
SPLASH: STANFORD PARALLEL
APPLICATIONS FOR SHARED-MEMORY

Jaswinder Pal Singh
Wolf-Dietrich Weber
Anoop Gupta

Technical Report No. CSL-TR-91-469

April 1991

This research has been supported by DARPA contract NOOO14-87-K-0828.
Authors also acknowledge support from an IBM graduate fellowship for Wolf-
Dietrich Weber and an NSF Presidential Young Investigator Award for Anoop
Gupta

SPLASH: STANFORD PARALLEL APPLICATIONS FOR
SHARED-MEMORY

Jaswinder Pal Singh, Wolf-Dietrich Weber
and Anoop Gupta

Technical Report: CSL-TR-91-469

April 1991

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 943054055

Abstract

We present the Stanford Parallel Applications for Shared-Memory (SPLASH), a set of

parallel applications for use in the design and evaluation of shared-memory

multiprocessing systems. Our goal is to provide a suite of realistic applications that will

serve as a well-documented and consistent basis for evaluation studies. We describe

the applications currently in the suite in detail, and explore their behavior by running

them on a real multiprocessor as well as on a simulator of an idealized parallel

architecture. We expect the current set of applications to act as a nucleus for a suite that

will grow with time.

Y Worwnd Phrases: parallel applications, architecture evaluations, shared-
memory multiprocessors

Copyright 8 1991

bY

Jaswinder Pal Singh, Wolf-Dietrich Weber and Anoop Gupta

SPLASH: Stanford Parallel Applications for Shared-Memory

Jaswinder Pal Singh, Wolf-Dietrich Weber and Anoop Gupta

Computer Systems Laboratory
Stanford University, CA 94305

Abstract

We present the Stanford Parallel Applications for Shared-Memory (SPLASH). a set of parallel applications

for use in the design and evaluation of shared-memory multiprocessing systems. Our goal is to provide a suite

of realistic applications that will serve as a well-documented and consistent basis for evaluation studies. We

describe the applications currently in the suite in detail, and explore their behavior by running them on a real

multiprocessor as well as on a simulator of an idealized parallel architecture. We expect the current set of

applications to act as a nucleus for a suite that will grow with time. C

1 Introduction

Designers of parallel systems are faced with a chicken and egg problem regarding applications software. Few
real parallel applications exist to guide their designs, and users are unwilling to write new applications for
systems that do not exist. The result is that studies done to evaluate system features often base their conclusions
on “toy” programs that bear little resemblance to, or are only a part of, the codes people will actually run on
these systems. In providing the Stanford ParalleL Applications for SHared-memory (SPLASH), we hope to
meet the existing need for more complete applications. Drawn from several scientific and engineering problem
domains, the applications are intended as a design aid for architects and software people working in the area of
shared-memory multiprocessing.

The use of real applications for studying system performance, however is not without pitfalls. Dongarra
el al. [I] discuss some of these in the context of sequential and vector computing. Besides the scarcity of
applications, and the consequent difficulty of identifying a “representative” set, parallel computing introduces
new limitations to the design and use of application suites, and accentuates some of the existing reasons for
caution:

0 The software technology for writing parallel programs is immature. It is unclear how well programs

written with today’s constructs will represent those that might be written in the future, and what the

implications of this are for the effectiveness of evaluation studies performed today.

l The available programs might not represent the best parallelization of the problem they solve, but only one

that is reasonable and convenient to implement. Even more significantly, large-scale parallel processing

might call for very different algorithms than those implemented on smaller machines today.

l The relationships between applications and architectures take on new dimensions with parallelism. Man-
aging data locality, for instance, becomes signif&.nt.ly more complicated, as do the interactions between

scaling problem and multiprocessor sizes. The number of architectural variables is also much larger,

making careful accounting fm alI assumptions more important as weII as more difficult in understanding

the impact of transformations.

Besides the a’bove limitations that apply to any set of parallel applications, the SPLASH suite and
input data sets have their own particular shortcomings. Firstly, the parallelism in some of the applications is
limited by the nature and size of the input data sets. Since we use a simulator, father than a real multiprocessor,

1

to characterize the applications, runs with large data sets take too long. We expect people with real, high-
performance parallel machines to run the programs with much Larger as well as more realistic data sets, and we
provide these wherever possible. Secondly, the applications were written with small to medium-scale machines
in mind, and may require restructuring to run efficiently on larger muh.iprocessors.

As a result of the above limitations, we believe that it is inappropriate to use the SPLASH applications
as benchmarks for definitive, quantitative comparisons to prove one system superior to another (the way one
might use the SPEC benchmarks [2] for microprocessors). However, the complete programs in the suite are
real and representative, written in an architecture-independent way under the same programming model. We
hope that the application suite will be useful to a parallel processing community that all too often finds itself
using scattered and disparate toy programs. The use of a common set of applications will also enhance the
comparability of results. We expect the suite to evolve with time, and that people will modify the programs for
their evaluation studies.

For every application, the paper contains a description and evaluation. The description includes the
problem being solved, the principal data structures used, profile information, the structure of parallelism in
the program, and some of its static and dynam‘ic characteristics. References to more detailed treatments of the
algorithms used are also provided. The evaluation section contains performance results from an Encore Multimax
as well as from an execution-driven simulator of an idealized multiprocessor architecture. The Multimax provides
information a bout program execution on a real-albeit small-scale---- machine while the simulator allows us to
explore program characteristics in a more architecture-independent fashion with larger numbers of processors.
This detailed information about the applications should help users of the SPLASH programs to understand the
results and limitations of their studies. The report can also serve as a common reference point for the applications
used in a particular study, a convenience for authors and readers alike.

The paper is structured as follows. Section 2 details our method of distributing the application sources
and documentation. Section 3 describes the programming model common to all the applications. In Section 4,
we discuss the problem domains and solution techniques the applications represent, as well as their behavioral
characteristics, to try to place them in the space of parallel applications. Section 5 describes the mechanisms used
for evaluating the performance of the programs. Section 6 introduces the format of the individual application
descriptions and Sections 7-12 presents each application in detail. Finally, Section 13 offers some concluding
remarks.

2 Distribution

Application sources and makefiles for the Encore Multimax are obtainable by anonymous ftp from the in-
ternet host mo jave. Stanford. EDU. The root directory for the applications is splash, and every ap-
plication is contained in a subdirectory entitled with its name as used in this paper. This paper, together
with othe rs referenced in it, serves as the documentation for the suite. Questions should be addressed to
splash@mojave.Stanford.EDU.

.

3 The Programming Model

Most of the programs in this suite are written in C (one is in FORTRAN), using the parmacs macros from Ar-
gonne National Laboratory [3] for parallel constructs. The programs assume a number of tasks (Unix processes)
operating on a single shared address space. Typically, the initial or parent process spawns off a number of child
processes, one per additional processor to be used I. These cooperating processes are then assigned chunks of
work using static scheduling, task queues or self-scheduled loops. The synchronization structures used are locks
and barriers. Since Unix process creation and destruction are too expensive to be done frequently, processes are
spawned once near the beginning of the program, do their work, and then terminate at the end of the parallel
part of the program. Most of the programs were written with machines like the Encore Muhimax in mind:
bus-based multiprocessors with per-processor caches and uniformly accessible shared memory.

‘Note that for this reason we use the words process and processor interchangeably in this

2

4 Overview of Application Characteristics

In this section, we briefly discuss the domains of applications covered by the SPLASH suite and provide a
summary of the execution characteristics of the programs. This information should help the user to select the
applications appropriate for her studies, and it provides some idea of the coverage achieved with SPLASH.

Some basic information about the different applications is presented in Table 1. Following the termi-
nology of Dongarra et a/. 111, our applications can be characterized as whole upplicarions. In the absence of
the actual workloads that will be run from day to day, individual whole applications are considered to be the
most representative benchmarks for evaluation studies, since they include interactions that are not represented
in smaller pieces of code but will be present in the real workload of the machine.

Table 1: Basic information about the applications.

Application Allthor Lw3* Lines What Application Does

ocean J.P.Singh FOrtran 3300 simulate eddy currents in an ocean basin

Water J.P.Singh C 1500 simulate evolution of a system of water molecules

MP3D J.D.McDonaId C 1500 simulate rarefied hypersonic flow

LocusRoute J . R o s e C 6400 route wires in a standard cell circuit

P-THOR L.Soule C 9200 simulate a digital circuit at the logic level

Cholesky E.Rothberg C 2000 Cholesky factorize a sparse matrix

We divide our axes of characterization into two categories. The first of these is concerned with the
domain of scientific activity that the applications represent. The second deals with behavioral characteristics of
the applications.

4.1 The Applications and their Domains

Table 2 shows the problem domain of each application, the category of applications it is representative of, and
the particular methods or algorithms that are dominant in it. Four of our applications (Ocean, Water, MP3D and
Cholesky) are scientific computations and two (LocusRoute and PTHOR) are from the area of computer-aided
design. We believe that the current set of applications provides a reasonably wide variety of applications. It is
our plan to continue to enhance the coverage of the programs in the furture.

Table 2: Problem domains and techniques represented.

