
 Open access Proceedings Article DOI:10.1109/IPDPS.2015.27

SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication — Source link

Shaden Smith, Niranjay Ravindran, Nicholas D. Sidiropoulos, George Karypis

Institutions: University of Minnesota

Published on: 25 May 2015 - International Parallel and Distributed Processing Symposium

Topics: Speedup, Sparse matrix, Tensor and Matrix multiplication

Related papers:

 Tensor Decompositions and Applications

 Efficient MATLAB Computations with Sparse and Factored Tensors

 GigaTensor: scaling tensor analysis up by 100 times - algorithms and discoveries

 Scalable sparse tensor decompositions in distributed memory systems

 Tensor-matrix products with a compressed sparse tensor

Share this paper:

View more about this paper here: https://typeset.io/papers/splatt-efficient-and-parallel-sparse-tensor-matrix-
1kscl09qap

https://typeset.io/
https://www.doi.org/10.1109/IPDPS.2015.27
https://typeset.io/papers/splatt-efficient-and-parallel-sparse-tensor-matrix-1kscl09qap
https://typeset.io/authors/shaden-smith-4iot305v78
https://typeset.io/authors/niranjay-ravindran-29tspfbrn2
https://typeset.io/authors/nicholas-d-sidiropoulos-29a3efbzf0
https://typeset.io/authors/george-karypis-1hnpugvi4l
https://typeset.io/institutions/university-of-minnesota-2bv8nbl3
https://typeset.io/conferences/international-parallel-and-distributed-processing-symposium-lhyhe1tq
https://typeset.io/topics/speedup-2i1q29b9
https://typeset.io/topics/sparse-matrix-1i49otqb
https://typeset.io/topics/tensor-244vqkva
https://typeset.io/topics/matrix-multiplication-hb064jln
https://typeset.io/papers/tensor-decompositions-and-applications-46vl2ih5gn
https://typeset.io/papers/efficient-matlab-computations-with-sparse-and-factored-3h3xg51eqt
https://typeset.io/papers/gigatensor-scaling-tensor-analysis-up-by-100-times-ef701y8roc
https://typeset.io/papers/scalable-sparse-tensor-decompositions-in-distributed-memory-1yttz4lxks
https://typeset.io/papers/tensor-matrix-products-with-a-compressed-sparse-tensor-1mgfkzun12
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/splatt-efficient-and-parallel-sparse-tensor-matrix-1kscl09qap
https://twitter.com/intent/tweet?text=SPLATT:%20Efficient%20and%20Parallel%20Sparse%20Tensor-Matrix%20Multiplication&url=https://typeset.io/papers/splatt-efficient-and-parallel-sparse-tensor-matrix-1kscl09qap
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/splatt-efficient-and-parallel-sparse-tensor-matrix-1kscl09qap
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/splatt-efficient-and-parallel-sparse-tensor-matrix-1kscl09qap
https://typeset.io/papers/splatt-efficient-and-parallel-sparse-tensor-matrix-1kscl09qap

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 Keller Hall

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 15-008

 SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication

Shaden Smith, Niranjay Ravindran, Nicholas D. Sidiropoulos, George Karypis

May 13, 2015

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication

Shaden Smith∗, Niranjay Ravindran†, Nicholas D. Sidiropoulos†, George Karypis∗

University of Minnesota, Minneapolis, MN 55455, U.S.A.
∗{shaden, karypis}@cs.umn.edu, †{ravi0022,nikos}@umn.edu

Abstract—Multi-dimensional arrays, or tensors, are increas-
ingly found in fields such as signal processing and recommender
systems. Real-world tensors can be enormous in size and often
very sparse. There is a need for efficient, high-performance
tools capable of processing the massive sparse tensors of today
and the future. This paper introduces SPLATT, a C library with
shared-memory parallelism for three-mode tensors. SPLATT

contains algorithmic improvements over competing state of
the art tools for sparse tensor factorization. SPLATT has a fast,
parallel method of multiplying a matricized tensor by a Khatri-
Rao product, which is a key kernel in tensor factorization
methods. SPLATT uses a novel data structure that exploits the
sparsity patterns of tensors. This data structure has a small
memory footprint similar to competing methods and allows
for the computational improvements featured in our work. We
also present a method of finding cache-friendly reorderings
and utilizing them with a novel form of cache tiling. To our
knowledge, this is the first work to investigate reordering
and cache tiling in this context. SPLATT averages almost 30×

speedup compared to our baseline when using 16 threads and
reaches over 80× speedup on NELL-2.

Keywords-Sparse tensors, PARAFAC, CANDECOMP, CPD,
parallel

I. INTRODUCTION

Many application domains give rise to multi-way data that

can be naturally represented via tensors. For example, in

the context of a user content tagging system, e.g., Flickr1,

Delicious2, and Mendeley3 the set of tags that a user in the

system provides to a piece of content is naturally represented

via a three-mode tensor of user-item-tag triplets. Similarly,

the three-way subject-verb-object relations that are being

extracted by the Never Ending Language Learning (NELL)

project [1] are represented via a three-mode tensor of noun-

verb-noun triplets.

This increased applicability of tensors has led to the

expanding use of tensor-based analysis techniques. The

Canonical Polyadic Decomposition (CPD) is one of the most

commonly used factorizations and has seen use in psycho-

metrics [2], signal processing [3], recommender systems [4],

and other fields. CPD, described in Section II-B, attempts

to decompose a tensor into a set of rank-one tensors. Such

a decomposition has numerous applications. For example,

in the context of the tagging system, it can be used to

recommend a set of tags to a user for a particular item or a

1http://www.flickr.com
2http://www.delicious.com
3http://www.mendeley.com

set of items given a user and their previous tags. Similarly in

the context of NELL it can be used for noun-phrase concept

discovery and to detect contextual synonyms [5].

