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ABSTRACT
Motivation: Computational identification of functional sites
in nucleotide sequences is at the core of many algorithms
for the analysis of genomic data. This identification is based
on the statistical parameters estimated from a training set.
Often, because of the huge number of parameters, it is diffi-
cult to obtain consistent estimators. To simplify the estimation
problem, one imposes independent assumptions between the
nucleotides along the site. However, this can potentially limit
the minimum value of the estimation error.
Results: In this paper, we introduce a novel method in the con-
text of identifying functional sites, that finds a reasonable set
of independence assumptions supported by the data, among
the nucleotides, and uses it to perform the identification of the
sites by their likelihood ratio. More importantly, in many prac-
tical situations it is capable of improving its performance as
the training sample size increases. We apply the method to
the identification of splice sites, and further evaluate its effect
within the context of exon and gene prediction.
Contact: rcastelo@imim.es
Supplementary information: The datasets built specifically
for this paper as well as the full set of results are available at
http://genome.imim.es/datasets/splidlbns2004

1 INTRODUCTION
Genome information is decoded through the processing of
signals in the primary nucleotide sequence. Sequence sig-
nals involved in a common functionality often show some
degree of similarity. Therefore, numerous methods have been
developed to locate functional sites in genomic sequences,
based on the sequence patterns characteristically correlated
with the sought functionality. Typically, sequence patterns
are probability distributions that assign high probabilities to
sequences that resemble the functional sites.

Given a genomic sequence s that forms a candidate func-
tional site, one of the most popular, and simple, probabilistic
methods to decide whether s belongs to a set S of real sites,
or belongs to a set N of false sites, is the ratio of the likeli-
hood that s ∈ S, over the likelihood that s ∈ N . This ratio
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is implemented by assuming that the statistical properties of
the functional sites in S and N can be summarized through
two sets of parameters θS and θN , and hence we write the
likelihood ratio as

λ = LS(s | θS)

LN (s | θN )
. (1)

The value λ is regarded as the likelihood-ratio statistic and,
when we consider λ as sufficiently small, we discard s as a real
functional site (thus, s ∈ N ). In fact, Neyman and Pearson
(1928) showed that this is the most powerful test for such a
decision problem. However, in practice the sets of parameters
θS and θN are unknown, and can only be estimated through
some training data of confirmed real and false, functional sites.
This implies that we should select θS and θN as those that
maximize the likelihood functions LS(s | θS) and LN (s | θN ).

Since the parameters in θS and θN correspond to probabil-
ities of observing a particular genomic sequence forming the
(real or false) functional site, the number of them, for which
we need to obtain the maximum-likelihood estimators (MLE),
grows exponentially in the number of nucleotides of s. This
makes infeasible to simply count occurrences of each different
site in the training data in order to obtain an MLE. A stand-
ard approach, commonly known as position weight matrix
(PWM), has been used to assume that given a functional site
of length n, the nucleotides occur independently within the
site, and thus only 3 × n parameters are required. However,
the assumption that the nucleotides occur independently may
not hold, which in turn, can introduce a positive bias in the
estimation of each parameter. A positive bias increases the
expectation of the estimation error as this equals the variance
plus the squared bias of the parameter.

Ideally, when we have an unbiased estimator, θ̂ , it converges
to its true value θ as the sample size increases, because the
variance decreases at the same time. In this case, one says
that the estimator is consistent. Therefore, PWMs might be
performing an inconsistent estimation and in order to alle-
viate this problem, first-order Markov models (FMMs) are
used, under which the occurrence of each nucleotide depends
on the occurrence of the nucleotide in the previous position.
This makes all the positions marginally dependent while the
number of required parameters remains moderate, n × 4 × 3.
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The FMM affords a substantial improvement over the PWM
when dependencies are present in the biological signal, but
still some of the conditional independencies implied by the
first-order Markov assumption can introduce a positive bias.
A case in point is the prediction of 5′ (donor) splice sites.
The molecular recognition of these functional sites during
splicing is mediated by base pair interactions between the
sequences at the site and at the 5′ end of the so-called U1
snRNP—a ribonucleoprotein complex. The probability dis-
tribution of the nucleotides estimated independently at each
position along 5′ splice sites nicely reflects this complement-
arity: the most frequent nucleotide at each position along the
site is the complement of the interacting nucleotide in the
U1 snRNP. However, because of the staking of the double-
stranded DNA, the energy of the interaction between a pair
of nucleotides also depends on their nearest neighbor nuc-
leotides. That is, the probability of a nucleotide at a given
position in the 5′ site is not independent of the nucleotide(s)
occurring upstream of the site. To capture adjacent, as well
as non-adjacent, dependencies between positions in sequence
patterns, a number of methods have been developed (Agarwal
and Bafna, 1998; Burge, 1998; Cai et al., 2000; Dash and
Gopalakrishnan, 2001; Barash et al., 2003; Yeo and Burge,
2003).

