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Abstract

As single-cell RNA sequencing (scRNA-seq) technologies have rapidly developed, so have analysis methods. Many

methods have been tested, developed, and validated using simulated datasets. Unfortunately, current simulations

are often poorly documented, their similarity to real data is not demonstrated, or reproducible code is not available.

Here, we present the Splatter Bioconductor package for simple, reproducible, and well-documented simulation of

scRNA-seq data. Splatter provides an interface to multiple simulation methods including Splat, our own simulation,

based on a gamma-Poisson distribution. Splat can simulate single populations of cells, populations with multiple

cell types, or differentiation paths.
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Background
The first decade of next-generation sequencing has seen

an explosion in our understanding of the genome [1]. In

particular, the development of RNA sequencing (RNA-

seq) has enabled unprecedented insight into the dynam-

ics of gene expression [2]. Researchers now routinely

conduct experiments designed to test how gene expres-

sion is affected by various stimuli. One limitation of bulk

RNA-seq experiments is that they measure the average

expression level of genes across the many cells in a

sample. However, recent technological developments

have enabled the extraction and amplification of minute

quantities of RNA, allowing sequencing to be conducted

on the level of single cells [3]. The increased resolution

of single-cell RNA-seq (scRNA-seq) data has made a

range of new analyses possible.

As scRNA-seq data have become available there has

been a rapid development of new bioinformatics tools

attempting to unlock its potential. Currently there are at

least 120 software packages that have been designed

specifically for the analysis of scRNA-seq data, the ma-

jority of which have been published in peer-reviewed

journals or as preprints [4]. The focus of these tools is

often different from those designed for the analysis of a

bulk RNA-seq experiment. In a bulk experiment, the

groups of samples are known and a common task is to

test for genes that are differentially expressed (DE) be-

tween two or more groups. In contrast, the groups in a

single-cell experiment are usually unknown and the ana-

lysis is often more exploratory.

Much of the existing software focuses on assigning

cells to groups based on their expression profiles (clus-

tering) before applying more traditional DE testing. This

approach is taken by tools such as SC3 [5], CIDR [6],

and Seurat [7] and is appropriate for a sample of mature

cells where it is reasonable to expect cells to have a

particular type. In a developmental setting, for example,

where stem cells are differentiating into mature cells, it

may be more appropriate to order cells along a

continuous trajectory from one cell type to another.

Tools such as Monocle [8], CellTree [9], and Sincell [10]

take this approach, ordering cells along a path, then

identifying patterns in the changes of gene expression

along that path.

Another defining characteristic of scRNA-seq data is

its sparsity; typically expression is only observed for

relatively few genes in each cell. The observed zero

counts have both biological (different cell types express

different genes) and technical (an expressed RNA mol-

ecule might not be captured) causes, with technical

zeros often referred to as “dropout”. Some analysis

methods (ZIFA [11], MAST [12], ZINB-WaVE [13])
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incorporate dropout into their models while others

(MAGIC [14], SAVER [15], scImpute [16]) attempt to

infer what the true expression levels should be.

Existing scRNA-seq analysis packages, and any new

methods that are being developed, should demon-

strate two properties: first that they can do what they

claim to do, whether that is clustering, lineage

tracing, differential expression testing or improved

performance compared to other methods; and second

that they produce some meaningful biological insight.

The second criterion is specific to particular studies

but it should be possible to address the first point in

a more general way.

A common way to test the performance of an

analysis method is through a simulation. Simulated

data provide a known truth to test against, making it

possible to assess whether a method has been imple-

mented correctly, whether the assumptions of the

method are appropriate, and demonstrating the

method’s limitations. Such tests are often difficult

with real biological data, as an experiment must be

specifically designed, or results from an appropriate

orthogonal test taken as the truth. Simulations, how-

ever, easily allow access to a range of metrics for

assessing the performance of an analysis method. An

additional advantage of evaluating methods using sim-

ulated data is that many datasets, with different pa-

rameters and assumptions, can be rapidly generated

at minimal cost. As such, many of the scRNA-seq

analysis packages that are currently available have

used simulations to demonstrate their effectiveness.

These simulations, however, are often not described

in a reproducible or reusable way and the code to

construct them may not be readily available. When

code is available it may be poorly documented or

written specifically for the computing environment

used by the authors, limiting its reproducibility and

making it difficult for other researchers to reuse.

Most importantly, publications do not usually provide

sufficient detail demonstrating that a simulation is

similar to real datasets, or in what ways it differs.

In this paper we present Splatter, an R Bioconductor

package for reproducible and accurate simulation of

single-cell RNA sequencing data. Splatter is a frame-

work designed to provide a consistent interface to

multiple published simulations, enabling researchers

to quickly simulate scRNA-seq count data in a

reproducible fashion and make comparisons between

simulations and real data. Along with the framework

we have developed our own simulation model, Splat,

and show how it compares to previously published

simulations based on real datasets. We also provide a

short example of how simulations can be used for

assessing analysis methods.

Results
The Splatter framework

Currently, Splatter implements six different simulation

models, each with their own assumptions but accessed

through a consistent, easy-to-use interface. These simu-

lations are described in more detail in the following

sections and in the documentation for each simulation

in Splatter, which also describes the required input

parameters.

The Splatter simulation process consists of two steps.

