimensionless surface density of the spiral arms with m = 2 for Models A and B. The upper three panels are the arm patterns of Model A,
and the lower three panels are those of Model B. We only plot the spiral arms with Rout/Rin = 100 as examples.

Grier et al. 2012; Du et al. 2018b; De Rosa et al. 2018;
Brotherton et al. 2020), which means the responsivity (varying
part) of the BLR is different from its mean emissivity. For
simplicity, to simulate this phenomenon, we simply assume
the responsivity has the same form as Eq. (22) but with a
different set of (µU , σ̃U) rather than taking into account the
real photoionization processes in our calculation (hereafter we
use Ξ to denote both emissivity and responsivity). Here we
investigate two combinations of (µU , σ̃U) corresponding to
the typical cases where rms spectra are narrower or broader
(Cases I and II, respectively). The values of µU and σ̃U and
the maximum dimensionless surface density S max are listed in
Table 2. We select these parameters because on one hand they
can demonstrate the line profiles (or velocity-delay maps in the
following Sect. 4.2) at different radii, and on the other hand it is
easy for us to simulate the mean and rms spectra with different
line widths. We set the maximum value of dimensionless surface
density S max to 0.1 and 0.2 for Models A and B, respectively
(also in the following Sects. 4.2 and 4.3). It should be noted that
the actual values could be larger or smaller than these values.
More detailed calculations including photoionization models
will be carried out in a separate paper in the future.

4.1.1. Line profiles with m = 1

We present the emission-line profiles of mean (or single-epoch)
spectra and rms spectra for the spiral arms of Models A with
m = 1, for different azimuthal angles (ϕlos) of LOS, in Fig. 4.
The disks are rotating counterclockwise. The LOS inclination
angle only changes the widths of the emission lines; we fix the
inclination angle to θlos = 30◦ in our calculation (θlos = 0◦ refers
to looking at the disks from face-on). The contribution of the
sound speed a0 is also taken into account by adding a macro-
turbulence speed in the direction perpendicular to the disk. For
each of the Cases I and II, the mock mean and rms spectra are
provided as two rows in Fig. 4. As expected, the mean spectra

are broader than the rms spectra in Case I, and are relatively nar-
rower in Case II. It is obvious that the line profiles are generally
double-peaked because the most efficient emitting region has a
ring-like shape (determined by Eq. (22)). The stronger emissiv-
ity or responsivity of the spiral arms results in an obvious asym-
metry in the line profiles (see Fig. 4). As the azimuthal angle
ϕlos increases from 0◦, the asymmetry of the profiles periodically
changes between symmetric, blueward, and redward. For some
cases, the weaker peaks almost disappear (e.g., ϕlos = 90◦ in the
first row of Case II). In Case II, the asymmetries caused by the
spiral arms are more significant because the µU parameters are
larger and the σ̃U are smaller. More importantly, the asymme-
tries of the mock mean and rms spectra can be totally different
(blueward or redward) even if the LOSs are exactly the same (see
e.g., ϕlos = 180◦ in Case II). This implies that the spiral arms can
naturally produce differently asymmetric mean and rms spectra
without any further special assumptions.

In Model B, the emissivity or responsivity tends to be dis-
tributed over an area covering greater radii (because U ∝ R3/4

approximately). The emissivities or responsivities of the spiral
arms and the corresponding emission-line profiles for Model B
in Cases I and II are shown in Fig. 5. The banana-like distribu-
tions of the spiral arms in Model B (see Sect. 3.2 and Fig. 2) still
make the emission-line profiles significantly asymmetric. Com-
pared with Model A, Model B has less asymmetric line profiles.

Some of the mock line profiles in Figs. 4 and 5 are very simi-
lar to the observations. We provide a simple comparison between
the models and observations in Sect. 5.1.

4.1.2. Line profiles with m = 2

For the spiral arms with m = 2, the profiles of their corre-
sponding emission lines are symmetric and double-peaked. The
perturbation σ1 is identical if ϕ increases every 180◦ (m-fold
axis-symmetric), meaning that the emissivities on the left and
right sides of the LOS (blueshifted and redshifted) are exactly the
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Fig. 4. Emission-line profiles of Model A in Cases I and II. The left panel in each row is the Ξ image. The values of (µU , σ̃U ) and S max are marked
on the top of the Ξ images. The red dotted lines mark the LOS azimuthal angles ϕlos. The four panels on the right in each row are the line profiles
(blue solid lines) corresponding to different ϕlos. The gray dashed lines are the profiles without spiral arms. The line profiles (mock mean and rms)
of the spiral arms for Case I are provided in the upper two rows, and the profiles of Case II are shown in the lower rows.

same. Therefore, the line profiles of the arms with m = 2 have no
asymmetry and are the same as the dashed lines in Figs. 4 and 5.

4.2. Velocity-delay maps

Reverberation mapping can be approximated as a linear model,
whereby

∆L`(υ, t) =

∫ +∞

−∞

Ψ(υ, τ)∆Lc(t − τ)dτ, (25)

where Ψ(υ, τ) is the so-called velocity-delay map (or transfer
function), ∆Lc(t) is the continuum light curve, and ∆L`(υ, t) is
the variation of the emission-line profile at different epochs (e.g.,
Blandford & McKee 1982). The velocity-delay map describes
how the line profile responds to the varying continuum flux,
and is determined by the geometry, kinematics, and emissiv-
ity of the gas in the BLR. The velocity-delay map of a simple
Keplerian disk is symmetric, and has been calculated numeri-

cally and demonstrated in many works (Welsh & Horne 1991;
Perez et al. 1992; Horne et al. 2004; Grier et al. 2013, or see
Appendix D in Paper I).

The velocity-delay map can be calculated as

Ψ(υ, t) =

∫ Rout

Rin

RdR
∫ 2π

0
Ξg(R, υ)δ(υ − υ · nobs)

×δ

[
t −

R + R · nobs

c

]
dϕ.