We follow the approach to modeling (non-)adjacent depend-
encies by using Bayesian networks, exploiting recent results
(Castelo and Kočka, 2003) in structure learning of these mod-
els, which permit reducing the bias in the estimation problem
as the sample size increases. We apply this method to the iden-
tification of splice sites, showing a significant improvement
over some of the currently existing methods. We further assess
the effect of integrating such an improvement within exon and
gene prediction.

2 METHODS
In this section, we first review the asymptotic form of the
classification error probabilities. Then, we describe the imple-
mentation of the likelihood ratio by idlBNs and finally, we
study two different ways to combine the scores of the identified
splice sites in order to predict an exon.

2.1 Asymptotic form of the error probabilities
The decision to classify a functional site as real or false, using
the likelihood ratio, is taken by setting a threshold t that
determines what sites are discarded as real functional sites
because the likelihood-ratio statistic λ is smaller than t , and
what sites are accepted as real functional sites, because λ ≥ t .
Depending on the threshold t we face different classification
error probabilities, and the performance of any classifier is
bounded by the asymptotic form of these error probabilities.

Assume that the real, and false, functional sites are inde-
pendent and identically distributed (iid) samples from probab-
ility distributionsPθS andPθN with probability mass functions

(pmf) p(s | θS) and p(s | θN ), respectively. The error probab-
ility of classifying a real site as a false one is α = PθS (λ < t)

and classifying a false site as a real one is β = PθN (λ ≥ t).
The probability of effectively discarding false functional sites
as such is 1 − β, commonly known as the power of the test
(in this case a likelihood-ratio test). The asymptotic bound on
the error β of misclassifying a false functional site is given
by the so-called Stein’s Lemma1 (Cover and Thomas, 1991,
Ch. 6, § 12.8) in the following way:

lim
N→∞

1

N
log β = −D(PθS ||PθN ), (2)

where N is the sample size and D(PθS ||PθN ) is the Kullback–
Leibler (KL) divergence defined by Kullback and Leibler
(1951):

D(PθS ||PθN ) =
∑

s

p(s | θS) log
p(s | θS)

p(s | θN )
. (3)

The KL divergence is a measure of the difference between two
probability distributions. It is a non-negative quantity that is
equal to 0 when the distributions are identical, and grows
proportionally to the difference between them. Therefore, the
asymptotic bound (2) tells us that the error probability β, of
misclassifying a false functional site, has an exponential decay
2−ND(PθS ||PθN ), i.e. in the sample size N , bounded by the dif-
ference between the two probability distributions from which
the real, and false, functional sites are drawn.

However, the parameter sets θS and θN are unknown and,
in practice, we have to work with sets θ̂S and θ̂N of para-
meters estimated from datasets of confirmed real, and false,
functional sites. In this situation, it can be shown (Castelo,
2004, submitted for publication) that the asymptotic bound
(2) on β becomes:

lim
N→∞

1

N
log β = −D(PθS ||PθN ) + D(PθS ||P

θ̂S
)

+ D(PθN ||P
θ̂N

) −
∑

s

(p(s | θS)

+ p(s | θN )) log
p(s | θN )

p(s | θ̂N )
. (4)

This bound consists of the baseline term we had in (2), plus
two terms corresponding to the KL divergence between the
true parameters θS and θN , and the estimated parameters θ̂S
and θ̂N . The latter two terms increase the error β propor-
tionally to the difference between the true and the estimated
distributions. The last term in (4) depends also on the dif-
ference between θN and θ̂N and in the limit of the size of
the sample all these three additional terms will cancel when
θ̂S → θS and θ̂N → θN . Therefore, a biased estimation of
the sets of parameters bounds the minimum size of the error
probability β of classifying a false functional site as real.