The first step estimates the parameters required for the

simulation from a real dataset. The result of the first

step is a parameters object unique to each simulation

model. These objects have been designed to hold the

information required for the specific simulation and dis-

play details such as which parameters can be estimated

and which have been changed from the default value. It

is important that each simulation has its own object for

storing parameters as different simulations can vary

greatly in the information they require. For example,

some simulations only need parameters for well-known

statistical distributions while others require large vectors

or matrices of data sampled from real datasets.

In the second step, Splatter uses the estimated param-

eters, along with any additional parameters that cannot

be estimated or are overridden by the user, to generate a

synthetic scRNA-seq dataset. If there is no relevant real

data to estimate parameters from, a synthetic dataset

can still be generated using default parameters that can

be manually modified by the user. Additional parameters

that may be required depend on the simulation; these

could include parameters indicating whether to use a

zero-inflated model or the number of genes and cells to

simulate. The main result of the simulation step is a

matrix of counts, which is returned as an SCESet object

as defined by the scater package. Scater is a low-level

analysis package that provides various functions for

quality control, visualization, and preprocessing of

scRNA-seq data [17]. Briefly, the structure of the SCESet

combines cell by feature (gene) matrices for storing

expression values along with tables for storing metadata

about cells and features (further details are described in

the scater documentation and the accompanying paper).

This is a convenient format for returning intermediate

values created during simulation as well as the final

expression matrix. For example, the underlying gene

expression means in different groups of cells are

returned and could be used as a truth when evaluating

differential expression testing. Using an SCESet also

provides easy access to scater’s functionality.

Splatter is also able to compare SCESet objects. These

may contain simulations with different models or differ-

ent parameters, or real datasets from which parameters

have been estimated. The comparison function takes one
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or more SCESet objects, combines them (keeping any

cell or gene-level information that is present in all of

them) and produces a series of diagnostic plots compar-

ing aspects of scRNA-seq data. The combined datasets

are also returned, making it easy to produce additional

comparison plots or statistics. Alternatively, one SCESet

can be designated as a reference, such as the real data

used to estimate parameters, and the difference between

the reference and the other datasets can be assessed.

This approach is particularly useful for comparing how

well simulations recapitulate real datasets. Examples of

these comparison plots are shown in the following

sections.

Simulation models

Splatter provides implementations of our own simula-

tion model, Splat, as well as several previously

published simulations. The previous simulations have

either been published as R code associated with a

paper or as functions in existing packages. By includ-

ing them in Splatter, we have made them available in

a single place in a more accessible way. If only a

script was originally published, such as the Lun [18]

and Lun 2 [19] simulations, the simulations have been

re-implemented in Splatter. If the simulation is avail-

able in an existing R package, for example, scDD [20]

and BASiCS [21], we have simply written wrappers

that provide consistent input and output but use the

package implementation. We have endeavored to keep

the simulations and estimation procedures as close as

possible to what was originally published while

providing a consistent interface within Splatter. The

six different simulations currently available in Splatter

are described below.

Simple

The negative binomial is the most common distribution

used to model RNA-seq count data, as in the edgeR [22]

and DESeq [23] packages. The Simple simulation is a

basic implementation of this approach. A mean expres-

sion level for each gene is simulated using a gamma

distribution and the negative binomial distribution is

used to generate a count for each cell based on these

means, with a fixed dispersion parameter (default = 0.1;

Additional file 1: Figure S1). This simulation is pri-

marily included as a baseline reference and is not

intended to accurately reproduce many of the features

of scRNA-seq data.

Lun

Published in “Pooling across cells to normalize single-

cell RNA sequencing data with many zero counts” [18],

the Lun simulation builds on the Simple simulation by

adding a scaling factor for each cell (Additional file 1:

Figure S2). The cell factors are randomly sampled from

a normal distribution with mean 1 and variance 0.5. The

inverse- log2 transformed factors are used to adjust the

gene means, resulting in a matrix in which each cell has

a different mean. This represents the kinds of technical

effects that scaling normalization aims to remove. The

matrix of means is then used to sample counts from a

negative binomial distribution, with a fixed dispersion

parameter. This simulation can also model differential

expression between multiple groups with fixed fold

changes.

Lun 2

In “Overcoming confounding plate effects in differential

expression analyses of single-cell RNA-seq data” [19]

Lun and Marioni extended the negative binomial model

from the Lun simulation. This simulation samples input

parameters from real data, with very little random

sampling from statistical distributions. In the Lun 2

simulation the cell factors are replaced with a library size

factor and an additional level of variation is added by

including a batch effects factor. While the library size

factor acts on individual cells the batch effects are

applied to groups of cells from the same batch. This

simulation is thus highly specific to the scenario when

there are known batch effects present in the data, for ex-

ample, Fluidigm C1 plate effects. Differential expression

can be added between two sets of batches and the user

can choose to use a zero-inflated negative binomial

(ZINB) model. Counts are simulated from a negative bi-

nomial using the library size and plate factor adjusted

gene means and gene-wise dispersion estimates obtained

from the real data. If the ZINB model is chosen, zero in-

flated estimates of gene means and dispersions are used

instead. An additional step then randomly sets some

counts to zero, based on the gene-wise proportions of

zeros observed in the data. Additional file 1: Figure S3

shows the model assumptions and parameters for this

simulation.

scDD

The scDD package aims to test for differential expres-

sion between two groups of cells but also more complex

changes such as differential distributions or differential

proportions [20]. This is reflected in the scDD simula-

tion, which can contain a mixture of genes simulated to

have different distributions, or differing proportions

where the expression of the gene is multi-modal. This

simulation also samples information from a real dataset.

