
Abstract. This paper discusses theoretical and experimental

results of the investigation of light beams that retain their

intensity structure during propagation and focusing. We de-

scribe a family of laser beams termed spiral whose intensity

remains invariable, up to scale and rotation, during propaga-

tion. Several properties of spiral beams are of practical interest

for laser technologies, medicine, and microbiology. The pro-

blem of synthesis of spiral beams with the intensity distribution

given by an arbitrary planar curve is considered. We emphasize

the feasibility, in principle, of making lasers that directly gen-

erate beams with desired properties without additional uncon-

ventional optics.

1. Introduction

It is well known that the propagation of a light field is a wave

phenomenon and, like any oscillatory process, is character-

ized by a complex-valued amplitude.When the distribution of

a complex field amplitude is defined in some plane, the

subsequent field evolution in the course of its propagation is

described by some differential equation.Hence, it follows that

the light field, generally speaking, undergoes quantitative and

qualitative changes.

However, with the discovery of lasers and the advent of

coherent optics describing the propagation of laser beams, it

was theoretically and experimentally shown that lasers can

radiate light beams that are self-consistent such that they

retain, up to scale, their structure during propagation and

focusing [2]. Such beams are the eigenmodes of laser

resonators, have a strictly defined form, and are described

by two families of special functions with different types of

symmetry: Hermite ±Gauss and Laguerre ±Gauss beams.

The lowest oscillation type in these families is the same and

is the well-known two-dimensional Gaussian function.

Retention of the structure of these beams during their

propagation and focusing may be associated with uniform

tensile ± compressive deformations: convergent and divergent

beams.

This brings up the legitimate question: Is there some

optical analogy to a torsional strain for beams with a

nonuniform divergence or a complicated phase distribution?

It turns out that this analogy is justified owing to the generally

vortical character of the vector field of light energy flux. This

was shown in Refs [3, 4], which were concerned with the

investigation of the interrelation between the energy and

phase properties of a two-dimensional wave field in the

Fresnel zone.

This formulation of the problem is due to the specific

character of the optical range, whereby amenable to

recording is not the complex amplitude of the optical signal

but only its intensity, which is not a complete characteristic

of the light field in general. Traditional interferometric

techniques allow indirect phase measurements. But in a

number of problems, it is impossible or difficult to realize

the interferometric principle of obtaining information on the

complex amplitude or phase of the field. The problem of

recovering the phase information from intensity measure-

ments is known as the phase retrieval problem in optics. This

situation occurs, for instance, in astronomy and in X-ray and

adaptive optics.

In this connection, the problem of how many and what

additional intensity measurements should be made to gain

complete information on the field was investigated in [3, 4].
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Because the field changes during propagation, the natural

problem setting consists in the field reconstruction from the

intensity and the directional derivative taken in the direction

of propagation. A comparative analysis of this problem for

two- and one-dimensional fields revealed a radical difference

between these two cases. It turned out that the problem for a

two-dimensional light field reduces to the reconstruction of

the vector field of light energy flux from its divergence and

curl (the well-known Helmholtz theorem [5]). Therefore, the

field of the light energy flux is generally vortical in character,

the vortical nature of the flux being most pronounced in the

vicinity of zeroes of the complex amplitude, which are

referred to as optical vortices. It is significant that similarly

to the field energy itself, the curl of the light energy flux

vector obeys a conservation law: the integral of the curl's

projection on the direction of propagation is equal to zero in

any plane in the Fresnel zone. As is also shown in Refs [3, 4],

it is impossible to find the vortical component from the

measurements of the intensity and its derivative and,

accordingly, to reconstruct the initial field. At a qualitative

level, this can supposedly be explained as follows. In the one-

dimensional case, a nonzero phase gradient is always

responsible for local intensity changes during propagation

(the energy goes either to the right or to the left), but in the

two-dimensional case, energy circulation due to the vortical

component is possible such that it is not necessarily

manifested in the form of a local intensity change. This

consideration is also supported by the fact that a two-

dimensional field devoid of the vortical component, for

instance, a radially symmetric field, can be reconstructed

from intensity measurements. The variation in such fields

during propagation may in a sense be associated with

tensile±compressive deformations (without torsion).

Optical vortices are zeroes of the complex amplitude of

the light field, at which the phase distribution has singula-

rities. They are termed wavefront dislocations. Initially, this

term was introduced and considered from a geometrical

standpoint by J F Nye and M V Berry [6], who called

attention to the fundamental difference between the zeroes

of the complex amplitude of the wave field in one- and two-

dimensional cases. The meaning of this difference is as

follows. For a one-dimensional field, the locus of the zeroes

of the real and imaginary parts of the complex field amplitude

is a set of points, but for a two-dimensional field, the loci of

the zeroes of the real and imaginary parts are lines. That is

why the behavior of isolated amplitude zeroes becomes

different on small variations (stirs) in the field: in the one-

dimensional case, the zero points of the real and imaginary

parts easily `lose sight' of each other and the amplitude zero

disappears; in the two-dimensional case, the zero lines of the

real and imaginary parts are deformed, but the points of their

intersection, i.e., the isolated amplitude zeroes, remain stable.

The field phase is undefined at the zeroes of its amplitude and

has a helical structure in the vicinity of each zero, while the

circulation of the phase gradient around them is an integer

multiple of 2p. Such isolated points have come to be known as

wavefront dislocations, or phase singularities. The sign of a

wavefront dislocation is determined by the sign of the phase

incursion in going round it.

Of compatriot scientists, B Ya Zel'dovich et al. [7, 8]

placed emphasis on these optical objects. They studied the

density and sign of dislocations in a random light field (a

speckle field). In particular, they showed that the number of

dislocations of either sign in the speckle field is approximately

equal, while the dislocation density is one dislocation per

speckle (i.e., the characteristic average dimension of field

irregularity).

Light fields with phase singularities are being investigated

by the scientific groups of M S Soskin, A V Volyar, and

A Ya Bekshaev. They have investigated the topological

properties of these fields [9 ± 12], the methods for synthesiz-

ing them with the aid of specific holograms [13], the

magnitude and structure of the angular momentum of

beams with phase singularities [14, 15], and the propagation

of vortical beams through few-mode fibers [16]. Of other

publications on this subject, we note Refs [17 ± 25]. Presently,

the area of investigation concerned with such fields is

commonly referred to as singular optics. Three international

conferences have been organized on this subject [26 ± 28].

The nonlinear optics of light fields with wavefront

dislocations is an important branch of singular optics in its

own right, where the fields, while retaining the vortical

character during propagation, typically undergo qualitative

changes. In this review, we discuss only those vortical light

fields in a linear optical medium that are self-similar in

intensity. The nonlinear optics of light beams with phase

singularities has a specific character of its own and deserves a

special review. We nevertheless consider it necessary to

mention Refs [29 ± 37] on this subject.

Taking the vortical component of the vector field of light

energy flux into account, one can extend the notion of

structural stability and investigate the question of the

existence of light fields retaining, up to scale and rotation,

the form of intensity during propagation. This problem is

formulated and investigated in Section 2. Also given in

Section 2 is the complete description of such beams, which

are termed spiral. Section 3 is concerned with the theoretical

and experimental investigation of the feasibility of synthesis

of structurally stable rotating fields with a desired intensity

distribution. Also shown in Section 3 is the application of the

results obtained on the optics of spiral beams to the problem

of the synthesis of phase elements that focus the radiation on

some flat curve. Considered in Section 4 are the issues related

to the angular momentum and other integral invariants of

spiral beams.

2. Spiral laser beams

2.1 Light fields rotating during propagation

Let a coherent light field with a wavelength l be specified by

its complex amplitude F�x; y; l �. We consider the problem of

searching for structurally stable light fields in the paraxial

approximation, i.e., under the assumption that during the

propagation, the field F�x; y; l � varies along x and y much

more weakly than along l. In this case, the l variable is referred

to as the propagation variable and the field evolution is

described by the parabolic equation 1

q2F

qx 2
� q2F

qy 2
� 2ik

qF

ql
� 0 ; �1�

where k � 2p=l is the wavenumber. For a helium ± neon

laser, for instance, l � 0:63 mm, and hence k � 107 mÿ1.

1 This term does not correspond to the mathematical classification of

second-order partial differential equations but is universally accepted in

optics [38].
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It is well known [38, 39] that the fundamental solution of

Eqn (1) is

G�x; y; l � � k

2pil
exp

�

ik

2l
�x 2 � y 2�

�

;

and therefore the solution of the parabolic equation subjected

to the initial condition F�x; y; 0� � F0�x; y� is given by

F�x; y; l � � k

2pil

��

R
2

exp

�

ik

2l

�

�xÿ x�2 � �yÿ Z�2
�

�

� F0�x; Z� dx dZ : �2�

Here, the integral on the right-hand side is termed the Fresnel

transformation of the function F0�x; Z�. The transformation

inverse to transformation (2) also bears the name of Fresnel:

F0�x; Z� � ÿ k

2pil

��

R
2

exp

�

ÿ ik

2l

�

�xÿ x�2 � �yÿ Z�2
�

�

� F�x; y; l � dx dy :

With the use of Fresnel's integral operator, equality (2)

takes the form F�x; y; l � � FRl

�

F0�x; Z�
�

and the inverse

transformation becomes F0�x; Z� � FRÿl

�

F�x; y; l �
�

. Both

formulas are special cases of a more general equality that

relates the complex-valued distributions of the light field F in

the planes l1 and l2:

F�x; y; l2� � FRl2ÿl1

�

F�x; Z; l1�
�

: �3�

For functions F0�x; Z� 2 L2�R2�, the Parseval equality
��

R
2

�

�F�x; y; l �
�

�

2
dx dy �

��

R
2

�

�F0�x; Z�
�

�

2
dx dZ

expresses the energy conservation law for light fields: the total

energy of a light field is constant and independent of the

chosen plane l.

In the subsequent discussion, we use the following

terminology: I�x; y; l � � F�x; y; l �F�x; y; l � is called the inten-

sity and j�x; y; l � � argF�x; y; l � the phase of a function F.

(Hereinafter, the bar denotes complex conjugation.) As a

consequence, the representation of F�x; y; l � in terms of the

intensity and phase is given by

F�x; y; l � �
�����������������

I�x; y; l �
p

exp
�

ij�x; y; l �
�

:

The structural stability condition for the intensity of a

light field rotating during propagation can be written as

I�x; y; l �

� D�l �I0
�

x cos y�l � ÿ y sin y�l �
d�l � ;

x sin y�l � � y cos y�l �
d�l �

�

;

�4�

where y�l � is the dependence of the rotation angle of the

intensity distribution during propagation of the field

F�x; y; l � and d�l � > 0 is the scaling intensity variation. We

define real variables X and Y by the equality

X� iY � �x� iy� exp
�

iy�l �
�

d�l � :

Using the variables X, Y, and l instead of x, y, and l, we

can write the structural intensity stability condition in the

most compact form: the function I0�X;Y� is independent of l.
Applying the energy conservation law allows expressing D�l �
in terms of d�l �:
��

R
2

I�x; y; l � dx dy � D�l �d 2�l �
��

R
2

I0�X;Y� dX dY � const :

Consequently, D�l � � 1=d 2�l �.
Therefore, the problem of searching for structurally stable

light fields F�x; y; l � whose intensity may only rotate or vary

in scale during propagation also requires finding the func-

tions d�l � and y�l � that characterize the behavior of I�x; y; l �
with l.

The starting point in the solution of the above problem is

rewriting Eqn (1) in the real notation. In terms of the intensity

I�x; y; l � and phase j�x; y; l �, this equation is equivalent to

the system

q

qx

�

I
qj

qx

�

� q

qy

�

I
qj

qy

�

� k
qI

ql
� 0 ;

2I

�

q2I

qx 2
� q2I

qy 2

�

ÿ
�

qI

qx

�2

ÿ
�

qI

qy

�2

ÿ4I 2
��

qj

qx

�2

�
�

qj

qy

�2

� 2k
qj

ql

�

� 0 :

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�5�

We substitute expression (4) for the intensity in the first

equation of this system and rewrite it in terms of the variables

X, Y, and l,

HH

�

I0HH

�

jÿ 1

2
k d�l �d 0�l ��X 2 � Y 2�

��

� ky 0�l �d 2�l �
�

X
qI0

qY
ÿ Y

qI0

qX

�

� 0 ;

where HH � �q=qX; q=qY�. We then define the function

j0�X;Y; l � by the equality

j�x; y; l � � 1

2
k d�l �d 0�l ��X 2 � Y 2� � j0�X;Y; l � ;

with the result that the structurally stable light field F�x; y; l �
assumes the form

F�x; y; l � � 1

d�l �
�����������������

I0�X;Y�
p

� exp

�

1

2
ik d�l �d 0�l ��X 2 � Y 2� � ij0�X;Y; l �

�

: �6�

In terms of the variables X, Y, and l and the functions I0 and

j0, system (5) then becomes

HH�I0HHj0� � kd 2�l �y 0�l �
�

X
qI0

qY
ÿ Y

qI0

qX

�

� 0 ;

jHHj0j2 � k2d 3�l �d 00�l ��X 2 � Y 2� � 2kd 2�l � qj0

ql

�2kd 2�l �y 0�l �
�

X
qj0

qY
ÿ Y

qj0

qX

�

ÿ 1

2I0

�

HH 2I0 ÿ
jHHI0j2
2I0

�

� 0 :

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

�7�

The fact that the phase j0, unlike the intensity I0, depends on

all the three variables X, Y, and l does not allow simplifying

nonlinear system (7) and turns the search for its solutions into
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an extremely complicated task. However, under an additional

assumption about the asymptotic behavior of the intensity for

large x 2 � y 2, invoking complex analysis (namely, the results

that relate the properties of functions to the properties of their

Fourier transforms) enables the solution of the problem to be

brought to specific analytic expressions.

2.2 Order of growth and structural form of solutions

The following statement is of significance for the determina-

tion of the form of solutions. Let F�x; y; l � be a solution of

parabolic equation (1) and let it be structurally stable in the

sense specified in (4). For all �x; y� 2 R
2, let the intensity on

the plane l � 0 satisfy the inequality

I�x; y; 0�4C exp
�

ÿA
ÿ

jxja � jyja
��

�8�
for some A > 0, C > 0, and a5 2. Then, the analytic

continuation of F�x; y; l � in the variables x, y is an entire

function of the second order of growth 2 and a � 2. In

particular, there exist no structurally stable light fields

whose intensity decreases faster than the Gaussian function.

