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Recent work has shown that density profiles in the outskirts of dark matter halos can become
extremely steep over a narrow range of radius. This behavior is produced by splashback material on
its first apocentric passage after accretion. We show that the location of this splashback feature may
be understood quite simply, from first principles. We present a simple model, based on spherical
collapse, that accurately predicts the location of splashback without any free parameters. The
important quantities that determine the splashback radius are accretion rate and redshift.

I. INTRODUCTION

The structure of dark matter halos has attracted
both theoretical and observational interest over several
decades. Beginning with the pioneering work of Gunn
and Gott [1], numerous papers have investigated the for-
mation of bound virialized structures that gravitationally
collapse in an expanding universe. A key breakthrough
was provided by Fillmore and Goldreich [2], who studied
the self-similar collapse of scale-free perturbations, and
identified several key physical processes that determine
halo profiles. As numerical simulations of halo formation
have progressed [3–6], producing increasingly precise cal-
culations of halo structure, the ideas presented in [2] have
proven fundamental towards understanding the simula-
tion results [7, 8].

Much of this theoretical work has focused on the
interior structure of halos, while the outer profiles
of halos have received somewhat less attention. Re-
cently, however, Diemer and Kravtsov [9] studied the
outskirts of simulated halos and discovered that the
outer density profiles of halos exhibit steep logarithmic
slopes, d(log ρ)/d(log r) <

∼ −4, over a narrow range of
radii. This behavior is inconsistent with standard fit-
ting functions used to characterize halo shapes, like the
NFW profile [10, 11] or the Einasto profile [12, 13].
Diemer and Kravtsov found that the location of this
sharp feature depends principally on the accretion rate
s = d(logM)/d(log a) of the halos, and they provided a
fitting function for its location as a function of s.

As argued by Diemer and Kravtsov [9], the local steep-
ening that they observed is produced by a caustic, as-
sociated with the splashback of material that has been
recently accreted by the halo. Caustics arise when the
orbits of different particles pile up at similar locations,
frequently near the apocenters of the orbits. For ex-
ample, the spherically symmetric similarity solutions of
Fillmore and Goldreich [2] exhibit pronounced caustics.
Similar features arise in 3D similarity solutions of the
collapse of triaxial peaks [7], although the features are
not as prominent in the spherically averaged density pro-
file, because the caustics are not spherically symmetric in
general (see §III). In dark matter halos from cosmolog-
ical N-body simulations, the density enhancements as-
sociated with caustics are difficult to detect, not only

because of triaxiality, but also because of the effects of
small-scale substructure, both of which act to smear out
caustics spatially [14, 15]. In real galaxies, these caustics
are observed as radial shells with sharp edges [16].
As noted above, radial caustics are associated with the

pileup of orbits near apoapse. The outermost caustic is
associated with the first apoapse after collapse, termed
splashback. Figure 1 illustrates that the local steepen-
ing discussed by [9] coincides with the splashback radius.
The figure plots the phase space structure of the par-
ticles near dark matter halos taken from the publicly
available MultiDark Simulation[17], along with the radial
dependence of the local logarithmic slope of the density
d(log ρ)/d(log r). The location where d(log ρ)/d(log r) <
−3 coincides with splashback, the outermost radius at-
tained by particles following their collapse into halos. As
the phase-space diagram illustrates, the splashback ra-
dius is near the location of a radial caustic, where the
slope of the phase space sheet becomes vertical. To fur-
ther illustrate this point, the figure plots the density
slope of only the particles near splashback, i.e. those with
|vr| < 0.4 vcirc. Among the particles near splashback, the
steepening of the density slope becomes even more pro-
nounced.
The steepening feature in the outer profile is therefore

determined by the splashback radius of recently accreted
material. Since splashback occurs only half an orbit af-
ter collapse, a relatively simple treatment of the orbital
dynamics should suffice to capture the physics setting
the splashback radius. In this paper, we show that this
is indeed the case. We construct an extremely simple
model for splashback, based largely on the spherical col-
lapse model of [1]. We then compare the predictions of
our model with N-body simulations, and show that it ac-
curately predicts the location of the steepening feature
for a variety of halos with different mass, redshift, and
accretion rate.