Though the methods for computing CPD are well un-

derstood in the context of dense tensors, most recent ap-

plications of tensor decomposition involve tensors that are

extremely large and very sparse. For example, NELL has

dimensions in the tens of millions and over one-hundred mil-

lion nonzero entries. Existing approaches for dense tensors

cannot be applied to sparse datasets because their memory

consumption scales with the tensor dimensions instead of

the number of nonzeros entries. To address this need, various

approaches that deal with sparse CPD have been proposed in

recent years. The Tensor Toolbox [6] is a widely used MAT-

LAB software package and uses an efficient algorithm that is

not hindered by extreme sparsity. However, Tensor Toolbox’s

algorithm cannot easily be parallelized and as such it cannot

leverage the multiple cores in today’s multiprocessors. On

the other hand, GigaTensor [5] uses an algorithm that is

explicitly designed for large-scale parallelism but requires

more floating-point operations (FLOPs) than other methods.

This paper introduces SPLATT, a C library for operating

on three-mode tensors. Our contributions are three-fold:

1) SPLATT contains algorithmic improvements over the

state of the art tools for factoring sparse tensors.

SPLATT has a fast, parallel method of multiplying

a matricized tensor by a Khatri-Rao product, a key

kernel in tensor factorizations.

2) SPLATT uses a novel data structure that is able to

exploit the sparsity patterns of tensors. This data

structure has a small memory footprint and allows for

the computational improvements featured in our work.

3) We present a method of finding cache-friendly reorder-

ings and utilize them with a novel form of cache tiling.

To our knowledge, this is the first work to investigate

reordering and cache tiling in this context.

We evaluate SPLATT across several large datasets of vary-

ing properties and demonstrate speedup over other compet-

ing methods on each one. We evaluate our method for cache-

friendly reordering and tiling by comparing against random

orderings of our datasets. Finally, we also demonstrate near-

linear scaling of our parallel algorithm.

II. PRELIMINARIES

In this section we provide a brief background on tensors

and their notation. We then describe the Canonical Polyadic

Decomposition, a widely used tensor factorization. For more

information on tensors and their factorizations, we direct the

reader to the essential survey by Kolda and Bader [7]. For

a thorough discussion on implementation details of tensor

computations in MATLAB, see [8].

A. Tensor Notation

Tensors are the generalization of matrices to higher di-

mensions. The dimensions occupied by the tensor are called

modes. We can also say a tensor with n modes is of order

n. For example, a tensor of order three takes the shape

of a box and a tensor of order two would simply be a

matrix. In this work we focus on third-order tensors because

they are the simplest to reason about and visualize. They

also have the added advantage of minimizing clutter due

to added indexing. However, we stress that all methods

presented in this work are easily extended to work with

higher-order tensors. The simplest and perhaps most popular

data structure for representing sparse tensors is a list of

(i, j, k, v) coordinates.

In this work we denote tensors as X and matrices as

A. We write the element in coordinate (i, j, k) of X as

X (i, j, k). Unless otherwise stated, the sparse tensor X is of

dimension I×J×K and has m nonzeros. We use the colon

notation of MATLAB, in which a colon in the place of an

index represents all members of that mode. For example,

A(:, r) is column r of the matrix A.

Fibers are a building block of tensors. Fibers are the

result of holding all but one index constant. The fibers of a

matrix are its rows and columns. In a third-order tensor, its

added fibers are referred to as tubes. Two possible fibers are

X (i, j, :) and X (i, :, k). A slice of a tensor is the result of

holding all but two indices constant. The result is a matrix

and two possible slices are X (i, :, :) and X (:, j, :).
Two essential operations on matrices used in the CPD

are the Hadamard product and the Khatri-Rao product.

The Hadamard product, denoted A ∗ B, is the element-wise

multiplication of A and B. The element (i, j) of A ∗ B is

A(i, j)B(i, j). A and B must match in dimension for the

Hadamard product to exist. The Khatri-Rao product, denoted

A � B, is defined in terms of the Kronecker product

A � B = [a1 ⊗ b1, a2 ⊗ b2, . . . , an ⊗ bn] .

A and B must have matching column dimension for their

Khatri-Rao product to be defined. If A is I×J and B is

M×J , then A�B is IM×J . Figure 1 illustrates the Khatri-

Rao product of two small matrices.

A tensor can be matricized, or unfolded, into a matrix

along any of its modes. In the mode-n matricization, the

mode-n fibers are used to form the columns of the resulting

matrix. The mode-n unfolding of X is denoted as X(n). If X

B =

[

b11 b12
b21 b22

]

C =

c11 c12
c21 c22
c31 c32

C � B =

c11b11 c12b12
c11b21 c12b22
c21b11 c22b12
c21b21 c22b22
c31b11 c32b12
c31b21 c32b22

Figure 1: The Khatri-Rao product of two matrices.

is of dimension I×J×K, then X(1) is of dimension I×JK.

Figure 2 demonstrates the unfolding of a small tensor.

X (:, :, 1) =

[

1 2 3
4 5 6

]

X (:, :, 2) =

[

7 8 9
10 11 12

]

X(1) =

[

1 2 3 7 8 9
4 5 6 10 11 12

]

X(2) =

1 4 7 10
2 5 8 11
3 6 9 12

X(3) =

[

1 4 2 5 3 6
7 10 8 11 9 12

]

Figure 2: The matricizations of an (2×3×2) tensor.

B. Canonical Polyadic Decomposition

CPD is an extension of the Singular Value Decomposition

(SVD) to tensors. In the SVD, a matrix M is decomposed

into the summation F rank-one matrices, where F can

either be the rank of M or some smaller integer if a low-

rank approximation is desired. The SVD is most commonly

written in terms of three matrices M = UΣV
⊺, where U

and V are unitary, Σ is a diagonal matrix of scaling factors,

and the ith rank-one matrix is the outer product of ui and vi.
Often, Σ is absorbed by scaling A and M is instead written

as M = AB⊺.

CPD extends this concept to factor a tensor into the

summation of F rank-one tensors. A rank-one tensor of

order n is the outer product of n vectors. Determining the

exact rank of a tensor is NP-hard [9] and we are almost

always interested in F ≪ max(I, J,K) for sparse tensors.

When computing the rank-F CPD of a third-order tensor,

we wish to find factor matrices A ∈ R
I×F , B ∈ R

J×F ,

and C ∈ R
K×F . A, B, and C are typically dense regardless

of the sparsity of X . The matricizations of X can also be

defined in terms of its CPD,

X(1) ≈ A(C�B)⊺, X(2) ≈ B(C�A)⊺, X(3) ≈ C(B�A)⊺.

