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1. Introduction

Spleen tyrosine kinase (Syk) is a cytoplasmic tyrosine 

kinase of 72 kDa and a member of the ZAP70 (ζ-chain-

associated protein kinase of 70 kDa)/Syk family of the 

non-receptor-type protein tyrosine kinases (PTKs) [1,2] 

and contains two SRC homology 2 (SH2) domains and a 

kinase domain [3]. Syk is expressed in most hemato-

poietic cells, including B cells, immature T cells, mast 

cells, neutrophils, macrophages, and platelets [1,3,4], and 

is important in signal transduction in these cells [2,5].

Syk plays an important role in signal transduction 

initiated by the classic immunoreceptors, including B-cell 

receptors (BCRs), Fc receptors, and the activating natural 

killer receptors [3,6,7]. Syk is associated mainly with 

ITAM (immunoreceptor tyrosine-based activation motif)-

dependent pathways and aff ects early development and 

activation of B cells, mast cell degranulation, neutrophil 

and macrophage phagocytosis, and platelet activation 

[1,3,4]. Functional abnormalities of these cells are 

invariably associated with both autoimmune and allergic 

diseases. Although there have been many exciting 

develop ments in the treatment of these diseases, there 

are still serious limitations of the effi  cacy of the used 

drugs as they are associated with the development of 

serious side eff ects. Because of the central role of Syk in 

signaling processes not only in cells of the adaptive 

immune response but also in additional cell types known 

to be involved in the expression of tissue pathology in 

autoimmune, autoinfl ammatory, and allergic diseases, 

Syk inhibition has attracted considerable interest for 

further development. In this review, we will provide a 

brief account of the role of Syk signaling in various cell 

types and will summarize preclinical and clinical studies, 

which point to the therapeutic usefulness of Syk 

inhibition.

2. Syk in cell function

2.1. Syk and lymphocytes

Th e function of Src-family kinases and Syk kinases in 

immunoreceptor signaling pathways is well known 

(Figure  1) [6]. After receptor engagement, Src-family 

kinases phosphorylate the ITAMs of immunoreceptors 

and this results in the recruitment and activation of Syk 

[6,7]. BCR- and FcR-defi ned dual-phosphorylated ITAMs 

recruit Syk through interaction with their tandem SH2 

domains, and this triggers kinase activation and down-

stream signaling [4,8].

Because the development of B and T cells requires 

intact antigen receptor-mediated signal transduction, Syk 

defi ciency leads to a complete absence of mature B cells, 

and ZAP70 defi ciency results in severe T-cell defects 
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[9,10]. Syk plays an important role in the transition of 

pro-B cells into pre-B cells [9]. Although it was previously 

thought that BCR signaling was mediated via Syk and 

T-cell receptor (TCR) signaling via ZAP70, recent data 

have shown that ZAP70 has a role in B-cell development 

and Syk is important in pre-T cell signaling (Figure 2) 

[11,12]. It appears that Syk and ZAP70 have overlapping 

roles in early lymphocyte development [11,12].

For the transmission of BCR-mediated cell signaling 

events, subsequent activation of diff erent types of PTKs, 

including Syk, is required [13]. BCR aggregation can 

directly stimulate activation of pre-associated Syk, result-

ing in tyrosine phosphorylation of Igα-Igβ ITAMs 

[6,14,15]. Th is phosphorylation leads to recruitment of 

additional Syk. Subsequently, recruited Syk is activated 

by Src-PTK-dependent transphosphorylation and by 

autophosphorylation [6,14]. Th erefore, Syk is necessary 

for BCR-mediated tyrosine phosphorylation and signal 

transduction [6,15].

2.2. Syk and phagocytes

FcγR, one of the classic immunoreceptors, typically 

engages Syk [3,7,16,17], and Syk-defi cient murine macro-

phages display defective phagocytosis [7,16]. After FcγR 

engagement, ITAMs in the receptor are phosphorylated 

by Src-family kinases, resulting in the recruitment and 

activation of Syk. As a result, Syk-mediated phosphory-

lation of several adaptor proteins causes activation of 

downstream pathways, which execute phagocytosis. Syk 

is also important in complement-mediated phagocytosis 

resulting from the binding of C3bi-coated particles to 

complement receptor 3 [3,17]. Downstream of Syk, the 

signal involves Vav and RhoA to generate contractile 

forces, which result in the engulfment of the phago-

cytosed particles [3,17,18].