To prove this, we rewrite the integral Fresnel transforma-

tion (3) as follows:

F�x; y; l2� �
k

2pi�l2 ÿ l1�
exp

�

ik�x 2 � y 2�
2�l2 ÿ l1�

�

�
��

R
2

exp

�

ÿ ik�xx� yZ�
l2 ÿ l1

�

� exp

�

ik�x 2 � Z 2�
2�l2 ÿ l1�

�

F�x; Z; l1� dx dZ :

This allows us to consider the respective functions F�x; y; l1�
and F�x; y; l2� for arbitrary l1 and l2 as the initial field and its

Fourier transform with some purely phase factor, and vice

versa. As shown in Ref. [42], if f �z;w� is an entire function of

two complex variables that satisfies the inequality

�

� f �x; y�
�

�4C exp
�

ÿA
ÿ

jxja � jyja
��

�9�

for some C > 0, A > 0, and a > 0 for all �x; y� 2 R
2, then

rf 5a.

Furthermore [43], if f �x; y� is a square-integrable function
that satisfies inequality (9) for some C > 0, A > 0, and a > 1,

its Fourier transform

F�x; y� �
��

R
2

exp
�

ÿi�xx� yZ�
�

f �x; Z� dx dZ

is continued to an entire function F�z;w� of two complex

variables z, w and the order of growth of this function does

not exceed a=�aÿ 1�.
Therefore, the structural stability condition for the

solution F�x; y; l � of the parabolic equation implies that the

order of growth of F�x; y; l � must simultaneously satisfy the

conditions a4rF 4 max
ÿ

2; a=�aÿ 1�
�

. Because a5 2, it

follows that a=�aÿ 1�4 2 and the field F�x; y; l � is a

function of the second order of growth. The strict inequality

a > 2 leads to the contradiction 2 < rF 4 2 and thereby

prohibits the existence of structurally stable solutions of the

parabolic equation whose intensity decreases faster than the

Gaussian function.

It is pertinent to note that the question of whether there

exist structurally stable fields whose intensity decreases

slower than the Gaussian function exp
�

ÿA�x 2 � y 2�
�

is still

open,3 and the subsequent discussion is dedicated to

structurally stable solutions of the parabolic equation that

are described by entire functions of the second order of

growth.

It can be shown [45, 46] that if F�x; y; l � is a solution of

parabolic equation (1) possessing structural stability and

satisfying inequality (8), then the X, Y, and l variables in

representation (6) separate and the phase j0�X;Y; l � assumes

the form

j0�X;Y; l � � j0�X;Y; 0� � g�l � ; �10�
where g�l � is some function.

Therefore, the exponential intensity decrease at infinity

allows revealing the structure of the phase j0�X;Y; l � and

makes the form of expression (6) specific,

F�x; y; l � � 1

d�l � F0�X;Y�

� exp

�

1

2
ikd�l �d 0�l ��X 2 � Y 2� � ig�l �

�

; �11�

where F0�X;Y� �
�����������������

I0�X;Y�
p

exp
�

ij0�X;Y; 0�
�

is an entire

function of the second order of growth. The structural

stability of the intensity, Eqn (4), therefore implies structural

phase stability up to defocusing.

2.3 Basic equations and parameters of solutions

In this section, we find the scaling d�l �, rotation y�l �, and
phase incursion g�l � functions and also indicate the way to

derive the function F0�X;Y�, which plays the decisive part in

representation (11) of structurally stable solutions of the

parabolic equation [45].

Using equality (10) in Eqns (7) enables us to determine the

l-dependences of d, y, and g. It is easily shown that these three

functions satisfy the following system of differential equa-

tions:

d 3�l � d 00�l � � const ;

d 2�l � y 0�l � � const ;

d 2�l � g 0�l � � const :

The general solution of this system is given by

d�l � � d0

���������������������������

1� 4�lÿ l0�2
k 2r4

s

;

y�l � � y0 arctan

�

2�lÿ l0�
kr2

�

� y1 ;

g�l � � ÿg0 arctan

�

2�lÿ l0�
kr2

�

� g1 ;2 The order of growth rf of an entire function f �z;w� is defined as [40, 41]

rf � lim
R!1

ln ln max
jzj � jwj �R

j f �z;w�j

lnR
:

As a consequence, for any e > 0, there exist positive constants C0 and A0

such that the inequality j f �z;w�j < C0 exp
�

A0

ÿ

jzjrf�e � jwjrf�e
��

is satis-

fied for all complex z and w.

3 More precisely: there exist no structurally stable fields with the order of

growth rF 4 1, because the Fourier transform of such fields has singula-

rities and is therefore not an entire analytic function [44]. Therefore, the

interval rF 2 �1; 2� remains unexplored.
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where d0, y0, y1, g0, g1, l0, and r are arbitrary constants. 4

Without losing the generality, it may be assumed that d0 � 1

and l0 � y1 � g1 � 0. Representation (11) then takes the form

F�x; y; l � � 1

jsj F0�X;Y� exp
�

2il

kr2
�X 2 � Y 2� ÿ ig0 arg s

�

;

�12�

where X� iY � �x� iy� exp �iy0 arg s�=rjsj and s �
1� 2il=kr2 is a complex parameter introduced for compact-

ness of notation. Upon substitution of expression (12) in

Eqn (1), we obtain the equation for the function F0�X;Y�:

HH 2F0 � 4iy0

�

X
qF0

qY
ÿ Y

qF0

qX

�

ÿ 4F0�X 2 � Y 2 ÿ g0� � 0 :

�13�

For y0 � 0, this equation is a stationary SchroÈ dinger

equation for a harmonic oscillator and its solutions are well

known [48, 49]. These are the Hermite ±Gauss functions

F0�X;Y� � hn;m�X;Y�, g0 � n�m� 1 and the Laguerre ±

Gauss functions F0�X;Y� � ln;�m�X;Y�, g0 � 2n�m� 1.

Here,

hn;m�X;Y� �def exp �ÿX 2 ÿ Y 2�Hn�
���

2
p

X�Hm�
���

2
p

Y�
�n;m � 0; 1; . . .� ;

ln;�m�X;Y� �def exp �ÿX 2 ÿ Y 2��X� iY�mLm
n �2X 2 � 2Y 2�

�n;m � 0; 1; . . .� ;

where

Hn�t� � �ÿ1�n e t 2 dn

dt n
�eÿt 2� ;

Lm
n �t� �

1

n!
tÿm e t

dn

dt n
�t n�meÿt�

are the Hermite and Laguerre polynomials, respectively.

We seek the solutions of Eqn (13) in the form of the

expansion

F0�X;Y� �
X

1

n� 0

X

1

m�ÿ1
cnmln;m�X;Y� ; �14�

which is always possible owing to inequality (8) and

the completeness of the system of functions

fln;m�X;Y�; n;�m � 0; 1; . . .g in the space L2�R2�. We

substitute expansion (14) in Eqn (13) to obtain the identity
X

n;m

cnmln;m�X;Y��2n� jmj � y0mÿ g0 � 1� � 0

or, in view of the completeness of the system of Laguerre ±

Gauss functions, an infinite set of constraints on the

coefficients cnm and the numbers n, m:

cnm�2n� jmj � y0mÿ g0 � 1� � 0 :

Once some pair �n0;m0� is fixed, the problem of searching

for F0�X;Y� reduces to determining the integers n andm from

the equation

2n� jmj � y0m � 2n0 � jm0j � y0m0 : �15�

In this formula, n and n0 are nonnegative integers, m and m0

are integers, and y0 is a real number. We then have

g0 � 2n0 � jm0j � y0m0 � 1 and the coefficients cnm are

arbitrarily selected for those pairs �n;m� that satisfy Eqn (15)

and are equal to zero otherwise.

We next show that Eqn (15) is solvable for any y0 and find

the corresponding solutions of Eqn (13).

2.4 Spiral beams and their quantum-mechanical analogs

We letn�y0� denote the ensemble of all pairs �n;m� satisfying
Eqn (15). The complete specification of the ensemble n�y0�
for different y0 and the definition of the functions F0�X;Y�
reduce to the following three cases.

1. If y0 is an irrational number, the ensemble n�y0�
consists of a single pair �n0;m0�. By invoking the definition

of Laguerre ±Gauss functions, it is easily shown that the

structurally stable field F�x; y; l � is independent of y0 and can

be represented as

F�x; y; l � � 1

jsj exp
�

2il�x 2 � y 2�
kr4jsj2

ÿ i�2n0 � jm0j � 1� arg s
�

�ln0;m0

�

x

rjsj ;
y

rjsj

�

: �16�

Obviously, the absence of the y0-dependence is the underside

of the radially symmetric form of field intensity (16), because

it makes no difference in this case what rotation to assign to

this field.

2. If y0 � 0, then y�l � � 0 and the corresponding field

F�x; y; l � propagates along l without rotation. In this case,

n�0� � f�n;m�; 2n� jmj � Ng, where N � 0; 1; . . . ; g0 �
N� 1, and

F�x; y; l � � 1

jsj exp
�

2il�x 2 � y 2�
kr4jsj2

ÿ i�N� 1� arg s
�

�
X

N

n� 0

cnlmin �n;Nÿn�;Nÿ2n

�

x

rjsj ;
y

rjsj

�

; �17�

where cn are arbitrary constants. The resultant expression

shows that in the paraxial approximation only the fields

whose beam waist is given by a Gaussian function times

some polynomial of a special form can propagate with

retention of their structure and without rotation. Moreover,
�

�F�x; y; l �
�

� �
�

�F�ÿx;ÿy; l �
�

� ;

i.e., the intensity of any nonrotating structurally stable field

has central symmetry. Such fields are exemplified in Fig. 1.

The Hermite ±Gauss mode depicted in Fig. 1a is a real

function, and its phase therefore assumes only the 0 and p

values. The horizontal and vertical straight lines in the phase

distribution of the Hermite ±Gauss mode show the location

of zero lines: in crossing such a line, there occurs a phase jump

by p. The Laguerre ±Gauss modes have both zero lines

(circles) and an isolated zero at the origin.

Isolated zeroes (points of phase singularity) are conve-

niently classified by themagnitude of the shift acquired by the

phase in going round such a zero counterclockwise. If the

phase incursion is positive, the zero is termed a z-type zero,

and if the incursion is negative, a �z-type zero. Although this

4 The special case r � 1 corresponds to nondiffracting beams [47], for

instance, Bessel beams, F�x; y; l� � Jm�
����������

2kg0
p

r� exp �imaÿ ig0l�, where r
and a are polar coordinates. Such beams do not have finite energy and are

not considered in our review.
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classification does not reflect the entire diversity of possibi-

lities (the zero lines of the real and imaginary parts of the

complex amplitude do not necessarily intersect at a right

angle andmay be quite different in form from linear functions

even in a small neighborhood of the zero), it furnishes the

simplest characteristic of phase behavior in the vicinity of

each isolated zero.

The phase singularity point for the l2; 5�x; y� mode is a

z-type zero of the fifth order: in going round it counter-

clockwise, the phase changes five times from 0 to 2p. For

the l3;ÿ3�x; y� mode, a similar point at the origin is an

isolated �z-type zero of the third order. The structurally stable

fields shown in Figs 1d ± f have isolated zeroes of the z-type, as

well as the �z-type. Contrasting black ±white changes in the

phase distributions correspond to splices of the j � 0 and

j � 2p phases.

3.Let y0 � ÿ1. Then, 2n� jmj ÿm is an even nonnegative

number. Setting it equal to 2N, we find the ensemble

n�ÿ1� �
�

�N;m�;m � 0; 1; 2; . . .
	

[
�

�N�m;m�;m � ÿ1;ÿ2; . . . ;ÿN
	

;

the phase incursion parameter g0 � 2N� 1, and the light field

F�x; y; l � � 1

jsj exp
�

2il�x 2 � y 2�
kr4jsj2

ÿ i�2N� 1� args
�

�
"

X

1

m� 0

cmlN;m�X;Y� �
X

N

m� 1

cÿmlNÿm;ÿm�X;Y�
#

; �18�

where X� iY � �x� iy�=rs. For N � 0, the simple form of

the Laguerre ±Gauss functions

l0;m�X;Y� � exp �ÿX 2 ÿ Y 2��X� iY�m

allows representing the solution in a more compact form:

F�x; y; l � � 1

s
exp

�

2il�x 2 � y 2�
kr4jsj2

�

�
X

1

m� 0

cm exp �ÿX 2 ÿ Y 2��X� iY�m

� 1

s
exp

�

ÿ x 2 � y 2

r2s

�

f

�

x� iy

rs

�

: �19�

Here, f �z� is an entire analytic function such that

F�x; y; 0� 2 L2�R2�. In view of the formula

y�l � � ÿ arctan

�

2l

kr2

�

;

the evolution of the field intensity F�x; y; l � during propaga-

tion looks like a decelerating rotation Ð the fastest in the

beamwaist region and nearly zero in the far-field zone. In this

case, the total field rotation angle during propagation is

y�1� ÿ y�0� � ÿp=2.
The general expression (18) can also be given a clearer

form using the differential representation of the Laguerre ±

Gauss functions from Ref. [51]:

ln;�m�X;Y� �
�ÿ1�n�m

2 n�mn!
exp �X 2 � Y 2�

� qn

q�X� iY�n
qn�m

q�X� iY�n�m exp �ÿ2X 2 ÿ 2Y 2� :

Finally, we have

F�x; y; l � � 1

jsj exp
�

2il�x 2 � y 2�
kr4jsj2

ÿ i�2N� 1� args
�

� exp �Z �Z� qN

qZN

�

exp �ÿ2Z �Z� f �Z�
�

� 1

s
exp

�

ÿ x 2 � y 2

r2s
ÿ 2iN arg s

��

q

qZ
ÿ 2 �Z

�N

f �Z� ; �20�

where Z � �x� iy�=rs and �Z � �xÿ iy�=r�s.
4. The y0 � 1 case is completely similar to the previous

one. We set 2n� jmj �m � 2N to find

n�1� �
�

�N;m�;m � 0;ÿ1;ÿ2; . . .
	

[
�

�Nÿm;m�;m � 1; 2; . . . ;N
	

;

g0 � 2N� 1, and

F�x; y; l � � 1

jsj exp
�

ÿ x 2 � y 2

r2s
ÿ i�2N� 1� args

�

�
�

q

q �Z
ÿ 2Z

�N

f � �Z� ; �21�

a b c d e f

Figure 1. Intensities (upper row) and phases (lower row) of structurally stable fields without rotation: (a) the Hermite ±Gauss mode h4; 4�x; y�;
(b, c) Laguerre ±Gauss modes l2; 5�x; y� and l3;ÿ3�x; y�; (d, e) Hermite ±Laguerre ±Gauss modes g4; 4�x; yjp=10� and g5; 3�x; yjp=5� (see Ref. [50]);

(f) the field of form (17) for N � 8 with a special set of coefficients cn to make its intensity look like a regular hexagon. In all drawings, black color

corresponds to the zero intensity and zero phase, white color corresponds to the maximum intensity and the phase 2p.
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where Z � �x� iy�=r�s and �Z � �xÿ iy�=rs. In particular,

for N � 0, we obtain

F�x; y; l � � 1

s
exp

�

ÿ x 2 � y 2

r2s

�

f

�

xÿ iy

rs

�

: �22�

Here, as in expression (19), f �z� is an arbitrary entire

function that does not destroy the square integrability of

the function F�x; y; 0�. This condition is fulfilled, for

instance, for any entire function f �z� with the order of

growth rf < 2. In particular, some polynomial can be

selected as f �z�. Structurally stable fields in this case

were simultaneously and independently obtained in

Ref. [52].