Application Problem Domain Representative of Algorithms Used

ocean oceanography finite differencing CFD, regular grid near-neighbor, SOR

Water molecular dynamics N-body direcs with cutoff radius

MP3D aeronautics particle-in-cell methods Monte Carlo

LocusRoute VLSI CAD standard cell routing iterative refinement

PTHOR logic simulation distr. time discrete event simulation Chandy-Misra

Cholesky matrix factorization sparse Cholesky factorization supernodal fanout

4.2 Behavioral Characteristics

In this subsection we outline the behavioral characteristics along which we classify the SPLASH applications.
More detailed treatments for each application can be found in Sections 7-12. The characteristics we describe
are:

l Partitioning and Scheduling: How is the parallel work partitioned among processes? For several of our
applications, at least one axis could be found along which to do load-balanced partitioning and scheduling

3

statically (e.g., Ocean, Water, MP3D). In others, the work done is much more dependent on the particular
input data set, and dynamic scheduling is implemented with task queues (LocusRoute, PTHOR).

l Synchronization: What kinds of synchronization are used to preserve dependences in the application?
The statically scheduled programs use only barriers, either explicitly or implicitly in distributed loops.
Programs that use task queues preserve dependences through the order in which tasks are enqueued as
well as explicitly with barriers. All the programs use locks to provide mutual exclusion.

l Granularity of parallelism: What is the grain size of the parallel computation? In task-queue based
programs that exploit parallelism at a single level @‘THOR, LocusRoute), a natural way to measure grain
size is the average number of cycles needed to execute a task taken off the queue. This granularity
may, of course, depend on the input data set and may also have a significant variance within a given
set. Quantifying granularity is a little more complicated in the statically scheduled numerical programs
(Ocean, Water, MP3D). Here, several computations are performed, each on every particle or point in the
problem domain, with barrier synchronizations between some of these large computations. The granularity
is therefore best thought of as being proportional to the number of particles/points divided by the number
of processors used. However, there typically is some sharing of data by the parallel processes between
barrier synchronizations. Another type of granularity relevant to all the applications is the size of critical
sections proctected by locks, which is small in all our cases.

l Computational Scalability: Does the parallelism in the application scale well for large input sizes? We
assume an ideal memory system, thus characterizing only algorithmic or computational speedup. Real
memory systems might reduce the s&abilities significantly. With the ideal memory system and large
input data sets, all our applications except YlHOR scale very well.

o Locality of Data Referencing: How regular and predictable are the access patterns to the various data
WIICN~S? What kinds of locality does the application afford, and which of these does the program
exploit? Given the machine model for which the programs were written (see Section 3), most of them
are designed to preserve access locality for individual processors in at least one major data structure,
in order to improve cache hit rates and thereby lower communication requirements. None, however,
make any attempt to exploit geographic locality befween processors. For example, in Water and MP3D
which simulate particles in a region of space, efforts are made to ensure that the same processor always
deals with the same particles. However, there is no attempt to allocate particles in adjacent regions of
simulated space to adjacent processing nodes on the machine, in order to keep the interactions local in
machines that have non-uniform ‘distances* between processors. Some of the applications have two or
more data structures that are heavily referenced in very different ways. Scheduling for locality in one
data structure can make accesses to another non-local (for example, the array of particles and the array
representing physical space cells in MP3D); optimizing for both can compromise load-balancing. In these
cases, locality is incorporated in accesses to at least one of the major data structures, typically the one for
which load-balanced scheduling follows more easily. No attempt is made in the source cc& to control the
memory allocation of shared data strucNes, as would be desirable for machines in which main memory
is distributed among processors.

Table 3 summarizes the first four behavioral characteristics for every application. Locality is more
difficult to summarize in a table-especially before the applications and their data structures are even described-
so we leave its discussion to Section 6.

The second column of Table 3 reveals a range of scheduling mechanisms, from the fully static to the
fully dynamic. In the table, by semi-static scheduling we mean that a task queue model is used, but tasks that
use the same data are preferably assigned to the same processor every time. The third column describes the
dominant forms of synchronization used to preserve dependences in the program. Note that locks arc used in
all cases to provide mutual exclusion. An impecise measure of application granularity is shown in the fourth
column; more detailed characterizations are given in Sections 7-12. A wide range of granularity is present,
although none of the programs are extremely fine-grained. For the scientific programs whose granularity is
proportional to the input data size, it is listed in the table as being large. The computational scalabilities are
summarized in the last column of Table 3. Most of the programs scale well with an ideal memory system.
Cholesky can scale well given a large input data set. EVIOR speedups are also dependent on the input data set.
However, typical circuits being simulated generally have limited activity and thus provide limited parallelism.

4

Table 3: Summary of some behavioral characteristics.

Application Scheduling synchronization Granularity Camp. Scalability

ocean StiltiC barria large 8d
Water static btia large PQd
MP3D static barrier large IPd
LocusRoute semi-static task queues, barrier small l3ood
PTHOR semi-static task queues, barrier small limited

Cholesky dynamic: task queue task queue large limited; input dept.

Table 4 summarizes the memory referencing behavior of the programs, all run with 32 processors on
the simulator. The programs uniformly exhibit more read-sharing activity than write-sharing.

Table 4: Reference statistics by application.

Application Number of Input Cycles Reads % w r i t e s 9b

Processors Data Set (M) (M) Shared (M) Shared

ocean 32 2.46 11.0 88 3.17 68

Water 32 LW112 2.16 17.1 21 6.93 7.5

MP3D 32 3000 mols 1.57 4.60 71 2.74 80

LocusRoute 32 Primary1 2.73 13.9 57 3.37 31

FT’HOR 32 l-kc 4.59 53.9 54 11.6 21

C h o l e s k y 1 32 1 tk14 1 2.05 1 10.1 80 1 3.05 42

Having characterized the applications, we now describe the methodology used to quantitatively evaluate
the behavior of the applications.

5 Evaluation

To characterize application behavior, each parallel program was run on an Encore Multimax and an execution-
driven simulator of an idealized architecture. The Encore Multimax (chosen due to availability) provides
performance results on a real multiprocessor, but is limited to twelve processors. The simulator provides results
as well as behavioral statistics for a larger number of processors.

5.1 The Encore Multimax

The Multimax we use has twelve NS32332 processors--each with an associated NS32081 floating point unit-
connected by a shared bus [4]. Each processor is nominally rated at 2 MIPS, and the bus has a peak bandwidth
of 100 Mbytes per second. A pair of processors shares a 32-Kbyte direct-mapped cache with a 4 byte line size.
Since the processors am quite slow relative to the rest of the system, the memory and interconnection system is
not a s’ignif&utt bottleneck on this machine. Timing measurements were made with no other user applications
running on the machine.

5.2 The Simulator

There are two parts to the simulator we use: the Tango reference generator [6] which runs the application and
produces a parallel memory reference stream, and a memory system simulator which processes these references
and feeds timing information back to the reference generator. The simulator runs on a DECstation 5000. The
programs were compiled with the cc (Mips Computer Systems 1.31) and f 7 7 (Mips Computer Systems 1.31)
compilers, using the -02 level of optimization.

5

The simulator assumes a perfect memory system for timing purposes (i.e. all memory referencing
instructions take a single cycle to complete), yielding what might be called computational or algorithmic speedups

without any degradation due to the memory system. We do, however, functionally simulate infinite processor
caches for the purpose of tracking miss statistics. The caches are kept coherent by an invalidation-based porocol.
Infinite caches are chosen to exclude misses due to limited cache capacity or mapping interference. The only
misses observed are due to cold-start and invalidations. For some applications, we eliminate cold misses as well
by gathering statistics only after the initialization phase is complete. Note that infinite caches tend to bias miss
rates favorably toward a uniprocessor execution, by taking away the advantage of a growing total cache space
as the number of processors is increased. Cache lines are 4 bytes long, to avoid false sharing problems. The
simulator keeps track of the number and types of mfe-rences, as well as of misses, invalidations and time spent
waiting at synchronization points.

Because a perfect memory system is assumed in measuring execution times, miss rates do not af-
fect performance. Departures from ideal application speedups can be ascribed only to larger wait times at
synchronization events, and such overheads as parallelism management and redundant computation. Larger
synchronization wart times are caused by load imbalances (in the case of barriers) or contention to enter a crit-
ical section (in the case of locks), but not by contention for synchronization variables themselves. We present
one or both of the following kinds of speedups for every application: nomufized spxdups are measured with
respect to an efficient sequential program (running on one processor of the parallel machine), while self-relative

speedups are measured with respect to an execution of the parallel program using a single processor. For each
application, we outline the factors that prevent it from attaining ideal speedups.

The large run-time overhead of using the simulator forces us to limit the execution time of the appli-
cations. For some classes of applications, this is easy. For programs that simulate physical processes over time,
for example, we might execute only a handful of time-steps, rather than thousands. Assuming that succeeding
iterations are identical in application behavior, running for a small number of iterations does not introduce much
error into our measurements. For other classes of applications, we are forced to reduce the data set to allow the
simulation runs to complete in a reasonable amount of time. ‘This may have undesirable effects, such as reducing
the degree of parallelism and altering the interactions with the memory system on a real multiprocessor.

6 The Application Descriptions

In the following sections we describe each SPLASH application in some detail. We begin with a description of
the problem to be solved and then provide details about the parallel program, including principal data structures,
program structure and profiling information. We also provide information about how the program is run, what
inputs it requires and what output it produces. The final subsection of each application section contains results
obtained from running the application on the Encore Multimax and on the sirnu&or, and a brief discussion of
these results in the light of application characteristics.

7 Ocean

This application studies the role of eddy and boundary currents in influencing large-scale ocean movements. A
cuboidal ocean basin is simulated, using a discretized quasi-geostrophic2 circulation model. Wind stress from
atmospheric effects provides the forcing function, and the impact of lateral friction with the ocean walls is
included. Bottom friction is set to zero in this application, although its effects can easily be incorporated as
well. The sequential program was received from the National Center for Atmospheric Research in Boulder,
Colorado.

The simulation is performed for many time-steps until the eddies and mean ocean flow attain a mutual
balance. The computational demands are heavy, owing to the large number of time-steps required, the size of
the ocean basin, and the increased accuracy obtained by finer discretization. However, the grid-based application
is well suited to parallelism.

*Geosuc# ic: dating to the deflective forces caused by the mmion of the unh.