2.3. Syk and mast cells

FcεRI, the high-affi  nity surface receptor for IgE, is 

expressed on the surface membrane of mast cells, and 

crosslinking of receptor-bound IgE by multivalent 

antigen starts the activation of mast cells by promoting 

the aggregation of FcεRI [19,20]. Degranulation and 

cytokine release occur after the activation signal starts 

the cascade [20]. Th ese events contribute to the develop-

ment and continuation of allergic infl ammation. Syk 

plays an important role in the development of signal 

transduction events initiated after FcεRI aggregation 

[2,21], mast cell activation, degranulation, and cytokine 

production (Figure 3) [22,23]. All of these facts point to 

the conclusion that Syk inhibition might be an attractive 

target for preventing allergen-induced diseases.

2.4. Syk and platelets

Th ere are three platelet surface molecules, which, upon 

engagement, initiate Syk-mediated activation of SLP76 

(SH2 domain-containing leukocyte proteins 76) and 

phospholipase Cγ2 (Figure 4) [24,25]: (a) Platelet/mega-

caryo cyte lineage cells express the platelet-specifi c integrin 

αIIbβ3 on their surface and this is required for normal 

hemostasis [3]. Syk mediates outside-in signaling by 

αIIbβ3 integrin on platelets [26,27]. Th e mechanism of Syk 

activation by αIIbβ3 integrin was reported to require the 

ITAM-containing FcγIIA molecule [26]. (b) Glyco protein 

VI (GPVI), a major collagen receptor of platelets, is an 

FcγR-related receptor and is closely associated with FcαRs 

[24]. Collagen activates the FcγR-associated recep tor GPVI 

on platelets and triggers Syk activation in an ITAM-

dependent way [24,28]. SLP76, a Syk substrate, is required 

for arterial thrombus formation [28]. (c) Platelet agonists 

like rhodocytin and podoplanine activate the receptor C-

type lectin-like receptor 2 (CLEC2), which recruits Syk to 

the phosphorylated tyrosine in the CLEC2 ITAMs [4,28].

2.5. Syk in vascular development

Syk is required for the separation of lymphatic vessels in 

the general circulation [9,29]. Syk-defi cient mice die 

because blood fi lls the lymphatic vessels [29]. Probably, 

Syk activation together with platelet activation and 

aggregation play a role in lymphatic vessel development 

and their separation from blood vessels [4,9].

Figure 1. Structure of spleen tyrosine kinase (Syk) protein. Syk includes two tandem SH2 domains and a tyrosine kinase domain. Interdomain 

A is between the two SH2 domains, and interdomain B is between the tyrosine kinase domain and C-terminal SH2 domain. ITAM, immunoreceptor 

tyrosine-based activation motif; SH2, Src homology 2.
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2.6. Syk and osteoclasts

Osteoclasts are multinucleated cells that degrade bone 

by releasing proper enzymes. Syk has been claimed to 

have a role in osteoclast diff erentiation and osteoclast 

function [3,4]. Although FcγR is associated with 

osteoblast-osteo clast interactions, DAP12 (DNAX-

activating protein of molecular mass 12 kDa) is the 

responsible protein for relaying an osteoblast-

independent signal [30,31]. Syk, which is downstream of 

DAP12 and FcγR, is required for osteoclast development 

Figure 2. Spleen tyrosine kinase (Syk)-mediated signaling in B-cell receptor (BCR) and T-cell receptor (TCR). Upon engagement of BCR or 