The method of Alternating Least Squares (ALS) is the

most commonly used algorithm for computing the CPD. In

each iteration we first fix B and C and solve for Â via

Â = min
Â

||X(1) − Â(C � B)⊺||2F .

The least squares problem is minimized by

Â = X(1)(C � B)(C⊺C ∗ B⊺B)†,

where M† is the pseudo-inverse of M. (C⊺C ∗ B⊺B) is an

F×F matrix, so computing its pseudo-inverse is a minor

computation relative to X(1)(C�B). Once Â is computed, B̂

and Ĉ are then solved for similarly. The process is repeated

until convergence.

C. Matricized Tensor Times Khatri-Rao Product

We denote M = X(1)(C � B) as MTTKRP (matricized

tensor times Khatri-Rao product). MTTKRP is executed once

per mode per iteration of ALS. For simplicity of notation

and space, we only write MTTKRP in terms of operating on

the first mode. We define M to have I rows and B and C

to have J and K rows, respectively. M, B and C all have

F columns.

MTTKRP is often the bottleneck of computing the CPD.

Even though M is only an I×F matrix, C � B is a

dense JK×F matrix which can occupy significantly more

memory than X . The size and the cost of forming C � B

is prohibitive for all but the smallest sparse tensors. An

efficient MTTKRP implementation is essential for large-scale

tensor operations and C � B cannot by explicitly formed in

practice.

III. RELATED WORK

Over the years a number of approaches have been devel-

oped for computing the MTTKRP. The most efficient of these

methods operate in O(m) time, but differ in implementation

difficulty, cache utilization, and opportunities for parallelism.

A. Sparse Tensor-Vector Products

Each column of M is a linear combination of the fibers

of X with columns of B and C. MTTKRP can be formulated

as a series of F tensor-vector products [8]. Using tensor-

vector products is the chosen method for several major

MATLAB implementations such as Tensor Toolbox [6] and

Tensorlab [10].

A three-mode tensor requires two tensor-vector products

per column of M. A temporary array t of size m is used to

“stretch” the vectors B(:, f) and C(:, f) to map to nonzeros

of X . For each column f , the two tensor-vector products are

performed at once and stored within t. Once t is filled, we

need to “shrink” it to a vector of length I . This essentially

sums all of the entries of t that correspond to nonzeros

X (i, :, :) and stores the result as M(i, f). Algorithm 1

presents pseudocode for computing tensor-vector products.

Using sparse tensor-vector products uses 3mF FLOPs

(2mF for the initial products and mF for the accumula-

tion steps) and m intermediate memory words for t. Each

Algorithm 1 MTTKRP via Sparse Tensor-Vector products.

Input: nonzeros of X and respective I , J , and K indices

Output: M

for f ← 0 to F do

for z ← 0 to m do ⊲ Vector products

t[z]← vals[z]B(indJ [z], f)C(indK[z], f)
end for

for z ← 0 to m do ⊲ Accumulate M(:, f)
M(indI[z], f)←M(indI[z], f) + t[z]

end for

end for

nonzero can be processed in parallel during the “stretch”

stage because a nonzero will only modify a single element

of t. The accumulation step does not have this guarantee,

however, and must be executed serially. An advantage of this

method is that X does not require any special data structure

and it can be implemented in just a few lines of code in

MATLAB.

For a more in-depth overview of various tensor products,

we refer the reader to the work of Bader and Kolda [8], [7].

B. GigaTensor

GigaTensor [5] is a parallel CPD-ALS algorithm devel-

oped for the MapReduce [11] paradigm. GigaTensor utilizes

the massive parallelism of MapReduce by reformulating

MTTKRP as a series of Hadamard products. There are no

dependencies during a Hadamard product and each element

of the output can be computed in parallel.

GigaTensor avoids the construction of C�B by separately

computing the contributions of B(:, f) and C(:, f) with X(1)

via two Hadamard products. After computing the separate

contributions, the results are combined via a third Hadamard

product. The resulting matrix N has the same sparsity pattern

as X(1) and each nonzero entry N(i, y) is equal to

N(i, y) = X(1)(i, y)B(y%J, f)C(y/J, f). (1)

After computing the entries of N, the rows of the resulting

matrix are summed to form a column of M. The total process

requires 5mF FLOPs and m+max(J,K) intermediate

memory.

C. DFacTo

DFacTo [12] is a recent algorithm designed for distributed

tensor factorization. DFacTo uses an efficient MTTKRP al-

gorithm that is posed as a series of sparse matrix-vector

multiplications (SpMVs). M is computed one column at a

time and each column is formed by two SpMVs. DFacTo

first forms X
⊺

(2), an IK×J sparse matrix whose rows consist

of the mode-2 fibers of X . When forming column M(:, f)
we first compute X

⊺

(2)B(:, f) and store the result in the vals

field of Mr, an I×K sparse matrix. Finally, we compute

MrC(:, f) and store the result in M(:, f). The process is

repeated for each of the F columns.

DFacTo requires (2m+P+1) memory words to store

X , where P is the number of non-empty mode-2 fibers.

An additional (2P+I+1) words are required to store Mr

for a total memory footprint of (2m+I+3P+2) words.

DFacTo executes MTTKRP in 2F (m+P) FLOPs. DFacTo

consists entirely of SpMV operations and therefore can take

advantage of a wealth of existing research that can be applied

to an efficient parallel implementation.

IV. SPLATT

We developed an alternative algorithm for MTTKRP which

uses a novel data structure for representing tensors. Our

algorithm computes entire rows of M at a time and as a result

only requires a single traversal of the sparse tensor structure.

Our work is realized in the form of SPLATT, a C library for

three-mode tensors with shared-memory parallelism. In this

section we first show a derivation of our algorithm and an

analysis of its data structure and computational performance.

We discuss its generalization to an arbitrary number of

modes and lastly discuss its parallelization.