1Although this result seems to be originally written by Chernoff (1952).
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2.2 Inclusion-driven learned Bayesian networks
A Bayesian network (Pearl, 1988) for categorical data can be
defined as a statistical model consisting of a family {Pθ | θ ∈
�G} of multinomial probability distributions that convey a set
of conditional independence (CI) restrictions summarized in
an acyclic digraph, or DAG, G. The DAG G is formed by the
pair (V , E) of sets, where V ≡ V (G) are the vertices and
E ≡ E(G) are the directed edges. The vertices in V index
a vector of categorical random variables XV = {X1, . . . , Xn}
and the fundamental idea is that the lack of an edge between
two vertices i and j represents some particular CI restriction
between Xi and Xj that holds throughout the entire family
{Pθ | θ ∈ �G}. When a distribution Pθ only contains CI
restrictions that can be represented by a DAG, one says that
Pθ is a DAG-distribution.

By the chain rule of probability, and the CI restrictions spe-
cified in G, we obtain the following unique factorization of
the pmf of XV :

p(x1, . . . , xn | G, θ) =
n∏
i

p
[
xi | xpa(i), θi

]
, (5)

where i is a vertex from G, indexing a random variable Xi

that takes values xi and pa(i) are the parent vertices of i in G

(source vertices of the directed edges pointing to i), indexing
a set of random variables Xpa(i) that take values xpa(i).

Given a training dataset, the structure of the Bayesian net-
work, i.e. the DAG G, can be automatically learned by using
a scoring metric and a search procedure. In this work, we
have used the so-called BDeu scoring metric, which is con-
structed by making some assumptions about the training data
and integrating out the parameters θ in (5) for each observa-
tion. The reader may find a thorough description of the BDeu
scoring metric in the paper by Heckerman et al. (1995). An
important feature of the BDeu scoring metric is that it is con-
sistent, i.e. in the limit of the size of the training data sampled
from a distribution Pθ , the BDeu scoring metric assigns the
highest score to every2 DAG G for which Pθ ∈ {Pθ | θ ∈ �G}
with smallest dimension. In this context, the dimension refers
to the number of parameters required by G.

Since the number of possible DAGs G grows exponentially
in the number of vertices a search procedure is required. In a
stepwise manner, starting from the DAG with no edges, the
search procedure creates a set of candidate (neighbor) DAGs
following some particular search policy, and ranks them using
the scoring metric. Then selects the one that maximizes the
score, and starts again from the selected DAG until a stopping
criterion is met.

Among the many algorithms developed during the last dec-
ade for structure learning there is a class of them, called
inclusion-driven structure learning algorithms, that has been

2Two or more different DAGs can specify the same CI restrictions, and thus
be (Markov) equivalent.

introduced recently (Kočka and Castelo, 2001; Chickering,
2002; Castelo and Kočka, 2003) and which are optimal in
the following sense. Under the assumption that the data are
sampled from a DAG-distribution and in the limit of the size
of the sample, they learn a correct DAG structure when using a
consistent scoring metric (Castelo and Kočka, 2003, Th. 3.4).
In this work, we have used the HCMC algorithm (Kočka
and Castelo, 2001; Castelo and Kočka, 2003), but we shall
distinguish a Bayesian network learned by any algorithm of
this kind as an inclusion-driven learned Bayesian network, or
idlBN3.

Once an idlBN is learned by the HCMC algorithm for a set of
true sites, and another one for a set of false sites, we use them
to estimate the probabilities corresponding to the margins of
the dependencies. Let θijk be the parameter specifying the
probability of observing the value k taken by variable Xi when
the variables forming the parent set of vertex i in a DAG G

take the values indexed by j in the corresponding product
space. We perform a Bayesian estimation using a Dirichlet
prior specified with hyperparameters N ′

ijk , and the probability
θijk corresponds to the expectation (DeGroot, 1970):

E[θijk | G, D, N ′
ijk] = N ′

ijk + Nijk

N ′
ij + Nij

, (6)

where Nijk are the sufficient statistics of a dataset D, N ′
ij =∑

kN
′
ijk and Nij = ∑

kNijk . We assume an uninformative
prior N ′

ijk = 1/(qiri), where qi is the number of different
configurations of values in the product space induced by the
parent set of the variable Xi (in the corresponding DAG),
and ri is the number of values that Xi can take. Such an
uninformative prior acts as a flattening constant (sometimes
known as pseudocount) that smooths the estimation when the
counts Nijk are close, or equal to zero. Using these estimates
in log-scale, we build the corresponding implementation of
the log-likelihood ratio in a similar way as a PWM is built,
but taking into account the dependencies among the positions
determined by the learned DAGs of the sets of true, and false,
functional sites.

Assuming that the probability distributions PθS and PθN

of real, and false, functional sites were DAG-distributions,
the corresponding idlBNs obtained from the training data
will approach a correct DAG underlying the correspond-
ing distribution as the training data size grows. Then, by
the chain rule of probability and the DAG factorization in
(5), the KL divergence between the distributions built from
estimated and true parameters will approach 0, and thus the
error probability bound in (4) will approach the optimal error
bound (2).