(26)

In the calculation of emission-line profiles, we adopt two sets of
parameters (µU , σ̃U) for each case in Models A and B in order
to simulate the mean and rms spectra (Ξ represents emissivity
and responsivity, respectively). Strictly speaking, in the calcula-
tion of velocity-delay maps, we ought to employ the responsivity
implication of Ξ; however, we do not distinguish responsiv-
ity and emissivity here because we simply assume that they
have the same form mathematically (Gaussian distributions, see
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Fig. 5. Emission-line profiles of Model B in Cases I and II. The contents of the panels and the meaning of the different lines (solid and dashed) are
the same as in Fig. 4.

Sect. 4.1). The only difference between them is that their (µU ,
σ̃U) are not the same. We still calculate the velocity-delay maps
using the µU and σ̃U in Table 2, and use the nomenclature Ξ in
the following discussions. The LOS inclination angle is fixed to
θlos = 30◦. A smaller or larger angle will cause the velocity-delay
maps to narrow or broaden in their velocity axes.

4.2.1. Velocity-delay maps with m = 1

Similarly to the line profiles, we calculate the velocity-delay
maps of Models A and B for different LOS azimuthal angles.
The results for both Cases I and II are shown in Figs. 6 and 7.
The sound speed has also been taken into account, and so the
corresponding velocity-delay maps appear moderately smooth.
The general morphologies of the velocity-delay maps are simi-
lar to the traditional “bell”-like envelope with a bright “ellipti-
cal ring” of a simple Keplerian disk (e.g., Welsh & Horne 1991;
Perez et al. 1992; Horne et al. 2004; Grier et al. 2013). However,

they are significantly asymmetric and show remarkable subfea-
tures of bright arcs or strips (indicating strong responses from the
arms). The asymmetries of the responses in the velocity-delay
maps are consistent with the asymmetries of the line profiles in
Figs. 4 and 5.

In Model A, the contributions from the strong responsivi-
ties of the spiral arms appear significant (see Fig. 6). As the
azimuthal angle increases from 0◦ to 270◦, the asymmetry and
the locations of the arcs and strips in the maps caused by the
strong arm responsivities change correspondingly.

In Case II, the spiral-arm patterns are more significant in the
Ξ distributions if the strong-response regions are mainly located
in larger radii. The bright arcs or strips (the strongest responses)
in the velocity-delay maps correspond to the crests of the den-
sity waves. For µU = 1.20, σ̃U = 0.05, and ϕlos = 270◦, the
emission-line profile in Fig. 4 is almost symmetric and indis-
tinguishable from that of a simple Keplerian disk. However, the
velocity-delay map can break this degeneracy. The subfeatures
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Fig. 6. Velocity-delay maps of Model A (m = 1) in Cases I and II. The left panel in each row is the Ξ image. The red dotted lines mark the LOS
azimuthal angles ϕlos. The four panels on the right in each row are the velocity-delay maps corresponding to different ϕlos.

in the corresponding velocity-delay map are obvious and asym-
metrically distributed. In the velocity-delay map of µU = 0.60,
σ̃U = 0.10 (or µU = 1.00, σ̃U = 0.10), and ϕlos = 90◦, there is
an arc that starts from blue velocities and extends toward a long
time lag. However, the arc does not circle back to the red veloc-
ities. It is very interesting that this subfeature is almost the same
as that seen in observations of NGC 5548 (incomplete ellipse;
see Fig. 3 in Xiao et al. 2018b and Fig. 5 in Horne et al. 2021).

For Model B, the morphologies of the responsivity (Ξ) dis-
tributions are more banana-like (bright on one side, and dark
on the opposite side). The asymmetries and substructures in
the velocity-delay maps are slightly weaker (but still signifi-
cant) than Model A. The semicircle arcs in Ξ (see Fig. 7) result
in strips and arcs overlapped with the original bell-like signa-
tures in the velocity-delay maps. These subfeatures (bright arcs
and strips) rotate close-wise along with the increases in LOS
azimuthal angle.

4.2.2. Velocity-delay maps with m = 2

As mentioned in Sect. 4.1.2, the line profiles of the spiral arms
with m = 2 have no asymmetries and are not different from
the profiles of a simple Keplerian disk. However, the velocity-
delay maps can break this degeneracy. The maps of the m = 2
arms show significant subfeatures and may be distinguishable
in observations. We calculate the corresponding velocity-delay
maps for Models A and B with m = 2 (see Figs. 8 and 9).
Similarly to Sect. 4.2.1, we adopt (Q̄,Mdisk/M•,Rout/Rin) =
(2.5, 0.8, 100). The spiral arms with m = 2 tend to wind loosely
in the outer parts of the disks and tightly at the inner radii (see
Fig. 3). Compared with the cases of m = 1, the m = 2 arms can
extend to radii closer to the center of the disk, and therefore their
contributions in the velocity-delay maps are more significant. In
addition, Ξ tends to be more banana-like in Model B, which is
similar to the cases with m = 1.
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Fig. 7. Velocity-delay maps of Model B (m = 1) in Cases I and II. The contents of the panels is the same as in Fig. 6.

The velocity-delay maps of the spiral arms with m = 2 are
clearly asymmetric and different from the velocity-delay map
of a simple Keplerian disk. The distributions of the strongest
responses (bright arcs/strips in Figs. 8 and 9) in the maps change
along with the LOS azimuthal angle. For example, for the
velocity-delay map of µU = 2.00 and σ̃U = 0.05 in Model A,
the strongest responses tend to be in the lower right corner if
ϕlos = 0◦ and rotate to the lowest place if ϕlos = 90◦.