A. Derivation

Let us briefly assume that X is dense, and so each row

of X(1) has exactly JK nonzeros. If we start from (1),

M(i, f) =

JK
∑

z=0

X(1)(i, z)B(z%J, f)C(z/J, f)

M(i, :) =
JK
∑

z=0

X(1)(i, z)(B(z%J, :) ∗ C(z/J, :)) (2)

=
K
∑

k=0

J
∑

j=0

X (i, j, k)(B(j, :) ∗ C(k, :)) (3)

M(i, :) =

K
∑

k=0

C(k, :) ∗

J
∑

j=0

X (i, j, k)B(j, :) (4)

First, we rewrite (1) to operate on a row of M. Next, we

break the columns of X(1) into J and K components to

arrive at (3). Finally, we are able to factor out the inner

multiplication of C(k, :) and reach the more efficient solu-

tion (4). The factored C term saves F (J−1) multiplications

per X (i, :, k) fiber. If X is sparse and fiber X (i, :, k) has

Ĵ nonzeros, then F (Ĵ−1) FLOPs are saved, resulting in a

total 2F (m+P) FLOPs.

Figure 3 illustrates SPLATT when operating with a single

column. The algorithm that follows from (4) is straightfor-

ward. Algorithm 2 details the work for a single slice of X .

Algorithm 2 SPLATT

Input: Slice X (i, :, :)
Output: Row M(i, :)

M(i, :)← 0
for all unique k ∈ X (i, :, :) do ⊲ Each X (i, :, k) fiber

accum(:)← 0 ⊲ F×1 vector for accumulation

for all j ∈ X (i, :, k) do

accum(:)← accum(:) +X (i, j, k)B(j, :)
end for

M(i, :)←M(i, f) + C(k, f)accum(:)
end for

I

J

K

X

J

B

K

C

Figure 3: SPLATT: The dashed blue line shows the fiber of X

and its inner product with a column of B. The inner product

is then scaled by the circled value of C.

B. Storage Scheme and Computational Complexity

SPLATT represents sparse tensors in a hierarchical, fiber-

centric fashion. Each mode is stored as a list of slices.

Each slice in turn contains a list of fibers represented

as sparse vectors. Slices are stored in a structure that is

very similar to a compressed sparse row (CSR) matrix.

However, since slices are often extremely sparse, empty

fibers should consume no storage overhead. Each fiber is

also accompanied by a fiber id (fid) which specifies its K
coordinate index.

Let X have P mode-2 fibers. SPLATT uses m floating-

point numbers and m integers to store each nonzero value

and its j coordinate. Analogous to rows of a CSR matrix,

(P+1) integers are required to store the start indices for the

fibers and one integer is used for each fid. Finally, (I+1)
integers are used to mark the start indices of each slice. The

total memory footprint of X is (2m+I+P+2) words. The

only additional memory is used to store the F inner products

that are used to update M(i, :). SPLATT uses 2F (m+P)
FLOPs which is identical to DFacTo.

We note that storage requirements for SPLATT and

DFacTo are similar. Both are ultimately focused on a repre-

sentation of the sparse fibers in X . However, SPLATT only

needs to store F additional floating-point numbers during

computation and does not need the 2P memory words used

to store Mr that DFacTo requires. Additionally, SPLATT

exhibits memory access patterns that have better spatial

locality because the sparse structure of X is traversed only

once and each nonzero value is used in F multiplications

after being fetched from memory. This is a result of the row-

oriented approach taken by SPLATT, which to our knowledge

is the first of its kind in the sparse tensor community.

The decision to factor out C instead of B in (4) was

arbitrary. Deciding which term to factor can greatly impact

storage and computational performance. The decision is

most relevant when the dimensions of the X are not equal.

By storing fibers along the longer mode, we are able to

minimize the number of stored fibers and increase the

average fiber length. The benefit of this scheme is twofold:

we reduce the amount of memory required to store the tensor

and reduce the number of FLOPs due to a larger number

of factored multiplications. Section VII-A demonstrates the

benefits of selecting the best mode to factor.

C. Extensions to Higher-Order Tensors

While the body of this work is dedicated to three-mode

tensors, our algorithm is easily extended to operate on

tensors with four or more modes. If X is an n-mode tensor,

then MTTKRP in the first mode becomes

M = X(1)(A
(n)

� A(n−1)
� · · ·� A(2)).

The block structure in the Khatri-Rao product becomes more

pronounced as n increases. SPLATT is able to exploit this

block structure by factoring out a new set of multiplications

per mode. Let X be an n-mode tensor with dimensions

I1×I2× . . .×In. Our algorithm for MTTKRP in the first

mode is formulated as

M(i1, :) =

In
∑

in=0

A(n)(in, :) ∗

In−1
∑

in−1=0

A(n−1)(in−1, :)

· · ·

I3
∑

i3=0

A(3)(i3, :)∗

(

I2
∑

i2=0

X (i1, i2, . . . , in−1, in)A
(2)(i2, :)

)

.

The Khatri-Rao product operates on n−1 modes, requir-

ing F (n−2) words of intermediate memory. The last mode

does not need intermediate memory because it writes to M
directly. Like before, fibers of X are used for inner products

with A(2), which are then scaled by the corresponding row

of A(3) and so on.

When forming each of the n representations of X , we

must choose an ordering of the remaining n−1 modes. As

discussed in Section IV-B, arranging the modes to minimize

the number of fibers (and maximize the average fiber length)

can have a significant impact on the storage and computa-

tion required. This is achieved by sorting modes by their

dimension such that the shortest modes correspond to outer

loops and the longest mode corresponds to the direction that

X stores its fibers.

D. Parallelization

The parallel version of SPLATT uses a task decomposition

on the rows of M. Since the computation of M(i, :) requires

only the nonzeros in slice X (i, :, :), the mode-1 slices of

X can be distributed among processes. All process write

to distinct rows of M and thus parallel execution requires

no locks or synchronization. Each process requires only F
words of additional storage to accumulate inner products.

Since F ≪ m this method is memory scalable.

The unstructured sparsity pattern of X poses the issue

of potential load imbalance. The nonzeros of X are rarely

distributed in a uniform fashion. For example, the number

of nonzeros across the slices in NELL can vary by several

orders of magnitude. A static decomposition of rows can

assign hugely disproportionate amounts of work to the

processes, resulting in severe load imbalance and reduced

scalability. Therefore, SPLATT uses dynamic load balancing

when distributing tasks to processes.

