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ABSTRACT

We define a new reduced model to represent coloured images.

We propose to use two components for a full definition of a

colour instead of three. To that end we take advantage of the

geometrical structure of the HCL conical colour space and ap-

proximate its circular base by a spiral. We thus write chroma

as a function of hue. The resulting spiral is therefore defined

by one parameter only. This parameter is then combined with

luminance in order to represent all the colour information.

Our experiments show that our proposed model ensures an

accurate representation of coloured digital images. Further-

more, it preserves the perceptual properties of the original

HCL representation.

Index Terms— Colour space, RGB model, colour trans-

form, hue, chroma, luminance, Archimedean spiral.

1. INTRODUCTION

Colour analysis is a low-level operation which plays an im-

portant role in image processing algorithms such as classi-

fication, feature extraction or pattern recognition. Although

there is a variety of colour spaces for colour representation,

for instance RGB (red, green, blue), HSV/HSL (hue, satu-

ration, value or luminance), or L*a*b* (luminance L*, op-

ponent colour axes a*, and b*) [1, 3, 7], to name a few, all

of them require three components to describe all the possible

colours. In other words, all colour spaces are represented in

three dimensions. This means that three independent chan-

nels are needed to process one coloured image. For instance,

in the RGB model, a coloured image is represented with three

images where each one contains the amount of each primary

colour, i.e., red, green, and blue, at each image pixel. In

many image processing techniques, these 3-D colour repre-

sentations suppose a problem due to restrictions in process-

ing time and memory requirements. This is why most im-

age processing techniques operate on one grayscale image in-

stead of three channels, where the grayscale image is defined

as a linear combination of the red, green, and blue channels.

This combination leads to a non-unique representation of the

F. Garcia was supported by the AFR Grant Scheme (Aides à la
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true colours, which may cause serious artefacts such as miss-

ing features, bad image matching, or non-detection of salient

points.

Consequently, a more accurate processing of images, re-

quires calling upon their true colours, and using three com-

ponents. Indeed, most algorithms have their definitions ex-

tended to three channels such as bilateral filtering [4], im-

age sharpening and denoising [2], image enhancement [10],

colour image segmentation [8], etc. The choice of a colour

space model over another is often motivated by using a more

perceptually meaningful representation that usually defines a

more discriminative distance between colours. Such a repre-

sentation is shown to be conic as opposed to the cubic RGB

model. Many models fall under the conic geometry such as

HCV (hue, chroma, value), and lately the HCL colour space

where L is for luminance [6].

In what follows, we propose to reduce the complexity of

processing three channels by compactly storing the same in-

formation in just two channels. To that end, we exploit the

geometrical structure of 3-D conical colour spaces and show

how to accurately define one parameter as a function of an-

other parameter defining the solid cone.

The organisation of the paper is as follows: In Section 2,

we present the problem of reducing the dimensionality of a

colour space. We then give the necessary background on the

HCL model in Section 3. In Section 4, we define our new

2-D colour space and present its conversion from and to the

RGB space. We present, in Section 5, the experimental results

and evaluate approximation errors associated with our model.

Finally, we give our conclusions and plans for future research

in Section 6.

2. PROBLEM STATEMENT

Any colour can be fully defined by three components. Thus in

the standard RGB model, for instance, a pixel on a coloured

image is defined by its colour p = (r, g, b), where p is a

point in the RGB cube shown in Fig. 2(a). The three axes R,

G, and B on the cube correspond to the primary red, green,

and blue colours, respectively. Since today’s vision applica-

tions require a fast processing of images, coloured images are

usually converted to grayscale images. An image pixel is then

defined by one scalar value v, which is a linear combination
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Fig. 1: Top view of a box on a table: (a) Coloured image. (b)

Grayscale image. (c) Sobel filter applied on (b).

of the coordinates of p, i.e., v = 0.30r + 0.59g + 0.11b. As

a result, many colours get collapsed to the same scalar value.

Consequently, simple colour-based processing operations be-

come inaccurate. The example in Fig. 1 illustrates the case

where two distinct colours (shades of yellow and gray) be-

come indistinguishable on a grayscale image. A classical So-

bel filter fails in detecting the top edge of the box (Fig. 1(c)),

while we can clearly see it on the coloured image in Fig. 1(a).