3For an easier parsing and recall of the term we propose to pronounce it as
idealBN.
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2.3 Exon prediction from flanking signals
In many gene prediction programs, as for instance, geneid,
an exon is usually scored by pairing flanking signals and com-
bining their scores, jointly with other features as the protein-
coding bias which we shall not treat here. Given an exon
sequence s with flanking signals s5 and s3, a straightforward
way of combining the scores is by adding them up:

scE(s) = sc5(s5) + sc3(s3) , (7)

where sc5(s5) and sc3(s3) refer to the scores from the 5′
and 3′ flanking signals, respectively. This is actually how
geneid [Parra et al. 2000, Expression (6)] computes part
of the score of an exon (other parts involve the use of codons
and homology). By substituting terms in expression (7),

scE(s) = log

[
LS5(s5 | θS5)

LN5(s5 | θN5)
· LS3(s3 | θS3)

LN3(s3 | θN3)

]
, (8)

the exon score in (7) can be interpreted as a likelihood ratio
for an exon (LRE) (Parra et al., 2000, pp. 513), where the
likelihoods of a real and a false exon are respectively

LE(s | θE) = LS5(s5 | θS5) · LS3(s3 | θS3) ,

LF (s | θF ) = LN5(s5 | θN5) · LN3(s3 | θN3) . (9)

Assuming that the likelihoods LS5 and LS3 of the 5′ and
3′ splice sites assign high probabilities to real splice sites,
and that a real exon should have two real splice sites, the
likelihood LE of a real exon in (9) is maximum when the
exon is real. Analogously, by assuming that the likelihoods
LN5 and LN3 assign high probabilities to false splice sites,
the likelihood LF of a false exon is maximum when both 5′
and 3′ splice sites are false. However, this does not neces-
sarily imply that LF is maximum when the exon is false,
as an exon is already false with just one false splice site.
In such a case, LF will not be maximum, LE will not be
as low as it should for a false exon, and therefore the exon
score will be larger than it should, leading to a potential
misclassification.

Consider three models of a false exon denoted by F5,3,
where both splice sites are false; F5 where only the 5′ splice
site is false; and F3 where only the 3′ splice site is false. The
corresponding likelihood functions can be built as:

LF5,3(s | θ5,3
F ) = LN5(s5 | θN5) · LN3(s3 | θN3) ,

LF5(s | θ5
F ) = LN5(s5 | θN5) · LS3(s3 | θS3) ,

LF3(s | θ3
F ) = LS5(s5 | θS5) · LN3(s3 | θN3) . (10)

Note that LF5 and LF3 are functions of parameters in θE ,
and this prevents us from averaging over F5,3, F5 and F3 in
order to obtain a likelihood for a false exon. Instead, we use

these models to define the posterior probability of a real exon:

p(E | s) = LE(s | θE)p(E)∑
M∈{E ,F5,3,F5,F3} LM(s | θM)p(M)

, (11)

where p(M) are the prior probabilities of each model, which
we assume uniform, i.e. p(M) = 1/4. In this way, 1−p(E | s)
gives us a probability that the sequence s is a false exon with
either two false splice sites or only one. So now, we propose
to correct the LRE (7) multiplying it by the odds of the exon
having two real flanking signals against at least one being
false:

scE(s) = log
LS5(s5 | θS5)LS3(s3 | θS3)

LN5(s5 | θN5)LN3(s3 | θN3)

+ log
p(E | s)

1 − p(E | s) , (12)

expressed in logarithmic scale and we shall denote it as the
corrected likelihood ratio (CLR).

3 RESULTS
Our goal in this section is 2-fold: first and foremost, to show
that idlBNs improve splice site, exon and gene prediction,
and second, to show that the way scores are combined (LRE
versus CLR) is crucial to take full advantage of a better signal
identification.

3.1 The data
In the experiments we have used three different datasets.
One is the set of 19 174 human annotations in the reference
sequence (RefSeq) dataset (UCSC version hg15) based on
NCBI Build 33 (April 10, 2003)4. The other two are used
exclusively for testing purposes and correspond to the Burset
and Guigó (1996) dataset of 570 human genes (BG-570), and
the Rogic et al. (2001) dataset of 195 genes (HMR-195),
including human (103), mouse (82) and rat (10) genes.