As the scDD simulation is designed to reproduce a high

quality, filtered dataset, it only samples from genes with

less than 75% zeros. As a result, it only simulates rela-

tively highly expressed genes. The Splatter package
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simply provides wrapper functions to the simulation

function in the scDD package, while capturing the ne-

cessary inputs and outputs needed to compare to other

simulations. The full details of the scDD simulation are

described in the scDD package vignette [24].

BASiCS

The BASiCS package introduced a model for separating

variation in scRNA-seq data into biological and technical

components based on the expression of external spike-in

controls [21]. This model also enables cell-specific

normalization and was extended to detect differential

expression between groups of cells [25]. Similar to the

scDD simulation, Splatter provides a wrapper for the

BASiCS simulation function, which is able to produce

datasets with both endogenous and spike-in genes as

well as multiple batches of cells. As the BASiCS simula-

tion contains both biological and technical variation, it

can be used to test the ability of methods to distinguish

between the two.

Splat

We have developed the Splat simulation to capture

many features observed in real scRNA-Seq data, includ-

ing high expression outlier genes, differing sequencing

depths (library sizes) between cells, trended gene-wise

dispersion, and zero-inflation. Our model uses paramet-

ric distributions with hyper-parameters estimated from

real data (Fig. 1). The core of the Splat simulation is the

gamma-Poisson hierarchical model where the mean ex-

pression level for each gene i , i ¼ 1; :::; N , is simulated

from a gamma distribution and the count for each cell j,

j ¼ 1; :::;M, is subsequently sampled from a Poisson dis-

tribution, with modifications to include expression out-

liers and to enforce a mean-variance trend.

More specifically, the Splat simulation initially samples

gene means from a Gamma distribution with shape α

and rate β . While the gamma distribution is a good fit

for gene means it does not always capture extreme ex-

pression levels. To counter this a probability (πO) that a

gene is a high expression outlier can be specified. We

then add these outliers to the simulation by replacing

the previously simulated mean with the median of the

simulated gene means multiplied by an inflation factor.

The inflation factor is sampled from a log-normal distri-

bution with location μO and scale σO.

The library size (total number of counts) varies within

an scRNA-seq experiment and can be very different

between experiments depending on the sequencing

depth. We model library size using a log-normal

distribution (with location μL and scale σL ) and use the

simulated library sizes (Lj ) to proportionally adjust the

gene means for each cell. This allows us to alter the

number of counts per cell independently of the under-

lying gene expression levels.

It is known that there is a strong mean-variance trend

in RNA-Seq data, where lowly expressed genes are more

variable and highly expressed genes are more consistent

[26]. In the Splat simulation we enforce this trend by

simulating the biological coefficient of variation (BCV) for

each gene from a scaled inverse chi-squared distribution,

where the scaling factor is a function of the gene mean.

After simulating the BCV values we generate a new set of

means (λi;j ) from a gamma distribution with shape and

rate parameters dependent on the simulated BCVs and

previous gene means. We then generate a matrix of

counts by sampling from a Poisson distribution, with

lambda equal to λi;j . This process is similar to the simula-

tion of bulk RNA-seq data used by Law et al. [27].

The high proportion of zeros is another key feature of

scRNA-seq data [11], one cause of which is technical drop-

out. We use the relationship between the mean expression

of a gene and the proportion of zero counts in that gene to

model this process and use a logistic function to produce a

probability that a count should be zero. The logistic func-

tion is defined by a midpoint parameter (x0 ), the expres-

sion level at which 50% of cells are zero, and a shape

parameter (k ) that controls how quickly the probabilities

change from that point. The probability of a zero for each

gene is then used to randomly replace some of the simu-

lated counts with zeros using a Bernoulli distribution.

Each of the different steps in the Splat simulation out-

lined above are easily controlled by setting the appropri-

ate parameters and can be turned off when they are not

desirable or appropriate. The final result is a matrix of

observed counts Y i;j where the rows are genes and the

columns are cells. The full set of input parameters is

shown in Table 1.

Comparison of simulations

To compare the simulation models available in Splatter

we estimated parameters from several real datasets and

then generated synthetic datasets using those parame-

ters. Both the standard and zero-inflated versions of the

Splat and Lun 2 simulations were included, giving a total

of eight simulations. We began with the Tung dataset

which contains induced pluripotent stem cells from

three HapMap individuals [28].

To reduce the computational time we randomly

sampled 200 cells to use for the estimation step and each

simulation consisted of 200 cells. Benchmarking showed a

roughly linear relationship between the number of genes

or cells and the processing time required (Additional file

1: Figures S4 and S5). The estimation procedures for the

Lun 2 and BASiCS simulations are particularly time con-

suming; however, the Lun 2 estimation can be run using
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multiple cores unlike the BASiCS estimation procedure.

We did not perform any quality control of cells and only

removed genes that were zero in all of the selected cells.

We believe this presents the most challenging situation to

simulate, as there are more likely to be violations of the

underlying model. This scenario is also possibly the most

useful as it allows any analysis method to be evaluated,

from low-level filtering to complex downstream analysis.

Figure 2 shows some of the plots produced by Splatter to

compare simulations based on the Tung dataset.

We compared the gene means, variances, library

sizes, and the mean–variance relationship. From these

diagnostic plots, we can evaluate how well each simu-

lation reproduces the real dataset and how it differs.