V. OPTIMIZING FOR CACHE PERFORMANCE

In addition to the algorithmic improvements used by

SPLATT, we present a method of achieving further speedup

by efficiently utilizing the CPU memory hierarchy through

means of reordering and cache blocking.

A. Tensor Reordering

Permuting the indices within one or more modes, or

reordering, can lead to significant performance gains as

it can potentially improve cache utilization by exploiting

spatial and temporal locality. Figure 4 illustrates a tensor

before and after reordering.

The goal of reordering a sparse tensor is to group nonzeros

into semi-dense regions. Nonzeros form a sequence of

semi-dense cuboids along the super-diagonal after an ideal

reordering. Dense regions are attractive because they offer

increased cache performance while accessing B and C.

Consider the execution of SPLATT along the first mode.

The mode-2 indices in a fiber determine which rows of

B are accessed and the constant mode-3 index determines

the accessed row of C. Consecutive mode-2 indices result

in an unstrided access pattern that offers spatial locality

in memory and can effectively utilize hardware prefetching

mechanisms. If the accessed portion of B is sufficiently small

and there are shared mode-2 indices in nearby fibers, the

required portions of B will still reside in cache. Additionally,

as other slices are processed we can also see the same reuse

in C due to repeated mode-3 indices.

In this work we identify two methods of reordering sparse

tensors. The first is based on the partitioning of a graph

that models the interactions between slices of each mode

of X . This method is mode-independent because a single

reordering is used for each mode of computation. The second

method is based on the partitioning of a hypergraph that

models the memory accesses to M, B, and C. Unlike the

0 3 0 3 0 0 0 0 2 0 0 2
0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 2 0 0 2
0 3 0 3 0 0 0 0 0 0 0 0

(a)

3 3 0 0 0 0 0 0 0 0 0 0
3 3 0 0 0 2 2 0 0 0 0 0
0 0 0 0 0 2 2 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 1

(b)

Figure 4: A tensor (a) before reordering and (b) after

reordering.

tripartite graph model, the hypergraphs are specific to a given

mode (mode-dependent) and thus multiple reorderings are

needed.

1) Mode-Independent Reorderings: The objective of a

mode-independent reordering is to find a single tensor per-

mutation that results in improved execution time regardless

of which mode MTTKRP is being performed on. We achieve

this goal by permuting modes of the tensor such that indices

with high levels of similarity are adjacent.

We draw from the bipartite graph model for reordering

sparse matrices [13]. Suppose X is an n-mode tensor

with dimensions I1×I2× . . .×In. We construct an n-partite

graph whose vertex sets are of cardinalities I1×I2× . . .×In.

Nonzero X (i1, i2, . . . , in) generates a clique that connects

nodes i1, i2, . . . , in. Using this scheme, edge (ia, ib) will be

created every time a nonzero is processed with indices ia
and ib appearing together. To account for this we weight

edges based on the number of times they are generated. For

example, when X has three modes the resulting graph is

tripartite and edge (i, k) has weight equal to the number

of nonzeros in the X (i, :, k) fiber. Figure 5 shows a small

tensor and its corresponding graph.

After generating a tensor’s graph, a graph partitioner is

used to create a partitioning. The graph is next relabeled

such that vertices in the same partition are given consecutive

labels. Finally, we generate a reordered tensor from the

relabeled graph.

2) Mode-Dependent Reorderings: Mode-dependent re-

orderings offer further opportunities for optimization at

the cost of additional work during the reordering stage.

When operating within a certain mode we know precisely

which memory accesses will result from the tensor’s sparsity

pattern.

Our hypergraph model is an extension of the column-

net model originally used for parallel sparse matrix-vector

multiplication [14]. Fibers are our unit of work and are

analogous to rows in a sparse matrix. Fibers are mapped

[

α β 0 0
0 γ 0 δ

]

(a)

αβ

γ

δii1

i i2

ij1

i

j2

ik1

i

k2

(b)

i1 i2

j1 k1 j2 k2

2 2

2

(c)

Figure 5: (a) X , a 2×2×2 tensor. (b) X mapped to a mode-

1 hypergraph whose nodes are the X (i, :, k) fibers. Filled

nodes are hyperedges. (c) X mapped to a tripartite graph

with unlisted weights assumed to be unit.

to vertices in the hypergraph. Each mode emits as many

hyperedges as its own dimension. A three-mode tensor will

have I+J+K hyperedges. Each hyperedge connects all

fibers that its corresponding index can be found within.

For example, if fiber X (i, :, k) has three nonzeros, then

that vertex will be connected by five hyperedges. Two

connections will come from the i and k indices and the final

three will come from each nonzero mode-2 index found in

the fiber.

Our goal is to model memory accesses as hyperedges.

The number of partitions in which a hyperedge is found

(or, its connectivity) exactly models the number of times

that its corresponding row in M, B, or C must be fetched

from memory. Thus, by minimizing the connectivity of all

hyperedges (known as the sum of external degrees), we

minimize the number of total memory accesses.

We partition the hypergraph to induce a reordering of the

tensor. Fibers (vertices) are relabeled such that fibers in the

same partition are given consecutive labels. Relabeling a

fiber means to relabel all indices found in its nonzero entries.

Indices are not unique to fibers and so we ensure that we

only label an index the first time it is encountered. Consider

fibers stored along the second mode. Mode-1 and mode-3
indices determine the order in which fibers are processed.

This affects temporal locality because it allows fibers with

similar sparsity pattern to be processed nearby in time.

Relabeled mode-2 indices affect spatial locality and allow

a fiber and its neighbors to access consecutive rows of B.

A clear drawback of a mode-dependent reordering is

the need to construct and partition a hypergraph for each

mode. Fortunately, much of this cost is mitigated due to

the ordering of modes done by SPLATT. Recall that SPLATT

stores fibers along the mode with the largest dimension.

Consider a tensor of dimensions I×J×K and I<J<K.