For Model B, the arms in the central parts also contribute
strong signals in the maps (see Fig. 9). The maps appear inho-
mogeneous and have many subfeatures. The lower parts of the
maps have multiple layers (similar to lasagna) in Case I of both
Model A and B. This is a typical feature in velocity-delay maps
if there are a number of arms in the inner radius of the Ξ-map.

4.3. Velocity-resolved lags

Because of the strict requirement for high-quality data, it is not
always easy to obtain velocity-delay maps. As a compromise,

the velocity-resolved lag analysis is also useful for probing BLR
geometry and kinematics, and has been applied in many RM
campaigns (e.g., Bentz et al. 2008, 2009; Denney et al. 2009,
2010; Grier et al. 2013; Du et al. 2016b, 2018b; De Rosa et al.
2018; Brotherton et al. 2020; Hu et al. 2021; Lu et al. 2021;
Vivian et al. 2022; Bao et al. 2022). We present the velocity-
resolved lags for Models A and B in Cases I and II with
m = 1 by averaging the velocity-delay maps (Figs. 6 and 7)
along their time axes. The results are shown in Fig. 10. The
blue lines are the velocity-resolved lags of Model A, and the
orange lines are those of Model B. Similarly to the correspond-
ing velocity-delay maps, the velocity-resolved lags are also
asymmetric.

Usually, the velocity-resolved lags with shorter (longer) lags
in blue velocities and longer (shorter) lags in red velocities
tend to be interpreted as outflow (inflow). The velocity-resolved
lags, which are generally disk-like (the lags in small velocities
are longer than those in high velocities) but show asymmetries
to some extent (blue or red lags are shorter, and are referred
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Fig. 8. Velocity-delay maps of Model A (m = 2) in Cases I and II. The contents of the panels is the same as in Fig. 6.

to as disk-like but with asymmetry hereafter), are sometimes
explained by Keplerian disks with some inflowing or outflowing
velocities (e.g., De Rosa et al. 2018; Lu et al. 2019). However,
the results shown in Fig. 10 demonstrate that spiral arms can also
produce disk-like velocity-resolved lags but with some asymme-
tries. This implies that the velocity-resolved lags are sometimes
not sufficient for the diagnostic of BLR geometry and kinemat-
ics, because they still have degeneracy.

Here, we do not plot the velocity-resolved lags for the m = 2
arms. The arms are m-fold axis-symmetric, and therefore their
velocity-resolved lags do not have any asymmetry.

5. Discussions

5.1. Emission-line profiles: A simple comparison between
models and observations

In observations, the asymmetries of the emission-line pro-
files in single-epoch spectra have been reported for a num-

ber of Seyfert galaxies and quasars since the 1970s (e.g.,
Osterbrock 1977; De Robertis 1985; Boroson & Green 1992;
Marziani et al. 1996, 2003; Brotherton 1996). The asymme-
tries include the single-peaked profile whose peak is blueshifted
or redshifted, the single-peaked profile that has a stronger
blue or red wing but a zero-velocity peak, and the double-
peaked profile with a stronger blue or red peak. Some mod-
els have been proposed to explain the asymmetries of the
emission-line profiles in AGNs. Capriotti et al. (1979, 1981)
suggested that the optically thick clouds with inflow or out-
flow velocities in BLRs can produce asymmetric broad emis-
sion lines. Ferland et al. (1979) also proposed that a stronger
red wing can be explained by the self absorption of the line
radiation in an expanding BLR with optically thick clouds.
Raine & Smith (1981) established a disk BLR model illumi-
nated by the scattered radiation from the wind, which can yield
slight asymmetric line profiles. The double-peaked asymmet-
ric line profiles can be explained by a relativistic Keplerian
disk (Chen et al. 1989). Eracleous et al. (1995) interpreted the

A26, page 13 of 23



Du, P. and Wang, J.-M.: A&A 671, A26 (2023)

−200 0 200
−200

−100

0

100

200

Y
(l

t−
d

ay
s)

0◦

45◦
90◦

135◦

Ξ(0.60, 0.15) [Smax = 0.2]

−5000 0 5000
0

50

100

150

200

T
im

e
(d

ay
s)

ϕlos = 0◦

−5000 0 5000

ϕlos = 45◦

−5000 0 5000

ϕlos = 90◦

−5000 0 5000

ϕlos = 135◦

−200 0 200

X (lt−days)

−200

−100

0

100

200

Y
(l

t−
d

ay
s)

0◦

45◦
90◦

135◦

Ξ(1.00, 0.15) [Smax = 0.2]

−5000 0 5000

Velocity (km/s)

0

50

100

150

200

250

T
im

e
(d

ay
s)

ϕlos = 0◦

−5000 0 5000

Velocity (km/s)

ϕlos = 45◦

−5000 0 5000

Velocity (km/s)

ϕlos = 90◦

−5000 0 5000

Velocity (km/s)

ϕlos = 135◦

Model B (m = 2) − Case I

−200 0 200
−200

−100

0

100

200

Y
(l

t−
d

ay
s)

0◦

45◦
90◦

135◦

Ξ(2.00, 0.20) [Smax = 0.2]

−5000 0 5000
0

50

100

150

200

250

300

T
im

e
(d

ay
s)

ϕlos = 0◦

−5000 0 5000

ϕlos = 45◦

−5000 0 5000

ϕlos = 90◦

−5000 0 5000

ϕlos = 135◦

−200 0 200

X (lt−days)

−200

−100

0

100

200

Y
(l

t−
d

ay
s)

0◦

45◦
90◦

135◦

Ξ(1.20, 0.20) [Smax = 0.2]

−5000 0 5000

Velocity (km/s)

0

50

100

150

200

250

300

T
im

e
(d

ay
s)

ϕlos = 0◦

−5000 0 5000

Velocity (km/s)

ϕlos = 45◦

−5000 0 5000

Velocity (km/s)