One way to compare across the simulations is to look

at the overall distributions (Fig. 2, left column).

Fig. 1 The Splat simulation model. Input parameters are indicated with double borders and those that can be estimated from real data are shaded blue.

Red shading indicates the final output. The simulation begins by generating means from a gamma distribution. Outlier expression genes are added by

multiplying by a log-normal factor and the means are proportionally adjusted for each cell’s library size. Adjusting the means using a simulated Biological

Coefficient of Variation (BCV) enforces a mean-variance trend. These final means are used to generate counts from a Poisson distribution. In the final step

dropout is (optionally) simulated by randomly setting some counts to zero, based on each gene’s mean expression. DoF degrees of freedom
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Alternatively, we can choose a reference (in this case

the real data) and look at departures from that data

(Fig. 2, right column). Examining the mean expression

levels across genes, we see that the scDD simulation

is missing lowly expressed genes, as expected, as is the

Lun simulation. In contrast, the Simple and Lun 2

simulations are skewed towards lower expression levels

(Fig. 2a, b). The BASiCS simulation is a good match to the

real data as is the Splat simulation. Both versions of the

Lun 2 simulation produce some extremely highly variable

genes, an effect which is also seen to a lesser extent in the

Lun simulation. The difference in variance is reflected in

the mean–variance relationship where genes from the

Lun 2 simulation are much too variable at high ex-

pression levels for this dataset. Library size is another

aspect in which the simulations differ from the real

data. The simulations that do not contain a library

size component (Simple, Lun, scDD) have different

median library sizes and much smaller spreads. In

this example, the BASiCS simulation produces too

many large library sizes, as does the Lun 2 simulation

to a lesser degree.

A key aspect of scRNA-seq data is the number of ob-

served zeros. To properly recreate an scRNA-seq dataset

a simulation must produce the correct number of zeros

but also have them appropriately distributed across both

genes and cells. In addition, there is a clear relationship

between the expression level of a gene and the number

of observed zeros [29] and this should be reproduced in

simulations. Figure 3 shows the distribution of zeros for

the simulations based on the Tung dataset.

For this dataset the Simple and Lun 2 simulations

produce too many zeros across both genes and cells

while the Lun and scDD simulations produce too few.

Interestingly, the Splat simulation produces a better

fit to this dataset when dropout is not included, sug-

gesting that additional dropout is not present in the

Tung dataset. However, this is not the case for all

data and sometimes simulating additional dropout

produces a better fit to the data (for example, the

Camp dataset presented below). We can also consider

the relationship between the expression level of a

gene, calculated including cells with zero counts, and

the percentage of zero counts in that gene. The Lun

and scDD simulations produce too few zeros at low

expression levels, while the Simple and Lun 2 simula-

tions produce too many zeros at high expression

levels. It is important to note that as the scDD simu-

lation removes genes with more than 75% zeros prior

to simulation this model can never produce genes

with high numbers of zeros as shown in Fig. 3c. Both

the Splat and BASiCS models are successful at dis-

tributing zeros across genes and cells as well as main-

taining the mean–zeros relationship.

Although the analysis presented in Figs. 2 and 3 allows

us to visually inspect how simulations compare with a

single dataset, we also wished to compare simulations

across a variety of datasets. To address this we per-

formed simulations based on five different datasets (out-

lined in Table 2) that varied in terms of library

preparation protocol, cell capture platform, species, and

tissue complexity. Three of the datasets used Unique

Molecular Identifiers (UMIs) [30] and two used full-

length protocols. Complete comparison panels for all the

datasets are provided in Additional file 1: Figures S5–S10

and processing times for all datasets are shown in

Additional file 1: Figure S11.

For each dataset, we estimated parameters and pro-

duced a synthetic dataset as described previously. We

then compared simulations across metrics and data-

sets by calculating a median absolute deviation

(MAD) for each metric. For example, to get a MAD

for the gene expression means, the mean expression

values for both the real data and the simulations were

sorted and the real values were subtracted from the

simulated values. The median of these absolute differ-

ences was taken as the final statistic. To compare

between simulations, we ranked the MADs for each

metric with a rank of one being most similar to the

real data. Figure 4 summarizes the ranked results for

the five datasets as a heatmap. A heatmap of the

MADs is presented in Additional file 1: Figure S12

and the values themselves in Additional file 2.

Looking across the metrics and datasets we see that the

Splat simulations are consistently highly ranked. In

Table 1 Input parameters for the Splat simulation model

Name Symbol Description

Mean shape α Shape parameter for the mean gene
expression gamma distribution

Mean rate β Rate parameter for the mean gene
expression gamma distribution

Library size
location

μL Location parameter for the library size
log-normal distribution

Library size
scale

σL Scale parameter for the library size
log-normal distribution

Outlier
probability

πO Probability that a gene is an expression
outlier

Outlier location μO Location parameter for the expression outlier
factor log-normal distribution

Outlier scale σO Scale parameter for the expression outlier
factor log-normal distribution