6

The work done every time-step essentially involves setting up and solving a set of spatial partial
differential equations, details of which can be found in [7). The continucus functions are transformed into
discrete counterparts by first-order finite-differencing, and the resulting difference equations set up and solved
on two-dimensional fixed-size grids representing horizontal cross-sections of the ocean basin. We simulate a
square grid of size 98-by-98 points, and we use the same (constant) resolution in both dimensions. The original
sequential program used a block cyclic reduction algorithm to solve the elliptic equations (see [7]); the parallel
programs use an iterative method: Gauss-Seidel with Successive Over Relaxation (SOR) [7, 81.

7.1 Principal Data Structures

The principal data structures are two-dimensional arrays holding discretized values of the various functions
associated with the model’s equations. These include the streamfunctions at the middle of the two horizontal
ocean layers and at the interface between them, streamfunction values at the previous time-step (needed to avoid
numerical instability in computing the friction terms), the driving functions in the equations, their component
terms, and various others. In all, there are 25 such double precision floating point grids, most of them allocated
as two-dimensional arrays, but some in pairs in threedimensional arrays. The two-dimensional array size is
statically allocated to be 128-by-128. How much of each array gets used depends on the size of the problem
simulated, but the total allocated data space is about 3.2MB.

7.2 Structure of the Parallel Frogram

The program begins with initialization and some one-time computation, which includes computing the external
forces and solving a single elliptic equation. After this, the outermost loop of the program iterates over a fixed
number of time-steps. The high-level structure of the parallel program within a time-step is shown in Figure 1.
Grid computations in the same horizontal section in this figure are independent of one another. Those in the
same vertical section follow a thread of dependence. Note that on:y a limited and fine-grained pipelining can
be exploited across time-steps, and is ignored here. The 9 grids in Figure 1 represent the streamfunction values
being solved for. !&I is the vahte at the middle of the upper layer of the ocean, and !Pj at the middle of the lower
layer. !PLM and PLM are streamfunction running sums, while PO, !&, and @ are mathematical functions used
in the solution process. The y grids are the right hand sides in the equation system, and the W are temporary
workspace arrays. The Jacobians and Laplacians are near-neighbr computations (9-point and 5-point stencils,
respectively) with different input and output arrays, while the equation solution is an in-place near-neighbor
iteration to convergence with a 5-point stencil. An understanding of the equation system and solution method
can be obtained from [7].

7.2.1 Partitioning/Scheduling and Locality

The program proceeds from left to right within every horizontal phase of Figure 1. Every grid task in the figure
is partitioned among all processors. The non-boundary elements of a grid are split into equal-sized chunks of
adjacent columns3, each of which is assigned to a different process. The scheduling is static: Every process
determines the first and last columns of its partition at the beginning of the program and works on those columns
of every grid. Boundary elements are partitioned as follows: The processor that works on column j of an N-by-N

grid also does the computation for the elements (j , 1) and (j, N). What remain are the four corner elements,
and these are split between the processes with the smallest and largest identifiers. We should mention here that
our parallel solution method does not follow the SOR ordering exactly, violating it at inter-partition boundaries.

Locality is provided by ensuring that the same columns are always assigned to the same processor.
Near-neighbor computations are kept more local by partitioning in chunks of adjacent columns rather than
interleaving processors among columns: The only communication now is at inter-partition boundaries, and can
be further reduced by partitioning in square subblocks rather than column strips (not implemented here). All the
computations simply sweep through entire grids, yielding no opportunity for blocking within a grid computation.

3Partithing in subdomains thal

nicalion inherent to Ihe apphtim.

are as close to square as possibk is an

7

attractive dLCm?LiVC that minimizes the inlerproussor Ca nmU-

Pu Laplacian
o f $1 in wi,

I

Put$aplaaan
of 3 in Wlj

._.__.__.___.....___-.- ._--..~~~.~...-......-~--.-----.--.--..-....-.

Add f values to columns COPY y AM
of WI pndW1, intoY,, 3Y

. I..*........-..I.......-......-....

Put Jacobians of (Wl 1, T, 1,
9

3, J-3
(WI,, T3)ln WS,,WS 3

into 1M Ab4

.____...._.__..-...-..--....--..___.._..,-......__.-..----------

.1......-.......I..........-.-....-....

U P D A T E T H E

Put y- y, Put compuled y,

I I

Initialize
in W2 vabestnW3 y,andrb

m.e _........m. _.__._-_--..___-.__.-- -.----.-.--.-__.-.---...-

._...........-......-.................................

Put li3pfacian of

5
in W4

If

._.__.___.__.____.__---.-----.--------------...---------------.-----...

Put-d
(W2. W3) in W6 Put LT% OfYJ 12

._.........-..........--....-......-.........................

7 E X P R E S S I O N S

._._.....__._.-._._....-............................-.......-...-..._____-...._..-----.....-.-.---..--.---.-..-..---.-------..-..------------.--

S O L V E T H E E Q U A T I O N FORY, A N D P U T T H E R E S U L T I N Y
a

._....._____....___.......-.....-..-.----.--.----.--.--------------...--_.__..__._.-.---.--_---..---.-.-----...----..-~----..-....-.....-----...

C O M P U T E T H E I N T E G R A L O F y,

. -. . . I*... -.............................----..--......--..-...-....-.*...........T
Compu!e Y - ‘y,? c(t)yb note: y
and now Y are maintained In , matrlxf4 I

Solve the equation for @ and put result in Yb

. .._....................... ..-.........

Use Y and Q toupdate y; and ‘f’s
. . . . - -... ..-....................... . ..1.........--.......-.-....-....-.-....-.-...........-.....

Update streamfunction running sums and determine whether to end program

Note: Horizontal lines re esent synchronization points among ail processes, and vertkal lines
spanning phases izmarcate threads of dependence.

Figure 1: Parallel structure of Ocean.

7.2.2 Synchronization and Granularity

Mutual exclusion, enforced with locks, is required in obtaining a process identifier and in only one other situation
in this application: when every process accumulates its private sum into a shared sum in computing a matrix
integral. This situation is relatively infrequent, occuring once in the one-time computation, and once every time-
step. Synchronization is also needed to preserve dependences between grid computations; this is accomplished
by inserting barriers at the end of every phase in Figure 1. Barrier synchronization is overly restrictive here,
and can be replaced by more direct inter-processor synchronization if so desired. Barriers am also used when a
globally determined value (such as an integral or a flag indicating convergence) is subsequently to be used by
all processors.

The granularity of Ocean is measured as the amount of computation per processor between successive
barrier synchronizations. While the different grid computations in the program take different amounts of time,
the granularity in all cases is proportional to the number of grid points per partition; that is, to the ratio of
the number of points and the number of processors. Since we expect this ratio to be large on shared-memory
multiprocessors, we call the program large-grained. The granularity of the few critical sections in the program
is very small: merely a few machine instructions.

7.3 Profile of a Uniprocessor Execution

Most of the execution time of the program is spent in near-neighbor Jacobian and Laplacian computations and
in solving the elliptic equations. The initiahzation and one-time computation are negligible. Figure 2 shows the
variation, with problem size, in the amount of time spent in the solver and in the rest of the program. Notice
that the uniprocessor execution time of the program grows linearly with the number of grid points.

8

g 560

E
F 490

2
3 420

lz
350

200

210

140

70

14x0

_ I
-proqPm
equation sobr :.:

:

Number of Grid Points

Figure 2: Ocean: uniprocessor execution time versus number of grid points.

7.4 Running the Program

The program is run by typing the command: OCEAN. Execution parameters are specified in an input file.

7.4.1 Input and Output

Ocean reads four input values from the standard input device, in the following order.

0 the number of processes to be used.

a the size of the grid (assumed square) to be simulated (IM). This size is specified as the number of elements

in either dimension, not the total number of points on the grid. Unless the PARAMETER statements in
the source are modified and the program recompiled, IM must not be greater than 128; it must never

be less than 2. The application also assumes that (IM-&-the matrix dimension excluding boundary

elements-is a multiple of the number of processors used.

0 the tolerance for convergence of the iterative equation solver (suggested value = lo-‘).

l the SOR parameter w for the equation solver (suggested value = 1.15).

The program prints out some timing results as its only output. Typical simulations in the application
domain would be performed over hundreds of simulated days. However, since the work done in every time-
step is essentially identical, significantly fewer time-steps can be used for parallel benchmarking. The program
currently simulates 6 time-steps (2 days).

7.5 Results

We simulate a grid size of 9%by-98 points. The timer is started when the first time-step begins, omitting process
creation and cold-start cache misses in the one-time computation, and is stopped just before printing the output

9

at the end of the program execution. Note that the execution time of the SOR equation solver depends on the
tolerance used to detemine convergence. Since the sequential program uses a direct solver rather than SOR,
normalized speedups are sensitive to the tolerance used in the parallel program.

Normalized and self-relative speedups obtained on the Multimax are shown in the left graph of Figure
3. The speedup scales quite linearly with the number of processors. Beyond six processors, the speedup is

reduced to some extent by the artifact of two processors sharing a cache, thus reducing the effective cache space
of each and increasing mapping collisions.

%1 12.,

cl3
10 .'

8 .I

6.

01
I I I I I I

0 2 4 6 8 10 12

Proc8ssofs

b36

1
88

to 80

7 2

6 4

5 6

48

40

3 2

24

16

8

0

C O- 0 self-relative

Encore Multimax Simulator

Figure 3: Ocean Speedups: Multimax and Simulator.