5. Lastly, if y0 is a rational number different from 0 and

�1, the setn�y0� contains, along with the pair �n0;m0�, some

pair �n1;m1 6� m0�. In this case,

y0 �
2n0 � jm0j ÿ 2n1 ÿ jm1j

m1 ÿm0

;

and the structurally stable solution is given by

F�x; y; l � � 1

jsj exp
�

2il�x 2 � y 2�
kr4jsj2

ÿ i�2n0 � jm0j � y0m0 � 1� args
�

X

n�y0�
cnmln;m�X;Y� ;

�23�

where X� iY � �x� iy� exp �iy0 args�=rjsj, and the set

n�y0� of all pairs �n;m� over which the summation ranges

is determined as follows. We assume that sgnm0 � 1 for

m0 5 0 and sgnm0 � ÿ1 for m0 < 0. We represent y0 as a

fraction P=Q, where P and Q are coprime numbers and

Q > 0. The following cases can occur: (i) one of the

numbers P, Q is even, (ii) both numbers P and Q are odd.

In the first case,

n�y0� �
�ÿ

n0 � �P�Q sgnm0�k; m0 ÿ 2Qk
�

;

k 2 Z; n5 0; m sgnm0 5 0
	

[
�ÿ

n0 � jm0j � �PÿQ sgnm0�k; m0 ÿ 2Qk
�

;

k 2 Z; n5 0; m sgnm0 < 0
	

;

in the second case,

n�y0� �
��

n0 �
1

2
�P�Q sgnm0�k; m0 ÿQk

�

;

k 2 Z; n5 0; m sgnm0 5 0

�

[
��

n0 � jm0j �
1

2
�PÿQ sgnm0�k; m0 ÿQk

�

;

k 2 Z; n5 0; m sgnm0 < 0

�

:

The use of these formulas is illustrated by two examples.

Let y0 � ÿ0:4 � ÿ2=5. Then, P � ÿ2, Q � 5, and the set

n�y0� is constructed according to case (i). Selecting the initial

pair �n0;m0� such that m0 > 0 yields

n

�

ÿ 2

5

�

�
�

�n0 � 3k;m0 ÿ 10k�; k 2 Z; ÿ n0

3
4 k4

m0

10

�

[
�

�n0 �m0 ÿ 7k;m0 ÿ 10k�; k 2 Z;
m0

10
< k4

n0 �m0

7

�

:

In particular, for n0 � 0 and m0 � 9, we obtain n�ÿ2=5� �
f�0; 9�; �2;ÿ1�g and

F�x; y; l � � 1

jsj exp
�

ÿ x 2 � y 2

r2s
ÿ 6:4i args

�

�
�

c1

�

x� iy

rjsj exp �ÿ0:4i args�
�9

� c2
xÿ iy

rjsj exp �0:4i args�L1
2

�

2x 2 � 2y 2

r2jsj2
��

:

Here, c1 and c2 are arbitrary complex constants and

s � 1� 2il=kr2. A spiral beam corresponding to the values

c1 � 1 and c2 � ÿ49i is shown in Fig. 2. During its

propagation from the beam waist region to the far-field

region, the beam rotates by the angle y�1� ÿ y�0� �
py0=2 � ÿ2p=10. The intensity does not change during this

rotation, and this beam therefore exemplifies a field invariant

under a two-dimensional Fourier transformation.

We now assume that y0 � ÿ3. Then, P � ÿ3, Q � 1, and

case (ii) is used to construct n�y0�. Selecting the initial pair

n0 � m0 � 0 gives the set n�ÿ3� � f�k; k�; k � 0; 1; 2; . . .g,

a
b

c

Figure 2. Spiral beam corresponding to the rotation parameter y0 � ÿ2=5: (a) experimentally recorded intensity distribution of a spiral beam; (b) level

lines for the function jl0;9�x; y� ÿ 49il2;ÿ1�x; y�j2; (c) fragment of spatial beam propagation in the waist region.
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and the spiral beam is

F�x; y; l � � 1

s
exp

�

ÿ x 2 � y 2

r2s

�

�
X

1

k� 0

ck

�

x� iy

rjsj exp �ÿ3i arg s�
�k

Lk
k

�

2x 2 � 2y 2

r2jsj2
�

:

In this case, unlike in the previous one, there are an infinite

number of the degrees of freedom, i.e., of the constants ck
involved in constructing the field F. Accordingly, the number

of phase singularities in such a beam may be infinite. An

example of this kind is provided by a spiral beam constructed

on the basis of themodified Bessel function with the following

form in its waist plane:

F�x; y; 0� � exp �ÿz�z� az� In�2z
������������������

a2 ÿ 2a�z
p

�
�2z

������������������

a2 ÿ 2a�z
p

�n
:

Here, a and n are arbitrary parameters, z � �x� iy�=r and

�z � �xÿ iy�=r are complex variables. Figure 3 shows the

beam F�x; y; 0� � F�y;ÿx; 0� � F�ÿx;ÿy; 0� � F�ÿy; x; 0�
for a � 1:3 and n � 1.

Therefore, we have completed the description of structur-

ally stable solutions of the parabolic equation that satisfy

structural representation (4) and inequality (8). The light

fields corresponding to solutions (16) ± (23) obtained above

rotate in accordance with the law y�l �� y0 arctan �2l=kr2�
and increase in scale in accordance with the law

d�l � �
���������������������������

1� 4l 2=k 2r4
p

during their propagation.

We fix some point �x0; y0� in the initial plane l � 0.

During the propagation of the field F�x; y; l �, this point

traces a spiral path x� iy � �x0 � iy0�jsj exp �ÿiy0 arg s�.
For small jy0j, the term `spiral' is somewhat conventional

and indicates only a tendency toward rotation, but for large

jy0j, the point �x0; y0� executes, during the propagation of

the field F, jy0j=4 rotations about the l-axis in the clockwise

or counterclockwise direction, depending on the sign of y0
(Fig. 4). This nonuniform rotation is completed by an

asymptotic approach to the straight line

x� iy � �x0 � iy0�
�

1� 2il

kr2

�

exp

�

ÿ pi�y0 � 1�
2

�

:

We also note that the isophase contours of the above

solutions are helical outside of the beam waist. These two

circumstances have allowed proposing the name `spiral light

beams' for the light fields obtained [45].

The interrelation between paraxial optics and quantum

mechanics was considered by several authors (see, e.g.,

Refs [48, 53]). What specific quantum-mechanical situation

corresponds to spiral beams? The equation for spiral beams

(13) can be represented in terms of normalized polar

coordinates:

HH 2F� 4iy0
qF

qf
ÿ 4F�R 2 ÿ g0� � 0 :

Here, R and f are determined from the relation R exp �if� �
�x� iy� exp �iy0 arg s�=rjsj.

At the same time, in the standard polar coordinatesR and

f, the SchroÈ dinger equation for the wave function c of a

charged particle of mass M and charge e embedded in a

uniform magnetic field with an intensity H is written as [54]

HH 2c� 4i sgn �eH� qc
qf

ÿ 4c

�

R 2 ÿ 2cME1

�hjeHj

�

� 0 ;

where E1 � Eÿ p2z=2M, E is the particle energy, and pz is the

particle momentum along the field direction. One can see that

these equations are equivalent for y0 � sgn �eH� and g0 �
2cME1=�hjeHj. Therefore, for y0 � �1 and g0 � 1, the wave

functions of a particle in a constant magnetic field with the

ground state E1 � �hjeHj=2cM correspond to spiral beams. It

is noteworthy that the form of the above differential

equations is the same in different coordinate systems.

2.5 Experimental realization of spiral beams

2.5.1 Astigmatic transformation technique. It is well known

[55] that the oscillation frequencies of a stable two-mirror

resonator are defined by the expression

oq �
2c

L0

�g arccos ���������

g1g2
p � pq� ; �24�

where c is the speed of light, L0 is the resonator round-trip

time, g1; 2 � �1ÿ L0=2R1; 2� are configuration parameters,

a b

Figure 3. Intensity (a) and phase (b) of the spiral beam corresponding to

the rotation parameter y0 � ÿ3.

ly

x

Figure 4.Motion path of a point �x0; y0� during the propagation of a spiral
beam F�x; y; l � with y0 � ÿ15.
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R1; 2 are the curvature radii of the mirrors, q is the axial index,

and g is a parameter equal to g � n�m� 1 for the Hermite ±

Gauss modes hn;m�x; y� and to g � 2n� jmj � 1 for the

Laguerre ±Gauss modes ln;m�x; y�. It is easily seen that the

modes for which g � const are frequency-degenerate. If the

resonator is such that arccos
���������

g1g2
p � pM=N, whereM andN

are coprime numbers, the frequency degeneracy condition

turns out to be also valid for the modes satisfying the

condition

gM� qN � const : �25�

That is why a sum of such modes shows no beats and is also a

stationary distribution, which is time-independent at each of

its sections. However, it is easy to see that the parameters g of

the terms in the sum are different, and the intensity

distribution of such a superposition therefore changes during

propagation. For instance, let the generated field be the sum

of Laguerre ±Gauss modesln1;m1
�x; y� andln2;m2

�x; y� such
that g1 6� g2 and let constraint (25) be fulfilled. Then,

according to solution (23), this sum is a spiral beam with the

rotation parameter y0 � �g1 ÿ g2�=�m2 ÿm1�. In real resona-

tors, however, owing to the presence of astigmatism (for

instance, the astigmatism of Brewster windows), Hermite ±

Gauss modes are ordinarily generated, unless special precau-

tions are taken. That is why it is rather difficult to directly

obtain a spiral beam. This situation can be rectified if

advantage is taken of the results in Ref. [56], where it was

theoretically and experimentally shown that any Hermite ±

Gauss beam can be transformed into the corresponding

Laguerre ±Gauss beam and vice versa with the aid of

astigmatic optics. The transformation is of the following

form:

��

R
2

exp

�

ÿi�xx� yZ� � 2ixZ

r2

�

hn;m

�

x

r
;
Z

r

�

dx dZ

� pr2
���

2
p �ÿ1�n�m

exp

�

ÿ ir2xy

4

�

�
�2i�nm!lm; nÿm

�

rx

2
���

2
p ;

ry

2
���

2
p

�

�n5m� ;

�2i�mn!ln;mÿn

�

ry

2
���

2
p ;

rx

2
���

2
p

�

�n4m� :

8

>

>

<

>

>

:

�26�

It can be realized in different ways bymeans of cylindrical and

spherical optics. Examples of the optical schemes and the

results of experiments in the specific implementations of

transformation (26), which are referred to as astigmatic in

what follows, are given in Refs [45, 56].

Let a laser-generated beam be the sum of two Hermite ±

Gauss modes with the indices �n1;m1� and �n2;m2�, and let

n1 �m1 6� n2 �m2. An astigmatic transformation allows the

beam to be transformed into the sum of twoLaguerre ±Gauss

modes with the indices �min �nj;mj�, nj ÿmj�, j � 1; 2. The
result is a spiral beam with the rotation parameter

y0 � �n1 �m1 ÿ n2 ÿm2�=�n2 �m1 ÿ n1 ÿm2�.
As an example, we consider the case where M=N � 1=3

(resonator: R1 � 2 m, R2 � 1, L0 � 3 m). Frequency-

degenerate in it is, for instance, the sum of Hermite ±Gauss

modes of the form
P

k ckh0:3k�2�x; y� (Fig. 5). Such a

combination can be realized by introducing thin (15 mm)

wires into the resonator field. It is easily seen that a spiral

beam with a 2p=3 symmetry is the result of the astigmatic

transformation of this field (Fig. 6).

a b c

Figure 5. Intensity (a) and phase (b) of the coding field exp �ÿr2x 2=8� h�yj42� and experimental intensity distribution (c) of the beam emanating from a

helium ±neon laser. (The definition of a coding field is given in Section 3.3.)

a b c

Figure 6. Intensity (a) and phase (b) of the spiral beam s�z; �zj42� and its experimental realization (c). The intensity distribution (c) was obtained by

astigmatic transformation of the beam whose intensity is shown in Fig. 5c.
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2.5.2 Intracavity synthesis of spiral beams. To determine the

resonator configurations allowing a direct generation of

spiral beams, we consider the behavior of such a beam in a

stable resonator described by the round-trip matrix ABCD.

As shown in Section 2.4, an arbitrary spiral beam Fwith a

rotation parameter y0 is expressed in terms of Laguerre ±

Gauss modes at a distance l from the beam waist as

F�r;f� � w0

w
exp

�

ikr 2

2R
ÿ ig0F0

�

X

n�y0�
cnmln;m

�

r

w
;f

�

� w0

w
exp

�

ikr 2

2Q
ÿ ig0F0

�

X

n�y0�
cnm

�

r

w

�jmj

� exp �imf�Ljmj
n

�

2r 2

w 2

�

; �27�

where ln;m�r;f� � exp �ÿr 2�r jmj exp �imf�Ljmj
n �2r 2� is a

Laguerre ±Gauss mode in polar coordinates; F0 is the zero-

mode phase incursion from the waist plane; w0 and w are the

Gaussian parameters of the beam taken respectively in the

waist plane and at the distance l from the plane; 1=Q �
1=R� 2i=kw 2 is the complex beam parameter; k is the

wavenumber; and n�y0� is the set of integer-valued pairs

�n;m� such that 2n� jmj � y0m� 1 � g0 � const.

Hereinafter in this section, in lieu of r, rjsj, and arg s, we

use the respective variables w0, w, and F0, because calcula-

tions involving the ABCD matrix are commonly described in

this notation. Moreover, a polar coordinate system is

employed instead of the Cartesian one, making it possible to

represent the dependences related to rotation angles more

clearly.