Common BCV ϕ Common BCV dispersion across all genes

BCV degrees of
freedom

df Degrees of freedom for the BCV inverse
chi-squared distribution

Dropout
midpoint

x0 Midpoint for the dropout logistic function

Dropout shape k Shape of the dropout logistic function
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Fig. 2 Comparison of simulations based on the Tung dataset. The left column panels show the distribution of mean expression (a), variance (c) and library

size (g) across the real dataset and the simulations as boxplots, along with a scatter plot of the mean–variance relationship (e). The right column shows

boxplots of the ranked differences between the real data and simulations for the same statistics: mean (b), variance (d), mean–variance relationship (f), and

library size (h). Note that the y-axis for plots of the variance has been limited in order to show more detail. Variances for the Lun and Lun 2 simulations

extend beyond what has been shown
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Fig. 3 Comparison of zeros in simulations based on the Tung dataset. The top row shows boxplots of the distribution of zeros per cell (a) and

the difference from the real data (b). The distribution (c) and difference (d) in zeros per gene are shown in the middle row. The bottom row

shows scatter plots of the relationship between the mean expression of a gene (including cells with zero counts) and the percentage of zeros as

both the raw observations (e) and ranked differences from the real data (f)
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Table 2 Details of real datasets

Dataset Species Cell type Platform Protocol UMI Number of cells

Camp [44] Human Whole brain organoids Fluidigm C1 SMARTer No 597

Engel [45] Mouse Natural killer T cells Flow cytometry Modified Smart-seq2 No 203

Klein [46] Human K562 cells InDrop CEL-Seq Yes 213

Tung [28] Human Induced pluripotent stem cells Fluidigm C1 Modified SMARTer Yes 564

Zeisel [47] Mouse Cortex and hippocampus cells Fluidigm C1 STRT-Seq Yes 3005

Fig. 4 Comparison of simulation models based on various datasets. For each dataset parameters were estimated and synthetic datasets generated

using various simulation methods. The median absolute deviation (MAD) between each simulation and the real data was calculated for a range of

metrics and the simulations ranked. A heatmap of the ranks across the metrics and datasets is presented here. We see that the Splat simulation (with

and without dropout) performs consistently well, with the BASiCS simulation and the two versions of the Lun 2 simulation also performing well
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general, it seems that the datasets are not zero-inflated

and thus the zero-inflated simulations do not perform as

well as their regular counterparts. The Splat simulations

were least successful on the Camp cerebral organoid and

Engel T-cell datasets. The complex nature of the Camp

data (many cell types) and the full-length protocols used

by both may have contributed to Splat’s poorer perform-

ance. In this situation the semi-parametric, sampling-

based models may have an advantage and the Lun 2 simu-

lation was the best performer on most aspects of the

Camp data. Interestingly, the Simple simulation was the

best performer on the Engel dataset. This result suggests

that the additional features of the more complex simula-

tions may be unnecessary in this case or that other models

may be more appropriate. The Lun simulation is consist-

ently among the worst performing. However, given that

this model is largely similar to the others, it is likely due to

the lack of an estimation procedure for most parameters

rather than significant problems with the model itself. The

scDD simulation also often differed significantly from the

real data, which is unsurprising as this simulation is de-

signed to produce a filtered dataset, not the raw datasets

used here. A comparison based on a filtered version of the

Tung dataset, showing scDD to be a better match, is pro-

vided in Additional file 1: Figure S13.

Most importantly we see that simulations perform differ-

ently on different datasets. This emphasizes the importance

of evaluating different models and demonstrating their

similarity to real datasets. Other comparisons may also be

of interest for evaluation, such as testing each simulated

gene to see if it matches known distributions, an example

of which is shown in Additional file: 1 Figure S14. The

Splatter framework makes these comparisons between

simulation models straightforward, making it easier for re-

searchers to choose simulations that best reflect the data

they are trying to model.

Complex simulations with Splat

The simulation models described above are sufficient for

simulating a single, homogeneous population but not to

reproduce the more complex situations seen in some

real biological samples. For example, we might wish to

simulate a population of cells from a complex tissue

containing multiple mature cell types or a developmen-

tal scenario where cells are transitioning between cell

types. In this section, we present how the Splat simula-

tion can be extended to reproduce these complex sam-

ple types (Fig. 5).

Simulating groups

Splat can model samples with multiple cell types by creat-

ing distinct groups of cells where several genes are differ-

entially expressed between the different groups. Previously

published simulations can reproduce this situation to

some degree but are often limited to fixed fold changes

between only two groups. In the Splat simulation, how-

ever, differential expression is modeled using a process

similar to that for creating expression outliers and can be

used to simulate complex cell mixtures. Specifically a

multiplicative differential expression factor is assigned to

each gene and applied to the underlying mean. For DE

genes, these factors are generated from a log-normal

distribution while for other genes they are equal to one.

Setting the number of groups and the probability that a

cell comes from each group allows flexibility in how differ-

ent groups are defined. Additionally, parameters control-

ling the probability that genes are differentially expressed

as well as the magnitude and direction of DE factors can

be set individually for each group. The resulting SCESet

object contains information about which group each cell

comes from as well as the factors applied to each gene in

each group (Fig. 5a).

Simulating batches

A common technical problem in all sequencing experi-

ments is batch effects, where technical variation is

created during sample collection and preparation. The

Splat simulation can model these effects using multi-

plicative factors that are applied to all genes for groups

of cells. Adding this extra layer of variation allows

researchers to evaluate how methods perform in the

presence of unwanted variation (Fig. 5b).

Simulating paths

A common use of scRNA-seq is to study cellular

development and differentiation. Instead of having

groups of mature cells, individual cells are somewhere

on a continuous differentiation path or lineage from

one cell type to another. To model this, the Splat

simulation uses the differential expression process de-

scribed above to define the expression levels of a start

and end cell for each path. A series of steps is then

defined between the two cells types and the simulated

cells are randomly assigned to one of these steps, re-

ceiving the mean expression levels at that point.