ϕlos = 90◦

−5000 0 5000

Velocity (km/s)

ϕlos = 135◦

Model B (m = 2) − Case II

Fig. 9. Velocity-delay maps of Model B (m = 2) in Cases I and II. The contents of the panels is the same as in Fig. 9.

double-peaked profiles whose red peak is stronger than the blue
one as an elliptical BLR disk, which is contrary to the predic-
tion of a relativistic disk. More recently, Storchi-Bergmann et al.
(2003, 2017), and Schimoia et al. (2012) proposed that the spi-
ral arms can explain the double-peaked, asymmetric line pro-
files and their variations, but this was based on mathemati-
cal models that presume the analytical forms of the perturba-
tion rather than a physical model such as in the present paper.
In addition, the asymmetries of the line profiles can also be
attributed to supermassive binary black holes (e.g., Shen & Loeb
2010; Bon et al. 2012; Li et al. 2016; Ji et al. 2021). The
physical model of density waves in this paper can produce
the double-peaked and asymmetric line profiles shown in
Figs. 4 and 5.

More importantly, if the emissivity distributions of the mean
and rms spectra are different (this is always the case in obser-
vations), the line profiles of the mean and rms spectra in the
BLR spiral-arm models of the present papers can naturally pro-
duce very different asymmetries. For instance, the mean spec-

trum has a blue asymmetry but the rms spectrum has a red
asymmetry, or one is generally symmetric but the other is sig-
nificantly asymmetric (see Figs. 4 and 5). In observations, the
mean and rms spectra in many objects have very different line
asymmetries (e.g., Mrk 202, Mrk 704, 3C 120, NGC 2617,
NGC 3227, NGC 3516, NGC 4151, NGC 4593, NGC 5548,
NGC 6814,SBS 1518+693 in Peterson et al. 1998; Bentz et al.
2009; Denney et al. 2009; Grier et al. 2012; Barth et al. 2013;
Fausnaugh et al. 2017; Du et al. 2018b; De Rosa et al. 2018;
Brotherton et al. 2020). The BLR model with spiral arms is a
very promising mechanism that can easily explain the differ-
ences in the line profiles between the mean and rms spectra of
RM campaigns.

Fitting the observed mean or rms line profiles with the
present model is beyond the scope of this paper. We simply select
some line profiles from our Models A and B (without any fine-
tuning), and then discover that it is easy to find some observed
rms spectra that have almost the same profiles as these models.
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Fig. 10. Velocity-resolved lags. The blue and orange lines correspond to Models A and B (m = 1), respectively. The reprocessing coefficients and
LOS azimuthal angles are marked in each panel.

Some simple comparisons between the profiles of models and
observations are provided in Fig. 11.

The vertical radiation pressure may drive some gas flow
from the disk surface (e.g., Wang et al. 2012; Czerny et al. 2017;
Elvis 2017). This potential gas flow may contribute some veloc-
ity broadening or extra blueshift asymmetry to the line profiles
(may also influence the velocity-resolved lags and velocity-delay
maps). This effect will be considered in more detail in the future.

5.2. Velocity-delay map of NGC 5548 and implications for
BLR spiral arms

The high-quality velocity-delay maps of the Hβ-emitting region
in NGC 5548 have been successfully reconstructed by the max-
imum entropy method in two RM campaigns in 2014 and 2015,
and are presented in Horne et al. (2021) and Xiao et al. (2018b),
respectively. The two maps in 2014 and 2015 are very simi-
lar, and both of them show traditional bell-like envelopes with
bright elliptical rings, which are a typical signature of a sim-
ple Keplerian disk. However, the responses at the red veloci-
ties (∼2000 km s−1) and long time lags (∼30 days) are weaker
than the other parts in both of the two maps (Horne et al. 2021
refers to this as an incomplete ellipse). Xiao et al. (2018b) sug-

gested that this weak response is due to the inhomogeneity of
the outer part of the BLR in NGC 5548. In addition, Horne et al.
(2021) presents a helical “barber-pole” pattern in the C iv line
of NGC 5548, which also implies the potential existence of some
azimuthal structures in the BLR.

The spiral arms stimulated from the self-gravity instabil-
ities are probably the physical origin of the weak response
(incomplete ellipse) in the velocity-delay map of NGC 5548.
The velocity-delay map produced by Model A with µU = 0.60,
σ̃U = 0.10 (or µU = 1.00, σ̃U = 0.10), and ϕlos = 90◦ (shown in
Fig. 6) has a similar weak response at red velocities and long
time lags (incomplete ellipse). We will carry out detailed fit-
ting to the velocity-delay map of NGC 5548 with the spiral-arm
model in a separate paper in the future.

5.3. Changes of emission-line profiles and velocity-resolved
lags: Arm rotation, changes in emissivity or responsivity,
or instabilities of spiral arms

The real part of eigenvalues ω represents the rotation speed
of the spiral arms, and depends on Mdisk/M•, Q̄, Rout/Rin,
and the inner and outer radii. We provide the values of ω in
Figs. 1–3. The timescale 2π/ω over which the arms rotate
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Å
−

1
)

De Rosa et al. (2018)

NGC 5548 (rms)

−4000 −2000 0 2000 4000

0.0

0.2

0.4

0.6

0.8

1.0
ϕlos = 180◦

Model A (1.20, 0.05) [Smax = 0.10]

−4000 −2000 0 2000 4000

Velocity (km/s)

0.0

0.1

0.2

0.3

Bentz et al. (2009)

NGC 6814 (rms)

−2500 0 2500

0.0

0.2

0.4

0.6

0.8

1.0
ϕlos = 0◦

Model A (1.20, 0.04) [Smax = 0.18]

−5000 0 5000

Velocity (km/s)

0.0

0.1

0.2

0.3

Fausnaugh et al. (2017)

NGC 2617 (rms)

−5000 −2500 0 2500 5000

0.0

0.2

0.4

0.6

0.8

1.0
ϕlos = 270◦

Model A (2.00, 0.05) [Smax = 0.10]

−5000 0 5000

Velocity (km/s)

0.0

0.2

0.4

0.6

0.8

1.0

Barth et al. (2013)

NGC 4593 (rms)

Fig. 11. Some examples of the comparisons between the emission-line profiles generated from the models and observed in RM campaigns. The
upper panels are the models, and the lower are the observed rms spectra extracted directly from the references marked in the lower left corners.
The models, the parameters (µU , σ̃U , and S max), and the LOS azimuthal angles are marked in the lower left and upper right corners in the upper
panels. The names of the objects are provided in the lower panels.