II. TOY MODEL FOR SPLASHBACK

As noted above, the steepening feature occurs near the
splashback radius. To predict the location of this fea-
ture, we therefore must predict where splashback occurs
following collapse. One estimate for the location of the
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FIG. 1. Top: The phase space diagram for halos from the
MDR1 simulation in the mass range M = 1−4×1014h−1M⊙.
The colorbar shows the number of particles within each phase
space pixel. The pixel spacing is linear in both r and v, so
the number is proportional to r2ρ. Bottom: The local slope
of the density of all particles (red) and particles with |vr| <
0.4 vcirc (blue), as a function of radius r. The location of the
feature in the local slope coincides with the outer caustic at
the splashback radius.

splashback radius may be constructed from the spherical
collapse model [1]. This model computes the nonlinear
evolution of a spherical shell, assuming that the mass in-
terior to the shell is overdense, and that the interior mass
is a constant (i.e., the model neglects shell crossing). The
equation of motion is therefore quite simple,

r̈ = −
GM

r2
+

Λ c2

3
r, (1)

where M is a constant. For ΩM = 1 and Λ = 0, this
model predicts that turnaround occurs at the time when
the linearly evolved density reaches δl ≈ 1.06, and col-
lapse to r = 0 occurs at the time when δl ≈ 1.69. Once
the infalling shell enters the virialized region, the as-
sumption of constant interior mass becomes invalid. Es-
timating virialization as the time when 2KE + PE =
ṙ2 − GM/r = 0 gives rvir ≈ rta/2, corresponding to a
nonlinear overdensity of ∆vir = 18π2. For ΩM 6= 1, these
expressions are somewhat modified [18].
Following entry into the halo, the shell begins to orbit
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FIG. 2. Overdensity enclosed within the splashback radius
as a function of accretion rate s = d logM/d log a. Large ∆
corresponds to small radius within the halo. For reference,
the horizontal line at ∆ = 200 indicates the usual defini-
tion of the halo boundary. Halos with high accretion rate
have a larger enclosed overdensity within the splashback ra-
dius than halos with low accretion rates, corresponding to a
smaller splashback radius for rapidly accreting halos. Addi-
tionally, the enclosed overdensity increases as Ωm becomes
smaller, meaning that at low redshift, the splashback occurs
at a smaller fraction of r200m.

in the halo potential. If we continue to assume spherical
symmetry, then we can still use Eqn. (1) to compute the
motion; the only change is that now the mass M interior
to the shell is not constant, but instead depends on radius
r and time t. The time dependence of the mass profile
is determined by the accretion rate of the halo. Let us
suppose that the halo mass grows as Mtot ∝ as, where
s = d(logMtot)/d(log a). Then the halo radius scales as
R ∝ a1+s/3. We assume that the halo mass distribution
is given by the NFW profile [11],

M(r) = Mtot

fNFW(r/rs)

fNFW(R/rs)
, (2)

where rs is the NFW scale radius, and fNFW(x) =
log(1+x)−x/(1+x). The NFW concentration c ≡ R/rs
sets the slope of the mass profile at the halo boundary,
and we choose c such that the outer slope is given by
d logM/d log r = 3s/(3 + s) at r = R [2, 7, 8].
Equations (1)-(2) fully specify our model. We use

spherical collapse with constant enclosed mass M until
the shell radius reaches ri = rta/2. Thereafter, we as-
sume the mass profile is given by Eqn. (2). We integrate
the motion of the shell in this potential until splashback,
when ṙ = 0. From the radius and time of splashback, rs
and ts, we can determine the enclosed mass, the enclosed
density, and the background mean density, allowing us
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to determine the enclosed overdensity inside the splash-
back radius, ∆s. Our results do not strongly depend on
our assumed mass profile inside the halo. For example,
using an isothermal profile instead of NFW gives results
that are consistent at the∼ 10% level. Figure 2 shows the
predicted values of the enclosed overdensity. Throughout
this paper, we define overdensities relative to the mean
matter density, not the critical density. In our model,
∆s depends only on the halo’s accretion rate s, along
with the values of the background cosmological parame-
ters ΩM and ΩΛ at the time the halo is observed. The
behavior we find is unsurprising. As the accretion rate is
increased (larger s), the potential deepens more quickly
in time, resulting in splashback occuring at a smaller ra-
dius, or equivalently, at a larger enclosed overdensity ∆s.
Similarly, at low redshift when ΩM diminishes and ΩΛ

increases, the mean background density of the universe
ρ̄m decreases more during the time between turnaround
and splashback, again resulting in a larger ∆s.
Finally, although the model presented here is ex-

tremely simple to evaluate, we also provide a very rough
fitting function to approximate the location of splash-
back:

∆s ≈ AΩ−b−c s
M edΩM+e s3/4 , (3)

with fitted parameters A = 38, b = 0.57, c = 0.02, d =
0.2, e = 0.52. This fitting function has ∼ 5% accuracy
over the range 0.5 < s < 4, 0.1 < ΩM < 1. The results
shown in this paper do not use this fitting function, since
it is equally simple to evaluate the spherical toy model.