Measurements obtained with the simulator are shown in the right graph of Figure 3 and in Table 5.
The speedup is almost ideal upto 48 processors, and falls off a little when only one column is assigned to every
processor, making the overheads of synchronization and parallelism management more significant. With 48
processors, only 1.2% of the execution time is spent waiting at barriers, and only 0.1% at critical sections. Wuh
a realistic memory system on a modem multiprocessor, cache miss rates would significantly reduce the speedup
from the ideal memory system results shown here (a quick comparison of speedups will show, however, that
this is not the case on the Multimax). Almost all the misses shown in the table are due to nearest-neighbor
computations at inter-partition boundaries. The narrower the partitions, the more the misses and the smaller the
speedup. The miss rate can be reduced by using square sub-blocks-rather than column strips-as partitions, or
by using other locality-enhancing transformations. Note that the problem size we have used is considered quite
realistic (being significantly larger than the 26-by-26 size hard-coded into the sequential program we received
from NCAR). On high-performance multiprocessors, however, it is reasonable to consider problem sizes that
would sweep the caches of a small machine on every grid computation.

8 Water

This N-body molecular dynamics application evaluates forces and potentials in a system of water molecules in
the liquid state. The computation is performed over a user-specified number of time-steps, hopefully allowing
the system to reach a steady state. Every time-step involves setting up and solving the Newtonian equations
of motion for water molecules in a cubical box with periodic boundary conditions, using Gear’s sixth-order
predictor-corrector method [9]. The total potential is computed as the sum of intra- and intermolecular potentials.

To avoid computing all the $ pairwise interactions among molecules, a spherical cutoff range is used with radius
equal to half the box length. More recent algorithms to speed up the computation of N-body interactions (such
as the Greengard-Rokhlin method [lo]) are not used. Double-precision accuracy is required for this simulation,

10

Table 5: Ocean Information (Simulator).

1
2
4
6
8

12
16
24
32
48
96

Miss Rate

w

0.00
0.13
0.33
0.53
0.72
1.10
1.47
2.22
3.04
4.43
8.88

synchronization n
Waiting Time (%) [

0.00 I
0.56
0.58
0.61
0.62
0.65
0.70
0.81
0.94
1.35
3.66

Y

which can be used to predict a variety of static and dynamic properties of liquid water. Further documentation
of the program can be found in [111, and details of the physical models in [12, 13, 141.

The sequential program, written in FORTRAN, is one of the Perfect Club set of supercomputing bench-
marks [IS]. The parallel program is written in C, with significantly modified data structures.

8.1 Principal Data Structures

The main data structure used in the Perfect Club benchmark is a large, one-dimensional array called VAR.
The array is divided into eight sections, each representing a variable in the system: the first seven for the
displacement (J(z)) and its 6rst six derivatives, and the last for the computed forces. Every section is further
subdivided into three spatial directions, with every direction having an entry for every atom of every molecule.
For better cache behavior with large line sizes, the parallel program restructures VAR to be an array of structures,
each holding all the data for one molecule. Every molecular structure has a three-dimensional array, indexed
by variable type, spatial direction and atom number within the molecule, as well as a smaller array with three
entries per molecule. The data memory requirement of the program is about 750 bytes per molecule. For our
problem size of 288 molecules, the shared data set size of the application is about 220 Kbytes.

8.2 Structure of the Parallel Program

The program begins with some initialization and one-time computation. This includes reading the initial dis-
placements and velocities of the molecules to be simulated. Additional processes are then spawned. In the
sequential program, the equations of motion are solved by iterating over the loop in Figure 4 for a user-specified
number of time-steps, with the total energy of the system being computed and output once every few time-steps
(again a user-specified number).

Only very fine-grained pipelining is possible across time-steps; none of it is implemented. The work
in a time-step can be divided into a set of tasks, each a computation over all molecules in the system. After an
interprocedural analysis of high-level dependences between tasks, and the use of static scheduling to minimize
explicit inter-task synchronization, the computation within a time-step can be mapped on to a set of fully parallel
phases.

8.2.1 Partitioning/Scheduling and Locality

Every box in the flowchart of Figure 4 is partitioned among all processes. For the int.ramolecular computation,
parallelism within a piece of work is mainly implemented by assigning every processor a set of molecules that

11

set up mcding hctors and cmfmtmm

Cow te in* * mobcutar forca for Jt atom

1

Compute intu- Ndmcutar f o r m

Cdcuktr corroctod v& o. of vuiabhm
from the pad& ted valrw a and oorqutod forces

I

I
Boundrry conditionr:
back inub the box if Ky~t? I

+
I C0mw to ktnotic energy of 8ystrm 1

Figure 4: Structure of the Water program.

are located next to each other in the VAR array (which does not imply that they are physically close together
in space). Locality is incorporated by assigning a processor the same partition in every computation; that is,
static scheduling is used. In the intermolecular case, a processor is responsible the interactions of each molecule
in its partition with the F molecules following it, with wraparound at the end. Every one of the p processors

therefore examines $ interactions of the pool of $,
P

including as few nonlocal interactions as possible. Note
that although a cutof radius used in determining whether to actually compute an intermolecular interaction, all
pairs of molecules have to be examined since no spatial data structure is maintained. The cutoff radius also
gives rise to another form of locality: locality in physical space. Since molecules have greater interactions with
other molecules that are close to them in space than with those that are without the cutoff radius, we would
like the partitioning to assign roughly an equal number of actually computed interactions to every processor.
Since every interaction updates the force locations of each interacting molecule, we would also like molecules
assigned to the same processor to be physically close as well. This version of the application, however, makes

no explicit attempts to incorporate locality in physical space. If the molecules in the input data set are not
appropriately ordered, both load-balancing and data localitv can be compromised

8.2.2 Synchronization and Granularity

Barriers are used to maintain dependences where static scheduling doesn’t suffice. The barriers used to separate
the parallel phases can be replaced by more specific processor-to-processor synchronization, but this is not
implemented in the current program. Barriers also separate successive time-steps. Other than in obtaining
process identifiers, locks are required in two situations:

l A global running sum is computed every time-step, and is updated several times during the intramolecular

and intermolecular force computations. In the parallel program, every process has its own private running

sum, and locks are used to accumulate this into the shared sum at the end of the time-step.

0 Since different processes may simultaneously be computing intermolecular interactions involving the same

molecule, updates to the force locations of all atomsmust be mutually exclusive. This implementation
uses locks at the granularity of individual molecules.

12

Granularity in Water is measured as the amount of computation per pmcessor between successive
barrier synchronizations. Since the number of molecules simulated is likely to be much larger than the number

of processors used, the granularity is large (O(d) in the intermolecular interactions). All the critical sections
in the program are quite small: no more than a ew machine instructions.P

8.3 Profile of a Uniprocessor Execution

Almost all the execution time of the program is spent in computing intermolecular interactions, this compu-
tation being O(n*) in the number of molecules as opposed to O(n) for the intramolecular computation. The
initialization and one-time computation are negligible. Figure 5 shows the variation, with problem size, in the
amount of time spent in intermolecular interactions and in the test of the program, timing the program as in
Section 11.5.

:
:

a -
:-

+:’
:

na - :.
:

:
:.

:
:

(u- :.
:

:
:

:
:

::::::::
:::::

:
::::

Figure 5: Water: uniprocessor execution time versus number of grid points,

8.4 Running the Program

The program is run by typing the command: WATER Execution parameters are specified in an input file.

8.4.1 Input and Output

Two input files are read, their names being hard-coded into the program. LWI 12 is a file that contains the initial
displacements for all atoms in all three spatial directions. This file--taken from the Perfect Club-provides data
for 343 molecules, listing tirst all the x displacements, then all the y and all the z Since the medium being
simulated is liquid water, the distribution of displacements is quite uniform. Note that the cutoff radius and the
length of the “box” containing the water molecules are computed from the number of molecules w so that
one should take this into account when generating one’s own input files. In particular, note that it does not make
much sense physically to use the input file provided for numbers of molecules too much smaller or larger than
343. The program provides the option of not reading an input file but generating its own initial displacements as
long as the number of molecules used is a perfect cube. These displacements place the molecules on a crystalline
lattice, which is an unrealistically uniform distribution. The file random. in contains pseudo-random numbers
used to initialize particle velocities. The program also reads some execution parameters from the standard input
device. These include the number of molecules to be simulated, the interval (in time-steps) at which to compute
potential energy and print results, the number of processors to be used, and the parameter that specifks whether

13

or not the displacements should be read from an input file, among others. All input parameters are described in
the code listing, and a sample input file (called sample. in) is prwided. The program writes its output to a

file called LWO6. Some timing results are also written on the standard output device.

8.5 Results

The problem size we use in our measurements (288 molecules) is almost as large as the Perfect Club provides
input for (343 molecules). It is essentially the largest size, still divisible by all the numbers of processors we
use, that can use the input data set provided with the Perfect Club benchmarks. We expect real uses of the
application to simulate a much larger number of molecules. ‘I%e timer is started when the second time-step
begins and is stopped just before printing the output at the end. Process creation and most cold-start cache
misses are omitted since we simulate only 2 time-steps rather than the 100 in the original sequential pogmm.
Note also that the potential energy calculations, performed once every 10 time-steps in the original program, are
omitted in our measurements. They are, however, structured very similarly to the intra- and inter-molecular force
computations. Only self-relative speedups are presented; normalized speedups are not significantly different.

0 2 4 6 8 ‘10 12

Prowssors

Encore Multimax

24

16

8

ideal

Simulator

Processors

Figure 6: Water Speedups: Multimax and Simulator.

Speedups obtained on the Multimax are shown in the left graph of Figure 6. Measurements obtained
with the simulator are shown in the right graph of Figure 6 and in Table 6. Load imbalance is not a significant
problem, even though a cutoff radius is used in computing interactions, since the distribution of water molecules
in the liquid state is fairly uniform. Nonuniform particle distributions would complicate the relationship between
data locality and load balancing. With 48 processors, the average processor spends only 0.2% of its time waiting
at barriers, and negligible time at critical sections. Miss rates are very small with infinite caches, although shared
miss rates are significantly higher. This is because only about 20% or the references are to shared data. With
more realistic problem sizes, however, the miss rates due to repbcement in finite caches-as computations
sweep across the molecules---can become significant.