360◦ spans from ∼70 years to ∼110 years for the cases with
Mdisk/M• = 0.8 in the present paper. However, as shown in
Figs. 4, 5, and 10, the emission-line profiles and the velocity-
resolved lags (or even velocity-delay maps) can vary signif-
icantly if ϕlos changes by 90◦. Thus, observers will discover
that the emission-line profiles and the velocity-resolved lags
(or even velocity-delay maps) change significantly in ∼20−30
years if the BLR has similar parameters to those adopted here
(M• = 108M� and Ṁ = 1.0). Even if the parameters are differ-
ent and the spiral arms prefer a different mode (see Appendix A),
the timescale can decrease further (to less than ∼10 years). From
Appendix A, the real part of ω is generally on the order of
(GM•/R3

out)
1/2 (or larger than (GM•/R3

out)
1/2 by factors of a few),

where (GM•/R3
out)

1/2 is the Keplerian rotation frequency at the
outer radius of the disk. The rotation timescale may be roughly
∝(L3/2/M•)1/2 ∝ M1/4

• Ṁ 3/4. Therefore, the rotation timescale
may be smaller if the accretion rate and BH mass are smaller.

In observations, the emission-line profiles (mean or rms) and
the velocity-resolved time lags have shown significant changes
between two campaigns several to ten years apart. For instance,
the line profile in the rms spectrum of NGC 3227 was sym-
metric and double-peaked in 2007 (Denney et al. 2009), but
became asymmetric and single-peaked (the peak is redshifted)
with a strong blue wing in 2017 (Brotherton et al. 2020); its
velocity-resolved lags changed from shorter in the blue veloc-
ities and longer in the red ones to vice versa from 2007 to
2017 (Denney et al. 2009; Brotherton et al. 2020). The velocity-
resolved lags of NGC 3516 changed from longer in the blue
and shorter in the red to vice versa (to some extent) from 2007
to 2012 (Denney et al. 2009; De Rosa et al. 2018), and changed
back in 2018–2019 (Feng et al. 2021). Considering their smaller
black hole masses, the timescales of these changes are generally
consistent with the rotation timescale of the density waves. The
spiral arms in BLRs are probably a very natural explanation for

such quick changes. In particular, some of the periodic variations
in the line profiles (or in the velocity-resolved lags or velocity-
delay maps in future observations) can probably be explained by
the spiral arms. Future detailed modeling will reveal the surface
densities and azimuthal angles of the spiral arms in those objects.

Furthermore, if the continuum luminosities vary, the emissiv-
ity or responsivity distributions may change accordingly because
of the photoionization physics (e.g., µU , σ̃U may be different). In
this case, the line profiles, velocity-resolved lags, and velocity-
delay maps can show significant changes within even shorter
timescales (light-traveling timescale). Therefore, it must be cru-
cial to monitor an object (especially the ones with large varia-
tions, or even changing-look AGNs) repeatedly in different lumi-
nosity states.

Finally, the instabilities of spiral arms could also be an origin
of the short timescales of the changes in the emission-line pro-
files (single-epoch, mean, or rms) and the velocity-resolved lags.
The growth rates can be comparable to the Keplerian timescales
at the outer radii, especially for Model A (for Model B, the
growth timescale is longer than the Keplerian timescale by fac-
tors of a few to ten; see Figs. A.1–A.3 in Appendix A), which
means that the timescales of the instabilities for spiral arms
can be relatively short. As mentioned above, the line profiles
and the velocity-resolved lags can change within a period as
short as .10 years (e.g., NGC 3227, NGC 3516). In addition,
the line profiles (single-epoch, mean, or rms spectra) of some
objects (e.g., Mrk 6 in Doroshenko et al. 2012 and Du et al.
2018b; 3C 390.3 in Sergeev 2020 and Du et al. 2018b) also show
obvious changes, but over longer timescales of ∼20−30 years.
The instabilities of spiral arms could also be a possible expla-
nation for those changes. However, it should be noted that the
growth timescale is still significantly longer than the rotation
timescale (see Figs. A.1–A.3), and therefore the changes caused
by the instabilities of arms may be slower than those caused by
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the rotation. Moreover, the changes caused by the instabilities
should be more chaotic, but those caused by the rotation should
be ordered and probably periodic.

5.4. Observational tests in the future

As shown above, directly searching the spiral-arm signatures
from the velocity-delay maps and emission-line profiles in RM
campaigns is a very promising way to identify the spiral arms
in BLRs. Recently, the trend in RM campaigns is to focus
on a specific subclass of AGNs in order to investigate their
unique properties; for example, the “Monitoring AGNs with
Hβ Asymmetry” (MAHA) project targets AGNs with asymmet-
ric Hβ emission lines (Du et al. 2018b; Brotherton et al. 2020;
Bao et al. 2022). We may identify some BLRs with spiral arms
from the velocity-delay maps or emission-line profiles in the
MAHA project in the future. In addition, it is also promising to
search for candidate spiral-arm BLRs from some spectroscopic
samples of AGNs with asymmetric emission-line profiles (e.g.,
Eracleous et al. 2012).