SPLATT will store fibers along the third mode for the first

two modes of computation. During the third mode, fibers

will be stored along the second mode because it has the

next largest dimension. The only difference in execution

between the first and second modes is the order in which

fibers are processed. Thus, the hypergraphs of the first and

second modes will be identical except for the labels of

mode-1 and mode-2 hyperedges. A consequence is that a

partitioning of one hypergraph will be equally suited for

the other. Therefore, only partitionings of the mode-1 and

mode-3 hypergraphs are needed for a complete reordering.

This observation extends to tensors of higher modes as well.

Irrespective of the number of modes, only two partitionings

are needed: one generated by the longest mode and one

generated by any other mode.

B. Cache Blocking over Sparse Tensors

The extremely large dimensions that sparse tensors often

exhibit are prohibitive to memory performance, even with

a good reordering. Assume that fibers run along the second

mode and are defined by a unique (i, k) pair. Long fibers

will fetch enough of the rows of B to evict cache lines that

would otherwise be reused in other nearby fibers. In order

to maximize data reuse, we used cache blocking.

Our method of blocking over a sparse tensor during

MTTKRP is a generalization of the blocking used for matrix-

vector multiplication. We seek to define three-dimensional

tiles over the sparsity pattern of X . If a tile has dimension

I ′×J ′×K ′ then accesses to M, B, and C are limited to

a maximum of I ′, J ′, and K ′ rows, respectively. Thus,

by carefully selecting tile dimensions such that the entire

working set fits in CPU cache we can increase reuse of M,

B, and C.

Tiling over a sparse tensor is not a trivial task. An

implementation that statically assigns nonzeros to tiles based

on their coordinates and the tile dimensions will result in

mostly empty or near-empty tiles due to the high levels

of sparsity present. Additionally, most datasets feature un-

structured sparsity patterns that can result in tiles of wildly

varying density. We propose a method of growing tiles to

adapt to the sparsity pattern of a given tensor.

First, we divide the mode-1 slices into sets of size I ′. We

call a set of slices a layer. Since empty slices can be trivially

removed from the dataset, we assume that they are either

not present or are rare enough such that we may statically

assign slice i to layer i/I ′. The sparsity pattern of each

layer may differ dramatically and thus each layer is given

an independent tiling.

We proceed one layer at a time. Within each layer we first

construct the set of mode-3 indices present. We divide the

indices into sets of size K ′ and arrange the X (i, :, k) fibers

into tubes, each with a maximum of I ′ mode-1 indices and

K ′ mode-3 indices. Each tube must be tiled independently

due to their varying sparsity patterns.

Finally, within each tube we construct the set of mode-2
indices that are present. This set is used to divide the tube

into tiles with I ′ + J ′ +K ′ unique indices. If we choose

dimensions so that F (I ′ + J ′ +K ′) floating point numbers

can comfortably fit in cache, and the ordering of X provides

regions which are relatively dense, then we have effectively

increased reuse in M, B, and C.

All of the fibers within a slice are no longer adjacent in

memory after tiling. Consequently, parallel execution within

a layer is difficult because writes to the same row of M can

occur at any time. We identify two methods of modifying

SPLATT to execute over a tiled tensor. The first method is

to distribute the tiled layers among threads and prevent race

conditions while avoiding synchronization or atomics. The

drawback of distributing entire layers is that the working

set of each tile is now local to individual threads. The data

reused between threads will be limited to similarities in spar-

sity pattern between layers. The second method of tiling is a

cooperative scheme. Each thread uses its own I ′×F matrix

of scratch space to accumulate writes to M. All threads

execute concurrently within a tile but must synchronize at

the end of each layer. After the synchronization, threads

cooperate to do a summation of the scratch matrices. Since

we operate in a shared address space we are able to evenly

distribute the I ′ rows of scratch space among threads and

do a reduction with only a synchronization at the end.

VI. EXPERIMENTAL METHODOLOGY

A. Experimental Setup

SPLATT was implemented in C with double precision

floating-point numbers and 64-bit integers. SPLATT uses

OpenMP for shared memory parallelism. All source code

is available for download4. Load balance is achieved by

OpenMP’s dynamic scheduling with a chunksize of 16.

Experiments were carried out on an HP ProLiant BL280c

G6 blade server with dual 8-core E5-2670 Xeon processors

running at 2.6 GHz. Source code was compiled with GCC

4.8.0 using optimization level O2. For all experiments we

used F = 10.

B. Datasets

We evaluated our method across several datasets of vary-

ing properties. Table I is a summary of the mentioned

datasets.

The Netflix dataset is taken from the Netflix Prize com-

petition [15]. The dataset forms a user-item-time ratings

tensor. Two datasets come from the Never Ending Language-

Learning (NELL) project [1] which is freely available. Both

tensors represent noun-verb-noun triplets. NELL-1 is the

complete, extremely sparse dataset and NELL-2 is a smaller,

more dense version in which the infrequent items have been

pruned. BrainQ [16] is derived from fMRI measurements of

4http://cs.umn.edu/˜shaden/software/

Table I: Summary of datasets.

Dataset I J K nnz density

Netflix 480K 18K 2K 100M 5.4e-06

NELL-1 4M 4M 25M 144M 3.1e-13

NELL-2 15K 15K 30K 77M 1.3e-05

BrainQ 60 70K 9 11M 2.9e-01

Delicious 532K 17M 2.5M 140M 6.1e-12

nnz is the number of nonzero entries in the dataset. density

is defined by nnz/(I×J×K).

Table II: Difference in storage requirements and runtime for

the mode-1 slices of each dataset.

Storage (Improvement) Time (Speedup)

Dataset Short Long Short Long

Netflix 7.75 5.02 (1.54×) 8.77 6.02 (1.45×)
NELL-1 11.91 8.88 (1.34×) 25.74 19.83 (1.29×)
NELL-2 4.32 3.69 (1.17×) 3.18 2.78 (1.14×)
BrainQ 0.54 0.50 (1.08×) 0.28 0.31 (0.90×)
Delicious 9.28 8.23 (1.12×) 17.66 15.61 (1.13×)

Short and Long refer to SPLATT using fibers along the short or the
long mode, respectively. Storage is measured in gigabytes. Runtime is
the average time in seconds to perform an execution of SPLATT in all
three modes. Storage and runtime for Short is measured relative to Long.
No cache tiling is used. × denotes improvement over Short.

brain activity. Its three modes are noun-voxel-human subject.