9 MP3D

MP3D solves a problem in rarefied fluid flow simulation. Rarefied flow problems are of interest to aerospace
researchers who study the forces exerted on space vehicles as they pass through the upper atmosphere at
hypersonic speeds. Such problems also arise in integrated circuit manufacturing simulation and other situations
involving flow at extremely low density.

14

Table 6: Water Information (Simulator).

1
2
4
6
8

12
16
24
32
48

0.04

0.63
0.98
1.05
1.11
1.16
1.24
1.33
1.48

Synchronization
Waiting Time (96)

0.00
0.19
0.32
0.18
0.26
0.39
0.37
0.33
0.29
0.20

Under such conditions, the discrete particle nature of the medium becomes significant, so these studies
cannot rely on traditional fluid flow models (such as the Navier-Stokes equations) which assume a continuous
medium. Monte Carlo methods, such as the one used in MP3D, have been developed as an alternative. These
methods simulate the trajectories of a collection of representative molecules, subject to collisions with boundaries
of the physical domain, objects under study, and other molecules. After a steady-state is reached, statistical
analysis of the trajectory data produces an estimated flow field for the configumtion under study. To obtain
accurate results, such methods require large amounts of computation. Vectorized and parallelized codes have,
therefore, been developed [17].

MP3D employs five degree-of-freedom simulation of idealized diatomic molecules in a three-dimensional
active space. There are three translational freedoms and two rotational energy modes. The active space is a
rectangular tunnel with openings at each end and reflecting walls on the remaining sides. The object being
studied is represented as a set of additional boundaries in the active space. Molecules generally flow through
the tunnel in the positive r direction. Exiting molecules are reused after being thermalized to the free stream
temperature and randomly distibuted near the entrance to the tunnel. The thermalization velocities are copied
from a small reservoir of molecules that are kept at the upstream temperature. The reservoir molecules are
subject to motion and collisions among themselves, but are isolated from the active molecules by being located
in a separate reservoir space.

For the purposes of efficient collision pairing, the active space is represented as a three-dimensional
space array of unit-sized cells. Molecules can move among cells, but are only eligible for collision with
other molecules occupying the same cell at that time. Molecular collisions are statistically determined using
a computed collision probability, conservation laws, and a table of collision outcomes, representing all 3840
permutations of the degrees of freedom of the molecules.

MP3D was developed and initially parallelized in the Aeronautics and Astronautics department at
Stanford. Several enhanced versions have since been developed, and a restructuring study is described in [16].

9.1 Principal Data Structures

The amount of data accessed by MP3D is largely determined by the number of molecules simulated. The user
specifies the initial number of active molecules as an argument to the application, and over the course of a
simulation run the number of active molecules typically increases by about 25%. The data requirements are
also affected to a lesser extent by the dimensions of the active space and the number of the internal boundary
conditions. There are static limits on all the above parameters.

Two large arrays of structures account for more than 99% of the static data space used by MIP3D. The
first one stores the state information for each molecule, and occupies 36 bytes per molecule. The second one
stores the properties of each cell in the active space, and requires 40 bytes per cell.

15

9.2 Structure of the Parallel Application

Initialize geometry and molecules.

1
i

Query user for number of steps. ‘t
l

I I

IN0

I Reset counters and space array. I

I Move each particle one step
and check for collisions.

I

1 Add molecules near the entrance. 1

I Move reservoir molecules one step.
I

THESE

FIVE

PHASES

TOGETHER

FORM

A

TIME-STEP

Figure 7: Flowchart of MP3D.

A high-level flowchart of MP3D is shown in Figure 7. Execution begins with the initialization of the data
structures. The number of molecules is read from the command line, and the geometry of the problem is read
from a separate input file. The application enters a user interface, which determines the number of time-steps
to advance the simulation. It then iterates over the time-steps and returns to the user interface.

Each time-step has five basic phases: initialize, move, add, reservoir-move, and reservoir-collide. In the
initialize phase, the space array, the collision counters, and the cell population cOtinters are reset and the collision
probabilities for each cell are computed. In the Move phase, the molecules are moved according to the equation
2’= 5 + v’ A t, the cell stabstics are updated, and collisions with boundaries and other molecules are performed
incrementally.4 In the add phase, molecules exiting the active space are recycled and new molecules initialized
at the entrance. Reservoir molecules are moved and collided in the reservoir-move and reservoir-collide phases,
respectively.

‘The incremental &lision scbane is not sufficiently random, md in recent axles this whnique has been rephed by a separate collision

phase.

16

9.2.1 Partitioning/Scheduling and Locality

The work is partitioned by particles and statically scheduled on processors. A given particle, therefore, is always
moved by the same processor. In contrast, the access patterns to the space cells depend on the positions of
the molecules and thus show much lower processor locality. It is possible for two processors to access a given
space cell during the same time-step, if each is moving a molecule in that cell.

9.2.2 Synchronization and Granularity

Barriers that are used to synchronize between phases account for most of the synchronization needed. There is
only one significant dependence within a phase: in the add phase, the computation of the number of molecules
to be added must be completed before the add loop begins. This version of the code normally has no locking
activity, although it does have a number of minor race conditions, most notably in the global event counters
and the space array. The likelihood that these races will significantly affect the results is small, but they can be
eliminated at some performance cost by compiling with the LOCKING option.

Granularity in MP3D is determined by the amount of work a processor does between banier synchro-
nizations. This granularity varies with the phases and is largest in the lltove phase. Since the granularity is
proportional to the number of particles assigned to each processor, it is typically very large.

9.3 Profile of a Uniprocessor Execution

An execution of a 3000-molecule, 5-step test problem was profiled on a Digital DECstation 3100 using the
Unix pixie and pro/ utilities. With a full-scale problem, the number of molecules and the number of time-steps
would be much larger. The initialization time would then be relatively insignificant. The Table below shows
the breakdown of time spent in the simulation section.

Table 7: MP3D Simulation Section Profile.

Phase 1 96 of parallel section

‘pi

The majority of the execution cycles were spent in the move phase. The time spent in the add phase
was negligible. Of the cycles spent in the move phase, only 0.75% were for collisions between molecules and
only 1 .O% were for collisions with boundaries. This is probably because of the trivial input geometry and the
small number of molecules used, and is probably not representative of realistic MP3D runs.

9.4 Running the Program

MF3D takes three command-line arguments. The 6rst two are the initial number of molecules and the number
of processors, in that order. The third argument, which is optional, is the name of the input file containing the
problem geometry. If no file is specified, the application attempts to open a file named test.geom in the current
directory.

The application is designed to be interactive, with a very simple command-line interface. Typing a
number causes the program to iterate for that number of time-steps. Typing ‘q’ causes some statistics on cell
populations to be printed. Typing ‘e’ terminates the application. The desired command sequence may be stored
in a file for batch-mode operation.

17

9.4.1 Input and Output

The file rest.geom that we provide contains the geometry for the flat sheet problem used throughout this report,
which is described in Section 9.5. Other geometries may be substitued for this. After each period of simulation,
the application prints the execution time.

9.5 Results

Execution times for MP3D are measured from the point immediately after all processes are created to the time
when the last created process completes. All speedups reported are self-relative.

We only use 3000 particles, to reduce simulation time. The geometry used is a 14x24~7 (2646-tell)
space containing a single flat sheet, which is placed at an angle to the free stream. This geometry includes 27
internal boundary conditions. We would, however, advise against running MP3D with such a small problem
to make useful conclusions. In practice, this application would be run with as many molecules as could be fit
in the machine’s memory, and with more reahstic geometries. The Multimax runs were for 50 time-steps, the
simulator runs for only 5.

I I I I I I

2 4 6 8 10 12

4 8

4 0

32

2 4

0 8 16 2 4 32 40 48 56 64

Processors Processors

Encore Multimax Simulator

Figure 8: MP3D Speedups: Multirnax and Simulator.

Table 8: MP3D Information (Simulator).

n Number 0f 1 Miss Ri3te

Processors (W

1 0.73
22 11.22
44 16.66
88 19.42

1616 20.89
3232 21.63
6464 22.09+

11.22
16.66
19.42
20.89
21.63
22.09

2.53
3.04
3.35
5.02

Speedups obtained on the Multimax are shown in the left graph of Figure 8. Note that there is signitkant
deviation from ideal speedup by the time 12 processors are used. A speedup curve on the simulator is shown

18

in the right graph of Figure 8. For 64 processors, the speedup ratio is 52. Table 8 presents miss rates and
synchronization waiting times. In the 64-processor run, only 0.76% of the time is spent waiting on locks, and
4.26% at barriers. With a real memory system, miss rates would be the limiting factor on the speedup gained by
MP3D. In the 64-processor run, the overall miss rate was 22.1%. These misses are almost entirely invalidation
misses. Since each molecule is assigned to a fixed processor, the space array is responsible for most of the
misses. Assigning regions of the space array to different processors, as was done in [16], is one approach to
reducing the number of space array misses.

With a realistic problem, we would expect the total data space used by the application to be much
larger than the available cache space. This means that the application basically sweeps the caches during each
time-step, resulting in high miss rates due to replacement.

1 0 LocusRoute

LocusRoute 118, 19, 201 is a commercial quality VLSI standard cell router. It is used to evaluate standard cell
circuit placements by routing them efficiently and determining the area of the resulting layout. To minimize area,
the program tries to route wires through regions (routing cells ‘) which have few other wires running through
them. It calculates a cost function for each route being considered for a wire, and uses the route with the least
cost. The cost function is the number of wires already in the routing cells that this wire will pass through.