TCR, Syk or ZAP70 is recruited to plasma membrane receptors. Activated Syk/ZAP70 phosphorylates ITAM tyrosines. Signal transduction is initiated 

by phosphorylation of ITAM tyrosines. ITAM, immunoreceptor tyrosine-based activation motif; SH2, Src homology 2; ZAP70, ζ-chain-associated 

protein kinase of 70 kDa.
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Figure 3. FcεR crosslinking by allergen involves spleen tyrosine kinase (Syk)-mediated signaling transduction. Allergen binding to IgE 

bound to FcεR on mast cell initiates Lyn phosphorylation of the receptor and activation of Syk. Signaling events lead to mast cell degranulation, 

eicosanoid mediator synthesis, and cytokine production. FcεR, Fc receptor ε-chain; SH2, Src homology 2.
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Figure 4. Spleen tyrosine kinase (Syk)-mediated signal transduction in platelets. Signal transduction pathways are mediated through αIIbβ3 

integrin/FcγRIIA, CLEC-2, and GPVI/FcRγ. GPVI and αIIbβ3 use ITAM, whereas CLEC2 uses atypical ITAM. These three pathways of Syk activation 

result in platelet activation through SLP76 and PLCγ2. CLEC2, C-type lectin-like receptor 2; FcRγ, Fc receptor γ-chain; GPVI, glycoprotein VI; ITAM, 

immunoreceptor tyrosine-based activation motif; PLCγ2, phospholipase Cγ2; SH2, Src homology 2; SLP76, SH2 (Src homology 2) domain-containing 

leukocyte protein 76.
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extracellular domain of the receptor, DAP12 or FcRγ is tyrosine-phosphorylated by Syk. Activation of Syk initiates a number of signaling events. 
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OSCAR, osteoclast-specifi c activating receptor; PLCγ2, phospholipase Cγ2; SH2, Src homology 2; TREM2, triggering receptor expressed on myeloid 
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and function (Figure 5) [30,32]. DAP12 phosphorylation 

recruits Syk through its SH2 domain, leading to 

autophosphorylation. Phosphorylated Syk associates 

with cytoskeleton network and actin ring formation [3]. 

In addition, it was reported that Syk plays a role in the 

process of osteolysis. Syk, therefore, repre sents an 

attractive therapeutic target to mitigate increased 

osteoclastic activity in arthritis.

2.7. Syk and fi broblasts

Fibroblast-like synoviocytes (FLSs) represent a signifi cant 

component of the synovial lining and contribute to the 

lubrication and preservation of the joint. In rheumatoid 

arthritis (RA), FLSs expand in numbers, acquire immune 

cell features, produce proinfl ammatory cytokines and 

enzymes, and contribute to the infl ammatory process 

and the eventual destruction of the joint. A number of 

studies have claimed a role for Syk in the function of FLSs 

[33,34]. Syk activation is important in tumor necrosis 

factor-alpha (TNFα)-induced cytokine and metallo-

protein ase (MMP) production by RA FLSs [33]. Syk also 

plays an important role in TNFα-induced c-Jun N-

terminal kinase (JNK) activation in FLSs [33]. Th is is an 

important event as in the future Syk inhibition may be 

used to supplement the therapeutic eff ect of TNF 

inhibition in patients who do not display suffi  cient 

response to TNF blockade. Activation of Syk by TNFα 

causes the activation of the protein kinase Cδ/JNK/c-Jun 

signaling pathway and this is important for the secretion 

of a critical cytokine, interleukin-32 (IL-32), by RA FLSs 

[34].

3. Syk inhibition therapy in autoimmune 

and allergic infl ammatory diseases

Although the exact mechanisms of action remain 

unclear, Syk inhibitors have claimed encouraging 

therapeutic results in the treatment of patients with 

allergy, auto immune diseases, or B-cell lineage 

malignancies [23,35,36]. R406, an orally available active 

metabolite of the prodrug R788 (fostamatinib), is a 

competitive Syk inhibitor [37,38]. Th e selectivity for 

R406 in inhibiting Syk is limited as it may inhibit 

additional kinases and non-kinase targets. Among those 

targets are FMS-related tyrosine kinases 3 (FLT3), Lck, 

and Janus kinase 1 (JAK1) and JAK3, which may also be 

involved in the expression of autoimmune pathology 

[4]. Th ese non-Syk targets may enhance the clinical 

value of R406 in the treatment of autoimmune diseases 

as JAK inhibitors have been con sidered for the 

treatment of arthritis. R112 is another Syk inhibitor 

formulated for intranasal use [39] and has a rapid eff ect 

and quickly inhibits mast cell activation. Additional Syk 

inhibitors with less specifi city include piceatannol and 

BAY 61-3606 [40,41].