Therefore, the simulation of lineages using Splat is

defined by the differential expression parameters used

to create the differences between the start and end of

each path. It also incorporates the parameters that

define the path itself, such as the length (number of

steps) and skew (whether cells are more likely to

come from the start or end of the path).

In real data it has been observed that expression of

genes can change in more complex, non-linear ways

across a differentiation trajectory. For example, a gene

may be lowly expressed at the beginning of a process,

highly expressed in the middle and lowly expressed at

the end. Splat models these kinds of changes by
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generating a Brownian bridge (a random walk with fixed

end points) between the two end cells of a path, which is

then smoothed and interpolated using an Akima spline

[31, 32]. This random element allows many possible pat-

terns of expression changes over the course of a path

(Additional file 1: Figure S15). While non-linear changes

are possible they are not the norm. Splat defines param-

eters that control the proportion of genes that are non-

linear and how variable those genes can be.

Further complexity in simulating differentiation

paths can be achieved by modeling lineages with mul-

tiple steps or branches. For example, a stem cell that

differentiates into an intermediate cell type that then

changes into one of two mature cell types. These pos-

sibilities are enabled by allowing the user to set a

starting point for each path (Fig. 5c).

Example: using Splatter simulations to evaluate a

clustering method

To demonstrate how the simulations available in Splatter

could be used to evaluate an analysis method we present

an example of evaluating a clustering method. SC3 [5] is

a consensus k-means-based approach available from Bio-

conductor [33]. As well as assigning cells to groups, SC3

is able to detect genes that are differentially expressed

between groups and marker genes that uniquely identify

each group. To test SC3 we estimated Splat simulation

parameters from the Tung dataset and simulated 400

cells from three groups with probabilities of 0.6, 0.25,

and 0.15. The probability of a gene being differentially

expressed in a group was 0.1, resulting in approximately

1700 DE genes per group. We then ran SC3 with three

clusters ( k ¼ 3 ) and compared the results to the true

groupings (Fig. 6a). We also assessed the detection of

DE and marker genes. True DE genes were taken as

genes with simulated DE in any group and true marker

genes as the subset of DE genes that were DE in only a

single group (Fig. 6b). This procedure was repeated 20

times with different random seeds to get some idea of

the variability and robustness of the method.

Figure 6 shows the evaluation of SC3’s clustering and

gene identification on the simulated data. Five measures

were used to evaluate the clustering: the Rand index

(Rand), Hubert and Arabie’s (HA) adjusted Rand index

and Morey and Agresti’s (MA) adjusted Rand index

(both of which adjust for chance groupings), Fowlkes

and Mallows index (FM) and the Jaccard index (Jaccard).

All of these indices attempt to measure the similarity

between two clusterings, in this case the clustering

returned by SC3 and the true groups in the simulation.

SC3 appears to identify clusters well for the majority of

simulations, in some cases producing a near-perfect

clustering. It may be interesting to examine individual

cases further in order to identify when SC3 is able to

perform better. Both the DE genes and marker genes

identified by SC3 show a similar pattern across our clas-

sification metrics of accuracy, precision, recall, and F1

score. On average approximately 2700 of the truly DE

genes and 2500 of the true marker genes passed SC3’s

automatic filtering (with additional non-DE genes). SC3

then detected around 100 DE genes per simulation,

along with 99 marker genes (median values). Precision

(the proportion of identified genes that are true

positives) is very high while recall (the proportion of true

positives that were identified, or true positive rate) is

very low. This tells us that in this scenario SC3 is produ-

cing many false negatives, but that the genes that it finds

to be markers or DE are correct. This result is often

desirable, particularly for marker genes, and is reflected

in the very low false positive rate.

a b c

Fig. 5 Examples of complex Splat simulations. a A principle components analysis (PCA) plot of a simulation with six groups with varying numbers of cells

and levels of differential expression. b A PCA plot of a simulation with two groups (pink and blue) and two batches (circle and triangle). PC1 separates

groups (wanted biological variation) while PC2 separates batches (unwanted technical variation). c A PCA plot of a simulation with differentiation paths; the

colored gradient indicates how far along a path each cell is from blue to pink. A progenitor cell type (blue circles) differentiates into an intermediate cell

type (pink circles/blue triangles or diamonds), which becomes one of two (pink triangle or diamond) mature cell types
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While it is beyond the scope of this paper, clearly

this evaluation could be extended, for example, by in-

cluding more clustering methods, more variations in

simulation parameters, and investigating why particu-

lar results are seen. However, these data, and the

code used to produce them, are an example of how

such an evaluation could be conducted using the sim-

ulations available in Splatter.

Discussion and conclusions

The recent development of single-cell RNA sequen-

cing has spawned a plethora of analysis methods, and

simulations can be a powerful tool for developing and

evaluating them. Unfortunately, many current simula-

tions of scRNA-seq data are poorly documented, not

reproducible, or fail to demonstrate similarity to real

datasets. In addition, simulations created to evaluate a

specific method can sometimes fall into the trap of

having the same underlying assumptions as the

method that they are trying to test. An independent,

reproducible, and flexible simulation framework is re-

quired in order for the scientific community to evalu-

ate and develop sophisticated analysis methodologies.