LocusRoute affords parallelism at many levels. A circuit is made up of many wires that can be routed
in parallel. Routing a wire requires determining paths for alI the independent two-pin segments of the wire,
again potentially in parallel. To choose the best path for each two-pin segment, several routes for the segment
must be evaluated; this route evaluation can also be performed in parallel. Thus, depending on the number of
processors available and the task granularity supported efficiently by the target machine, different paraIIelizing
strategies can be chosen.

10.1 Principal Data Structures

LocusRoute’s main data structure is the cost array. This array keeps track of the number of wires running
through each routing cell of the circuit. The vertical dimension of the array is the number of routing channels in
the circuit, and the horizontal dimension is the width of the circuit in routing cells. Figure 9 shows a standard
cell circuit and one of its wires, with the corresponding cost array. The highlighted portions of the cost array
will be updated if this route is chosen. Each cost array element consists of two integers: the numbers of wires
running horizontally and vertically through the routing cell. The amount of shared memory required for the cost
array (in bytes) is therefore 8 times the number of routing cells in the circuit. For PrimarylLgrin, the largest of
the benchmark circuits with 1290 routing cells in each of 20 routing channels, this is about 200 Kbytes.

Data describing the wires’ pin positions and current routes is also stored in shared memory. For
Primary2grin, with 3817 wires, the data describing the (fixed) pin positions of the wires amounts to about 1
Mbyte. However, since this data is only written once as the input circuit is read, it does not have a large effect
on the memory referencing behavior of the application. A wire’s current route is stored as a 20-byte structure
for every straight segment of the wire. A two-bend6 route has 3 straight segments. There are n - 1 two-bend
routes for a wire with n pin-groups 7. The amount of route memory required is therefore roughly proportional
to the number of pin-groups in the circuit, and amounts to about 600 Kbytes for Rrimary2grin. This data is
also not accessed nearly as often as the cost array, making the cost array by far the most important determinant
of memory referencing behavior.

Its

be

width is usually the minimum

chosen for a given wire nxtc.

Width

19

CHANNEL 5 t

CHANNEL 4

CHANNEL 3 I-

CHANNELc
CHANNEL 1 t

STANDARD CELL PLACEMENT COST ARRAY

Figure 9: LocusRoute: Standard Cell Circuit and Corresponding Cost Array.

10.2 Structure of the Parallel Program

The program begins by reading the input files, initializing data structures, and spawning additional processes
(see Figure 10). Every wire laid down increases the cost functions for wires later routed through the same

routing cells. Thus, the quality of the routing is dependent on the order in which wires are laid down. Note
that this order is nondeterministic in the parallel program. To reduce the dependence of routing quality on the
order of routing, two iterations am performed 8. During the second iteration, the previous route of the wire is
“ripped up” (the corresponding cost array entries decremented) before the new route is done. For every wire,
the processor computes the minimum spanning tree of the points being connected, in order to break the wire
down into two-point segments. Each two-point segment is routed by generating possible permutations among
equivalent physical pins in the two pin-groups, and evaluating the quality of the routes for different permutations.
Finally, the processor chooses the lowest-cost route, and increments the cost array entries along it. When both
iterations of wire routing have been completed, a single processor writes the final routes chosen for the wires
to an output file and computes the quality of the final routing.

10.2.1 Partitioning/Scheduling and Locality

Task partitioning and scheduling can be manipulated by changing parameters in an input parameter file. The
user can set the number of processors working on wire, segment, and route parallel tasks. Since the wire tasks
are of the coarsest granularity, it is generally most effective to devote alI the processors to routing entire wires.
The other axes of parallelism will be potentially more useful as the number of available processes approaches
the number of wires to be routed The results shown in Section 10.5 were gathered using all processors as wire
processors, and the discussion that follows focuses on this approach.

Partitioning can have several variations. The results shown in Section 10.5 use a “geographical’* method
of wire partitioning. In this method, the circuit is divided into regions, as specified by the user in the parameter
file. Every region has a task queue associated with it, and processes are assigned to regions as part of the
initialization. Wires are placed in the task queue of the region which contains the wire’s leftmost pin. A process
always checks for work in its own task queue first, but may check other task queues when its queue is empty.
Geographic scheduling improves the caching behavior of the program by increasing locality. It also improves
the quality of the resulting routing (see section on synchronization). If geographic scheduling is not chosen as
an input parameter, the default is to have a single task queue for wires which is accessed by all processors. In
general, the single task queue yields slightly poorer performance and quality.

8More iterations can be performed, but

wrl be specified in a parameter inpul file.

do not improve the quality d the routing significantly. The number of iterations

20

Initialization

Read parameter and circuit files

Initialize cost array

Spawn 1 process per processor

Compute min spanning tree

Rip up prwious route
(if second iteration)

[Route 2-point segments 1

I I Generate permutations

Evaluate routes

Figure 10: Execution Flowchart for LocusRoute.

10.2.2 Synchronization and Granularity

The principal use of synchronization in this version of LocusRoute is for task queue management. One lock is
used per task queue to guarantee mutual exclusion. A barrier is used to separate the iterations of wire routing, but
no barriers are used within an iteration. Note that parallelism allows several wires to be routed simultaneously,
thus altering the order of a uniprocessor execution. LocusRoute can also tolerate the further relaxation of not
locking the cost array (as in this version), thus potentially using stale information at times and causing a small
degradation in routing quality. The geographic partitioning and scheduling we use tends to minimize this quality
degradation and obviates the need for locking.

The granularity of LocusRoute is the time taken to route a single wire. This time is proportional to
the area of the wire’s bounding box and is only in this way dependent on the size of the input circuit (small
circuits are unlikely to have wires with very large bounding boxes). Measurements on two circuits of different
sizes revealed very similar granularities, each averaging about 104 simulator cycles and varying by less than
5% around this number.

10.3 Profile of a Uniprocessor Execution

Route evaluation is the most time-intensive activity in LocusRoute. The time required to evaluate possible routes
for a wire is proportional to the area of that wire’s bounding box. Table 9 shows a breakdown of uniprocessor
execution tune spent in the major routines. The first input circuit (bnrE) has 511 wires in a 341 grid by 10
channel area. The second circuit (Primaryl) is larger, with 1266 wires in an 481 by 18 area.

10.4 Running the Program

The program is run by typing the command:

LocusRoute CktInputFile ParameterFile OutputFile [#WireProcs [XRouteProcsJJ

21

Table 9: LocusRoute Execution Profile.

4

bnrE primary1

R o u t i n e %oftotal %oftotal

RegularEvaluateRoute 32.7 60.0
ProcessDensity 7.9 5.8

RipUpCostArray 4.4 3.3a

The two optional arguments allow the user to override the number of processors specitkd for wire and
route parallelism in the parameter file.

10.4.1 Input and Output

The CktInputFile specifies the size of the standard cell circuit being routed, the number of wires in the
circuit, and the positions of the pins each wire co~ects. Three circuits are provided with the application: bnrE
with 511 wires and a 341-by-10 cost array, Primarylgrin with 1266 wires and a 481-by-18 cost array, and
Primary2grin with 3817 wire-s and a 129%by-20 cost array. The ParameterFile contains the parameter
names for which the user wants to override the default values, together with the new values. The parameter file
we provide uses only geographic scheduling and divides the ciruit into 15 regions. If more than 15 processors
are used, several pro@ssors will be assigned to the same region.

LocusRoute generates an OutputFile describing the routes determined for the wires. At the end of
the computation, a single process calculates the exact “height” of the circuit, in wires. This number is printed
on the standard output device as the Exact Dens@ Sum, and is the final measure of route quality.

10.5 Results

We present results for the Primary 1 grin circuit. The timer begins after all processes are spawned, and stops just
before computing the final routing quality. Note that cold-start cache misses (especially for processes other than
the original one that initializes the cost array) are not excluded from the timing measurement, since only about
two iterations will be performed in a realistic run of the program. Only self-relative speedups are presented.

Speedups obtained on the Multirnax are shown in the left graph of Figure 11. Measurements obtained
with the simulator are shown in the right graph of the figure and in Table 10. Synchronization and load-balancing
are minor limitations when the number of processors is much smaller than the number of wires; however, input-
dependent load imbalances start to degrade performance as the number of processors increases. With a real
memory system, the main limitation to speedup is the miss rate on accesses to shared memory. The bulk of
the shared memory accesses are directed to the cost array during the route evaluation, wire lay-down, and wire
rip-up phases. As the number of processors is increased, these accesses are more likely to interfere with one
another, causing invalidatims and subseQuent cache misses.

11 PTHOR

PTHOR is a parallel, distributed time, event driven simulator. Its purpose is to verify the behavior of a digital
logic circuit, given a description of the circuit and its input. The circuit is modeled as a collection of elements
interconnected by wires or nodes. Conceptually, the elements are functional blocks with inputs, outputs, and
internal state. The elements can be as simple as 2-input logic gates, such as AND-gates and OR-gates, or as
complex as entire CPU’s. The interconnecting nodes (wires) hold one of a small number of discrete values,
such as high, low, undefined, and floating.

PTHOR uses a variant of the Chandy-Misra [21] distributed-time algorithm (denoted CM). The CM
algorithm will be described only briefly here; for an in-depth treatment see 1221. While the standard event-

22

8

6

I 1 I I I I

2 4 6 8 10 12

Processors

Encore Multimax

4 8

40

3 2

24

1 6

8

0

Simulator

Figure 11: LocusRoute Speedups: Multimax and Simulator.

Table 10: LocusRoute Information (Simulator).