3.1. Syk inhibition in arthritis

Despite enormous advances in the treatment of RA, a 

signifi cant number of patients either fail to respond to 

treatment or develop signifi cant side eff ects. Based on a 

number of laboratory fi ndings and preclinical studies, 

including the fact that RA synovium displays increased 

amounts of phosphorylated Syk compared with osteo-

arthritis synovium [33], signifi cant eff ort is currently 

being devoted to determine whether Syk inhibition can 

be used to treat patients with RA (Table 1).

3.1.1. Animal arthritis models and Syk inhibition
Strong preclinical studies point to the therapeutic poten-

tial of Syk inhibition. Syk-defi cient bone marrow murine 

chimeras do not allow the development of arthritis 

following the injection of arthritogenic K/BxN serum 

[42], suggesting the importance of hematopoietic cell 

Syk-dependent signaling in the development of arthritis. 

Administration of R406 reduced clinical arthritis in two 

antibody-induced arthritis models (K/BXN serum and 

collagen antibody). In addition, R406 suppressed bone 

erosions detected by radiography, pannus formation, and 

synovitis in these animal models [37]. It was also ob-

served that the expression of Syk in synovial tissues 

corre lated with the levels of infl ammatory cell infi ltrates 

in the joints and was virtually undetectable in R406-

treated mice subjected to collagen-induced arthritis in 

rats [38]. In addition, Syk inhibition reduced synovial 

fl uid cytokine levels and cartilage oligomeric matrix 

protein in serum in these animals [38]. R406 was also 

found to limit an Arthus reaction in mice [37] and rats 

[38] and reverse passive Arthus reaction in murine 

chimeras with Syk-defi cient hematopoietic cells [43,44]. 

Th is eff ect is probably due to the suppression of immune-

complex-mediated infl ammation by inhibiting the Fc 

receptor signaling.

3.1.2. Human studies
After a small phase I study [45] in which clinical effi  cacy 

of the R788 Syk inhibitor in patients with RA was not 

associated with serious side eff ects, a 12-week, random-

ized, placebo-controlled trial in which active RA patients 

who were also receiving methotrexate (MTX) were 

enrolled was carried out [46]. Twice-daily oral doses of 

100 and 150 mg of R788 were demonstrated to be signi fi -

cantly superior to placebo and 50 mg twice a day of R788. 

Interestingly, the clinical eff ect was noted as early as 

1 week after the initiation of treatment. Patients receiv ing 

100 and 150 mg R788 achieved excellent ACR20 

(American College of Rheumatology 20% improvement 

criteria) (65, 72%), ACR50 (49, 57%), and ACR70 (33, 

40%) responses. Also, signifi cant reductions in serum 

IL-6 and MMP-3 levels were noted within the fi rst week 

of treatment. Diarrhea and other gastrointestinal adverse 
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eff ects such as nausea and gastritis, neutropenia, and 

elevation in transaminase level were the reported major 

side eff ects.

In the follow-up study, 100 and 150 mg (twice daily) of 

R788 were compared with placebo at 6 months in 457 

active RA patients who were MTX incomplete respon-

ders [47]. Th e ACR20 response was achieved in 66% and 

57% of patients in the 100 and 150 mg groups, respec-

tively, compared with 35% in the placebo group. Both 

R788 dosing regimens achieved statistical signifi cance 

compared with placebo at the sixth month. In this study, 

the onset of clinical eff ect was again rapid with maximum 

improvement achieved by week 6 and maintained 

through out the study. Th e most common side eff ect was 

reversible and dose-dependent diarrhea. Transient 

neutro penia, hypertension, and elevation of liver function 

tests were also recorded.

Another randomized placebo-controlled phase II study 

was conducted in 219 RA patients who had failed 

treatment with at least one biologic agent [48]. Patients 

received either 100 mg (twice daily) of R788 or placebo. 

ACR20 response and magnetic resonance imaging (MRI) 

images of the hands and wrists were evaluated 3 months 

later. Th ere was no statistical diff erence in the ACR20 

response between the two groups. However, a signifi cant 

decrease in erythrocyte sedimentation rate and C-reac-

tive protein and improvement in synovitis and osteitis 

scores on MRI were observed in the R788 group 

compared with the placebo group.