Furthermore, RM of some AGNs with very large flux varia-
tions may be helpful. The velocity-delay maps of the same object
at high and low states can probe different radii of its BLR (high
state for larger radius and low state for smaller radius), and will
provide better constraints on the spiral-arm pattern.

5.5. Roles of parameters Q and Mdisk/M•

In Sect. 3, we show that the spiral arms wind more loosely if
the Toomre parameter Q and the mass ratio Mdisk/M• are larger.
This phenomenon is easy to understand. The dispersion relation
of the gravitational instabilities can be expressed, in its low-
est approximation, as (ω − mΩ)2 = κ2 + (ka0)2 − 2πGσ0|k|,
where k is the wave number (Lin & Lau 1979). The waves are
trailing if k < 0. The solution of the dispersion relation is
k = −k0[1 ±

√
1 − Q2(1 − ν2)], where k0 = κ2/πGσ0Q2. Con-

sidering that Mdisk/M• is proportional to σ0, the wave num-
ber |k| decreases and the wavelength increases (arms wind more
loosely) if Q and Mdisk/M• are larger.

5.6. Linear analysis and σ1/σ0

As a first step, we adopted the linear analysis to describe the
density wave in disk-like BLRs and neglect the viscosity in
the present paper for simplicity. The absolute amplitude of σ1
cannot be directly deduced from Eq. (8) and is freely scalable
(the solution of Eq. (18) can be S ∗l or CS ∗l with an arbitrary
constant C). In more realistic calculations, the dissipation pro-
cesses, such as shocks, nonlinear growth of perturbations, or
viscous stress, should be taken into account. On the one hand,
the dissipation can lead to deposition of the angular momentum
carried by a density wave to the disk, which may also induce
changes in the surface density of the disk. On the other hand,
the absolute amplitude of σ1 may be determined if the growth of
the perturbation becomes saturated by the dissipation processes
(e.g., Laughlin & Rozyczka 1996; Laughlin et al. 1997). These
effects are not included in the equations of motion presented
here (Eqs. (5) and (6)) or in the normal mode matrix equation
(Eq. (18)), and will be considered further in the future.

5.7. Accretion driven by spiral arms

The dimensionless accretion rate Ṁ is only used to determine
the continuum luminosity, hence the inner and outer radii, and

the appropriate reference parameters for Ξ in Table 2. We mainly
focus on the spiral arms in BLRs, which typically span from
103Rg to 105Rg. The UV/optical continuum luminosity comes
from the more inner accretion disk (.103Rg), which could be in
the Shakura & Sunyaev regime (Shakura & Sunyaev 1973). Dis-
cussing the angular momentum transfer in detail is beyond the
scope of this paper. However, we can roughly evaluate whether
or not the accretion rate driven by the spiral structures in these
regions is sufficient for the accretion in the inner disk.

In a viscous thin disk with quasi-Keplerian rota-
tion, the radial velocity induced by a viscosity νvis
(Lynden-Bell & Pringle 1974) can be expressed as

u =

[
σ0R

∂ΩR2

∂R

]−1
∂

∂R

[
σ0νvisR3 ∂Ω

∂R

]
∼ αa0

H
R
, (27)

where νvis = αa0H is an effective “alpha”-type viscosity,
α is the viscosity parameter, and H is the thickness of the
disk. The mass-accretion rate can be obtained with Ṁ• =
2πRuσ0. The global spiral arms may redistribute the disk mate-
rial and be described in terms of a diffusive process with
an effective viscosity αeff (Laughlin & Rozyczka 1996). αeff

is on the order of 0.01 (especially in the nonlinear regime;
see e.g., Laughlin & Bodenheimer 1994; Laughlin & Rozyczka
1996; Lodato & Rice 2005). We checked that, with such a αeff ,
the disk properties assumed in the present paper (σ0, a0, H, and
Ω) can very easily support the accretion with Ṁ ∼ 1.

5.8. Vertical structures and possible influences

Given the sound speed a0 and rotation curve Ω, the thickness of
the disk is H/R ∼ R1/8 and H/R ∼ R1/4 for Models A and B,
respectively. This means that the geometry of the disk is “bowl-
shaped” (concave, see Starkey et al. 2023). Such a geometry can
enable the disk to be illuminated by the ionizing photons from
the inner region.

With surface density (σ1) variations, the disk thickness is
also likely to modulate. The wave crest of the arm may be more
strongly irradiated by the ionizing photons because it protrudes
from the disk surface. On the contrary, the wave trough may be
more weakly irradiated. Therefore, the asymmetries of the line
profiles and velocity-resolved lags could be stronger, as could
the subfeatures in the velocity-delay maps. A sophisticated treat-
ment of the vertical structures and of the corresponding influ-
ences on the observation is needed in the future.

5.9. Boundary conditions

In this paper, we adopt the same boundary conditions as
in Adams et al. (1989) for simplicity. Noh et al. (1991) and
Chen et al. (2021) investigated the influence of boundary con-
ditions on the pitch angles, pattern speeds, and growth rates of
spiral arms in protoplanetary disks. These authors tried reflecting
and transmitting boundaries in addition to the boundary condi-
tions of Adams et al. (1989), and found that the boundary con-
ditions mainly influence the growth rates but have little effect on
the pitch angles and pattern speeds of the arms (the differences
are .10% for different boundary conditions). Noh et al. (1991)
and Chen et al. (2021) indicate that adopting the boundary con-
ditions of Adams et al. (1989) is sufficient to demonstrate the
general reverberation properties of the BLR arms. In the future,
the boundary conditions may be revised by comparing the mod-
els with the real observations.
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6. Summary

There is growing evidence that some BLRs are inhomogeneous
and have substructures. The radii of BLRs measured by RM are
consistent with the self-gravitating regions of accretion disks,
which implies that the spiral arms excited by the gravitational
instabilities may at least exist in the disk-like BLRs. In this
paper, we calculate the surface densities of the spiral arms in
BLRs for two typical configurations (referred to here as Models
A and B) with different parameters using the density wave the-
ory. We find that more massive disks (larger disk-to-SMBH mass
ratios) with larger Toomre parameters tend to have more loosely
wound arms (more significant in observations). In comparison
with Model A, the spiral arms of Model B are more “banana”-
like.