After the transformation by an optical system with the

ABCD matrix, field (27) becomes [57]

F1�r;f� �
w

w1

exp

�

ikL0 �
ikr 2

2Q1

�

�
X

n�y0�
cnm exp

�

ÿi
ÿ

2n� jmj � 1
�

F
�

�

r

w1

�jmj

� exp �imf�Ljmj
n

�

2r 2

w2
1

�

; �28�

where L0 is the optical path length along the axis of the

system, w 2
1 � w 2jA� B=Qj2, F � arg �A� B=Q�, Q1 �

�AQ� B�=�CQ�D�, and ADÿ BC � 1. Now let ABCD be

the round-trip matrix of some stable resonator. From the

condition for the self-reproduction of each term of field (27)

in the resonator round trip, Q1 � Q, we obtain

w1 � w ;
kw 2

2
� B

��������������������������������

1ÿ �A�D�2=4
q ; F � arccos

A�D

2
:

Then, in view of the relation 2n� jmj � 1 � g0 ÿ y0m, the

evolution of spiral beam (27) in tracing the resonator is as

follows:

F1�r;f� � exp

�

ikL0 ÿ ig0 arccos
A�D

2

�

� F

�

r;f� y0 arccos
A�D

2

�

: �29�

Here, L0 is the resonator round-trip path length. It is evident

from expression (29) that upon tracing the resonator, the

beam rotates by the angle

yN � y0 arccos
A�D

2

and acquires the phase shift

fN � kL0 ÿ g0 arccos
A�D

2
:

Hence, it is clear that it suffices to effect the beam rotation by

the angle ÿyN, or by the angle 2pÿ yN for its self-reproduc-

tion condition to be fulfilled. It is well known that such

rotations are accomplishable in ring resonators, for instance,

with the aid of a Dove prism (the so-called resonators with

field rotation) [55]. Resonators of this type were employed to

improve the uniformity of the transverse laser radiation

distribution. However, in contrast to our work, the angle of

beam rotation in the above-mentioned resonators was

selected irrespective of the resonator configuration para-

meters (commonly p=2 or p). If this resonator effects a field

rotation by an angle ÿyN or 2pÿ yN and the equality

kL0 ÿ g0 arccos
A�D

2
� 2pq

holds, the condition for beam self-reproduction F1�r;f� �
F�r;f� is fulfilled and field (27) is the eigenmode of this

resonator with the oscillation frequency

oq �
c

L0

�

g0 arccos
A�D

2
� 2pq

�

: �30�

It follows that in contrast to an ordinary resonator

without beam rotation �y0 � 0�, the Laguerre ±Gauss

modes satisfying the condition 2n� jmj � y0m � const are

frequency-degenerate and the degeneracy condition depends

on the angle of beam rotation in the resonator. This is easily

understood by noting that the rotation of the complex

amplitude distribution of the Laguerre ±Gauss beam

ln;m�r;f� by an angle y is equivalent to the additional phase

shift my:

ln;m�r;f� y� � ln;m�r;f� exp �imy� :

Figure 7 shows a setup assembled for the experimental

testing of intracavity synthesis of spiral beams. The ring laser

was made on the basis of an argon-ion laser with the

wavelength l � 0:488 mm, a plane mirror M1 (with the

reflectivity 0.94) and spherical mirrors M2, M3

(R2 � R3 � R � 3 m, with the respective reflectivities 0.995

and 0.98). The mirror separations were M1M2 � M1M3 �
l � 1:27 m andM2M3 � l0 � 2:4 m. The resonator geometry

in the form of an obtuse-angle triangle was selected to reduce

the effect of astigmatism of mirrors M2 and M3. The field

rotation is effected with the aid of a Dove prism P (rotating

M2

M1

M3 M4

O

M

S

P

Ar�

W

Figure 7. Experimental ring-laser setup involving an argon-ion laser.
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the prism by an angle a rotates the beam by 2a). It is pertinent

to note that the prism P rotates the complex amplitude of the

beam but has a relatively weak effect on the state of beam

polarization. The effect of the prism amounts to introducing a

slight elliptical polarization into the beam. The intensity of

the field component perpendicular to the resonator plane

depends on the rotation angle of the prism P and amounts to

0 ± 4% of the intensity of the component lying in the

resonator plane. The beam polarization ellipticity takes

place only in the portion of the resonator given by

PÿM1ÿM2 ± active element. In the remaining part of the

resonator, the polarization direction is determined by the

orientation of the Brewster windows of the active element and

lies in the resonator plane. The beam generated by the laser

was observed and recorded behind the partially transmitting

mirror M3 with the aid of an objective lens O and a

microscope M in the plane of a screen S. The matrix of

resonator round trip, beginning with M1, is given by

A B
C D

� �

�
1ÿ 4l

R
ÿ 2l0

R
� 4ll0

R 2
2l� l0 ÿ

4l 2

R
ÿ 4ll0

R
� 4l 2l0

R 2

ÿ 4

R
� 4l0

R 2
1ÿ 4l

R
ÿ 2l0

R
� 4ll0

R 2

0

B

B

@

1

C

C

A

� ÿ0:939 0:446
ÿ0:267 ÿ0:939

� �

: �31�

The beam waist is close to mirror M1, and the Rayleigh

length for this beam is

lR � B
�

1ÿ �A�D�2=4
�1=2

� 1300 mm ;

which corresponds to the Gaussian parameter w0 � 0:45mm.

The phase incursion for the fundamental mode in the empty

resonator is f0 � arccos�ÿ0:94� � 160�. Therefore, the

oscillation frequencies of two neighboring transverse modes

differ by 27 MHz for zero angle of prism rotation, and

accordingly the frequency separation for two neighboring

longitudinal modes is equal to 60 MHz. The transverse mode

composition is varied by introducing a thin wire (W � 15 mm

in diameter) into the beam.

The angle of prism rotation P for the self-reproduction of

a spiral beam with a rotation parameter y0 is

a � ÿ y0

2
arccos

A�D

2

� ÿ y0

2
2 arccos

��������������������������������������

�

1ÿ 2l

R

��

1ÿ l0

R

�

s

� ÿy0 � 79:9� :

In the pursuance of experiments, it was discovered that

spiral beams for different rotation parameters were realized

for a somewhat different value of prism rotation, in

particular, for a � ÿy0 � 78�. This deviation turned out to

be similar in all experiments and is supposedly due to the

presence of an active medium.

Figure 8 shows the theoretical and experimental results

for two spiral beams. Presented in the upper row are the

results of experiments in the formation of a spiral beam

with the rotation parameter y0 � 1=3, a � ÿ26� and the

results of numerical calculations for the field F�r;f� �
l0;ÿ2�r;f� � 2l0; 1�r;f�. The beam phase has four singula-

rities, or wavefront dislocations, the singularity at the center

and those at the periphery being opposite in sign. Given in the

lower row are the results of similar experiments for a spiral

beam with the rotation parameter y0 � 1=5, a � ÿ15:5�

and numerical calculations for the field F�r;f� �
l0;ÿ3�r;f� � 2l0; 2�r;f�. In this case, the beam phase has

seven singular points: a z-type singularity of the second order

at the center (in the experiment, this singularity is slightly

broken) and five �z-type singularities at the periphery.

The possibilities for the realization of different spiral

beams in this experiment were limited by reflection and

diffraction losses. On the one hand, for large angles of prism

rotation (for instance, for beams with y0 � 1, a � ÿ78�), the
angle of beam incidence on the Dove prism is significantly

different from the Brewster angle and the losses in the

resonator become too big. On the other hand, realization of

beams, for instance, with y0 � 1=4, requires the presence of

Laguerre ±Gauss modes ln1 ;m1
�r;f� and ln2 ;m2

�r;f� with

the difference of indices jm1 ÿm2j equal to eight at least, such

that diffraction losses in the resonator become significant.

Changing the A�D resonator parameter in our experiment

was hindered for constructive reasons.

a b c d e f

Figure 8. Experimentally recorded intensities of spiral beams in front of (a), inside (b), and behind (c) the waist region for a prism rotation angle a.

Theoretical intensity (d) and phase (f) distributions, as well as intensity level lines (e) of a spiral beam with a rotation parameter y0. The upper row

corresponds to the values a � ÿ26�, y0 � 1=3 and the lower row to the values a � ÿ15:5�, y0 � 1=5.
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Therefore, spiral beams are the modes of a ring laser with

field rotation, which was experimentally confirmed by the

intracavity generation of spiral beams with different rotation

parameters and a good accord with the results of numerical

experiments [58]. The results obtained are demonstration that

it is basically possible to produce spiral beams with vastly

different spatial characteristics and rotation parameters in a

laser with the appropriate resonator and gain of the active

medium.

3. Spiral beams
with a prescribed intensity distribution

3.1 Beams in the form of plane curves

As noted in the Introduction, the interrelation between the

intensity and phase in the one- and two-dimensional cases is

radically different. The nonzero curl of the light energy flux

vector significantly complicates the relation between the

intensity and the phase in this case. At the same time, this

complexity generates new possibilities as well.

In particular, it was shown in Section 2.4 that in the two-

dimensional case, there exists a class of coherent light fields,

referred to as spiral beams, of the form

F�x; y; l � � 1

s
exp

�

ÿ x 2 � y 2

r2s

�

f

�

x� iy

rs

�

; �32�

which retain their structure up to scale and rotation. Here,

f �z� is an arbitrary entire analytic function, s � 1� 2il=kr2,
l is the distance along the beam propagation direction, k is the

wavenumber, r � const, and the sign in the argument of f �z�
determines the direction of beam rotation during propaga-

tion.

From this representation, it is clear that the class of fields

is rather broad. But to prove the existence of such beams with

a predetermined intensity and to define a constructivemethod

for producting them are nontrivial tasks. This section is

dedicated to a feasibility study of the purposeful synthesis of

beams (32) (see also Ref. [59]).

The structural intensity stability of spiral beams (32) for

all l allows us to restrict ourselves, without loss of generality,

to the consideration of the beam in the waist plane l � 0

(which corresponds to s � 1) and the `�' sign in the argument

of f. We introduce the notation

s�z; �z� � exp

�

ÿ z�z

r2

�

f

�

z

r

�

; �33�

where z � x� iy and �z � xÿ iy are complex variables. Then,

s�z; �z� defines the spiral beam F�x; y; l � in the l � 0 plane and

its evolution during propagation. In the subsequent discus-

sion, we therefore refer tos�z; �z� as the spiral beam (32).

We consider several properties of this class of spiral

beams, which follow from representation (33) and are used

in what follows.

Property A. If sn�z; �z� � exp �ÿz�z=r2� fn�z=r� is a collec-
tion of spiral beams, their linear combination

s�z; �z� � P

n cnsn�z; �z� is also a spiral beam. Moreover, if

s�z; �z; a� � exp

�

ÿ z�z

r2

�

f

�

z

r
; a

�

is a parametric family of spiral beams,s�z; �z� �
�

s�z; �z; a� da
is also a spiral beam.

Property B. If s0�z; �z� � exp �ÿz�z=r2� f �z=r� is a spiral

beam, then

s�z; �z� � exp

�

ÿ z�z

r2

�

f

�

z exp �ÿia�
r

�

is a spiral beamwith the same intensity distribution ass0�z; �z�
but rotated by the angle a.

Property C. If s0�z; �z� � exp �ÿz�z=r2� f �z=r� is a spiral

beam, then

s�z; �z� � exp

�

ÿ z�zÿ 2z�z0 � z0�z0

r2

�

f

�

zÿ z0

r

�

�34�

is a spiral beam that has the same intensity distribution as

s0�z; �z� but is shifted to the point z0. In this case, in contrast

to property B, the change of variable z ! zÿ z0 does not lead

immediately to the desired result. It is easy to see that

exp

�

ÿ�zÿ z0���zÿ �z0�
r2

�

f

�

zÿ z0

r

�

� exp

�

ÿ z�zÿ �zz0 ÿ z�z0 � z0�z0

r2

�

f

�

zÿ z0

r

�

is not a spiral beam, because it contains the factor

exp ��zz0=r2�. Multiplication with the linear phase function

exp
�

ÿ��zz0 ÿ z�z0�=r2
�

has no effect on the intensity distribu-

tion and leads to spiral beam (34).

For f �z� � 1, spiral beam (34) becomes an `elementary

spiral beam'

sz0�z; �z� � exp

�

ÿ z�zÿ 2z�z0 � z0�z0

r2

�

; �35�

which has a Gaussian intensity distribution shifted to the

point z0. The beam phase is a linear function of coordinates

and the beam, of course, travels along a straight line. In this

connection, it is instructive to consider how its `rotation' is

realized during propagation. Using representation (32), it is

easily found that the trajectory of the intensity peak of beam

(35) in the �x; y; l � space is expressed as

x� iy � z0jsj exp �i args� � �x0 � iy0�
�

1� 2il

kr2

�

; �36�

where x0 and y0 are the coordinates of the intensity peak z0 for

l � 0.

We consider several `elementary spiral beams' for

jz0j � const. It follows from (35) that in the �x; y; l � space,

the trajectories of the peaks of the beams Ð straight lines Ð

form the surface of a one-sheet hyperboloid of revolution

x 2 � y 2 ÿ 4jz0j2
k 2r4

l 2 � jz0j2 :

The trajectories of the peaks of individual beams and their

location on the hyperboloid surface are shown in Fig. 9. For

the spiral beams of the general form considered in Section 2.4,

the motion trajectories of the points emanating for l � 0 from

the z0 point also lie in this hyperboloid surface during beam

propagation and are helices in the general case.

It is of interest to compare spiral beams with coherent

states jai in quantummechanics and optics [60]. For instance,

in the space L2�R2�, the scalar product of `elementary' spiral
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beams

�sz0 ;sz1� �
1

2
pr2 exp

�

ÿ jz0j2 ÿ 2�z0z1 � jz1j2
r2

�

is similar to the scalar product of coherent states

haj bi � exp

�

ÿ 1

2
�jaj2 ÿ 2�ab� jbj2

�

�

:

In a more general case, where

s�z; �z� � exp

�

ÿ z�z

r2

�

f

�

z

r

�

is some spiral beam, we have

�s;sz0� �
1

2
pr2s�z0� :

For coherent states, this is analogous to the equality

hajci � exp �ÿjaj2=2�c��a�, where jci � P1
n�0 cnjni. There

also exists a relation between the astigmatic spiral-beam

transformation and the coherent states in the coordinate

representation and the Fock ± Bargman representation,

which are considered below.

Using property A for the summation of the Gaussian

beam of form (35) shifted to different points, it is now possible

to form structurally stable light fields with new properties.

The simplest example of this kind is provided by the beam

s
ÿ

z; �zj�ÿT;T �
�

�
� T

ÿT

st�z; �z� dt �

� exp

�

ÿ z�z

r2

�� T

ÿT

exp

�

ÿ t 2

r2
� 2zt

r2

�

dt ; �37�

which corresponds to an everywhere dense filling of real line

segment �ÿT;T � on complex plane with beams of form (35)

(Fig. 10). The beam exhibits a Gaussian decrease in any

direction outside the line segment �ÿT;T �, and almost all of

the beam energy for r5T is concentrated in a small

neighborhood of this line segment.

From expression (37), in view of properties B and C, it is

easy to obtain a spiral beam with the intensity distribution in

the form of an arbitrary segment �z1; z2� on a complex plane.