The objective of this work is to define a colour model that

is almost as reduced as the grayscale representation, but pre-

serving all the colour information contained in 3-D spaces. In

other words, we want to define a model that is in 2 dimen-

sions, or less, and that is still reversible from and to the RGB

colour cube.

3. TRANSFORMATION FROM RGB TO HCL

In addition to the above mentioned properties, our colour

model should also bring in a perceptual meaning. This last

property will be important when computing the distance

between colours for pattern recognition purposes. To that

end, we base our work on the conic HCL model shown in

Fig. 2(c) [6]. We define in what follows the HCL model and

relate it to the RGB cube as it will be a transition step in con-

verting our proposed model to RGB space and vice versa. The

projection of the RGB cube onto a regular hexagon Ψ in the

chromaticiy plane defines the chroma C and hue H related to

R, G, and B (Fig. 2b). Let p′ be the projection of a point p in

the RGB cube on Ψ and o be the origin of Ψ. Geometrically,

the chroma component c along C, of p, is the length of
−→
op

′

relative to the maximal radius of Ψ passing through p
′. The

hue component h corresponds to the angle formed by
−→
op

′ and
−→
or

′, where r
′ is the projection of the red colour r = (1, 0, 0)

on Ψ. The luminance component l is equal to ||
−−→
pp

′||. This

is equivalent to c = m1 − m2 and l = 1
2 (m1 + m2), where

m1 = max(r, g, b), and m2 = min(r, g, b), and

h =
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Fig. 2: (a) Cubic RGB model projected onto a regular

hexagon in the chromaticity plane. From (b) to (d), warping

from hexagons into circles. (c) Conic HCL model.

In what follows, we propose an approximation of the HCL

space that only requires two parameters for colour descrip-

tion. There are alternative methods such as the proposed by

Vahdat et al. [9], that describe the colour information by two

or even one parameter. However, these methods are mainly

related to data compression or codification and thus it is nec-

essary to uncompress or decode the data to treat it.

4. PROPOSED SPIRAL MODEL

We propose to describe the colour information contained in

the HCL space by approximating the HCL cone using two

parameters, θ and l, instead of using the three coordinates

(c, h, l). We thus keep the luminance value l, and rewrite c
and h as functions of a new variable θ. Our key idea is to

approximate the chromaticity disk with a spiral, as shown in

Fig. 3. Specifically, we choose to use an Archimedean spi-

ral [5] whose radial distance is defined as:

r(θ) :=
a · θ

2π
, (2)

where a is a constant distance between successive turns, and θ
is the polar angle of the spiral, such that θ ∈ [0, 2πK], K being

the total number of turns. We approximate the chromaticity

disk by fitting the spiral to it, such that:

h(θ) = θ + 2πk, (3)

where k ∈ {0, 1, · · · ,K}, and the C − axis is uniformly sam-

pled into (K+1) values ck, with a step equal to a. We note that



Fig. 3: Approximation of a disk by a spiral.

ck is dependent on the hue h, or equivalently of the angle θ.

Thus we define ck(θ) as:

ck(θ) = r(h(θ)) + a · k. (4)

By setting the spiral extremities as the starting point (c0, h0) =
(0, 0), and ending point (cmax, hmax) = (1, 0), and by re-

placing these values in (2) and (3), we find a = 1/K. In the

continuous case, i.e., K → ∞, we may write

c = r(θ) =
θ

2πK
⇒ θ = 2πK · c. (5)

Replacing (5) in (3), we find

k = round

(

K · c−
h

2π

)

, (6)

with round(·) being a rounding function that assigns the near-

est integer value to k. We may now define the transformation

from (c, h) to θ as follows:

θ = h− 2π round

(

K · c−
h

2π

)

. (7)

The inverse transformation from θ to (c, h) is fully defined

by (2), (3), and (4), with k = round
(

θ−θ mod (2π)
2π

)

. Next

step is the conversion from the recovered c and h values to

the initial (r, g, b). We compute an intermediate value x =
c(1−|( 3

π
h) mod 2−1|) to be applied to the following system

of equations:

(r′, g′, b′) =
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3 ,
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3 ≤ h < 2π
3 ,

(0, c, x) if 2π
3 ≤ h < π,

(0, x, c) if π ≤ h < 4π
3 ,

(x, 0, c) if 4π
3 ≤ h < 5π

3 ,
(c, 0, x) if 5π

3 ≤ h < 2π.