1 Number of 1 Miss Rate 1 Synchronization
Processors I m

1 1 o,zb
2 0.70 0.00
4 1.42 0.00
8 2.12 0.00

16 3.17 0.00
32 4.47 0.01
64 5.08 0.02

Waiting Time (%)

0.00

driven algorithm maintains a common value of the current sirnuIat~ time for the entire circuit, CM allows every
element to advance its own value of time independently of other elements. As a result, different elements might
have different notions of the current simulated time. An element receives time-stamped events on its inputs and,
when it has events in each of its inputs, it computes its output, possibly sending out events on its outputs. In this
implementation, an element is activated for evaluation whenever it receives a new input event. The activation
places it on the task queue of a processor which will compute its new output behavior. The implementation
of the algorithm allows the possibility of deadlocks, which are manifested by no processor having any work
pending in its queue. 9 When deadlocks do occur, they are resolved and the element evaluations continue as
before.

11.1 Principal Data Structures

The main data structures include the element and nodes structures, and the distributed task queues. Every
node also has an event list, a list of time-stamped events oustanding on that node. Them is one task queue
per processor. Since there is usually a large number of elements and nodes, the memory requirement of the
application is essentially linear in the size of the circuit, measured in elements or wires.

Every node structure occupies 12 bytes. Every event also takes up 12 bytes, and the number of events

9Note that this has nothing to do with a deadlock in the physical circuit being simulated.

23

allocated depends on the circuit, input vectors, and length of the simulation. For the relatively small rise
circuit used in our measurements, approximately 8,ooO events are allocated Every element structure takes up
about 110 bytes plus some element dependent storage (e.g. pointers to input node arrays). For a typical element
in the rise circuit, the additional element-dependent storage averages about 180 bytes per element. Thus, the
data set size for a simulation of this small circuit is about 1.6 Mbytes.

11.2 Structure of the Parallel Program

The program begins by reading in the circuit netlist, creating additional processes, initializing the task queues
and node values, and reading in the stimulus file of input vectors. This is all done by a single process. All
processes then repeat the following until the behavior of all wires is known upto the maximum simulation time:

l Evaluate elements until a simulation deadlock (all task queues empty).

l Perform deadlock resolution to activate more elements.

11.2.1 Partitioning/Scheduling and Locality

Partitioning in PTHOR is done in terms of elements, and scheduling through a task queue per processor. Locality
is incorporated by assigning every element a preferred processor that it should be evaluated on. Whenever an
element is activated, it is placed on its preferred task queue. Preferred queues are assigned to the elements
in a round-robin fashion when the circuit is read in, to distribute the elements evenly among processors. No
attempt is made to assign elements that are physically contiguous in the circuit, or that share wires, to the same
processor. While this would enhance data locahty, it might compromise load-balancing by assigning processors
to distinct regions of the circuit Input events for an element’s evaluation are determined by checking the event
lists on all its inputs. When a processor’s task queue is empty, it takes elements from another pocessor’s queue
(typically, an element is evaluated on its preferred processor about 95% of the time).

11.2.2 Synchronization and Granularity

Every element has a flag associated with it to ensure that it is not activated and placed on a queue more than
once (owing to multiple changing inputs) at any given time. Locks are used to ensure the required mutually
exclusive access to elements. There is little contention for these locks. Every work queue also has a single
lock for insertions and deletions. Most of the time, these locks also have very little contention. The main
synchronization points in the application occur at the deadlocks, when all processors must synchronize. These
are the only points at which barriers are used in the program

Granularity in PTHOR is meaSured as the time taken to evaluate an element. It depends mostly on the
nature of the elements in the circuit. The r i SC circuit is composed of only logic gates and one-bit registers,
elements that don’t have too many inputs and aren’t very time-consuming to evaluate. The granularity of this
circuit was found to average 580 simulator cycles and to not have a very large variance (about 80% of the
element evaluations being within 50 cycles of the mean).

11.3 Profile of a Uniprocessor Execution

For a one-processor simulation of the rise circuit with the run-time parameters described in Section 11.5, the
average length of the task queue is about 102 elements. That is, if each element executed in one unit of time,
and there were no overhead associated with synchronization, the exploitable parallelism of the application would
be 102. The average number of element evaluations between deadlocks is 260. Thus there are usually a couple
of iterations of evaluating elements and activating more elements before a deadlock occurs. 2,000 elements are
evaluated in the average simulated clock cycle. Of the total execution time, 7% is spent performing deadIock
resolution.

24

11.4 Running the Program

The command line for running PTHOR looks like: pthor -t 5000 -n <num-procs> -g 100 -i.
The tirst argument (-t) specifies the number of time ticks to simulate the circuit for. Next is -n, for the number
of processors. The -g argument specifies half of the clock period. Finally, -i turns on incremental deadlock
resolution. The arguments shown here are suggested ones for the rise circuit.

11.4.1 Input and Output

We provide two input circuits and input vector sets with this program. One is the small rise circuit described
above, and the other (dash) is the directory controller for the Stanford DASH Multiprocessor. The rise
circuit has 5,060 elements, while dash has 24,611 elements. Since these circuits are actually compiled into the
executable, the file rise. c or dash. c (as desired) must be copied into csim. c before compilation.

The necessary inputs to &THOR are:

l The circuit netlist: specifies the element types and interconnection of the elements of the circuit, and is

contained in the file csim.min.

l The input stimulus: supplies external signals to the circuit such as clock and reset, and is contained in the

file stim

Notethatrisc.minandrisc.stim,ordash.minanddash.stim(asdesired),mustbecopiedintothe

files csim.simand stim beforeexecution.

The program prints various statistics on the standard output device. The the total execution time
excluding initialization is contained at the end of the output in the line xtot=time.

11.5 Results

We use the rise circuit in our measurements, although the larger dash circuit is expected to provide more
parallelism. The circuit is simulated for 5000 time ticks, with 200 ticks comprising a clock cycle in the circuit.
The timer is started when the first set of evaluations begins (after the stimulus file is read), and stopped at the
end of the program. Only self-relative speedups are reported.

8

6

I 1 I I I I

2 4 6 8 10 12

Processors
0 8 16 24 3 2 4 0 48 66 64

PRXXBSSofS

Encore Multimax Simulator

Figure 12: PTHOR Speedups: Multimax and Simulator.

25

Table 11: PTHOR Information (Simulator).

n Number of 1 Miss Rate 1 Synchronization 1 Avg. Queue 1
ProceSSOrS (%) Waiting Time (96) 1 IJmth 1

1 0.33 0.45 102.6
2 2.20 1.08 55.0
4 3.29 1.60 21.1
8 4.12 1.64 13.2

16 5.70 1.56 5.0
32 7.79 1.63 2.9
60 8.76 2.42 2.5

Speedups obtained on the Multimax are shown in the left graph of Figure 12. Measurements obtained
with the simulator are shown in the right graph of Figure 12 and in Table 11. The speedups observed are limited
by the number of elements available for concurrent execution. With 60 processors there are, on average, only
2.5 elements for each processor to execute between deadlocks (see average queue length in the table). This
number diminishes inversely with the number of processors. Since an element evaluation is very simple, 2.5
evaluations is too small a unit of work compared to the overhead of a barrier synchronization. Larger circuits
might provide a little more parallelism, but in all realistic circuits parallel activity is likely to be limited. The
extra work done by the processors, as measured by extra element evaluations due to parallelism, is not an
important speed-limiting factor.

12 Cholesky

This program performs parallel Cholesky factorization of a sparse positive definite matrix. That is, given a
positive definite matrix A, the program finds a lower triangular matrix L, such that A = LLT. Sparse systems

involving positive definite matrices arise quite frequently in a number of domains, including structural analysis,
device and process simulation, and electric power network problems. Such systems are typically solved by
performing a Cholesky factorization of the matrix, and the factorization is often the bottleneck in the overall
computation.

This program is not a general purpose parallel sparse Cholesky factorization package. Instead, it
concentrates on the most time-consuming components of the factorization. In general, Cholesky factorization
typically proceeds in three steps: ordering, symbolic factorization, and numerical factorization. The ordering
step symmetrically reorders the rows and columns of A to reduce the amount of fill in the factor L. Our program
does no reordering. A matrix must be reordered, if necessary, before being passed to the program. lhe second
step, symbolic factorization, determines the non-zero structure of the factor matrix. This step typically accounts
for a small fraction of the overall factorization runtime. While our program does perform this step, it is done on
a single processor and is not measured The third step, numerical factorization, determines the actual numerical
values of the non-zero entries in L. This step is typically the most time-consuming, and is parahelized in our

.
program.

The numerical factorization approach we use is very efficient, due to the use of supemodal elimination
techniques. The approach is a dynamic version of the supernodal fan-out meltrod [26], an enhancement of the
fan-out method of [24). Supemodes are sets of columns with nearly identical non-zero structures, and a factor
matrix will typically contain a number of often very large supernodes.

12.1 Principal Data Structures

The primary data structure in this program is the representation of the sparse matrix itself. A matrix is stored
by columns, using a data structure almost identical to the one used in SPARSPAK. In C, the data structure is:

26

typedef struct I

int n, m;

int firstnzl], startrowl], row[];

double nz[];

} SMatrix;

Fields n and m give the number of columns and non-zeroes in the matrix, respectively. The f i rs t n z [] field
holds, for each column, a pointer to the first non-zero element of the column. These pointers are references
into the nz array, where the non-zeroes are stored. AlI non-zeroes belonging to a particular column are stored
contiguously within this array. Since the matrix is sparse, the data structure must keep track of the rows in
which the non-zeroes reside. The row number of a particular non-zero is available through the row [] and
start row [] fields. Row numbers are stored in a compressed manner in order to conserve space. Details of
the compression and other issues relating to the data structure can be found in [25]. Of the two matrices we
use, BCSSTK14 occupies 420 Kbytes unfactored and 1.4 Mbytes factored, while the corresponding numbers for
BCSSTKIS are 800 Kbytes and 7.7 Mbytes, respectively.