Let

z0 �
1

2
�z1 � z2� ; T � 1

2
jz2 ÿ z1j ; a � arg �z2 ÿ z1� :

Then, the mapping z ! z0 � z exp �ia� transfers the segment

�ÿT;T � to the segment �z1; z2�. The beam corresponding to the

�z1; z2� segment is therefore of the form

s
ÿ

z; �zj�z1; z2�
�

� exp

�

ÿ z�zÿ 2z�z0 � z0�z0

r2

�

�
� T

ÿT

exp

�

ÿ t 2

r2
� 2t�zÿ z0� exp �ÿia�

r2

�

dt : �38�

The �z1; z2� segment is referred to as the generating

segment for spiral beam (38). On the straight line containing

the �z1; z2� segment, the complex amplitude of the beam at a

point zc � cz1 � �1ÿ c�z2 is

s
ÿ

zc; �zcj�z1; z2�
�

� exp

�

i
�2cÿ 1� Im z1�z2

r2

�

�
� �1ÿc�jz2ÿz1 j

ÿcjz2ÿz1j
exp

�

ÿ t 2

r2

�

dt :

ly

x

Figure 9. Paths of the peak points of Gaussian beams (35) Ð straight

lines Ð for jz0j � const and their position on the surface of a single-sheet

hyperboloid.

y

x

a b c

Figure 10. Intensity (a), intensity level lines (b), and phase (c) of a spiral beam in the form of a segment �ÿT;T �. The phase distribution exhibits the

presence of six singularities; the central point is not a zero: the presence of only black and white colors in its neighborhood indicates that splicing of the

j � 0 and j � 2p phases occurs.
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Therefore, at points of the straight line zc � cz1 � �1ÿ c�z2
that are symmetric about the point �z1 � z2�=2, the spiral

beam s
ÿ

z; �zj�z1; z2�
�

assumes complex conjugate values. In

particular, at the ends of the �z1; z2� segment,

s
ÿ

z1; �z1j�z1; z2�
�

� s
ÿ

z2; �z2j�z1; z2�
�

� exp

�

i
Im z1�z2

r2

�� jz2ÿz1j

0

exp

�

ÿ t 2

r2

�

dt : �39�

Owing to a strong localization of beams (38) for r5T in

the vicinity of the segments realized, the interference of such

beams manifests in summation only slightly if the segments

are sufficiently widely separated. Therefore, the intensity

distribution of the field, which is an assembly of such beams,

is close to the sum of their intensity distributions.

We now consider contiguous segments �a; b� and �b; c�
located on the real axis. Here, the corresponding spiral beams

`seamlessly' merge into one:

s
ÿ

z; �zj�a; c�
�

� s
ÿ

z; �zj�a; b�
�

�s
ÿ

z; �zj�b; c�
�

:

Generally, when two segments �z1; z2� and �z2; z3� lie along
a common straight line, it follows from representation (38)

that the similar merging of the beams s
ÿ

z; �zj�z1; z2�
�

and

s
ÿ

z; �zj�z2; z3�
�

is given by

s
ÿ

z; �zj�z1; z3�
�

� exp

�

ÿi
Im �z2z3

r2

�

s
ÿ

z; �zj�z1; z2�
�

� exp

�

ÿi
Im �z2z1

r2

�

s
ÿ

z; �zj�z2; z3�
�

; �40�

i.e., phase matching of the constituent beams is required for a

smooth beam merging. From expressions (39) and (40), it

follows that the phases of the components at the merging

point z2 are

arg

�

exp

�

ÿi
Im �z2z3

r2

�

s
ÿ

z2; �z2j�z1; z2�
�

�

� arg

�

exp

�

ÿi
Im �z2z1

r2

�

s
ÿ

z2; �z2j�z2; z3�
�

�

:

Therefore, considering the beam s
ÿ

z; �zj�z1; z2�
�

�
exp �if�s

ÿ

z; �zj�z2; z3�
�

for f 2 �0; 2p�, the uniformity of the

total intensity along the segment �z1; z3� is highest when

f � args
ÿ

z2; �z2j�z1; z2�
�

ÿ args
ÿ

z2; �z2j�z2; z3�
�

� Im �z2�z3 ÿ z1�
r2

: �41�

Equality (41) may be accepted as the condition of merging

two `segment' beams optimized from the intensity unifor-

mity standpoint, when the points z1, z2, and z3 lie along a

straight line. It is noteworthy that equality (41) may be

satisfied up to 2pN (N is an integer), because it expresses

the relation between the arguments of complex exponen-

tials.

We now assume that the points z1, z2, and z3 do not lie

along a straight line.We apply the phase-matching considera-

tions to the construction of a spiral beam that has the form of

a broken line �z1; z2� [ �z2; z3�. Numerical experiments showed

that the intensity distribution of the beam

s
ÿ

z; �zj�z1; z2� [ �z2; z3�
�

� s
ÿ

z; �zj�z1; z2�
�

� exp

�

i
Im �z2�z3 ÿ z1�

r2

�

s
ÿ

z; �zj�z2; z3�
�

�42�

along the broken line being formed is rather uniform for

different angles between the links �z1; z2� and �z2; z3�. There-
fore, phase matching is a useful approach to constructing

spiral beams that realize different broken lines. Formula (42)

is easily generalized to multilink broken lines.

Using the beams described above as the basis ones, it is

possible to construct a wide variety of fields structurally

stable against focusing and propagation. An example of a

field involving all kinds of such basis beams is given in Fig. 11.

According to property B, a spiral beam acquires an additional

linear phase under displacement, and therefore the basis

beams in this figure, which have equal intensities, have

different phase distributions.

The above results bring up the following natural question.

Let there be some flat curve defined in the complex-

parametric form z � z�t�, where the parameter t runs over

some interval �0;T �. Does there exist a spiral beam

s
ÿ

z; �zjz�t�; t 2 �0;T �
�

that is in the form of this curve?

Naturally, the expression `a beam in the form of the curve

z�t�' implies the existence of some selection criterion. But for

the time being, we do not enlarge on the rigorous mathema-

tical formulation, assuming that a purely visual resemblance

would be the desired result. Namely, the intensity of the

desired beam should be as high as possible at points z lying in

the curve z�t� and as low as possible at the remaining points of

the plane.

We construct the spiral beams
ÿ

z; �zjz�t�; t 2 �0;T �
�

as the

limiting case of the beams that realize the broken lines

approximating the curve z�t�. Let the parameter t of the z�t�
curve vary from 0 to T, fkT=n; k � 0; 1; . . . ; ng be the

partition of the segment �0;T �, and fzk� z�kT=n�,
k � 0; 1; . . . ; ng be its corresponding partition of the curve

z�t� (Fig. 12).We consider the approximation of the curve z�t�
by the broken line

[

nÿ1

k� 0

�zk; zk�1� � �z0; z1� [ �z1; z2� [ . . . [ �znÿ1; zn�

and the collection of `segment' beams s
ÿ

z; �zj�zk; zk�1�
�

realizing the individual links of this broken line.

Using representation (42) for a two-link broken line, we

write the spiral beam for a multilink approximating broken

line:

s

�

z; �z

�

�

�

�

[

nÿ1

k� 0

�zk; zk�1�
�

�
X

nÿ1

k� 0

exp �ifk�s
ÿ

z; �zj�zk; zk�1�
�

: �43�

a b

Figure 11. Intensity (a) and phase (b) of a beam constructed of basis spiral

beams.
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Here, f0 � 0 and the remaining constants fk serve to match

the phases at the points zk. The phase matching condition for

each pair of beams that realize segments having a common

point is as follows:

fkÿ1 � args
ÿ

zk;�zkj�zkÿ1; zk�
�

� fk � args
ÿ

zk;�zkj�zk; zk�1�
�

;

k � 1; . . . ; nÿ 1 :

We solve this system and use equality (39) to obtain

fk �
X

k

j� 1

�

args
ÿ

zj;�zjj�zjÿ1; zj�
�

ÿ args
ÿ

zj;�zjj�zj; zj�1�
��

� 1

2ir2

X

k

j� 1

�

�zj�zj�1 ÿ zjÿ1� ÿ zj��zj�1 ÿ �zjÿ1�
�

;

k � 1; . . . ; nÿ 1 :

Substituting these expressions in expression (43) and letting

the length of each link of the broken line tend to zero yields

s
ÿ

z; �zjz�t�; t 2 �0;T �
�

� lim
n!1

s

�

z; �z

�

�

�

�

[

nÿ1

k� 0

�zk; zk�1�
�

� lim
n!1

X

nÿ1

k� 0

exp

�

T

r2n

X

k

j� 1

�

�zj
zj�1 ÿ zjÿ1

2T=n
ÿ zj

�zj�1 ÿ �zjÿ1

2T=n

��

� exp

�

ÿ z�z

r2
� z��zk � �zk�1�

r2
ÿ jzk � zk�1j2

4r2

�

�
�jzk�1ÿzkj=2

ÿjzk�1ÿzkj=2
exp

�

ÿ t 2

r2
� t�2zÿ zk ÿ zk�1�

r2

� exp
�

ÿi arg �zk�1 ÿ zk�
�

�

dt

� exp

�

ÿ z�z

r2

�

lim
n!1

T

n

X

nÿ1

k� 0

exp

�

ÿ zk
�zk

r2
� 2z�zk

r2

�

� exp

�

T

r2n

X

k

j� 1

�

�zj
zj�1ÿ zjÿ1

2T=n
ÿ zj

�zj�1ÿ �zjÿ1

2T=n

�� jzk�1 ÿ zkj
T=n

:

We consider this expression as the limit of an integral sum.

As a result, we arrive at the final formula

s
ÿ

z; �zjz�t�; t 2 �0;T �
�

� exp

�

ÿ z�z

r2

�� T

0

exp

�

ÿ z�t��z�t�
r2

� 2z�z�t�
r2

� 1

r2

� t

0

�

�z�t�z 0�t� ÿ z�t��z 0�t�
�

dt

�

�

�z 0�t�
�

� dt : �44�

Thus, we have constructed the spiral beam for the curve

z�t�. How close is its intensity distribution form to the curve

z�t�?
As is evident from expression (44), the beam is represented

in terms of the curve invariants: the differential of arc length
�

�z 0�t�
�

� dt and the oriented area of the sector swept in tracing

the curve

1

4i

�t

0

��zz 0 ÿ z�z 0� dt :

That is why the beam is defined by the curve as a geometric

object on the plane and, in particular, is independent of its

parameterization.

However, in the construction of beam (44), the phase-

matching approach was employed for two and only two

contiguous links of the broken line and the effect of the

remaining ones was neglected. As the length of the links of the

broken line is shortened, it is evident that the lengths of the

corresponding spiral beams do not tend to zero and their

interference becomes stronger. Furthermore, of considerable

importance is the curve shape. To exemplify, Fig. 13 shows

the beam intensity and phase for the spiral of Archimedes

z�t� � t exp �ict�. The pitch of the spiral was selected so as to

show the interference between its coils. The interference of

coils becomes stronger with decreasing the pitch because it

becomes comparable to the Gaussian beam parameter r.

For closed curves z�t�, t 2 �0;T �, the interference man-

ifests itself in that the construction of spiral beams corre-

sponding to closed broken lines requires matching the phases

of the first and last links at the point z0 � zn.

Therefore, the relation between the curve z�t� and spiral

beam (44) is not evident in general. Some aspects of this issue

are considered in the next section.

3.2 Properties of beams in the form of closed curves

3.2.1 Quantization condition. Beams for closed curves occupy

a separate place and deserve special consideration. Let a

function z�t�, t 2 �0;T � describe a closed curve without self-

y

zn

znÿ1

z�t�

z2

z1

z0

x0

Figure 12. A curve z�t� and its approximating broken line.

a b

Figure 13. Intensity (a) and phase (b) of a spiral beam in the form of a spiral

of Archimedes. Isolated intensity zeroes are seen between the turns.
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intersections. Without loss of generality it may be assumed

that the curve is traced in the counterclockwise direction with

increasing t. We define z�t� for all real t and continue it

periodically outside the segment �0;T �. Then, the functions

z�t� a�, t 2 �0;T � describe the same curve for different a. Do

the spiral beams for z�t� a� coincide for different a?We show

that the beams constructed for closed curves manifest typical

quantization properties. First, the intensity distribution of

such beams undergoes radical changes under the similarity

transformation z�t� ! nz�t� and bears visual resemblance to

the curve nz�t� only for specific discrete values of n. Second,

only for these n values are the intensities of beams constructed

for the curves nz�t� a� the same for different a.

We now find the condition under which the intensities of

spiral beams constructed for the curves z�t� and z�t� a�
coincide:

�

�s
ÿ

z; �zjz�t�; t 2 �a; a� T �
��

�

2 �
�

�s
ÿ

z; �zjz�t�; t 2 �0;T �
��

�

2
:

We rewrite this identity as

exp
�

iC�a�
�

s
ÿ

z; �zjz�t�; t 2 �a; a� T �
�

� s
ÿ

z; �zjz�t�; t 2 �0;T �
�

; �45�

whereC�a� is some real function independent of z [otherwise,

canceling the Gaussian function in both sides of identity (45),

we obtain C as an analytic function of z, and therefore it

cannot be a real function for all z]. We differentiate identity

(45) with respect to a and use the periodicity of z�t� to obtain

exp �iC�a�
�

s
ÿ

z; �zjz�t�; t 2 �a; a� T �
�

�
�

iC 0�a� ÿ
�z�a�z 0�a� ÿ z�a��z 0�a�

r2

�

� exp

�

iC�a� ÿ z�zÿ 2z�z�a� � z�a��z�a�
r2

�

�
�

exp

�

1

r2

� T

0

��zz 0 ÿ z�z 0� dt
�

ÿ 1

�

�

�z 0�a�
�

� � 0 :

Replacing the spiral beam in the first term in accordance with

identity (45) and canceling the Gaussian function, we rewrite

this equation in the symbolic form

f �z�F1�a� � exp

�

2z�z�a�
r2

�

F2�a� � 0 ;

where f �z� is an entire analytic function and F1�a� and F2�a�
are some functions of a. This equality is valid for all complex z

and real a only if F1�a� � F2�a� � 0 [if f �z� has a zero, this

follows immediately. The case where f �z� has no zeroes is also

simple]. Therefore,

C�a� � 1

ir2

� a

0

��zz 0ÿ z�z 0� dt ; exp

�

1

r2

� T

0

��zz 0 ÿ z�z 0� dt
�

� 1

and consequently [59],

1

r2

� T

0

�

�z�t�z 0�t� ÿ z�t��z 0�t�
�

dt � 4iS

r2
� 2piN ;

where S is the area enclosed by the closed contour z�t�.
Therefore, the beam intensity is independent of the initial

point of integration a only for curves whose surface satisfies

the quantization condition

S � 1

2
pr2N �N � 1; 2; . . .� : �46�

The closed curves that satisfy equality (46) are referred to

asN-quantized curves and the spiral beams for such curves as

N-quantized beams. If we invoke the quantum-mechanical

analogy noted in the previous section, the wave functions of a

particle in a constant magnetic field in the ground state

correspond to spiral beams with y0 � �1, g0 � 1. Condition

(46) then corresponds to the quantized magnetic flux through

the z�t� contour: F �
ÿ

2p�hc=jej
�

N (see also Ref. [54]).