We present the emission-line profiles, velocity-delay maps,
and velocity-resolved lags for the cases of loosely wound spi-
ral arms (in more massive BLR disks). For m = 1 spiral arms,
the emission-line profiles and velocity-resolved lags show sig-
nificant asymmetries, and the velocity-delay maps are asym-
metric and show complex substructures (bright arcs or strips).
For m = 2 spiral arms, the emission-line profiles and velocity-
resolved lags are symmetric, but the velocity-delay maps are also
asymmetric and show complex substructures. The spiral arms in
BLRs can easily explain some of the phenomena seen in obser-
vations:

– For the same object, the mean and rms spectra in RM obser-
vations can have very different asymmetries. The rms spectra
always have different widths compared to the mean spectra
in RM campaigns, which implies that the emissivities and
responsivities of the invariable and variable parts in BLRs are
different. Considering the different emissivities and respon-
sivities, the calculations in the present paper show that the
spiral arms in BLRs can naturally produce differently asym-
metric line profiles in the mean and rms spectra of the same
object without any further special assumptions.

– Our models can generate almost the same emission-line pro-
files as those seen in observations (rms spectra).

– The spiral arms in the disk-like BLRs can produce com-
plex features such as bright arcs or strips, and are proba-
bly the physical origin of the relatively weak response region
(incomplete ellipse) in the velocity-delay map of NGC 5548.

– The timescale over which the spiral arms rotate ϕlos ∼ 90◦
(which can significantly change the line profiles or velocity-
resolved lags) can be as short as .10 years. The rotation of
the spiral arms can explain the rapid changes of the asymme-
tries in the emission-line profiles, the velocity-resolved lags,
or even velocity-delay maps between RM campaigns several
to ten years apart. Furthermore, some of the periodic varia-
tions in the line profiles (or in the velocity-resolved lags or
velocity-delay maps in future observations) can probably be
explained by the rotation of the BLR spiral arms.

– The line profiles, velocity-resolved lags, and velocity-delay
maps can show significant changes within short timescales
(light-traveling timescale) if the continuum varies signifi-
cantly.
We show the emission-line profiles, velocity-delay maps, and

velocity-resolved lags calculated from the model of spiral arms
in BLRs in this paper. Sophisticated fitting of observations to
spiral-arm models will help to reveal the detailed geometry and
kinematics of BLRs in the future.
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Appendix A: Eigenvalues

A.1. Eigenvalues of Models A and B with m = 1
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Fig. A.1. Eigenvalues of the spiral arms (m = 1) for Model A. The real and imaginary parts of ω are both in units of (GM•/R3
out)

1/2. The six panels
in the upper left corner are the eigenvalues for more massive disks (Mdisk/M• = 0.8), and the six panels in the lower right corner are those for
less massive disks (Mdisk/M• = 0.2). The values of Q̄, Mdisk/M•, and Rout/Rin are marked on the top of each panel. The eigenvalue adopted in the
present paper is marked in orange in each panel, and its value is also provided in the same panel.
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Fig. A.2. Eigenvalues of the spiral arms (m = 1) for Model B. Similar to Figure A.1, the real and imaginary parts of ω are both in units of
(GM•/R3

out)
1/2. The six panels in upper left corner are the eigenvalues for more massive disks (Mdisk/M• = 0.8), and the six panels in lower right

corner are those for less massive disks (Mdisk/M• = 0.2). The values of Q̄, Mdisk/M•, and Rout/Rin are marked on the top of each panel. The
eigenvalue adopted in the present paper is marked in orange in each panel, and its value is also provided in the same panel.
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Here we present the eigenvalues of Models A and B with
m = 1 in Figures A.1 and A.2. For each set of parameters, there
is more than one eigenvalue and more than one solution (mode).
The excitation and the evolution of the modes (which mode will
finally dominate) are not fully understood (Bertin et al. 1989).
We adopt the mode that has the lowest order (with significant
growth rate), because they will span the largest radial range
and can grow at a relatively high rate (e.g., Adams et al. 1989;
Chen et al. 2021). For consistency, we select the same mode
for the same disk-to-SMBH mass ratio (Mdisk/M•) in order to
demonstrate how the spiral-arm pattern evolves if the other
parameters change, but have checked that it does not change
the main conclusions in the present paper if we adopt the other

nearby mode. For instance, the lowest mode becomes significant
if Mdisk/M• = 0.8, Q̄ = 1.5, and Rout/Rin = 20 in Model A (see
Figure A.1). We select the mode with the highest growth rate
rather than the lowest mode (see Figure A.1). For Model B, the
lowest modes do not have the highest growth rate. We adopt the
lowest mode with significant growth rate (also keep selecting the
same mode for the same disk-to-SMBH mass ratio).