In order to assess splice site identification, we have extracted
from the RefSeq genes two sets of non-redundant canon-
ical donor and acceptor sites. The non-redundancy has been
enforced by selecting unique stretches of DNA containing
the donor and the acceptor site, where the donor stretch had
39 bp (the first 3 bp in the exon) and the acceptor stretch
had 23 bp. Afterwards, from the donor context we selected
9 bp (3 bp exon +gt+ 4 bp intron) to form every donor site.
This left a total of 124 727 donor sites and 130 220 acceptor
sites. We created two datasets of these same sizes with false
(decoy) donor and acceptor sites by sampling uniformly from
coding regions, and two more datasets by sampling from
intronic regions of the RefSeq genes. All the false sites
matched the corresponding minimum consensus (gt , ag).
Non-redundancy was enforced in the same way as for the

4http://www.genome.ucsc.edu/goldenPath/10april2003/database/
refGene.txt.gz
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true sites. We shall refer to these datasets as the ACCDON
datasets.

In order to assess exon and gene prediction, we proceed as
follows. From the RefSeq data, we have filtered out annota-
tions with either the same name, or in a loose chromosome
chunk (chr_random) or those that overlap another annotation
(leaving one copy arbitrarily chosen). From this latter set, we
translated each gene into protein, and discard those that did
not start and end, with a start and stop codons, and those which
had in-frame stop codons.

Further, we obtained the corresponding proteins from the
BG-570 and HMR-175 genes and performed BLASTP against
the previously filtered RefSeq proteins. We considered only
those heat shock proteins (HSPs) that had an E-value smal-
ler than or equal to 10−5 and from these, select those that
showed an identity greater than or equal to 60%. There were
855 proteins matching these criteria, and the corresponding
genes were removed from the RefSeq genes, leaving a total
of 13 225 genes, to which we shall refer as the NOBGRORS
dataset5. In this manner, we ensured that our training set of
genes did have neither of the test genes nor those which might
be highly similar to them.

From the BG-570 and HMR-195 genes, we extracted all the
internal exons (2110). From each gene with n internal exons,
we have randomly sampled the same amount of false exons
thrice. First, ensuring that both splice sites are false; second,
for every true acceptor site, we chose randomly a downstream
false donor site; and third, for every true donor site we chose
randomly an upstream false acceptor site. We shall refer to
these datasets as the BGROIEXONS datasets. All data are
available in the online Supplementary information.

3.2 Donor and acceptor site prediction
We have performed a 10-fold cross-validation along increas-
ing sizes of the training datasets of donor and acceptor sites,
starting on 1000, 5000 and 10 000, and continuing with sizes
that increase in 10 000 sites up to 100 000. The rest of the
sites not contained in each training dataset form the test data-
set. The 10-fold cross-validation is done by sampling each of
the 12 sizes, 10 times from the ACCDON datasets, where half
of the false sites belong to coding regions and half to intronic
ones. Finally, the results are averaged over the 10 samples for
each size.

We have assessed the idlBN, PWM, FMM, MDD (Burge,
1998) and MAXENT (Yeo and Burge, 2003) methods. The
latter two have not been trained in our data, but have been
used through the scoresplice webserver6, which scores donor
sites with the MDD and MAXENT methods, and acceptor
sites with the MAXENT method only. This means that, with
respect to MDD and MAXENT, we will not appreciate the
effect of an increasing training sample size, and that some

5NO Burset, Guigó, or ROgic RefSeq genes.
6http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html

Fig. 1. False positive ratio versus the training sample size for donor
(a) and acceptor (b) signals.

of the sites in the test datasets could be included in those
used for training the MDD and MAXENT methods currently
implemented in the scoresplice webserver. We think, however,
the comparison still provides an idea of how competitive the
idlBN method is, with respect to MDD and MAXENT.

In Figure 1, we have plotted the false positive ratio, at a
sensitivity level of 95%, as a function of the training sample
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Table 1. AUC values for internal exon prediction by LRE and CLR

False exon Exon AUC values idlBN gain (%)
(CLR gain) score by PWM FMM idlBN PWM FMM

FA–FD LRE 0.9831 0.9854 0.9898 0.7 0.4
(0.0%) CLR 0.9843 0.9856 0.9892 0.5 0.4

TA–FD LRE 0.9101 0.9332 0.9602 5.5 2.9
(2.0%) CLR 0.9395 0.9517 0.9672 2.9 1.6

FA–TD LRE 0.9606 0.9669 0.9672 0.7 0.0
(0.4%) CLR 0.9653 0.9712 0.9711 0.6 0.0

Gain percentage of CLR over LRE and idlBNs over PWM and FMM are specified.
Largest AUC values are in boldface.