BrainQ is an interesting dataset because its dimensions

are relatively small, resulting in a tensor several orders of

magnitudes more dense than the other tensors studied in this

work. Delicious is a user-item-tag dataset originally crawled

by Görlitz et al. [17] and is also available for download.

VII. RESULTS

A. Effects of Fiber Direction Selection

SPLATT chooses at runtime which direction to store fibers

in each of its modes. For example, the slices of the first mode

can either have fibers that run along the second or third mode

and the slices of the second mode will follow either the first

or third mode. This is analogous to determining whether the

sparse matrix representing each slice is stored in a row or

column major format. Each fiber comes with some storage

overhead and the number of saved FLOPs is dependent on

the number of nonzeros per fiber. When there is a large

disparity between the dimensions of X , choosing to have

fewer, longer fibers is beneficial.

We evaluated this optimization on each of our datasets

and present results in Table II. SPLATT requires less memory

when storing fibers along the longer dimensions for all tested

datasets. Additionally, faster runtimes are exhibited on all

datasets except BrainQ, in which shorter fibers had a 1.10×
speedup. Speedup peaked at 1.45× on Netflix.

B. Effects of Tensor Reordering and Cache Tiling

To evaluate our methods of improving cache performance

we measured runtime of SPLATT across orderings and tile

sizes. The baseline is a randomly permuted tensor without

Table III: Effects of Tensor Reordering.

Time (Speedup)

Dataset Random Mode-Independent Mode-Dependent

Netflix 6.02 5.26 (1.14×) 5.43 (1.10×)
NELL-1 19.83 17.83 (1.11×) 17.55 (1.12×)
NELL-2 2.78 2.61 (1.06×) 2.60 (1.06×)
Delicious 15.61 13.10 (1.19×) 12.51 (1.24×)

Runtime is the average time to perform a serial execution of SPLATT

across all three modes. When reordering, the number of partitions was
scaled from 32 to 1024 and the best result used. Time is measured in
seconds. × denotes speedup over a random ordering.

Table IV: Effects of Cache Tiling.

Time (Speedup)

Thds SPLATT tiled MI+tiled MD+tiled

1 8.14 (1.0×) 8.90 (0.9×) 8.70 (1.0×) 9.18 (0.9×)
2 4.73 (1.7×) 4.88 (1.7×) 4.37 (1.9×) 4.52 (1.8×)
4 2.54 (3.2×) 2.58 (3.2×) 2.29 (3.6×) 2.35 (3.5×)
8 1.42 (5.7×) 1.41 (5.8×) 1.26 (6.5×) 1.26 (6.4×)
16 0.90 (9.0×) 0.85 (9.5×) 0.74 (11.0×) 0.75 (10.8×)

Time is measured in seconds and averaged across all datasets. Thds is
the number of threads used. MI and MD are mode-independent and mode-
dependent reorderings, respectively. When reordering, the number of parti-
tions was scaled from 32 to 1024 and the best result used. × denotes speedup
over a random ordering without tiling.

tiling. Since reordering will only offer speedup on very

sparse tensors, we omitted BrainQ from the reordering ex-

periments. Times reported are the average time of executing

SPLATT with one thread across all three modes. Results are

shown in Table III. Delicious saw the largest benefit and

reached 1.24× speedup after a mode-dependent reordering.

We found that reordering alone is not sufficient for

maximizing performance. On all datasets, the best parallel

speedups were found using a combination of reordering and

cache tiling. The best results that we achieved using 16

threads are shown in Table IV. Note that these configurations

are the most scalable configurations and not necessarily the

fastest at small numbers of threads. This is because tiling

increases arithmetic operations and the memory footprint of

the tensor due to fibers being split across boundaries. After

tiling we found the runtimes of mode independent and mode

dependent reorderings to be similar, with mode-independent

reorderings slightly faster.

Datasets with modes of relatively small dimension

(BrainQ, Netflix, and NELL-2) saw benefit from cooperative

tiling with up to a 1.22× speedup on BrainQ compared

to traditional tiling. The number of synchronizations and

reductions scale with the mode dimensions and thus large

datasets such as NELL-1 and Delicious saw impaired scal-

ability when using cooperative tiling. We experimentally

found that tiles of dimension 2048×2048×4096 gave the

best performance when executing cooperatively and tiles of

dimension 32×1024×1024 gave the best performance when

distributing entire layers to threads.

C. Parallel Scaling Results

We evaluated SPLATT against three competitor algorithms:

sparse tensor-vector products (‘TVec’), GigaTensor, and

DFacTo. TVec and GigaTensor were implemented in C and

optimized to the best of our ability. DFacTo is written in

C++ and has been made freely available by the authors [18].

DFacTo is a distributed code and uses MPI for parallelism.

During our scalability study we ran with all MPI ranks on

a single machine and omitted communication costs from

our timings. Each of the competitor methods are column-

oriented approaches and thus we used a column-major layout

for the factor matrices when evaluating competitors. SPLATT

uses a row-major layout for the factor matrices. Tensors start

from a random ordering and SPLATT does not have cache

tiling enabled. Speedup reported is based off the average

time to execute MTTKRP across all three modes, which

simulates an iteration of ALS. We scale from one to sixteen

processors and measure speedup relative to the serial runtime

of TVec.

Figure 6 shows the mean speedup across all datasets. On

average, SPLATT is 3.7× faster than our baseline and scales

to be 29.8× faster with 16 threads. SPLATT exhibits the best

performance on NELL-2, reaching 81× speedup. Figure 7 il-

lustrates scaling on NELL-2. Near-linear scaling is achieved

on all but one dataset, BrainQ. BrainQ’s low dimension,

especially in the third mode, limits the parallelism that

SPLATT can exploit (Figure 8). SPLATT extracts parallelism

from the slices of each mode and thus any processes beyond

the number of slices are necessarily idle during computation.

Despite the limited scalability on BrainQ, SPLATT is still

able to significantly outperform competitor methods across

a wide range of nonzero densities.