Here we have developed Splatter, an independent

framework for the reproducible simulation of scRNA-

seq data. Splatter is available as an R package from

Bioconductor, under a GPL-3 license, and implements a

series of simulation models. Splatter can easily estimate

parameters for each model from real data, generate syn-

thetic datasets and quickly create a series of diagnostic

plots comparing different simulations and datasets.

As part of Splatter we introduce our own simulation

called Splat. Splat builds on the gamma-Poisson (or

negative binomial) distribution commonly used to repre-

sent RNA-seq data, and adds high-expression outlier

genes, library size distributions, a mean-variance trend,

and the option of expression-based dropout. Extensions

to Splat include the simulation of more complex scenar-

ios, such as multiple groups of cells with differing sizes

and levels of differential expression, experiments with

several batches, or differentiation trajectories with

multiple paths and branches, with genes that change in

non-linear ways.

We performed an evaluation of the six simulation

models currently available in Splatter by comparing syn-

thetic data generated using estimated parameters to five

published datasets. Overall Splat performed well, ranking

highly on most metrics. However, other simulations per-

formed better for some metrics or better reproduced

specific datasets. We found the Camp cerebral organoid

dataset the most challenging to simulate, perhaps be-

cause of the complex nature of this sample, which is

comprised of many different cell types. In addition, this

dataset (along with the Engel data) used a full-length

protocol, which may contain additional noise compared

to the UMI datasets [34].

One of the key features of scRNA-seq data is the

high number of zero counts where no expression is

observed for a particular gene in a particular cell.

This can be especially challenging to simulate as not

only must there be the correct number of zeros but

they must be correctly distributed across genes and

cells. We found that introducing dropout (in Splat) or

zero-inflation (in Lun 2) often failed to improve the

match to real datasets, suggesting that they are not

truly zero-inflated. Together, the results demonstrate

that no simulation can accurately reproduce all

scRNA-seq datasets. They also emphasize the variabil-

ity in scRNA-seq data, which arises from a complex

set of biological (for example, species, tissue type, cell

a b

Fig. 6 Evaluation of SC3 results. Metrics for the evaluation of clustering (a) include the Rand index, Hubert and Arabie’s adjusted Rand index (HA),

Morey and Agresti’s adjusted Rand index (MA), Fowlkes and Mallows index (FM), and the Jaccard index. Detection of differentially expressed and

marker genes were evaluated (b) using accuracy, recall (true positive rate), precision, F1 score (harmonic mean of precision and recall), and false

positive rate (FPR). All of the metrics are presented here as boxplots across the 20 simulations
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type, treatment, and cell cycle) and technical (for

example, platform, protocol, or processing) factors.

Non-parametric simulations that permute real data could

potentially produce more realistic synthetic datasets but at

the cost of flexibility in what can be simulated and

knowledge of the underlying parameters.

Finally, we demonstrated how Splatter could be used

for the development and evaluation of analysis methods,

using the SC3 clustering method as an example. Splat-

ter’s flexible framework allowed us to quickly generate

multiple test datasets, based on parameters from real

data. The information returned about the simulations

gave us a truth to test against when evaluating the

method. We found that SC3 accurately clustered cells

and was precise in identifying DE and marker genes.

The simulations available in Splatter are well docu-

mented, reproducible, and independent of any particular

analysis method. Splatter’s comparison functions also

make it easy to demonstrate how similar simulations are

to real datasets. Splatter provides a framework for

simulation models, makes existing scRNA-seq simula-

tions accessible to researchers and introduces Splat, a

new scRNA-seq simulation model. As more simulation

models become available, such as those replicating

newer technologies including k-cell sequencing, they can

be adapted to Splatter’s framework. The Splat model will

continue to be developed and may, in the future, include

additional modules such as the ability to add gene

lengths to differentiate between UMI and full-length

data. We hope that Splatter empowers researchers to

rapidly and rigorously develop new scRNA-seq analysis

methods, ultimately leading to new discoveries in cell

biology.

Methods

Splat parameter estimation

To easily generate a simulation that is similar to a given

dataset, Splatter includes functions to estimate the pa-

rameters for each simulation from real datasets. Just as

with the simulation models themselves, the estimation

procedures are based on what has been published and

there is variation in how many parameters can be

estimated for each model. We have given significant at-

tention to estimating the parameters for the Splat simu-

lation. The parameters that control the mean expression

of each gene (α and β) are estimated by fitting a gamma

distribution to the winsorized means of the library size

normalized counts using the fitdistrplus package [35].

The library size normalization is a basic normalization

where the counts in the original dataset are adjusted so

that each cell has the same number of total counts (in

this case the median across all cells) and any genes that

are all zero are removed. We found that genes with

extreme means affect the fit of the gamma distribution

and that this effect was mitigated by winsorizing the top

and bottom 10% of values to the 10th and 90th percen-

tiles, respectively. Parameters for the library size distri-

bution (μL and σL ) are estimated in a similar way by

fitting a log-normal distribution to the unnormalised

library sizes.

The procedure for estimating expression outlier pa-

rameters is more complex. Taking the library size nor-

malized counts, outliers are defined as genes where the

mean expression is more than two MADs greater than

the median of the gene expression means. The outlier

probability πO is then calculated as the proportion of

genes that are outliers. Parameters for the outlier factors

(μO and σO) are estimated by fitting a log-normal distri-

bution to the ratio of the means of the outlier genes to

the median of the gene expression means.