A.2. Eigenvalues of Models A and B with m = 2

The eigenvalues of Models A and B with m = 2 are shown in
Figure A.3. Similarly, we tend to select the lowest mode with
significant growth rate.
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Fig. A.3. Eigenvalues of the spiral arms (m = 2) for Models A and B. The real and imaginary parts of ω are both in units of (GM•/R3
out)

1/2. The
values of Q̄, Mdisk/M•, and Rout/Rin are marked on the top of each panel. The eigenvalue adopted in the present paper is marked in orange in each
panel, and its value is also provided in the same panel.
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Appendix B: Matrixes in Numerical Method

The details of the numerical method for solving the gov-
erning integro-differential equation (Eqn 8) are provided in
Adams et al. (1989). However, the coefficients in the matrixes
W (0), W (1), W (2), W (3), W (4), W (5) regrouped from Wik are not
provided (see Eqn B12 in Adams et al. 1989). In this section,
we demonstrate the coefficients of these matrixes. The same
nomenclatures as Adams et al. (1989) are adopted here, except
the radius, the mass of central object, and the mass of disk are
R, M•, Mdisk in the present paper and r, M∗, MD in Adams et al.
(1989), respectively. The matrixes W (0), W (1), W (2), W (3), W (4),
W (5) can be expressed as

W (0) = F (0),

W (1) = F (1),

W (2) = F (2) + G (0),

W (3) = F (3) + G (1),

W (4) = −C(4)
2

κ2R
2πGσ0

δik + G (2),

W (5) = −C(5)
2

κ2R
2πGσ0

δik + G (3),

(B.1)

where

F (n) =
{
CnD

(2)
i j +

[
C(n)

A + Cn
[
2(1 − p) − 1

]]
D (1)

i j

+
[
C(n)

B + C(n)
A (1 − p) + Cn p(p − 1)

]
δi j

}
I jk

+
1

ΣR

{
CnD

(2)
ik +

[
C(n)

A −Cn(2q + 1)
]
D (1)

ik

+
[
C(n)

B −C(n)
A q + Cnq(q + 1)

]
δik

}
−C(n)

2
κ2R

2πGσ0
δik, n = 0, 1, 2, 3,

(B.2)

and

G (n) = δ1m

(
C(n)

A + C(n)
B

) R3

2G(M• + Mdisk)
Jik, n = 0, 1, 2, 3.

(B.3)

D (1)
i j and D (2)

i j are the first- and second-order deriva-
tives expressed in matrix form, see Eqn (B4a) and (B4b) in
Adams et al. (1989). I jk and Jik are two matrixes that perform
integrals, see also the appendix in Adams et al. (1989). The coef-
ficients in Eqn (B.1), (B.2), and (B.3) are

C0 =
m3Ω3 − mΩκ2

κ3 ,

C1 =
κ2 − 3m2Ω2

κ3 ,

C2 =
3mΩ

κ3 ,

C3 = −
1
κ3 ,

(B.4)

C(0)
A = C0D

(1)
i j

[
log(σ0R)

]
j +

mΩ

κ3 D (1)
i j (κ2) j −

2m3Ω2

κ3 D (1)
i j Ω j,

C(1)
A = C1D

(1)
i j

[
log(σ0R)

]
j −

1
κ3 D (1)

i j (κ2) j +
4m2Ω

κ3 D (1)
i j Ω j,

C(2)
A = C2D

(1)
i j

[
log(σ0R)

]
j −

2m
κ3 D (1)

i j Ω j,

C(3)
A = C3D

(1)
i j

[
log(σ0R)

]
j ,

(B.5)

C(0)
B = −m2C0 −

4m3Ω2

κ3 D (1)
i j Ω j +

4m3Ω3

κ4 D (1)
i j κ j

+
2mΩ

κ3

(
κ2 − m2Ω2

)
D (1)

i j

(
log

κ2

Ωσ0

)
j
,

C(1)
B = −m2C1 +

4m2Ω

κ3 D (1)
i j Ω j −

8m2Ω2

κ4 D (1)
i j κ j

+
4m2Ω2

κ3 D (1)
i j

(
log

κ2

Ωσ0

)
j
,

C(2)
B = −m2C2 +

4mΩ

κ4 D (1)
i j κ j −

2mΩ

κ3 D (1)
i j

(
log

κ2

Ωσ0

)
j
,

C(3)
B = −m2C3,

(B.6)

and

C(0)
2 = −

mΩ

κ
+

2m3Ω3

κ3 −
m5Ω5

κ5 ,

C(1)
2 =

1
κ
−

6m2Ω2

κ3 +
5m4Ω4

κ5 ,

C(2)
2 =

6mΩ

κ3 −
10m3Ω3

κ5 ,

C(3)
2 = −

2
κ3 +

10m2Ω2

κ5 ,

C(4)
2 = −

5mΩ

κ5 ,

C(5)
2 =

1
κ5 .

(B.7)

The first and last rows of the matrixes W (0) to W (5) are deter-
mined by the boundary conditions, and only have the terms of 0
to 3 orders. The inner boundary conditions are

W (0)
1k =

[
−mΩD (1)

1 j + (p − 3)mΩδ1 j

]
I jk

+
1

ΣR

[
−mΩD (1)

1k + (q − 2)mΩδ1k

]
,

W (1)
1k =

[
D (1)

1 j + (1 − p)δ1 j

]
I jk +

1
ΣR

(
D (1)

1k − qδ1k

)
,

W (2)
1k = −

3δ1mΩR3

2G(M• + Mdisk)
J1k,

W (3)
1k =

δ1mR3

2G(M• + Mdisk)
J1k.

(B.8)

The outer boundary conditions are

W (0)
Nk =

[
−mΩD (1)

N j + (p − 3)mΩδN j

]
I jk

+
1

ΣR

[
−mΩD (1)

Nk + (q − 2)mΩδNk

]
+ C0

κ3R
2πGσ0 p

δNk,

W (1)
Nk =

[
D (1)

N j + (1 − p)δN j

]
I jk +

1
ΣR

(
D (1)

Nk − qδNk

)
+ C1

κ3R
2πGσ0 p

δNk,

W (2)
Nk = C2

κ3R
2πGσ0 p

δNk −
3δ1mΩR3

2G(M• + Mdisk)
JNk,

W (3)
Nk = C3

κ3R
2πGσ0 p

δNk +
δ1mR3

2G(M• + Mdisk)
JNk.

(B.9)
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