size for donor (a) and acceptor (b) sites. For both types of
signals we observe the following. The PWM method is the
one that performs worst at a substantial distance from the
rest. The differences among the other methods, FMM, MDD,
MAXENT and idlBN, lie in a range of ∼1% of the false pos-
itive ratio, where the method introduced in this paper, the
splice site identification by idlBNs, achieves in both types of
signals the best false positive ratio, after 20 000 to 30 000 train-
ing sites. Besides this fact, the idlBN method reduces much
more rapidly the false positive ratio as the training sample size
increases. This shows empirically how not only the variance,
but also the bias is clearly reduced with a larger sample size.
This is remarkable as donor and acceptor sites are data not
necessarily sampled from DAG-distributions.

3.3 Internal exon prediction
We assess internal exon prediction based exclusively on the
identification of the splice sites that determine the exon bound-
aries. We test the two exon scoring methods discussed in
Subsection 2.3, the LRE from Expression (8) and the CLR
from Expression (12).

We have built PWMs, FMMs and idlBNs for donor and
acceptor sites from the NOBGRORS dataset, and test the six
combinations of splice site and exon scoring methods, in the
BGROIEXONS sets of internal true and false exons. We com-
puted receiver operating characteristic (ROC) curves formed
by the entire range of sensitivity values (using intervals of 5%)
and the false positive ratio. In order to summarize these results
succintly, we have calculated7 the Area Under the ROC curve
(AUC). The AUC takes values between 0.5 and 1.0 where
0.5 means that the the two scores distributions do not differ,
and a value of 1.0 indicates that the scores distributions do
not overlap.

In Table 1 we show the AUC values, organized to show
what combination of scoring methods was used, and over what
type of false internal exon, where FA–FD indicates that both

7Using the pAUCi function from the Bioconductor ROC library at
http://www.bioconductor.org/repository/devel/package/html/ROC.html

splice sites are false, TA–FD indicates a true acceptor and a
false donor, and FA–TD indicates a false acceptor and a true
donor. Moreover, we have included the proportional gains in
AUC for CLR with respect to LRE, and idlBNs with respect
to PWMs and FMMs.

We see that the use of idlBNs in splice site identifica-
tion improves exon prediction in all three different types of
false exons, ranging from 0.4% up to 5.5%, except when
FMMs are used and the false exons have a true donor
site. In this latter case, there is a gain (LRE) and a loss
(CLR) smaller than 0.1%. This is surprising as there is a
clear gain of 1.6% up to 2.9% when the false exon has a
true acceptor (TA–FD), and we are currently investigating
this situation. In general, the proportional gains may seem
small but the gains of FMM over PWM are not larger than
2.5% = [(0.9332/0.9101) − 1] ∗ 100, while it is generally
observed that FMMs afford a substantial improvement over
PWMs (e.g. Fig. 1).

In the first column of Table 1 we have included the average
gain in using CLR instead of LRE when combining the scores
of the splice sites. When the false exon has both splice sites
false (FA–FD) there is no gain, which makes sense as the
false exon is already correctly modeled with LRE. However,
in the other two cases, TA–FD and FA–TD, we obtain 2.0 and
0.4%, respectively. The positive effect of using CLR is also
supported by the observation that the gains in using idlBNs
instead of PWMs or FMMs, are smaller when in all three
cases CLR is used, which means that it definitely helps in
predicting exons.

3.4 Gene prediction
The splice site identification by idlBNs can be incorporated
in any prediction algorithm that uses the likelihood ratio.
We have used it within a particular gene prediction program,
geneid v1.1. The scoring scheme for exons in geneid is by
LRE, but we have also implemented the exon score by CLR.
The resulting version is by now only a prototype and not yet
publicly available. The default parameter file, uses a PWM for
donor sites (9 bp), a FMM for acceptor sites (27 bp), a second
order Markov model for start sites (20 bp) and any codon
matching a stop codon is considered as a candidate stop site.
These models within this default parameter file were trained
using different datasets downloaded on August 2000. For the
donor and acceptor sites the Intron–Exon database (Saxonov
et al., 2000) was used, and for the start sites and the coding-
bias statistics (which are implemented as a Markov model of
order 5), the Human Transcript Database8 was used. When
using this parameter file only, we will refer to as the default
configuration.