Quantization condition (46) is obtained in a natural way

as the limiting case of the additional condition for the

matching of phases of the first and last links fnÿ1 �
f0 � 2pN in the consideration of closed approximating

broken lines [see the note after formula (41)].

Figure 14 shows the intensities and phases of spiral beams

in the form of the boundaries of a regular triangle and a

square. In calculating the field (44) for the triangle, the

hypocycloid

z�t� � inr

�

2 exp �it� � 1

2
exp �ÿ2it�

�

; t 2 �0; 2p�

was taken as the generating curve z�t�. The value n �
���������

N=7
p

corresponds to the N-quantized curve. The generating curve

for the square is the epicycloid

z�t� � inr

�

3 exp �it� ÿ 7

20
exp �ÿ3it�

�

; t 2 �0; 2p� ;

and the N-quantized curve is obtained for n �
�����������������������

200N=3453
p

.

The spiral beams shown in Fig. 14 were constructed for the

7-quantized hypocycloid and the 8-quantized epicycloid. The

respective areas of the regions enclosed by these curves are

�7=2�pr2 and 4pr2. The phase distributions exhibit the

presence of singularities (isolated intensity zeroes), which

number 7 and 8 inside the corresponding regions.

a b c d e f

Figure 14.Distribution of the intensity (a, d) and phase (b, e), as well as the phase outside the beamwaist (c, f), for spiral beams in the form of boundaries

of a regular triangle and a square.
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3.2.2 Spiral beam intensity and phase on the generating curve.

The beams constructed for quantized curves have a char-

acteristic property. Let z�t�, t 2 �0;T �, be a closed curve

satisfying condition (46). Then,

s
ÿ

z�t0�;�z�t0�jz�t�; t 2 �0;T �
�

6� 0

for all t0 2 �0;T �. In other words, the entire function

f �z� �
� T

0

exp

�

ÿ z�t��z�t�
r2

� 2z�z�t�
r2

� 1

r2

� t

0

��zz 0 ÿ z�z 0� dt
�

�

�z 0�t�
�

� dt

has no zeroes on the quantized curve z 2 z�t�, t 2 �0;T �.
To analyze this statement, we use the saddle-point

technique [43] to consider the asymptotic behavior of the

beamss�z; �zjnz1� for large values of the parameter n, where z1
is an arbitrary 1-quantized curve without self-intersections.

Hereinafter, we use a simplified notation s�z; �zjz� for the

spiral beam whenever the curve z requires no detailing.

We make the change z ! nz. Then,

s�nz; n�zjnz1� � n

� T

0

exp

�

ÿ n 2

r2
P�t�

�

�

�z 01�t�
�

� dt ; �47�

where the complex function P�t� is

P�t� � z�zÿ 2z�z1�t� � z1�t��z1�t�

ÿ
� t

0

�

�z1�t�z 01�t� ÿ z1�t��z 01�t�
�

dt :

The saddle-point equation

P 0�t� � 2�z 01�t�
�

z1�t� ÿ z
�

� 0 ;

owing to the absence of singular points [�z 01�t� 6� 0 for all t] and

self-intersections [ z1�t1� 6� z1�t2� for t1 6� t2 and

t1; t2 2 �0;T �], has solutions only for z 2 z1�t�, t 2 �0;T �. Let
z � z1�t0� for some t0 2 �0;T � and let n � ���

n
p

4 r. Then,
���

n
p

z1�t� is an n-quantized curve. Because t � t0 is the only

saddle point (and a nondegenerate one),

s
ÿ ���

n
p

z1�t0�;
���

n
p

�z1�t0�j
���

n
p

z1
�

�
���

p
p

r exp

�

n

r2

� t0

0

��z1z 01 ÿ z1
�z 01
�

dt

�

�O

�

1

n

�

: �48�

As is seen from expression (48), in the limit n ! 1, the

intensity tends to pr2, and therefore

s
ÿ ���

n
p

z1�t0�;
���

n
p

�z1�t0�j
���

n
p

z1
�

6� 0

beginning with some n (which depends, of course, on the form

of the curve z1). We note that the intensity distribution on the

curve
���

n
p

z1�t� becomes progressively more uniform with

increasing n, and the absence of saddle points for

z =2
�

z1�t�; t 2 �0;T �
	

is responsible for a drop in the spiral-

beam intensity outside the curve
���

n
p

z1�t�. Therefore, the

asymptotic behavior of the spiral-beam intensity provides a

rigorous physical substantiation for the expression `a beam in

the form of the curve z�t�'.
For n 6� ���

n
p

[i.e., for the nonquantized curve nz1�t�], the
asymptotic estimate is similar to formula (48) when the point

t0 is not located in the immediate vicinity of boundary points.

However, if t0 � T (or t0 � 0), the intergrand in (47) is not

T-periodic and the integration range �0;T � cannot be replaced
with �t0 ÿ T=2; t0 � T=2�. That is why the points t � 0 and

t � T should be regarded as two different solutions of the

saddle-point equation, and the asymptotic estimate becomes

s
ÿ

nz1�T �; n�z1�T �jnz1
�

�
���

p
p

r
1� exp �2pin 2�

2
�O

�

1

n 2

�

:

�49�

This expression implies that for n 6� ���

n
p

, the intensity on

the curve nz1�t� does not tend to the constant pr2 as n ! 1
and, in addition, the location of intensity nonuniformity on

the curve nz1�t� is determined by the initial point of

integration. Figure 15 shows the possibilities for the intensity

distribution of a nonquantized triangular-shaped spiral beam

in relation to the choice of the initial point of the integration

range.

We emphasize once again the asymptotic nature of the

resultant expressions. A more detailed analysis of formula

(48) allows reinforcing the statement about the order of

magnitude of the remainder term. However, the issue of a

rigorous proof of the condition

s
ÿ ���

n
p

z1�t0�;
���

n
p

�z1�t0�j
���

n
p

z1
�

6� 0 for all n5 1 �50�

still remains open. Even when the quantization condition is

fulfilled, the expression on the left-hand side of the last

inequality is inseparable from zero (i.e., the zero constant

cannot be replaced with a slightly larger one). The main

problem consists in the efficient use of the condition for the

absence of self-intersection points on the generating curve. 5

a b

Figure 15. Intensities of spiral beams (44) constructed for the nonquan-

tized triangular-shaped hypocycloid

z�t� � 1:0425ir

�

2 exp �it� � 1

2
exp �ÿ2it�

�

and different integration intervals: (a) t 2 �ÿp; p�, (b) t 2 �0; 2p�. The

parameter 1.0425 lies between 1 and
��������

8=7
p

, which corresponds to the

intermediate position between the 7- and 8-quantized curves.

5 The simplicity of the formulation of this condition cannot be under-

estimated. Reference [61] was concerned with the following problem:

What shape should a rectangular band of paper have to allow making a

Moebius strip? It is clear that the band should be narrow and long (there is

noway ofmaking aMoebius strip, for instance, out of a square sheet). The

search for the minimal possible length-to-width ratio for the band led to

the following result:

p

2
4 inf

length

width
4

���

3
p

:

However, the exact equality was not found, because no answer was

provided to the same old question as to how use should be made of the

condition for the absence of self-crossings.
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To illustrate this difficulty, Fig. 16 gives an example of a

spiral beam. Where portions of the curve nearly touch each

other, the existing zeroes approach the generating curve

quite closely, and it is only the condition for the absence of

self-crossings that prevents the zeroes from settling them-

selves in the curve itself and thereby transforming (50) into

an equality.

3.2.3 The number of spiral-beam zeroes inside the domain

enclosed by the generating curve. We consider the circulation

of the phase gradient of the quantized beams�z; �zj
����

N
p

z1� �
�������������

I�x; y�
p

exp �ij�x; y�
�

along its generating contour. As

suggested by Refs [4, 46] and noted in the Introduction,

�

���

N
p

z1

HHj dr � 2p
X

n

sgn rot0 j�zn� ; �51�

where the scalar function

rot0 j �
1

k

�

qI

qx

qj

qy
ÿ qI

qy

qj

qx

�

is the longitudinal component of the curl of the light energy

flux vector j and the summation is performed over all zeroes zn
of the spiral beam residing within the contour

����

N
p

z1�t�,
counted with multiplicities. 6

For spiral beams (44), as for general beams (33),

rot0 j�zn� � ÿsgn y0 � 1, and therefore

�

���

N
p

z1

HHj dr � 2pN0 ;

where N0 is the number of zeroes of the beam s�z; �zj
����

N
p

z1�
inside the contour

����

N
p

z1�t�, counted with multiplicities.

We show that

N0 � N : �52�

Because N � 2S=pr2, equality (52) relates the number of

quantized-beam zeroes in the domain enclosed by the

generating curve to the area of the domain itself.

Forestalling the proof, we consider the construction of

spiral beams in the form of a circle. Using representation (44)

and neglecting the insignificant constant factor that emerges

as a result of integration, we obtain the expression

s
ÿ

z; �zjR exp �it�; t 2 �0; 2p�
�

� exp

�

ÿ z�z

r2

�

X

1

n� 0

sin �2R 2=r2 ÿ n�p
2R 2=r2 ÿ n

�ÿ2zR=r2�n
n!

:

From the quantization condition for the circle

S � pR 2 � pr2N=2, it follows that 2R 2=r2 � N, and the

series reduces to the single Nth term:

s

�

z; �z

�

�

�

�

r

�����

N

2

r

exp �it�; t 2 �0; 2p�
�

� exp

�

ÿ z�z

r2

��

z

r

�N

:

�53�

Therefore, quantized spiral beams for a circle are the well-

known Laguerre ±Gauss beams. The validity of equality (52)

is evident in this case.

We now assume that there exists some N-quantized curve

ẑ�t� for which equality (52) is not fulfilled. Then, we construct
a family of closed curves z�t; c� that depends on the parameter

c 2 �0; 1�, begins with the N-quantized curve

z�t; 0� � r

�����

N

2

r

exp �it� ;

ends with the curve z�t; 1� � ẑ�t�, and has a fixed area of the

enclosed domain S � pr2N=2 for every curve z�t; c�. This
ensures fulfillment of quantization condition (46) for all

c 2 �0; 1� for a continuous deformation of the circle.

However, the spiral beam for the circle satisfies condition

(52) and the spiral beam for the ẑ�t� curve does not. The

number of zeroes of the N-quantized spiral beam

s
ÿ

z; �zjz�t; c�
�

in the domain enclosed by the contour z�t; c�
should therefore change for some c. The following reason-

ing applies for the mechanism of the spiral-beam zero

number variation under changes in the generating curve.

The zeroes of the spiral beam are zeroes of the correspond-

ing analytic function. From the principle of maximum

modulus [40], it follows that the modulus of the analytic

function does not have a minimum inside the domain,

provided this minimum is not a zero of the function.

Consequently, no zero can arise from the minimum of the

function modulus or be transformed to a minimum inside

the domain under changes in the parameter c, because there

exists no such minimum for an analytic function. The

variation of the number of zeroes therefore results from

the penetration of a zero into the domain enclosed by the

contour z�t; c� from outside or vice versa. In this case,

however, there exists a parameter value c � c0 such that

the spiral beam s
ÿ

z; �zjz�t; c0�
�

has a zero on the contour

z�t; c0�, which is impossible, as noted above.

Therefore, to a quantized beam, there corresponds a

well-defined number of phase singularities inside the

domain enclosed by the generating curve, which depends

on the area of the domain and not on its shape [59]. Hence,

it follows that changing the domain area, for instance, from

S � pr2N=2 to S � pr2�N� 1�=2 leads to an increase in

the number of zeroes inside the domain via arrival of one

zero from outside. Figure 17 shows the evolution of the spiral

beam for the circle z�t� � R exp �it�, t 2 �0; 2p� for

2R 2=r2 2 �4; 0; 5; 0� and makes the process of zero penetra-

tion inside the contour evident. The limited dimensions of the

a b

Figure 16. Intensity (a) and phase (b) of a spiral beam constructed for a

97-quantized curve in the form of a snowflake.

6 If zn is a degenerate zero, then rot0 j�zn� � 0 and formula (51) requires a

more precise definition. The function rot0 j�z� for spiral beams (32) may be

shown to be of constant signs in the small neighborhood of the point zn. By

sgn rot0 j�zn� in this case, we mean limz! zn sgn rot0 j�z�.
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graphic images give us no way of seeing what occurs at the

periphery simultaneously with the changes at the ring center.

With an increase in the radiusR of the generating circle, when

the spiral beam ceases to be quantized and the degenerate zero

at the center breaks up into four simple ones, a wedge of

zeroes forms at infinity, which approach these four progres-

sively closer asR increases. The zero located at the wedge end

penetrates the interior of the circle enclosed by the generating

circle, while the rest of the zeroes remain outside. After that,

the internal quintuple of zeroes begins to draw together and,

simultaneously, the wedge of zeroes, which has lost one of its

representatives, begins to recede from them. When the spiral

beam becomes quantized again, the zeroes at the center merge

into a fifth-order zero and the wedge at infinity disappears.

The region of zero penetration, as mentioned above, is

determined by the initial point of integration.

3.2.4 Spiral beams for symmetric curves. The symmetry of

closed curves shows up in the properties of the corresponding

spiral beams. Let a curve z�t�, t 2 �0; 2p� be mapped into itself

under rotation by the angle 2p=M, i.e., z�t� 2p=M� �
z�t� exp �2pi=M�. Then, the quantized spiral beamss�z; �zjzn�
constructed for the corresponding quantized curves zn�t� have
the following properties:

(a) s
ÿ

z exp �2pi=M�; �z exp �ÿ2pi=M�jzn
�

� s�z; �zjzn��
exp �2pin=M�;

(b) s�z; �zjzn� has a zero of multiplicity nÿ �n=M�M at

z � 0. If n5M, the remaining zeroes located inside the

contour zn�t� are situated at the vertices of regular M-gons

(one or several). For instance,M � 3 for the hypocycloid47:

z�t� � ir

�

2 exp �it� � 1

2
exp �ÿ2it�

�

; t 2 �0; 2p� :

The beams�z; �zj47� therefore contains a simple zero at z � 0

and six other zeroes at the vertices of two regular triangles (see

Figs 14a ± c);

(c) if nÿm is not divisible byM, the beamss�z; �zjzn� and
s�z; �zjzm� are orthogonal in the space L2�R2�. In the case of a

circle, for instance, for M, one can take an arbitrarily large

natural number. Therefore, s�z; �zj
n� and s�z; �zj
m� are

orthogonal for all n 6� m. This result is well known, because it

is a special case of the orthogonality of Laguerre ±Gauss

modes.