VIII. CONCLUSIONS

Tensors are becoming increasingly important in today’s

data analysis and there is a real need for highly optimized

sparse tensor tools. In this work we introduced SPLATT, a C

library for parallel sparse tensor computations with a highly

optimized method of computing MTTKRP. We presented a

method of reordering sparse tensors and cache tiling to

improve data locality and by using a novel data structure

were able to improve cache reuse and achieve serial and

parallel speedup across a variety of datasets. On average,

SPLATT is over 3× faster than our baseline using one thread

and scales to average 29× faster at 16 threads.

A challenging characteristic of many tensor computations

is the modal nature of the problem. SPLATT, DFacTo, and

GigaTensor all require a separate representation of the tensor

for each mode. Ravindran et al. [19] recently introduced

efficient algorithms for performing MTTKRP in all three

modes that collectively use only a single representation of

the tensor. Our future work includes adapting SPLATT to this

model investigating memory-scalable algorithms for tensor

factorization in the context of distributed systems.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12 14 16

Av
er

ag
e

Sp
ee

du
p

vs
 S

er
ia

l T
Ve

c

Threads

SPLATT

SPLATT+mem

GigaTensor

DFacTo

TVec

Figure 6: Average speedup over serial Tensor-Vector Prod-

ucts (‘TVec’). SPLATT+mem indicates that reordering and

tiling are used.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16

Sp
ee

du
p

vs
 S

er
ia

l T
Ve

c

Threads

SPLATT

SPLATT+mem

GigaTensor

DFacTo

TVec

Figure 7: Speedup on NELL-2 over serial Tensor-Vector

Products (‘TVec’). SPLATT+mem indicates that reordering

and tiling are used.

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16

Sp
ee

du
p

vs
 S

er
ia

l T
Ve

c

Threads

SPLATT

SPLATT+mem

GigaTensor

DFacTo

TVec

Figure 8: Speedup on BrainQ over serial Tensor-Vector

Products (‘TVec’). SPLATT+mem indicates that reordering

and tiling are used.

ACKNOWLEDGMENT

This work was supported in part by NSF (IIS-0905220,

OCI-1048018, CNS-1162405, IIS-1247632, IIP-1414153,

IIS-1447788), Army Research Office (W911NF-14-1-0316),

Intel Software and Services Group, and the Digital Tech-

nology Center at the University of Minnesota. Access to

research and computing facilities was provided by the Dig-

ital Technology Center and the Minnesota Supercomputing

Institute.

REFERENCES

[1] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hr-
uschka, and T. M. Mitchell, “Toward an architecture for never-
ending language learning,” in In AAAI, 2010.

[2] J. D. Carroll and J.-J. Chang, “Analysis of individual differ-
ences in multidimensional scaling via an n-way generaliza-
tion of eckart-young decomposition,” Psychometrika, vol. 35,
no. 3, pp. 283–319, 1970.

[3] D. Nion and N. D. Sidiropoulos, “Tensor algebra and multi-
dimensional harmonic retrieval in signal processing for mimo
radar,” Signal Processing, IEEE Transactions on, vol. 58,
no. 11, pp. 5693–5705, 2010.

[4] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, A. Hanjalic,
and N. Oliver, “Tfmap: optimizing map for top-n context-
aware recommendation,” in Proceedings of the 35th interna-
tional ACM SIGIR conference on Research and development
in information retrieval. ACM, 2012, pp. 155–164.

[5] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos, “Gi-
gatensor: scaling tensor analysis up by 100 times-algorithms
and discoveries,” in Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data
mining. ACM, 2012, pp. 316–324.

[6] B. W. Bader, T. G. Kolda et al. (2012,
Jan.) Matlab tensor toolbox version 2.5.
Http://www.sandia.gov/˜tgkolda/TensorToolbox/.

[7] T. G. Kolda and B. W. Bader, “Tensor decompositions and
applications,” SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[8] B. W. Bader and T. G. Kolda, “Efficient MATLAB compu-
tations with sparse and factored tensors,” SIAM Journal on
Scientific Computing, vol. 30, no. 1, pp. 205–231, December
2007.

[9] J. Håstad, “Tensor rank is np-complete,” Journal of Algo-
rithms, vol. 11, no. 4, pp. 644–654, 1990.

[10] L. Sorber, M. Van Barel, and L. De Lathauwer. (2014, Jan.)
Tensorlab v2.0. [Online]. Available: http://www.tensorlab.net/

[11] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[12] J. H. Choi and S. Vishwanathan, “Dfacto: Distributed fac-
torization of tensors,” in Advances in Neural Information
Processing Systems, 2014, pp. 1296–1304.

[13] B. Hendrickson and T. G. Kolda, “Partitioning rectangular
and structurally unsymmetric sparse matrices for parallel
processing,” SIAM Journal on Scientific Computing, vol. 21,
no. 6, pp. 2048–2072, 2000.

[14] U. V. Catalyurek and C. Aykanat, “Hypergraph-partitioning-
based decomposition for parallel sparsemmatrix vector mul-
tiplication,” Parallel and Distributed Systems, IEEE Transac-
tions on, vol. 10, no. 7, pp. 673–693, 1999.

[15] J. Bennett and S. Lanning, “The netflix prize,” in Proceedings
of KDD cup and workshop, vol. 2007, 2007, p. 35.

[16] T. M. Mitchell, S. V. Shinkareva, A. Carlson, K.-M. Chang,
V. L. Malave, R. A. Mason, and M. A. Just, “Predicting
human brain activity associated with the meanings of nouns,”
science, vol. 320, no. 5880, pp. 1191–1195, 2008.

[17] O. Görlitz, S. Sizov, and S. Staab, “Pints: peer-to-peer infras-
tructure for tagging systems.” in IPTPS, 2008, p. 19.

[18] J. H. Choi and S. Vishwanathan. (2015,
Jan.) Dfacto source code. [Online]. Available:
http://web.ics.purdue.edu/˜choi240/index.html

[19] N. Ravindran, N. D. Sidiropoulos, S. Smith, and G. Karypis,
“Memory-efficient parallel computation of tensor and matrix
products for big tensor decomposition,” in Proceedings of the
Asilomar Conference on Signals, Systems, and Computers,
2014.