We show results on gene prediction for two well-known
benchmark datasets, the BG-570 and the HMR-175. We have

8Available on http://www.hgsc.bcm.tmc.edu/HTDB
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Table 2. Comparison of the different configurations of geneid for the BG-570 and the HMR-175 gene datasets

configuration SNn SPn CCn SNe SPe SNSPe SNg SPg SNPg MG WG
cb ncb cb ncb cb ncb cb ncb cb ncb cb ncb cb ncb cb ncb cb ncb cb ncb cb ncb

BG-570
Default v1.1 0.90 0.53 0.89 0.63 0.88 0.51 0.67 0.42 0.70 0.33 0.69 0.38 0.14 0.02 0.12 0.01 0.13 0.01 0.03 0.09 0.12 0.31
PWM-LRE 0.92 0.45 0.86 0.62 0.87 0.46 0.67 0.36 0.67 0.32 0.67 0.34 0.16 0.03 0.13 0.02 0.14 0.03 0.02 0.13 0.16 0.36
PWM-CLR 0.91 0.46 0.88 0.65 0.88 0.49 0.67 0.36 0.67 0.35 0.67 0.36 0.15 0.02 0.13 0.01 0.14 0.02 0.03 0.13 0.14 0.30
FMM-LRE 0.93 0.50 0.87 0.67 0.88 0.52 0.71 0.41 0.70 0.37 0.70 0.39 0.21 0.04 0.17 0.02 0.19 0.03 0.02 0.10 0.18 0.36
FMM-CLR 0.92 0.47 0.88 0.72 0.89 0.54 0.73 0.38 0.70 0.43 0.71 0.41 0.22 0.02 0.19 0.02 0.20 0.02 0.03 0.12 0.17 0.27
idlBN-LRE 0.93 0.56 0.87 0.61 0.88 0.52 0.72 0.47 0.71 0.34 0.72 0.41 0.21 0.06 0.17 0.04 0.19 0.05 0.03 0.11 0.19 0.40
idlBN-CLR 0.92 0.54 0.89 0.64 0.89 0.52 0.72 0.45 0.72 0.37 0.72 0.41 0.21 0.05 0.18 0.03 0.19 0.04 0.03 0.11 0.16 0.35

HMR-195
Default v1.1 0.92 0.30 0.87 0.70 0.88 0.44 0.70 0.28 0.71 0.44 0.70 0.36 0.18 0.00 0.15 0.00 0.16 0.00 0.01 0.27 0.18 0.30
PWM-LRE 0.92 0.30 0.84 0.60 0.86 0.38 0.69 0.29 0.65 0.32 0.67 0.31 0.21 0.00 0.15 0.00 0.18 0.00 0.01 0.32 0.23 0.44
PWM-CLR 0.90 0.35 0.86 0.58 0.86 0.39 0.68 0.35 0.68 0.31 0.68 0.33 0.18 0.00 0.15 0.00 0.17 0.00 0.01 0.30 0.17 0.46
FMM-LRE 0.91 0.34 0.86 0.67 0.87 0.44 0.68 0.34 0.71 0.38 0.69 0.36 0.19 0.01 0.15 0.01 0.17 0.01 0.01 0.27 0.17 0.42
FMM-CLR 0.92 0.29 0.86 0.71 0.87 0.43 0.72 0.30 0.69 0.45 0.70 0.37 0.22 0.01 0.17 0.00 0.20 0.00 0.01 0.32 0.20 0.39
idlBN-LRE 0.91 0.34 0.86 0.69 0.86 0.45 0.69 0.32 0.71 0.40 0.70 0.36 0.20 0.01 0.16 0.00 0.18 0.00 0.01 0.26 0.19 0.36
idlBN-CLR 0.91 0.39 0.86 0.63 0.87 0.44 0.71 0.38 0.69 0.36 0.70 0.37 0.23 0.01 0.18 0.00 0.21 0.00 0.01 0.23 0.19 0.39

Best values are in boldface.

trained PWMs, FMMs and idlBNs from the NOBGRORS
dataset, which excludes genes that are similar to those in BG-
570 and HMR-175. Note that, however, the default parameter
file of geneid was trained on sequences that may include
some of those within BG-570 and HMR-175. The three dif-
ferent types of models we trained (PWMs, FMMs and idlBNs)
were used for start sites (20 bp), stop sites (15 bp), acceptor
sites (23 bp) and donor sites (9 bp). Regarding the coding-
bias statistics, we have used those from the default parameter
file, and also we have considered performing gene prediction
without using the coding-bias statistics to more clearly assess
the improvement in signal identification.