BCV parameters are estimated using the estimateDisp

function in the edgeR package [22]. When testing the es-

timation procedure on simulated datasets we observed

that the edgeR estimate of common dispersion was in-

flated (Additional file 1: Figure S16); therefore, we apply

a linear correction to this value (ϕ̂ ¼ 0:1þ 0:25ϕ̂ edgeR).

The midpoint (x0 ) and shape (k ) parameters for the

dropout function are estimated by fitting a logistic func-

tion to the relationship between the log means of the

normalized counts and the proportion of samples that

are zero for each gene (Additional file 1: Figure S17).

While we note that our estimation procedures are

somewhat ad hoc, we found that these procedures are

robust, efficient, and guaranteed to produce parameter

estimates on all datasets we tested.

Datasets

Each of the real datasets used in the comparison of sim-

ulations is publicly available. Raw FASTQ files for the

Camp dataset were downloaded from SRA (accession

SRP066834) and processed using a Bpipe (v0.9.9.3) [36]

pipeline that examined the quality of reads using FastQC

(v0.11.4), aligned the reads to the hg38 reference

genome using STAR (v2.5.2a) [37], and counted reads

overlapping genes in the Gencode V22 annotation using

featureCounts (v1.5.0-p3) [38]. Matrices of gene by cell

expression values for the Klein (accession GSM1599500)

and Zeisel (accession GSE60361) datasets were down-

loaded from GEO. For the Tung dataset the matrix of

molecules (UMIs) aligned to each gene available from

https://github.com/jdblischak/singleCellSeq was used.

These data are also available from GEO (accession

GSE77288). The Salmon [39] quantification files for the

Engel dataset were download from the Conquer database

(http://imlspenticton.uzh.ch:3838/conquer/) and con-

verted to a gene by cell matrix using the tximport [40]

package.
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Simulation comparison

For each dataset the data file was read into R (v3.4.0)

[41] and converted to a gene by cell matrix. We ran-

domly selected 200 cells without replacement and fil-

tered out any genes that had zero expression in all

cells or any missing values. The parameters for each

simulation were estimated from the selected cells and

a synthetic dataset generated with 200 cells and the

same number of genes as the real data. Simulations

were limited to 200 cells (the size of the smallest

dataset) to reduce the computational time required.

When estimating parameters for the Lun 2, scDD,

and BASiCS simulations cells were randomly assigned

to two groups. For the Splat and Lun 2 simulations

both the regular and zero-inflated variants were used

to simulate data. The resulting eight simulations were

then compared to the real data using Splatter’s com-

parison functions and plots showing the overall com-

parison produced. To compare simulations across the

datasets summary statistics were calculated. For each

of the basic metrics (mean, variance, library size,

zeros per gene, and zeros per cell) the genes were

sorted individually for each simulation and the differ-

ence from the sorted values and the real data calcu-

lated. When looking at the relationship between mean

expression level and other metrics (variance, zeros per

gene) genes in both the real and simulated data were

sorted by mean expression and the difference between

the metric of interest (e.g., variance) calculated. The

median absolute deviation for each metric was then

calculated and ranked for each dataset to give the

rankings shown in Fig. 4.

Clustering evaluation

Parameters for Splat simulations used in the example

evaluation of SC3 were estimated from the Tung dataset.

Twenty synthetic datasets were generated using these pa-

rameters with different random seeds. Each simulation

had three groups of different cells, with probabilities of

0.6, 0.25 and 0.1, and a probability of a gene being differ-

entially expressed of 0.1. Factors for differentially

expressed genes were generated from a log-normal distri-

bution with location parameter equal to –0.1 and scale

parameter equal to 0.3. For each simulation the SC3 pack-

age was used to cluster cells with k ¼ 3 and asked to de-

tect DE and marker genes, taking those with adjusted p

values less than 0.05. True DE genes were defined as genes

where the simulated DE factor was not equal to 1 in one

or more groups. Marker genes were defined as genes

where the DE factor was not equal to 1 in a single group

(and 1 in all others). Clustering metrics were calculated

using the clues R package [42]. To evaluate the DE and

marker gene detection we calculated the numbers of true

negatives (TN), true positives (TP), false negatives (FN),

and false positives (FP). We then used these values to cal-

culate the metrics shown in Fig. 6: accuracy ( Acc

¼ TP þ TNð Þ=Total number of genes ), recall (Rec ¼ TP=
TP þ FNð Þ), precision (Pre ¼ TP= TP þ FPð Þ), F1 score (

F1 ¼ 2 � Pre � Recð Þ= Preþ Recð Þð Þ ), and false positive

rate ( FPR ¼ FP= FP þ TNð Þ ). Metrics were aggregated

across the 20 simulations and boxplots produced using

the ggplot2 package [43].

Session information describing the packages used in

all analysis steps is included as Additional file 3. The

code and dataset files are available at https://github.-

com/Oshlack/splatter-paper under an MIT license.

Additional files

Additional file 1: Figures S1–S17 Diagrams of other simulation

models, Splatter comparison output for all datasets, example non-linear

gene, dispersion estimate correction, mean-zeros fit, benchmarking, and

processing times (PDF 17991 kb)

Additional file 2: Table of the median absolute deviations used to

produce Fig. 4 in CSV format. (CSV 37 kb)

Additional file 3: Session information. Details of the R environment and

packages used for analysis. (PDF 118 kb)
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