III. COMPARISON WITH SIMULATIONS

In this section, we compare the predictions of the toy
model described in the previous section with results of
numerical simulations. First, we compare our model with
the similarity solutions that arise from the collapse of
scale-free perturbations [2, 7]. Fig. 3 shows one exam-
ple, for accretion rate s = 3. In all cases, we find good
agreement between the caustic location obtained in the
similarity solution and that predicted by the toy model.
This even holds true for collapse of highly triaxial per-
turbations: the main effect of the triaxiality is to make
the splashback surface nonspherical, reducing the maxi-
mal depth of the slope of the spherically averaged profile,
while preserving the mean radial location of splashback.
Our toy model also predicts a significant dependence

on redshift (or equivalently, a dependence on the value
of ΩM ). We cannot test that prediction using similar-
ity solutions, because they assume ΩM = 1. To test
this prediction, we therefore ran 1-dimensional N-body
simulations of the collapse of isolated overdensities. The
simulations evolve the motion of spherical shells follow-
ing Eqn. (1). The initial linear overdensity profiles are
chosen to produce M ∝ as for various values of s. Figure
4 shows an example, for s = 3. The solid curves in the
figure show the results of the 1-D simulations, while for
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FIG. 3. Caustics for self-similar halos [2, 7] with accretion
rate s = 3. The top panel shows the phase space diagram for
spherically symmetric collapse (solid black curve) and for 3D
collapse with e = 0.05 (colormap), while the bottom panel
shows the density vs. radius. The vertical line in the bottom
panel indicates the splashback radius predicted by the spher-
ical collapse model for this value of s. As the density profiles
demonstrate, the caustic location depends mainly on accre-
tion rate, with little if any dependence on the initial ellipticity
e. However, the caustic width does depend on e, apparently
because the shape of the splashback surface is related to the
initial ellipticity.

comparison, the dashed curve shows the similarity solu-
tion for s = 3. Note that for ΩM = 1, the 1-D simulation
does not exactly match the similarity solution. This is
because the dynamics, even in spherical symmetry, are
subject to a slew of instabilities that are not present in
the similarity solution [15, 19, 20]. To suppress these in-
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FIG. 4. Halo profiles for 1-D spherical collapse with accretion
rate s = 3. The x-axis shows the averaged enclosed over-
density inside each radius, while the y-axis shows the local
overdensity at that radius. The blue curves correspond to
ΩM = 1. The solid curve shows the profile obtained from the
1-D N-body simulation, while the dashed curve shows the sim-
ilarity solution. The red curve shows the profile for ΩM = 0.3.
The dotted vertical lines show the location of splashback pre-
dicted by our toy model for ΩM = 1 (blue) and ΩM = 0.3
(red) respectively.

stabilities, we follow Vogelsberger et al. [15] and soften
the force law in Eqn. (1) near r = 0. As Fig. 4 shows,
the halo profile for ΩM = 1 is similar to the similarity so-
lution. The level of agreement or disagreement between
the two curves illustrates the extent to which the 1-D N-
body simulations may be trusted. Note in particular that
the location of the splashback radius is similar in the two
cases. The figure also shows results for ΩM = 0.3, in the
solid red curve. For comparison, the vertical dotted lines
show the toy model’s predictions for the splashback ra-
dius for these values of ΩM . Overall, we find good agree-
ment, demonstrating that the location of splashback does
indeed depend on cosmology and redshift.

Finally we compare with cosmological N-body simu-
lations from the publicly available MultiDark Database.
The MDR1 simulation [21, 22] contains 20483 particles
in a box of side length L = 1 h−1Gpc, giving a par-
ticle mass of Mp = 8.7 × 109h−1M⊙, while the Bol-
shoi simulation [23] contains 20483 particles in a box of
side length L = 250 h−1Mpc, giving a particle mass of
Mp = 1.3 × 108h−1M⊙. We extracted halos of mass
Mvir

<
∼ 1014h−1M⊙ from the Bolshoi simulation, and

used MDR1 to obtain halos of mass M >
∼ 1014h−1M⊙.