The accuracy measures taken are: sensitivity and specificity
at nucleotide (SNn, SPn), exon (SNe, SPe) and gene (SNg,
SPg) level; the correlation coefficient (CCn) at nucleotide
level; the proportion of genes totally missed in the predic-
tion (MG); and the proportion of predicted genes totally
wrong (WG). The sensitivity and specificity are averaged at
exon (SNSPe) and gene (SNSPg) levels. These are standard
measures used in the literature (Burset and Guigó, 1996).

A particular feature of geneid is that permits incorporating
our prior odds for an exon [Parra et al. 2000, Expression (8)] in
the so-called exon weight, which forces the program to make
a smaller or larger amount of predictions according to smaller
or larger values of this parameter. This allows the program to
be more specific or more sensible.

Our main purpose here is to show to which extent a bet-
ter splice site identification can improve gene prediction with
geneid, and hence we have run the program with a wide
range of different exon weights for each dataset and picked
the run that achieves the best CCn in order to compare the best

performances between the different configurations. We show
this comparison in Table 2, and the reader may find the full
set of results in the online Supplementary Information.

Table 2 shows the results separately for each test dataset
and, within each accuracy measure, we include the result
when using coding-bias statistics (cb) and when not using
them (ncb). When coding-bias statistics are not used there
is an improvement of 5–6% in the average sensitivity and
specificity at exon level (SNSPe) between idlBN-LRE and
PWM-LRE, which becomes smaller by 2% when CLR is used.
This difference decreases more when comparing with FMMs,
and specially FMM-CLR. A similar situation occurs with the
CCn values where even FMM-CLR reaches a higher value
than idlBNs in the BG-570 dataset. At gene level the perform-
ance is extremely poor in general, showing how important is
the use of the coding-bias. The default configuration performs
similarly to FMMs and idlBNs in the HMR-195 dataset, and
slightly worse in the BG-570 dataset.

When coding-bias is used, the CCn values do not differ very
much, and in fact the default configuration achieves the best
value for the HMR-195 dataset and is only 1% smaller than
FMM-CLR or idlBN-CLR in the BG-570 dataset. In this same
dataset, a similar situation occurs with the SNSPe, which is,
though, ∼3% worse in the BG-570 dataset. At gene level,
there is a more clear difference in favor of FMMs and idlBNs.
In the case of the BG-570 dataset, it reaches a 5% improvement
in the average sensitivity and specificity (SNSPg) between
PWMs and idlBNs-FMMs (LRE) and up to 7% between the
default configuration and FMM-CLR. In the case of the HMR-
195 dataset, idlBN-CLR achieves the highest SNSPg showing
an improvement up to 5%.
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4 CONCLUSION
In this paper we have introduced a novel method for the
identification of functional sites, and concretely, splice sites
(identification by idlBNs), which implements the likelihood
ratio by first learning the structure of a Bayesian network
from each corresponding training dataset by an inclusion-
driven learning algorithm. In our case, we have used the
HCMC algorithm (Kočka and Castelo, 2001; Castelo and
Kočka, 2003). Bayesian networks were used previously for
this purpose but the advantage of idlBNs is that their learn-
ing process is theoretically grounded (Castelo and Kočka,
2003, see Th. 3.4) and therefore optimal under the cir-
cumstances reviewed in this paper and more thoroughly
investigated by Chickering (2002) and Castelo and Kočka
(2003). We have observed through the experiments with donor
and acceptor sites that the ratio of false positives decreases as
the training sample size increases, at a higher rate than using
PWMs or FMMs.

The use of idlBNs for the more general purpose of the
discovery of DNA binding sites is likely to be successful
within Bayesian network based procedures like the one from
Barash et al. (2003) that greatly rely on the Bayesian net-
work structure. However, the extent of the improvement will
always depend on how much the training data is away from
the assumption of being sampled from a DAG-distribution.

We have analyzed the problem of modeling properly a false
exon and proposed a correction to the likelihood ratio, CLR,
which clearly contributed to a better exon and gene predic-
tion. In this latter task, the improvement afforded by idlBNs
that we observed when predicting donor and acceptor sites
diminished to the point where idlBNs and FMMs perform sim-
ilarly where FMMs win in the BG-570 dataset, and idlBNs
win in the HMR-195 dataset. From this, we may conclude
that the complexity of the gene prediction problem does not
make a straightforward job to carry an improvement in signal
identification to an improvement in gene identification. This,
in turn, implies that the potential improvement can greatly
depend on the gene prediction program, and therefore it may
be interesting to deploy idlBNs in other ones.
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