3.2.5 Spiral beams as generalizations of Laguerre ±Gauss

modes. According to expression (53), the Laguerre ±Gauss

modes l0; n�x; y� � exp �ÿx 2 ÿ y 2��x� iy�n are a special

case of quantized spiral beams when a circle is selected as

the generating curve. The entire family of Laguerre ±Gauss

modes can be obtained in terms of generating curves. For this,

we rewrite expression (20) for l � 0 as

sm�z; �z� � exp �Z �Z� qm

qZm

ÿ

exp �ÿ2Z �Z� f �Z�
�

�
�

r
q

qz
ÿ �z

r

�m

s�z; �z� ; �54�

where z � x� iy, Z � z=r, s�z; �z� � exp �ÿz�z=r2� f �z=r�,
and in lieu of N use is made of the symbol m. We note that

the operator acting ons�z; �z� is the creation operator for the

Hamiltonian that describes particle motion in a uniform

magnetic field [62].

Substitution of the spiral beam corresponding to the

n-quantized circle

s
ÿ

z; �zj
n

�

� exp

�

ÿ z�z

r2

��

z

r

�n

;

fors�z; �z� gives, up to a constant factor, the Laguerre ±Gauss

modes of the general form

sm

ÿ

z; �zj
n

�

� lmin �m; n�; nÿm

�

x

r
;
y

r

�

:

Figure 17.Evolution of the spiral beam under changes in the radius of the generating circle: intensity (upper row), phase (middle row), and sign of the curl

rot0 j of light energy flux vector (lower row). Black color corresponds to negative values of the curl and white color to positive ones.
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Therefore, spiral beams in the form of closed curves can

be regarded as a generalization of Laguerre ±Gauss beams

l0; n�x; y�. We can continue this analogy and construct, for

every generating curve, a family of spiral beams correspond-

ing to the complete family of Laguerre ±Gauss beams. To

do this, we choose the field s�z; �z� in representation (54) to

be an n-quantized spiral beam in the form of an arbitrary

generating curve z�t�. Then, the resultant field assumes the

form

sm�z; �zj
���

n
p

z1� �
�

r
q

qz
ÿ �z

r

�m

s�z; �zj
���

n
p

z1� : �55�

Here, as before, z1�t� is a 1-quantized curve. As the initial

beam s�z; �zj ���

n
p

z1�, the beams (55) rotate during propaga-

tion, because they have the same rotation parameter y0 � ÿ1.

Furthermore, they inherit the features of the generating

curve. Laguerre ±Gauss beams and the corresponding spiral

beams for a 7-quantized hypocycloid of triangular form are

exemplified in Fig. 18. Interestingly, in contrast to Laguerre ±

Gauss beams, low-intensity lines are no longer zero lines and

this intensity structure is ensured only by isolated zeroes,

which are rather complicated in form and which imitate zero-

intensity lines.

3.3 Methods of synthesis of structurally stable beams

with a predetermined intensity distribution

3.3.1 Amplitude ± phase mask technique. Spiral beams (44)

were experimentally realized in the following way [59].

Computer-calculated amplitude half-tone masks for the

amplitude and phase were made with a photoplotter (a

resolution of 1024� 1024 elements, dimensions of

10� 10 mm). The amplitude mask for the phase was

employed to fabricate a phase element on dichromated

gelatin. The combination of the amplitude A and phase P

masks yield the requisite amplitude ± phase distribution. To

realize a triangle-shaped spiral beam (Figs 14a, c), use was

made of the phase distribution plotted in Fig. 14c, because its

spatial frequency is higher than that of the distribution shown

in Fig. 14b. Furthermore, a quadratic phase addition with the

wavefront curvature 0.002 mmÿ1 was superimposed on the

phase distribution at the beam waist to increase the diffrac-

tion efficiency of the phase element.

The experiment is schematized in Fig. 19a. The beam of a

laser L is expanded and illuminates an amplitude ± phase

element AP (the element was rotated by 90� in comparison

to the distribution plotted in Fig. 14). A lens 3 ( f � 250 mm)

focuses the �1st, 0th, and ÿ1st diffraction orders onto the

�1st, 0th, and ÿ1st planes, respectively. The diffraction

efficiency in these orders was as follows: Z1 :Z2 :Z3 � 10 :7 :3,

Z1 � 40%. The intensity distribution patterns in the planes 0

and�1 is schematically shown in the lower part of the figure.

The spiral beams rotating in the opposite directions, s�1 �
exp �ÿz�z� f �z�, sÿ1 � exp �ÿz�z� f �z�, are realized in the

orders �1 and ÿ1. Observed in the zero order is the ordinary

pattern of diffraction from the amplitude transparency A.

This field is not a spiral beam and does not retain its structure

under focusing on the plane 0. Figure 19b shows the

experimental intensity distribution in the diffraction order

�1 in the plane �1.

3.3.2 Astigmatic transformation technique. We now consider

another way of realizing spiral beams in the form of curves,

which involves astigmatic transformation (26) of Hermite ±

Figure 18. Intensities and phases of the Laguerre ±Gauss beams lm; 7ÿm�x; y� and the spiral beamssm�z; �zj47� for m � 1; 2; 3.

+1

+1

0

L

AP
1

2 3

0

ÿ1

ÿ1

+1
0

ÿ1

+1

0

ÿ1

a
b

Figure 19. Schematic layout of the experiment for synthesizing a spiral beam in the formof the boundary of a regular triangle (a) and the recorded intensity

distribution in the �1 diffraction order (b).
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Gauss beams to Laguerre ±Gauss beams. Its special case
��

R
2

exp

�

ÿi�xx� yZ� � 2ixZ

r2

�

hn; 0

�

x

r
;
Z

r

�

dx dZ

� pr2
���

2
p �ÿ2i�n exp

�

ÿ ir2xy

4

�

l0; n

�

rx

2
���

2
p ;

ry

2
���

2
p

�

allows synthesizing the spiral beams exp �ÿz�z�zn and can be

generalized as follows:
��

R
2

exp

�

ÿi�xx� yZ� � 2ixZ

r2
ÿ Z2

r2

�

g

�

x

r

�

dx dZ

�
���

p
p

r2 exp

�

ÿ ir2xy

4

�

s
ÿ

r�x� iy�; r�xÿ iy�
�

: �56�

Here, g�x� 2 L2�R� and the spiral beams�z; �z� is given by

s�z; �z� � exp

�

ÿ 1

8
z�z� 1

8
z2
�
�

R

exp �ÿx2 ÿ izx� g�x� dx :

The following sequence of operations may be suggested

for the experimental synthesis of spiral beams with the use of

transformation (56):

(a) to form the light field exp �ÿZ2=r2�g�x=r� for some

function g�x�;
(b) to perform the astigmatic transformation of this field;

(c) to compensate for the astigmatism after the transfor-

mation.

For instance, for g�x� � rect �x=a�, a spiral beam `line

segment' similar to that depicted in Fig. 10 is realized. Then,

the resultant spiral beam for

g�x� � rect

�

x

a

�

X

N

n�ÿN

exp �inox�

has the shape of 2N� 1 parallel vertical-beam `line segments':

sN�z; �z� �
X

N

n�ÿN

exp

�

ÿ 1

8
z�z� 1

8
z2
�

�
� a

ÿa

exp
�

ÿx2 ÿ ix�zÿ no�
�

dx : �57�

For o � o0 � 2
���

p
p

, separate beams `stick together' and

beam (57) takes the form of an array of zeroes that are

symmetric with respect to x, y (Figs 20a, b). The frequencyo0

is obtained from the following considerations. For a4 1 and

N ! 1, beam (57) can be represented as

s1�z; �z� �
���

p
p

exp

�

ÿ 1

8
z�zÿ 1

8
z2
�

�
X

1

n�ÿ1
exp

�

ÿ 1

4
o2n 2 � 1

2
ozn

�

:

Here, the series is the theta function #3. Setting o � o0 and

using the Poisson resummation formula for this theta

function [63],

X

1

n�ÿ1
exp �ÿpn 2 � 2inz�

� exp

�

ÿ z2

p

�

X

1

n�ÿ1
exp �ÿpn 2 � 2nz� ;

we obtain the symmetric property and periodicity of the

intensity:

�

�s1�z; �z�
�

�

2 �
�

�s1�iz;ÿi�z�
�

�

2 �
�

�s1�z� o0; �z� o0�
�

�

2

�
�

�s1�z� io0; �zÿ io0�
�

�

2
:

The beam described by (57) was realized with the aid of

a Damman array with a spatial frequency o0 as a multi-

plication element. The experiment is schematically repre-

sented in Fig. 20e. The beam emanating from a laser L is

expanded and collimated by spherical lenses 1, 2. Cylind-

rical lenses 3, 4 compress the beam in one direction and, in

combination with an astigmatic transformer comprising

spherical 5 and cylindrical 6 lenses, produce the field

exp �ÿZ2=r2� rect �x=a� exp �2ixZ=r2�. Placed immediately

behind cylindrical lens 6 was diffraction lattice 7, which

produced 17 orders of equal intensity. Astigmatic transfor-

mation (56) was realized in the Fraunhofer zone behind the

lattice and the intensity distribution of the output beam

looked like an array of zeroes. A combination of long-focus

a b c d

LL 11
22 33

44
55

66 77
88 99

1100

e
Figure 20. Theoretical calculations and experimental realization of spiral beams in the form of an array of zeroes and the as optical scheme (e) for the

synthesis of such beams. Intensity (a) and phase (b) of the spiral beams�z; �zj&� 8�8� (theory); intensity (c) and the result of interference between the spiral

and reference beams (d) (experiment).
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collecting 8 and diverging 9 lenses compensated for the

astigmatism at the transformer output. The second arm of

the scheme was used for the interferometric visualization of

the phase of the spiral beam on screen 10. The reference front

curvature selectedwas then equal to the curvature of the beam

at the transformer output. The experimental results are given

in Figs 20c, d. As can be seen from Fig. 20d, at every isolated

zero, there occurs interference fringe branching, which

corresponds to a phase singularity at this point. At all

intensity zeroes, the values of the curl of the light energy flux

vector are of the same sign (have the same topological

charge). The structural distortion of the vortex array in the

experiment in comparison with the theoretical distribution

arises from some residual aberrations.

Astigmatic transformation can underlie yet another

method, kindred to the previous one, of spiral beam

formation. Let sm�z; �z� be a beam of form (54). Then, the

equality
��

R
2

exp

�

ÿi�xx� yZ� � 2ixZ

r2

�

sm�x� iZ; xÿ iZ� dx dZ

� pr2
���

2
p

�

i

r

�m

exp

�

ÿ ir2xy

4
ÿ r2x 2

8

�

Hm

�

rx

2

�

h�y� �58�

holds, where Hm�t� is the Hermite polynomial and

h�y� � 1
���

p
p exp

�

ÿ r2y2

8

��

R

exp �ÿt 2� f
�

ry

2
� it

�

dt : �59�

It is easily seen that all information on the spiral beam

structure is contained in h�y�, which is a function of one

variable. Therefore, this function effects a peculiar one-

dimensional coding of the two-dimensional spiral beam.

We set m � 0 in formula (58) and take the spiral beam

s�z; �zjz� in the form of the curve z�t�, with the result that the

function h assumes the form

h�yjz� � exp

�

ÿ r2y 2

8

�� T

0

exp

�

ÿ
�z 2�t�
r2

ÿ z�t��z�t�
r2

� y�z�t�

� 1

r2

� t

0

��zz 0 ÿ z�z 0� dt
�

�

�z 0�t�
�

� dt :

In particular, for a quantized circle, we obtain the one-

dimensional Hermite ±Gauss mode 7

h�yj
n� � exp

�

ÿ r2y 2

8

�

Hn

�

ry

2

�

:

The following method can be proposed for the synthesis

of spiral beams with the use of coder functions:

(a) to synthesize a one-dimensional amplitude ± phase

element h�y�;
(b) to `reconstruct' the spiral beam intensity with the

astigmatic one-dimensional Hermite ±Gauss beam

exp

�

ÿ ir2xy

4
ÿ r2x 2

8

�

Hm

�

rx

2

�

in the Fraunhofer diffraction zone or in the Fourier plane.

Figure 21 shows the amplitude ± phase elements corre-

sponding to spiral beams of triangular shape versus the angle

of rotation of the generating curve. The generating curve was

chosen as a 7-quantized hypocycloid, for which the spiral

beam is shown in Fig. 14. Figures 21a and 21b show the

amplitude (a) and phase (b) of the distribution

exp

�

ÿ r2x 2

8

�

h�yj"7� ;

as well as the plots of the amplitude and phase of the one-

dimensional function h�yj"7�. Figures 21c and 21d give a

similar amplitude ± phase element for a 7-quantized hypocy-

cloid rotated by 90�. Unlike the previous distribution, which

was purely real, the element h�yj47� is complex-valued.

The amplitude ± phase element for a spiral beam in the

form of an array of zeroes is shown in Fig. 22. We see from

Fig. 22 that the coder function for the array of zeroes is real

(this can also be proven theoretically). Because the coder

function for a quantized circle is also real, any beam in the

form of an array of zeroes can be obtained by astigmatic

transformation of a product of one-dimensional real func-

tions. The one-dimensional structure of amplitude ± phase

coder elements enables harnessing the potentialities of

microlithography in full measure, and therefore this

approach may turn out to be preferable to the amplitude ±

phase mask method.

To conclude this section, we consider the relation between

the resultant beams and several well-known transformations.

1. We turn to astigmatic transformation (56) and rewrite

the resultant spiral beams�z; �z� as

s�2iz;ÿ2i�z� � exp

�

ÿ z�z

2

�

�
�

R

exp

�

ÿ z 2

2
� 2zxÿ x 2

�

g�x� dx � exp

�

ÿ z�z

2

�

f �z� :

As a result, we have the Gabor transformation [64] of the

function g�x�, where the analytic function f �z� is related to

1
jhj

0 y

x

y

2p

arg h

0 y

1
jhj

0 y

x

y

2p
arg h

0 y

a b c d

Figure 21. Amplitude ± phase elements for a spiral beam of triangular shape vs. the rotation angle of the generating curve.

7 It is interesting to note the occurrence of this function in formula (58).
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g�x� by the integral transformation with the kernel

exp �ÿz 2=2� 2zxÿ x 2�. Furthermore, in quantum

mechanics [60], the relation between the coordinate represen-

tation of a state jqi and the Fock ±Bargman representation

hzj is effected by the integral representation with the kernel

hzjqi � 1
������

p�h
4
p exp

�

ÿ z 2

2
� 2zq

�����

2�h
p ÿ q2

2�h

�

:

Therefore, astigmatic transformation (56) realizes the rela-

tion between two quantum-mechanical representations by

optical means.

2. From transformation (56), there also follows the

feasibility of optical realization of the analytic continuation

of the Fourier transform of the field g�x� through an

astigmatic transformation. For instance, for a finite field

g�x� with the support �ÿa; a�, the sequence of operations is

as follows. First, the field g�x� is transmitted through the

amplitude mask exp �ÿa2 � x 2 ÿ Z2� and the astigmatic

phase element exp �2ixZ�. Effected next is the optical Fourier

transform. The zeroes of the output field are the zeroes of the

analytic continuation of the Fourier transform of g�x�. The
resultant analytic continuation may be employed as the basis

of a new method of phase reconstruction [65].