For both simulations, we used the publicly available
Rockstar [24] catalogs and merger trees [25] [26] to mea-
sure halo mass accretion histories. For each halo, we

walked the main branch of the merger tree to determine
the mass accretion history (MAH) over a narrow redshift
range, typically from (0.67 − 1) × aobs. Then we fit the
MAH to the form Mvir ∝ e−αz [27] over the narrow red-
shift range, and used the fitted value of α to determine
Γ = d(logMvir)/d(log a) at a = aobs. We then stacked
halos in bins of mass, redshift, and Γ.

One point to note is that Γ = d(logMvir)/d(log a)
need not be equal to the mass accretion rate s =
d(logM)/d(log a). This is because Mvir does not rep-
resent the total amount of mass that has collapsed into
a halo. Instead, Mvir is the mass within a radius of av-
erage density ∆vir. As Fig. 2 shows, the splashback ra-
dius (which does encompass the collapsed mass) occurs
at various overdensity levels depending on redshift and
accretion rate, meaning that sometimes Mvir will exceed
Mcollapsed, sometimes Mvir will be less than Mcollapsed,
and in general, the two will not evolve in the same
way. This difference in behavior has been termed pseudo-
evolution by Diemer et al. [28], who point out that even
in cases where there is no mass accretion and the halo
mass profile is constant in physical units, the virial mass
can still grow over time. Because of pseudo-evolution, in
general Γ 6= s. This complicates the comparison of our
model with cosmological N-body simulations. Instead
of stacking halos based on virial mass, we should stack
halos based on the mass within their splashback radius,
however it is difficult to determine the splashback radius
for any individual halo. We therefore stack the profiles of
halos in bins ofMvir and Γ. From the stacked profiles, we
can determine the location of splashback and the average
enclosed mass, 〈Mcollapsed〉. By repeating this procedure
for the progenitors of the stacked halos, we can determine
〈Mcollapsed〉 as a function of time, and thereby measure a
typical accretion rate s for each bin of Mvir and Γ. We
find that for Γ >

∼ 0.5, the difference between the recon-
structed s and Γ is small, typically of order Γ− s ∼ 0.1.
We therefore use Γ as a proxy for s, valid for Γ > 0.5.

With that caveat in mind, we now move on to the
comparison of our model with cosmological N-body sim-
ulations. Our results are shown in Figs. 5-8. Figure 5
shows the dependence of the splashback radius on the
accretion rate, Γ. As shown by Diemer and Kravtsov [9],
splashback occurs at a higher density (smaller r/r200m)
for higher accretion rates. Our model’s prediction for
rsp agrees quite well with the observed dependence on
accretion rate, across the entire range we have checked
(0.5 < Γ < 3.5). We also confirm the model’s predicted
redshift dependence of splashback (Fig. 6). Since these
figures have many overlapping curves at different radii, it
may be difficult to see how well the observed splashback
radius agrees with the model prediction. Therefore, in
Fig. 7 we scale r by the predicted splashback radius rsp,
and show that splashback occurs where predicted, at all
accretion rates and redshifts. Similarly, as predicted by
the model, the location of splashback does not depend
on halo mass M (or equivalently, ν ≡ δc/σ(M)), as illus-
trated in figure 8.
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FIG. 6. Redshift dependence of splashback location. The blue
curve shows z = 1 halos of mass Mvir = 3− 6× 1013h−1M⊙,
while the red curve shows z = 0 halos of mass Mvir = 1− 4×
1014h−1M⊙. Both samples have accretion rates Γ = 2.5. The
vertical lines indicate the expected splashback radii.

One possibly interesting feature shown in Fig. 8, and
also noted by Diemer and Kravtsov [9], is that although
the location of the steepening feature is independent of
M or ν, the depth of the feature does depend systemati-
cally on ν. As shown in the figure, the lower mass halos,
which correspond to peaks of smaller ν, have system-
atically shallower caustics. The behavior is reminiscent
of that shown in Fig. 3, which showed that similarity
solutions with stronger initial triaxiality produce caus-
tics that are progressively more non-spherical, produc-
ing shallower features in the spherically averaged profile.
Similar behavior could also explain the ν dependence of
the N-body halos. It is well known from the statistics
of peaks of Gaussian random fields that peaks of larger
height ν are systematically more spherical, with a smaller
range of ellipticity e, than peaks of low ν [29]. Based on
the behavior shown in the similarity solutions shown in
Fig. 3, we might therefore expect that N-body halos of
larger ν will have smaller initial ellipticity, and therefore
have deeper caustics, than halos with lower ν, exactly as
found in Fig. 8. We have not investigated this topic in
this paper, but it may be worth exploring in future work.
At low accretion rates, Γ < 1, the stacked profiles begin

to exhibit additional features besides the steepening at
rsp. The most pronounced example of this is the stacked
profile for Γ ≈ 0.5, shown in Fig. 7. Instead of mono-
tonically becoming more shallow at r < rsp, the slope of
the density profile oscillates. The origin of this behav-
ior may be understood by examining the ensemble phase
space diagram for these halos, shown in Figure 9. The
phase space structure for low accretion rate is distinct
from the other Γ bins, in that the stream of splashback
material is noticeably separated from the rest of the viri-
alized matter in the halo. This behavior is similar to
the phase space structure seen in spherical self-similar
collapse [2], in which each separate stream produces a
separate caustic (see Fig. 3).