3.2. Syk inhibition in lupus animal models

In systemic lupus erythematosus (SLE), the FcγR-Syk 

associates with the TCR in lieu of the zeta-chain ZAP70 

[49]. Th is rewiring of the TCR has been claimed to 

account, at least partly, for the overactive T-cell pheno type 

observed in SLE [35]. In addition, the pathogenesis of SLE 

has been associated with B-cell activation in which Syk 

may play an important role. Th erefore, Syk inhibition 

therapy was used in lupus animal models (Table 2).

Long-term (24 to 34 weeks) administration of R788 to 

lupus-prone NZB/NZW mice before and after disease 

onset [50] resulted in delayed onset of proteinuria and 

renal dysfunction, decreased kidney infi ltrates, and 

prolonged survival in these mice. Although antibody 

titers were minimally aff ected, a dose-dependent reduc-

tion in the numbers of CD4+ activated T cells expressing 

high levels of CD44 or CD69 in spleens from R788-

treated mice was noted. Arthus responses were also 

reduced in NZB/NZW mice pretreated with R788. Also, 

a Syk inhibitor was reported to reduce the severity of 

established antibody-mediated experimental glomerulo-

nephritis in rats [51].

Treatment of lupus-prone MRL/lpr and BAX/BAK 

mice with R788 not only prevented the development of 

skin and renal pathology but also treated established 

disease [52]. Syk inhibition reduced splenomegaly and 

lymphadenopathy and other immune parameters. Th e 

fact that Syk inhibition suppresses SLE in at least three 

lupus-prone mice suggests that Syk inhibition in patients 

with SLE may be of clinical value.

3.3. Syk inhibition in allergic diseases

Mainstay therapy for allergic diseases remains avoidance 

of allergens and allergen-specifi c immunotherapy [23]. 

However, allergen avoidance and immunomodulation 

therapies are usually impractical, complex, and time-

consuming [23]. Targeting activation of mast cells to 

prevent release of mediators represents an important 

treatment alternative [20,39,52,53]. An eff ec tive way to 

inhibit the production and release of all mast cell 

Table 1. Spleen tyrosine kinase inhibition therapy in arthritis animal models and patients with rheumatoid arthritis

Reference Drug Duration Model or disease Outcome

Braselmann  R406 14 days, twice Collagen-induced arthritis, K/BXN Improved clinical scores, histopathology, and radiography

et al. [37]  a day, orally arthritis model 

Pine et al.  R406 18 days, twice Collagen-induced arthritis in rats Suppressed clinical arthritis, bone erosions, pannus

[38]  a day, orally   formation, and synovitis

Weinblatt  R406 12 weeks, 100 or Active RA patients who were R788 (100 mg twice a day): 

et al. [46]  150 mg twice a day,  incomplete responders to MTX ACR20, 50, and 70 responses (65%, 49%, and 33%)

  orally   R788 (150 mg every day): 

    ACR20, 50, and 70 responses (72%, 57%, and 40%)

Weinblatt  R788 6 months, 100 or Active RA patients who were R788 (100 mg twice a day): 

et al. [47]  150 mg twice a day,  incomplete responders to MTX ACR20, 50, and 70 responses (66%, 43%, and 28%) 

  orally  R788 (150 mg every day): 

    ACR20, 50, and 70 responses (57%, 32%, and 14%)

Genovese  R788 3 months, 100 mg Active RA patients who failed R788 (100 mg twice a day): 

et al. [48]  twice a day, orally  biologic agents ACR20 response (39%). 

    Response rate was not diff erent from that of placebo.