(8)

To obtain the point p = (r, g, b) from q = (r′, g′, b′), we

translate q in the R, G and B directions by the minimal dis-

tance m2 defined in Section 3, i.e., (r, g, b) = (r′ +m2, g
′ +

m2, b
′ + m2). We note that the values of m2 may be stored

when extracting c from (r, g, b), or equivalently from m2 =
(l − 1

2c) (see Section 3).

(a) (b) (c)

Fig. 4: (a) Original image (3-channels: R,G,B). (b) Recov-

ered intermediate image (1-channel: Θ). (c) Recovered full

image (2-channels: Θ and L).

5. EXPERIMENTAL RESULTS

We start our experiments by giving an example of a coloured

image represented using our proposed spiral model. We thus

use the RGB image “pepper” from the Amsterdam Library of

Object Images (ALOI)1. We first represent this image using

one channel only, namely, the proposed spiral represented by

Θ , containing the values of θ as defined in (7). The visual

result in Fig. 4(b) shows that the spiral model preserves well

the colour information originally contained in the two chan-

nels C and H . This result is already satisfactory for many

colour-based operations. Moreover, it becomes suitable when

luminance effect is to be removed. When combining Θ with

L components, i.e., using two channels, the recovered image,

shown in Fig. 4(c), is exactly the same as the original one that

was represented with three channels (Fig. 4(a)).

Next, we perform a global evaluation of the spiral model

by testing 100 different coloured images of objects from the

ALOI database. These images are initially in the RGB space.

We transform them to the proposed Θ-L space. Figure 5 plots

the root mean square error (RMSE) between the original and

transformed images. The curves show the RMSE for K vary-

ing from 0 to 300. In addition, we plot also the RMSE for H
and C separately. We see that chroma C suffers much more

than hue H for small values of K. This can be explained by

1http://staff.science.uva.nl/ aloi/

Fig. 5: RMSE between 100 images from the ALOI database

and the transformed ones.



the sampling performed by the spiral along the C-axis, and

not on the angles H . Moreover, we note that as soon as K

reaches 255, the error drops to zero. This is due to the fact

that discrete color components in digital images fall between

0 and 255. This means that there is no need to increase the

sampling beyond K = 255, as it already ensures our model to

represent digital images with high accuracy.

Since many image processing techniques are based on

colour similarity measurements, we propose to check whether

the spiral model Θ along with L preserve the perceptual prop-

erties of the HCL space. We consider the image in Fig. 1,

and use Euclidean distance to measure the dissimilarity be-

tween colours. For this evaluation, we take a yellow pixel

from the box in Fig. 1a as a reference point py. We then

compute the distance between py and all other pixels. Fig. 6

shows the resulting distance images for each colour model,

i.e., grayscale, RGB and Θ-L. Fig. 6a confirms that grayscale

images present almost no discrimination between clearly dis-

tinct colours. In contrast, the distance measurements in the

RGB cube are much more accurate. However, we clearly

see that the distances in the proposed spiral-luminance model

correspond more to human perception, as shades of white

and gray are clustered together, with respect to their dissim-

ilarity with py. These results are confirmed by the distance

histograms in Fig. 6. In the RGB case there are three clus-

ters/modes, which means that similar colours are at different

distances from the reference py. This could be the cause of

many artefacts and errors.

6. CONCLUSION

We have demonstrated that HCL space, or any other 3-D

colour space, can be accurately represented using two chan-

nels only. The dimensionality of any colour analysis problem

can therefore be reduced from three to two dimensions while

the information content remains fully preserved for an ad-

equate sampling rate, i.e., K = 255 in the proposed spiral

model formulation. We plan to further pursue our work to de-

fine one spiral for the approximation of the whole solid HCL

cone. This may lead to colour space dimension reduction

from 3-D to 1-D.
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