IV. DISCUSSION

We have presented an extremely simple model, derived
from first principles, that explains the location of splash-
back around cosmological N-body halos. The model is a
simple extension to the standard spherical collapse model
[1]. Although the model has no free parameters, it never-
theless accurately predicts the location of splashback for
halos of a variety of different masses, redshifts, and ac-
cretion rates. The splashback radius depends principally
on the mass accretion rate s = d logM/d log a, as found
by [9]. However, it also depends on redshift, due to the
variation in the value of ΩM over time.
Depending on the accretion rate and redshift, the over-

density at the splashback radius, ∆s, can be much larger
or much smaller than either ∆ = 200 or ∆vir, the nom-
inal ‘virial’ overdensity, which is typically in the range
200-300 [18]. Since the splashback radius encompasses
the multi-streaming region, this means that the virial-
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the same, independent of mass, although the depth of the
feature depends on M (or equivalently ν).

ized region surrounding a halo can extend far beyond
Rvir. This fact is not surprising: numerous simulations
have found that material which has passed inside Rvir

can later be found at large distance, e.g. ∼ 2 − 3Rvir

[14, 30–34]. As we have seen, recently accreted material
can splash back to such large distances, when the accre-
tion rate in the halo is low. Our expectation, therefore,
would be that much of the halo material found at large
distances (∼ 2 − 3Rvir) is associated with slowly accret-
ing halos. To demonstrate this, we plot in Figure 10 the
average halo accretion rate for material around halos of
mass Mvir = 1 − 4 × 1014h−1M⊙ at z = 0 as a function
of phase space coordinates r and vr. Outgoing material
(i.e. vr > 0) at r ≈ 2Rvir (which is r ∼ 2h−1Mpc for this
mass bin) is typically found around halos with the lowest
accretion rates, Γ ≈ 0.5.
In principle, the steepening associated with splash-

back could be observable. The projected surface density
of dark matter halos shows a similar steepening at the
same location at the 3D steepening feature [9], implying
that this feature may be observable in the stacked lens-
ing profiles of ensembles of halos [35]. As we have seen,
the steepening feature associated with splashback is most
prominent for massive (high ν) objects with high accre-
tion rates. This suggests focusing on galaxy clusters,
rather than lower-mass objects like galaxies whose lower
accretion rates would produce weak splashback features
possibly in the 2-halo region. In practice, it is often diffi-
cult to predict halo masses from observable quantities like
cluster richness or SZ decrement, meaning that stacked
profiles will typically average over wide mass bins. This
will not necessarily wash out the steepening signature,
however. In our analysis of stacked profiles, we found
that stacking rather wide bins of mass (such as a factor
of 4 in Mvir) does not wash out the steepening feature,
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material (vr > 0) is associated with slowly accreting halos
with Γ ≈ 0.5.

e.g. Fig. 7. Therefore, realistic uncertainties in the mass-
observable relation should not wash out the steepening
feature entirely. If the steepening feature is measured
with high significance, then it may be interesting to stack
halos as a function of various observable properties like
concentration. Measuring how the splashback radius de-
pends on those observable properties immediately trans-
lates into a measurement of how well the mass accretion
rate correlates with those properties, which can test the
predicted behavior for CDM cosmologies [27, 36].

Similar steepening features could also arise in the bary-
onic components of halos. Unlike the dark matter, how-
ever, the baryons are not collisionless, which means that
splashback need not occur at the same location as the
dark matter. Hydrodynamic simulations of galaxy clus-
ter outskirts can quantify whether gas splashback occurs
near dark matter splashback [37]. Stars, unlike gas, are
effectively collisionless at the densities found in halo out-
skirts, so the stacked starlight profiles of ensembles of
halos could in principle exhibit similar behavior as the
dark matter. Dynamical friction could potentially slow
down stars in galaxies relative to unbound dark matter,
though, so it may be worthwhile performing simulations
with star formation to check if stars produce similar caus-
tics as the dark matter.
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