ACR20, American College of Rheumatology 20% improvement criteria; ACR50, American College of Rheumatology 50% improvement criteria; ACR70, American 
College of Rheumatology 70% improvement criteria; MTX, methotrexate; RA, rheumatoid arthritis.
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mediators should aim at interfering with the action of IgE 

by blocking the FcRε with biologics [20,23]. Alterna tively, 

targeting the intracellular signaling cascade may 

represent an attractive approach. Appropriately, protein 

tyrosine kinases such as Syk, Lyn, and Btk have been 

directly implicated in IgE-dependent mast cell activation 

and have been suggested as targets for therapeutic 

intervention [39-41]. Syk represents the most attractive 

target because studies with mast cells derived from Syk-

defi cient indicated mice showed that Syk is important in 

the activation of mediators of degranulation, eicosanoid, 

and cytokine production [23,39]. Syk inhibition therapies 

in allergic diseases are summarized in Table 3.

3.3.1. Animal allergic disease models and Syk inhibition
Seow and colleagues [40] examined the eff ect of piceatan-

nol, a Syk inhibitor, on ovalbumin-induced anaphylactic 

contraction of isolated guinea pig bronchi and release of 

histamine and peptidoleuketrienes in vitro. Piceatannol 

pretreatment slightly suppressed peak anaphylactic 

bronchial contraction but facilitated relaxation of the 

contracted bronchi. Piceatannol did not inhibit direct 

histamine-, leukotriene D4-, or KCl-induced bronchial 

contraction or revert an existing anaphylactic bronchial 

contraction but did signifi cantly prevent ovalbumin-

induced release of both histamine and peptidoleuko-

trienes from lung fragments. But piceatannol did not 

inhibit exogenous arachidonic acid-induced release of 

peptidoleukotrienes from lung fragments. In an antigen-

induced airway infl ammation model in rodents, the Syk 

inhibitor BAY 61-3606 blocked both degranulation and 

lipid mediator and cytokine synthesis in mast cells and 

suppressed antigen-induced passive coetaneous reaction, 

bronchoconstriction, bronchial edema, and airway 

infl ammation [41].

R406 inhibited pulmonary eosinophlia, goblet cell 

meta plasia, and airway hyper-responsiveness (AHR), 

which developed in BALB/c mice exposed to aerosolized 

1% ovalbumin for 10 consecutive days [20]. In addition, 

treatment with R406 suppressed the presence of eosino-

phils and lymphocytes and IL-13 in broncho alveolar 

lavage fl uid. Suppression of Syk in bone marrow-derived 

dendritic cells was considered important in the suppres-

sion of AHR. Th is preclinical information has justifi ed 

attempts to determine whether Syk inhibition may have 

clinical value.

3.3.2. Human allergic diseases and Syk inhibition
Syk inhibition has tried in patients suff ering of allergic 

disorders to determine whether it mitigates clinical 

manifestations. A nasal allergen challenge study in volun-

teers with allergic rhinitis showed that one intranasal 

dose of R112 is clinically safe and signifi cantly reduces 

the level of prostaglandin D2, a key mediator of allergic 

nasal congestion, but not histamine and tryptamine 

levels [54]. In this 2-day, multiple-dose, double-blind, 

placebo-controlled clinical study with seasonal allergic 

rhinitis patients, R112 signifi cantly decreased the global 

clinical symptom score compared with placebo. Each 

individual symptom, like sneezing, stuffi  ness, itching, 

runny nose, cough, postnasal drip, facial pain, and 

headache, was also signifi cantly improved in the R112 

group compared with control treatment. Th e most 

important feature of R112 was noted to be the rapid 

onset of action. Within 45 minutes, rhinitis symptoms 

were relieved by using R112, and the duration of action 

extended to 4 hours. It appears that larger studies to 

validate the effi  cacy of Syk inhibition in the treatment of 

allergy are in order.

3.4. Syk inhibition in immune thrombocytopenic purpura

In patients with immune thrombocytopenic purpura 

(ITP), there is an accelerated clearance of circulating IgG-

coated platelets through Fcγ receptor-bearing macro-

phages in the spleen and the liver [55]. Syk inhibition 

should limit platelet destruction in patients with ITP, 

probably by blocking FcγR signaling. Injection of mice 

with an antibody directed to integrin αIIb leads to 

profound thrombocytopenia, which is prevented in mice 

pretreated with R788 [56]. Also, pretreatment with Syk 

inhibitors prevented anemia in a mouse model of auto-

immune hemolytic anemia (AHA) [56]. At the clinical 

level, treatment of a small number of patients (n  =  12) 

suff ering from ITP with an R406 led to therapeutic 

success. Specifi cally, in 8 patients, the clinical response 

was sustained, whereas in the remaining 4, the response 

was of limited duration. Obviously, larger studies are 

needed to determine clinical effi  cacy.