12.2 Structure of the Parallel Program

The primary operation in column-oriented sparse Cholesky factorization is the addition of a multiple of one
column of A into another in order to cancel a non-zero in the upper triangle. This operation is typically referred
to as a column modification. If the grain size for the parallel computation were chosen to be a single column
modification, the overheads associated with task creation and distribution wculd be too large. In supernodal
Cholesky factorization, the column modification operation is replaced by a supemodal modification operation,
where a column is modified by all the columns of a supemode at once. Task overheads would still be too large
even if a single supemodal modification were chosen as the grain size. The task grain we choose is the set of
all supemodal modifications performed by a particular supernode.

12.2.1 Partitioning and Scheduling

The parallel sparse factorization computation proceeds as follows. With each supemode, a count is kept of how
many modifications have yet to be done to columns in that supernode. We calI this the incoming count. A
shared global task queue holds all supernodes whose incoming counts have gone to zero. These supernodes
have received all modifications that will be done to them, and are therefore ready to perform modifications
themselves. A free processor pulls a supemode task off the task queue and performs all supemode modifications
done by that supemode. In the course of performing these supernodal modification, the incoming counts of the
destination columns’ supernodes are decremented to reflect the modifications done to them. If a supemode’s
count goes to zero, it is placed on the global task queue.

12.2.2 Synchronization

lbe only interactions between processors occur when they attempt to dequeue tasks from the global task queue
and when they attempt to perform a number of simultaneous supemodal modifications to the same destination
column. Both of these cases are handled with locks.

12.3 Profile of a Uniprocessor Execution

Almost all the sequential runtime is spent performing supemodal modifications.

12.4 Running the Program

The program is run by specifying the number of processors to be used and the file containing the matrix to be
factored. The command cholesky -p4 bcsstklll would factor the matrix BCSSTK14 using 4 processors.
‘Ihe only other option is the -0 command line option, which causes the program to output the factor matrix.

27

12.4.1 Input and Output

The program reads only the non-zero structure of the A matrix from the input file, choosing its own non-zero
values. The program also verifies that the computed factor is correct once the factorization is complete. Two
input matrices are provided. Both come from the BoeinglHarwell sparse ma&ix test set [23]. bcsttkl4

is a 1806-by-1806 matrix with 30,824 non-zeros in the matrix and 110,461 m the factor, it has 503 distinct
supemodes, the largest of which contains 135 columns. The corresponding numbers for the larger matrix
bcs t t kl5 are 3948-by-3948,56934,647274, 1295 and 211, respectively. Both matrices have been reordered
using the minimum degree heuristic [25l.

The program prints some numbers describing the matrix and the execution. It also outputs the execution
time and MFLOPS rate of the factorization.

12.5 Results

The results we present are for the f~torization of the two Boeing/Hanvell matrices included with the program.
Only the numerical factorization phase is measured. The main determinant of parallel performance appears to
be the number of floating point operations performed. This number depends on both the size of the input matrix
and its sparsity pattern.

12-

8.-

6.-

Ol
I I I I I I

0 2 4 6 8 10 12

Processors Prowssors

Encore Muitimax Simulator

Figure 13: Cholesky Speedups: Multimax and Simulator.

Normahzed speedups obtained on the Multimax are shown in the left graph of Figure 13. Note that the
larger matrix (BCSSTKIS) indeed yields better speedups in this case. Speedups with the simulator are presented
in the right graph of Figure 13. No results are given for matrix BCSSTKl5 because of the enormous amount of
time required for its simulation. The simulated speedups for the smaller matrix are quite similar to the speedups
observed on the Encore within the range of 1 to 8 processors.

Miss rates and synchronization waiting times observed on the simulator for the BCSSTK14 matrix are
shown in Table 12. Miss rates increase steadily as more processors are added. The bulk of misses is due to
invalidations. The reason the speedups are poor for large numbers of processors is clear form the synchronization
waiting times. BCSSTK14 is a relatively small matrix with limited available concurrency. This leads to load
imbalances, high synchronization waiting times and low speedups. We would expect much larger speedups
when factoring larger matrices.

28

Table 12: Cholesky Information (Simulator).

.
Number of Miss Rate Synchronization
proceSS0l-S (%) Waiting Time (%)

1 i.28 0.06

2 3.55 1.45

13 Concluding Remarks

The Stanford Parallel Applications for Shared-Memory are a set of real applications for use in the design and
evaluation of parallel systems for shared-memory multiprocessors. They were originally targeted at bus-based
multiprocessors and exploit parallelism a~ the medium to large granularity. As long as inherent limitations of
these applications and their interaction with various architectures are kept in mind, they can be very useful in
providing a consistent, realistic suite for evaluation studies. We look forward to expanding the set with other
parallel applications from the user community.

14 Acknowledgements

We would like to thank the following people for cleaning up the parallel programs, running them, and writing
initial versions of the individual application reports: Steve Goldschmidt (MP3D), Margaret Martonosi (Locus-
Route), Ed Rothberg (Chole-sky) and Larry Soule (PTHOR). Okokon Okon helped with runs for the Ocean
code.

References

[1] J J. Dongarra, J.L. Martin and J. Worlton, “Evaluating Computers and Their Performance: Perspectives,
Pitfalls, and Paths,” IBM Research Report 12904, April, 1987.

[2] “SPEC Benchmark Suite Release 1.0,” October, 1989.

[3] E.L. Lusk and R.A. Overbeek, ‘Use of Monitors in FORTRAN: A Tutorial on the Barrier, Self-scheduling
DO-Loop, and Askfor Monitors,” Tech. Report No. ANL-84-51, Rev. 1, Argonne National Laboratory,
June 1987.

[4] “Using the Encore Multimax,” Tech. Mem. No. 65, Rev. 1, Math. and Camp. Sci. Division, Argonne
National Laboratory, Feb. 1987.

[5] JJ. Dongarra, J. Bunch, C. Moler and G. Stewart, “LINPACK Users’ Guide,” SIAM Pub., Philadelphia,
1976.

[6] H. Davis, S. Goldschmidt and J.L. Hennessy, ‘Tango: a Multiprocessor Simulation and Tracing System,”
Tech. Report No. CSL-TR-90-439, Stanford University, 1990.

[7] JP. Singh and J.L. Hennessy, “Parallelizing the Simulation of Ocean Eddy Currents,” to appear in Journal

of Parallel and Distibukd Computing. Also Tech. Report No. CSL-TR-89-388, Stanford University, Aug.
1989.

29

[8] G.H. Golub and CF. Van Loan, Matrix Computaations, Second Edition, Chap. 10, The Johns Hopkins
University Press, 1989.

[9] C.W.Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, New Jersey,
1971.

[lo] L.F. Greengard, l?re Rapid Evalation of Potential Fields in Particle Systems, MIT Press, Cambridge,
1988.

[1 l] J.P. Singh and JL. Hennessy, “Automatic and Explicit Parallelization of an N-body Simulation,” submitted
for publication.

[121 G.C. Lie and E.Clementi, “Molecular-Dynamics Simulation of Liquid Water with an ab initio Flexible
Water-Water Interaction Potential,” Physical Review, Vol. A33, pp. 2679 ff., 1986.

[131 0. Matsuoka, E.Clementi and M. Yoshimine, “CI Study of the Water Dimer Potential Surface,” Journal of

Chemical Physics, Vol. 64, No. 4, pp. 135 l-61, Feb. 1976.

[14] R. Bartlett, I. Shavitt and G. Purvis, “The Quartic Force Field of Hz0 Determined by Many-Body Methods
that Include Quadruple Excitation Effects,” Journal of CItemical Physics, Vol. 7 1, No. 1, pp. 281-29 1, July
1979.

[15] M. Berry et. al., “The Perfect Club Benchmarks: Effective Performance Evaluation of Supercomputers,”
CSRD Report No. 827, Center for Supercomputing Research and Develpment, Urbana, Illinois, May 1989.

1161 David R. Cheriton, Hendrik A. Goosen, and Philip Machanick, “Restructuring a parallel simulation to
improve cache behavior in a shared-memory multiprocessor: A first experience, 1990,” to appear in Proc.
International Symposium on Shared-Memory Multiprocessing, April 1991.

[17] Jeffrey D. McDonald, “ A direct particle simulation method for hypersonic rarified flow,” CS 411 - Final
Project Report, Stanford University, March 1988.

(18) J.S. Rose, “LocusRoute: a parallel global router for standard cells,” Proc. 25th Design Automation Con-
ference, pages 189-195, June 1988.

[19] J.S. Rose, ‘The parallel decomposition and implementation of an integrated circuit global router,” ACM
S&plan Symposium on Parallel Programming: Experience with Applications, Languages and Systems,
pages 138-145, July 1988. Sep. 1990.

[20] J.S. Rose, “Parallel global routing for standard cells”, lEEE Trans. Compurer-Aided Design of Circuits and

Systems, September 1990.

[21] K. M. Chandy and J. Misra, “Asynchronous Distributed Simulation Via a Sequence of Parallel Computa-
tions,” Comm of the ACM, 24: 11, pages 198-206, April 1981.

[22] Larry Soule and Anoop Gupta. “Analysis of parallelism and deadlocks in distributed-time logic simulation,”
Technical Report CSL-TR-89-378, Stanford University, March 1989.

[23] I. Duff, R. Grimes, and J. Lewis, “Sparse matrix test problems,” ACM Transactions on Ma&ematical

Software, 15:1-14, 1989.

[24] A. George, M. Heath, J. Liu, and E. Ng, “Solution of sparse positive definite systems on a hypercube,”
Technical Report TM-10865, Oak Ridge National Laboratory, 1988.

[25] A. George and J. Liu, Compurer Solulion of Large Sparse Positive Definite Systems, Prentice-Hall Inc.,
Englewood Cliffs, New Jersey, 1981.

[26] E. Rothberg and A. Gupta, “Techniques for improving the performance of sparse fac&tion on multi-
processor workstations,” Proceedings of Supercomputing ‘90, November, 1990.

30