3. During propagation, the evolution of the field from

expression (59),

F �x; y; 0� � exp

�

ÿ r2y 2

8

�

h�rxjz� ;

is of the form

F �x; y; l � � k

2pil

��

R
2

exp

�

ik

2l

�

�xÿ x�2 � �yÿ Z�2
�

�

� F �x; Z; 0� dx dZ

� 1

s
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�

ilr 4�x 2 � y 2�
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�
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ÿ r2y 2

8jsj2
�

� h

�

rx

jsj

�

�

�

�

z exp �i arg s�
�

; �60�

where s � 1� ilr2=4k. We compare expressions (59) and (60)

to find that for every l, the above field F�x; y; l � coincides, up
to scale and a phase factor, with the astigmatic transform of

the spiral beam s
ÿ

z exp �ÿi arg s�; �z exp �i arg s�jz
�

, which is

obtained from the initial spiral beam by rotation by the angle

arg s.

Transformation (60) and the corresponding astigmatic

transformation can be given a geometric interpretation. We

consider the three-dimensional distribution (see also

Refs [56, 59])

W�x; u; y� � exp

�

ÿ 2ixu

r2
ÿ 2y 2

r2

�

s�x� iu; xÿ iujz� :

The projection of this distribution on the plane u � 0 is

WPR�x; y� �
�

R

W�x; u; y� du �
���

p
p

exp

�

ÿ 2y 2

r2

�

h

�

4x

r

�

�

�

�

z

�

:

This projection coincides, up to a scale, with F�x; y; 0�.
Accordingly, under rotation of the W�x; u; y� distribution by

the angle args about the y axis, its projection on the plane

u � 0 coincides with F�x; y; l � up to a scale and a phase factor.
Therefore, the evolution of the field F�x; y; l � during

propagation looks like a change in the projection W�x; u; y�
in its rotation about the y axis.

3.4 Synthesis of phase elements for focusing into curves

Owing to their structural stability, spiral beams are always

amplitude ± phase and not purely phase light fields. There-

fore, the methods of light-field synthesis outside a cavity

involving a transformation of some initial field by means of

amplitude ± phase optical elements are inevitably associated

with the loss of a significant fraction of the transformed field

energy, making these methods nonoptimal for applied

problems. At the same time, the structural field stability

during propagation and focusing is not always a necessity: it

would be quite sufficient to achieve an efficient transforma-

tion of the initial light field into the field with a prescribed

intensity distribution in some plane. Hence, the problem is

naturally formulated in the following way: to `trade' the

structural stability of the spiral beam for the possibility of

forming the prescribed intensity distribution in some plane

using a purely phase element.

The problem of synthesizing a phase element (the so-

called `focusator') for the formation of light fields with a

prescribed intensity distribution is well known and has its

own history and bibliography (see, e.g., Ref. [66]). Mathema-

tically, the problem of laser radiation focusing amounts to

determination of a piecewise smooth function exp
�

ij�x; Z�
�

such that its Fresnel transform for l � l0 yields the desired

intensity distribution I�x; y�:
I�x; y� �

�

�F �x; y�
�

�

2

�
�

�

�

�

k

2pil0

��

O

exp

�

ik

2l0

�

�xÿ x�2 � �yÿ Z�2
�

�

� exp
�

ij�x; Z�
�

dx dZ

�

�

�

�

2

: �61�

Here, O is the aperture of the optical element.

Figure 22.Upper row: amplitude and phase of the coder element for the spiral beams�z; �zj&� 8�8� (Figs 20a and 20b). Lower row: intensities of the spiral

beamssm�z; �zj&� 8�8� constructed by formula (54) for 14m4 6.
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We also emphasize that the expression `the desired

intensity distribution I�x; y�' should be interpreted not in the

sense of the analytic representation of the function I but

somewhat more broadly. For instance, it is evident that the

problem of focusing distribution (61) for I�x; y� �
rect �x=a� rect �y=b� has no solutions for any positive a or b,

because the intensity I�x; y� is an entire analytic function in

both variables. Nevertheless, the task of focusing into a

rectangle with the side ratio a=b is among the most frequently

encountered [66, 67].

Therefore, in focusing laser radiation into a curve L

(another commonly considered case is a two-dimensional

domain), it is assumed that the intensity distribution I�x; y�
is maximum at the points of the curve L or size of its e-

neighborhood (the size e is much shorter than the length of

L), while the total fraction of energy within this neighbor-

hood is as close to 100% as possible. Moreover, a more or

less uniform intensity distribution over the curve L is yet

another significant requirement, which should be taken into

account in solving the problem. To summarize the aforesaid,

the problem of laser radiation focusing on some curve Lmay

be considered solved when the intensity I�x; y� in the plane

l � l0 which results from focusing by an element

exp
�

ij�x; Z�
�

bears visual resemblance to the curve L itself.

Quantitative characteristics Ð the energy fraction
� �

Le
I dx dy=

� �

R
2 I dx dy (Le is the e-neighborhood of the

curve L) and the degree of uniformity minL I=maxL I Ð

characterize the precision of this visual resemblance.

One of the main techniques for the solution of focusing

problems for different curves L is the stationary phase

approximation [assuming that k�diamO�2 4 2l0]. Its applica-

tion allows treating the j�x; Z�-search problem as the process

of mapping the domain O in the initial plane onto the curve L

in the plane l � l0, with each point �x; y� 2 L having an

infinite number of preimages in the domain O. When such

an approximation is employed in optics, the curve L is

referred to as a caustic and the investigation itself as the

geometric approach to the focusing problem. A rigorous

mathematical formulation of the problem of focusing on a

curve and its detailed investigation in the framework of

geometrical optics were presented in Refs [68, 69]. The

approach involving the stationary phase approximation

does not yield initial conditions owing to the specific

character of the problem, and therefore the solution to the

problem is fundamentally ambiguous. The choice of the

mapping has a significant effect on the form of the solution

j�x; Z� and, as a consequence, on the intensity I�x; y�. Within

this approximation, the wave properties of the fields being

formed escape consideration.

In connection with the aforesaid, the solutions obtained

by the stationary phase method are commonly modified to

include the wave properties of the light field by one iterative

procedure or another, for instance, by the Gerchberg ±

Saxton technique [70]. It is pertinent to note that the success

of this approach depends strongly on the initial approxima-

tion obtained, as noted above, by the stationary phase

technique. According to Ref. [71], however, the solutions to

the focusing problem with phase singularities cannot be

derived by the stationary phase technique. In the above-

mentioned paper, it was shown by the specific example of

the problem of focusing into a ring that there exists an infinite

set of solutions that are wave solutions and do not furnish a

degenerate mapping of the aperture of an optical element

onto a circle. Therefore, they are not `focusators' from the

standpoint of the stationary phase technique. Moreover, the

region of wave focusing lies in the geometric shadow domain.

These facts became the starting point for the elaboration

of a method of synthesis of phase elements for focusing on

curves (which relies on the phase structure of the correspond-

ing spiral beams naturally containing phase singularities) as

the initial approximation. Numerical experiments exhibited a

very rapid convergence of the method. Figure 23 provides

examples of the phase elements found with the use of the

corresponding spiral beams and the Gerchberg ± Saxton

technique and shows the result of their focusing action.

4. Integral characteristics of spiral beams

It is well known [72 ± 74] that the energy and angular

momentum of any beam remain invariable during propaga-

tion in the Fresnel zone, i.e.,

E �
��

R
2
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�F�x; y; l �
�
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2
dx dy � const ;

L � 1

E

��
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M�x; y; l � dx dy � const

are integral invariants. Here,

M�x; y; l � � Im

�

�F�x; y; l �
�

y
qF

qx
�x; y; l � ÿ x

qF

qy
�x; y; l �

��

is the angular momentum density. As noted in the Introduc-

tion, investigations of the two-dimensional phase problem

revealed that a significant part was played by the vortical

component of the light energy flux. Specifically, the complex

field amplitude

F�x; y; l � �
�����������������

I�x; y; l �
p

exp
�

ij�x; y; l �
�

can be reconstructed if the field intensity I�x; y�, its directional
derivative qI�x; y�=ql, and the projection of the curl of the

a b c d e

Figure 23.Distribution of the phase of optical elements (a, c) over a circular aperture and distribution of field intensities in the focal region (b, dÐ theory,

e Ð experiment).
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light energy flux on the direction of propagation

rot0 j�x; y� �
1

k

�

qI

qx

qj

qy
ÿ qI

qy

qj

qx

�

are given in some plane l � l0 in the Fresnel zone.

Generally, attempts to reconstruct the flux curl from

intensity measurements do not meet with success. However,

some of the properties of the curl are known [4]:

1. If �x0; y0� is a point of the intensity extremum and

I�x0; y0� 6� 0, then rot0 j�x0; y0� � 0. But if I�x0; y0� � 0, then

�

�rot0 j�x0; y0�
�

� � 1

k

�������������������������������������������

q2I

qx 2

q2I

qy 2
ÿ
�

q2I

qx qy

�2
s

:

2. If �x0; y0� is a simple zero of F�x; y� and C is a contour

enclosing only this zero of F, then

�

C

Hj dr � 2p sgn rot0 j�x0; y0� :

3. The principle of vortical component conservation for

the field F�x; y; l � holds: the equality
��

R
2

rot0 j�x; y; l � dx dy � 0

is valid for any plane in the Fresnel zone. This equality is the

special case of a more general property, namely

��

R
2

f �x� iy�
�

qI

ql
�x; y; l � � i rot0 j�x; y; l �

�

dx dy � 0 �62�

for any plane in the Fresnel zone and an arbitrary integer

analytic function f �z� that does not destroy the convergence

of the integral. For beams with aGaussian decrease at infinity

(for instance, for spiral beams), f �z� can be an arbitrary-

degree polynomial in z. In particular, the case f �z� � 1 gives

the already-known conservation laws for the energy and the

vortical component of the light energy flux vector.

If Pn�x; y� is a polynomial in the variables x and y of

degree n5 1, it can be shown that the integrals

��

R
2

Pn�x; y�
qI

ql
�x; y; l � dx dy ;

��

R
2

Pn�x; y� rot0 j�x; y; l � dx dy
�63�

are polynomials in l of the degree nÿ 1 or lower. As a

consequence, for n � 1, both integrals are independent of l

and thus are integral invariants for an arbitrary field F.

Applying this result to f �z� � z in Eqn (62), it is easy to

obtain the invariants

��

R
2

�x� iy� rot0 j�x; y; l � dx dy � c ;

��

R
2

�x� iy� qI
ql
�x; y; l � dx dy � ÿic ;

�64�

which depend on one constant c. The significance of this

constant is not evident for an arbitrary field, but it can be

elucidated for spiral beams. To do this, we address the

properties of displaced spiral beams again and consider how

the angular momentum of a spiral beam changes in its

displacement. It can be shown that the beams s�z; �z� obey
the optical analog of the Steiner theorem [75]: the angular

momentum Lz0 of the spiral beam displaced by a value z0
relative to the initial one satisfies the relation

Lz0 � Lzinit ÿ 2jzinit ÿ z0j2 ; �65�

where zinit are the center-of-gravity coordinates of the initial

beam intensity:

zinit � ÿ 1

E

��

R
2

�x� iy�
�

�s�z; �z�
�

�

2
dx dy :

For instance, for an elementary spiral beam whose

intensity is in the form of a displaced Gaussian distribution,

L
�

exp �ÿz�z� 2z�z0 ÿ z0�z0�
�

� ÿ2jz0j2 :

We now return to the constant c in the right-hand sides of

equalities (64). By expanding the flux curl in terms of the

Hermite ±Gauss modes for spiral beams, it can be shown that

��

R
2

�x� iy� rot0 j�x; y; l � dx dy � 2E

k
zinit :

Consequently, c � 2Ezinit=k in this case. Because the

angular momentum of spiral beams (20) and (21) satisfies

the relation L
�

sN�z; �z�
�

� N� L
�

s�z; �z�
�

, the Steiner theo-

rem and the last-mentioned relation are also valid for

arbitrary beams.

The integrals (63) for n5 2 and the fields of the general

form F�x; y; l �were found to be difficult to investigate and the
resultant polynomials in l difficult to represent. Nevertheless,

the following two results are valid. The first one relates the

angular momentum to the curl of the light energy flux:

L � k

2E

��

R
2

�x 2 � y 2� rot0 j�x; y; l � dx dy : �66�

To prove this, it suffices to apply the Green formula to the

circulation of the vector field �x 2 � y 2�IHj. The second

result consists in the fact that there are no integral invariants

for cubic polynomials P3�x; y�.

5. Conclusion

In recent years, the term singular optics has been used in

reference to the area of investigation of light fields with

wavefront dislocations, or optical vortices. Fields of this

kind are produced and observed in both linear and nonlinear

optical media and are the subject of rather intensive research,

and therefore satisfying the demand for adequate theoretical

and experimental approaches to the investigation of fields

with optical vortices is a topical problem. Of course, from the

formal standpoint, any coherent light field can be represented

as a superposition of the well-known Hermite ±Gauss and

Laguerre ±Gaussmodes; however, this approach proves to be

nonoptimal for the analysis and synthesis of fields with phase

singularities.

The vortical fields retaining (up to scale and rotation)

their structure during propagation, or the light fields that are

the concern of our review, are peculiar `vortical modes' in the

class of fields with phase singularities and merit closer

consideration as a subject of coherent optics. In our view,
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this is due to the following main reasons. First, being highly

diversified in the form of intensity distribution, these beams

are nevertheless described by analytic expressions. This

makes them an efficient instrument of research of the laws

of formation and transformation of light fields with phase

singularities of the general form. Second, in quantum

mechanics, there is a direct analog for spiral beams ± wave

functions of a charged particle in a uniform magnetic field

and the laws of spiral-beam transformation have a represen-

tation in the theory of coherent states. It is not unlikely that

these analogies will be mutually beneficial to both quantum

mechanics and optics. The third and the last, the possibility of

versatile variation of spiral-beam intensity distribution with

retention of its structural stability during propagation and

focusing is of interest for laser technologies and the develop-

ment of specific atomic traps, while a nonzero angular

momentum of these beams offers fresh opportunities for

manipulating microobjects.

Several significant aspects of the optics of spiral beams

have not been discussed in our review. In particular, here we

considered only beams in the form of curves without self-

intersections. The case of curves with self-intersections turned

out to be more complicated: for such beams subject to

quantization condition (46), for instance, the amplitude

zeroes can occur on the generating curve. The beams for

curves with self-intersections are the subject of an ongoing

study.

It can be shown [76] that the scalar product of the complex

amplitudes of spiral beams coincides with the scalar product

of the corresponding one-dimensional coder functions.

Furthermore, there exist vast classes of mutually orthogonal

spiral beams. Hence, it follows that such coder functions may

be employed as the kernels of specific wavelet transforms for

signal processing [77, 78]. The properties of these wavelet

transforms are also currently under investigation.
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