3.5. Syk inhibitors in intestinal ischemia reperfusion injury

Because hematopoietic cells are involved in the expres-

sion of intestinal ischemia-reperfusion injury (IRI), we 

investigated the ability of R788 to protect mice against 

Table 2. Spleen tyrosine kinase inhibition therapy in lupus animal models

Reference Drug Duration Model Outcome

Bahjat et al. [50] R788 24 to 34 weeks, 20 to  Lupus-prone mice (NZB/NZW) Delayed proteinuria and kidney dysfunction and prolonged

  40 mg/kg twice daily,   survival

  orally  

Deng et al. [52] R788 3 to 10 g/kg of diet,  Lupus-prone mice (MRL/lpr and Decreased skin and renal disease

  up to 16 weeks, orally BAX/BAK) 
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IRI [57]. Mice were fed with Syk inhibitor (3 or 5 g/kg 

day) for 6 days before intestinal IRI was performed. We 

observed that R788 signifi cantly suppressed both local 

intestinal and remote lung injury. Th e benefi cial eff ect 

was associated with reduced IgM and complement 3 

deposition to the aff ected tissues and signifi cant reduc-

tion of polymorphonuclear cell infi l tra tion. Th e value of 

this study is that it extends the clinical range of the 

therapeutic value of Syk inhibitors to conditions involving 

IRI, such as organ transplant and coronary and carotid 

revascularization.

3.6. Syk signaling in autoinfl ammatory disorders

Recent studies have revealed essential roles for Syk in the 

infl ammasome production of cytosolic Nlrp3 (NLR 

family pyrin domain-containing 3) [58,59]. Syk signaling 

is important for the production of reactive oxygen species 

and gene transcription factors important in the expres-

sion of pro infl am ma tory factors like IL-1β. Pro-IL-1β 

synthesis is regulated by the Syk-caspase recruitment 

domain 9 (Syk-Card9) pathway (Figure 6) [58].

Nlrp3 infl ammasome has been shown to be involved in 

monosodium urate (MSU)-mediated activation of mono-

cytes [60]. It was reported that the MSU-triggered infl am-

matory response requires Nlrp3 and adaptor protein 

apoptosis-associated speck-like protein contain ing Card 

[61]. MSU causes strong Syk tyrosine phos phorylation in 

human neutrophils, which can be suppressed in the 

presence of piceatannol [62]. Apparently, Syk is required 

for MSU-mediated activated protein kinase activation 

and IL-1β production, and Syk recruitment leads to 

Card9 activation, which controls pro-IL-1β synthesis 

(Figure 6) [58,60,61]. Card9 has been known to mediate 

events downstream of Syk in ITAM-mediated activation 

[63]. Th ese studies have generated a rationale for the use 

of Syk inhibitors in the treatment of crystal-induced 

arthritis and other autoinfl ammatory diseases.

4. Conclusions and future directions

Syk, initially recognized as a critical signaling molecule in 

mast cells and lymphocytes, has been documented to be 

important in the function of additional cells like platelets, 

monocytes, macrophages, and osteoclasts. As all of these 

cells are involved in the instigation and establishment of 

tissue pathology in autoimmune allergic and auto infl am-

matory diseases, Syk inhibition has gained signifi cant 

interest as an important therapeutic tool.

Preclinical evidence argues convincingly that patients 

suff ering from diseases such as RA, SLE, ITP, and AHA 

and allergic rhinitis stand a good chance to benefi t from 

Syk inhibition. Interestingly, reperfusion injury, which 

follows ischemia in mice, is greatly suppressed by Syk 

inhibitors, extending the range of diseases with possible 

clinical benefi t to organ transplantation and revascu lari-

zation procedures. Th e clinical experience is limited to 

patients with RA and ITP. Yet the rapidity of action and 

the extent of clinical improvement call for further clinical 

trials.

Obviously, there are serious questions that need 

attention. Is Syk involved in the function of additional 

cells? What other kinases or non-kinase molecules are 

targeted by the available Syk inhibitors? Can medicinal 

chemistry enable the development of inhibitors that are 

more specifi c? Th e RA trial noted several, albeit manage-

able, side eff ects. Do the noted side eff ects hint at addi-

tional unrecognized target molecules aff ected by the used 

Syk inhibitor? Do the side eff ects point to the presence of 

Syk in additional cells (for example, intestinal epithelial 

cells). Th e recorded hypertension in patients treated with 

the Syk inhibitor needs special consideration.

We believe that now that Syk inhibitors have earned a 

place in the line of drugs to be further developed for 

clinical use, eff ort should be invested to further under-

stand the mechanism of inhibition of Syk enzymatic 

activity in an eff ort to derive compounds with increased 

Table 3. Spleen tyrosine kinase inhibition therapy in allergic infl ammatory disease models

Reference Drug Duration Model Outcome

Seow  Piceatannol In vitro Ovalbumin-induced anaphylaxis in Prevented histamin and leukotriene release

et al. [40]   guinea pig 

Guyer  R112 One dose,  Drug safety study in volunteers with Drug is safe, reduced PGD2, no diff erences in symptoms

et al. [54]  intranasally allergic rhinitis 

Matsubara  R406 10 days, 5 mL/kg,  Animal allergic asthma in BALB/c Decreased pulmonary eosinophilia and AHR

et al. [20]  twice a day, orally mice 

Matsubara  R406 5 days, 30 mg/kg,  AHR in BALB/c mice Protected from AHR, eosinophilia, and lymphocytosis

et al. [22]  twice a day, orally  

Meltzer  R112 2 days, intranasally Human seasonal allergic rhinitis Improved global clinical symptoms

et al. [39]    

Yamamoto  BAY 61-3606 21 days, twice a day,  Antigen induced airway Suppressed antigen-induced passive cutaneous reaction, 

et al. [41]  orally  infl ammation in rodents. bronchoconstriction, bronchial edema, and airway 

    infl ammation.

AHR, airway hyper-responsiveness.
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specifi city. Th e need to further study cells and processes 

controlled by Syk is exemplifi ed by a recent report in 

which a Syk-positive myeloid population of cells stimu-

lates lymphangiogenesis in vivo and disruption of Syk 

among others is associated with inappropriate homing of 

leukocytes [64].

Th e RA clinical trial noted a prompt clinical improve-

ment in patients receiving background treatment. Can 

Syk inhibitors be used in monotherapy? Does prolonged 

treatment preserve the clinical benefi t, and if so, for how 

long? Does discontinuance of treatment result in a 

prompt rebound of disease? Do existent erosions heal? 

Th e current trend in RA trials remains the parallel 

administration of biologics in conjunction with MTX to 

patients who fail MTX. Th is has led to the development 

of a number of biologics, many of which belong to the 

same category. For example, several anti-TNF biologics 

are already available for the treatment of patients with 

RA. Should Syk inhibitors attain approval for the treat-

ment of RA, an opportunity may arise (provided that the 

cost is not too high) to try them in tandem with the 

biologics or as therapeutic adjuvant to biologics. Should 

trials in patients with SLE, ITP, AHA, or gout be initiated, 

a similar and probably longer list of questions should be 

addressed. Th e report on the benefi cial eff ect of Syk 

inhibition in IRI begs for additional preclinical studies to 

determine the role of Syk inhibition in organ transplant 

and other models of IRI, such as muscle, heart, and liver.
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Figure 6. Mechanisms of monosodium urate (MSU)-mediated infl ammation and the roles of spleen tyrosine kinase (Syk) and Nlrp3. 

MSU signals activate Nlrp3 infl ammasome. Syk plays important roles in both pro-IL1β synthesis and Nlrp3 activation in response to MSU. Pro-IL1β 

synthesis occurs through the Syk-Card9 pathway. However, Nlpr3 activation is regulated through a Syk-dependent, mostly Card9-independent 

mechanism. Card9, caspase recruitment domain 9; IL1β, interleukin-1-beta; NF-κB, nuclear factor-kappa-B; Nlrp3, NLR family pyrin domain-

containing 3; SH2, Src homology 2.
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