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SPLICE STRENGTH OF HIGH RELATIVE RIB AREA REINFORCING BARS 

ABSTRACT 

The reinforcing bar deformation patterns currently used in the United States were estab­

lished over forty-five years ago. In the interim, material properties and design procedures have 

changed, resulting in more congested reinforcement, the use of higher strength materials, and the 

application of coatings to provide corrosion protection. Based on an improved understanding of 

the interaction between reinforcing steel and concrete, changes have been made in the design 

provisions for reinforced concrete buildings and bridges to account more accurately for structural 

behavior and material properties. However, corresponding changes have not been made in the 

steel reinforcement 

This report describes the testing and analysis of 83 beam-splice specimens containing No. 

5, No. 8, and No. 11 (16, 25, and 36 mm) bars with relative rib areas (ratio of projected rib area 

normal to bar axis to the product of the nominal bar perimeter and the center-to-center rib spacing) 

ranging from 0.065 to 0.140. Concretes containing two different coarse aggregates were used to 

evaluate the effect of aggregate properties on bond strength. Sixty specimens contained uncoated 

bars with confining transverse reinforcement. Thirteen specimens contained uncoated bars without 

confining reinforcement, and ten specimens contained epoxy-coated bars, nine without confining 

reinforcement and one with confining reinforcement. The tests are analyzed to determine the effect 

of relative rib area and bar diameter on the increase in bond strength provided by confining rein­

forcement The tests also provide a preliminary indication of the effect of high relative rib area on 

the splice strength of epoxy-coated bars. 

The splice strength of uncoated reinforcement confined by transverse reinforcement in­

creases with an increase in the relative rib area and the bar diameter of the spliced bars. The 

increase in splice strength provided by transverse reinforcement increases as the strength of the 

coarse aggregate increases. The use of reinforcing bars with an average relative rib area of0.1275, 

an increase from the value for conventional bars of 0.0727, can provide up to a 26 percent decrease 
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in splice length compared to conventional reinforcement when confining reinforcement is used. 

The savings obtainable with high relative rib area bars is highest for low covers and bar spacings. 

Epoxy coating appears to have a less detrimental effect on splice strength for high relative rib area 

bars than for conventional bars. The results indicate that the maximum development length modifi­

cation factor used for epoxy-coated reinforcement may be reduced by 20 percent 

Keywords: bond (concrete to reinforcement); bridge specifications; building codes; deformed 

reinforcement; development; lap connections; reinforcing steels; relative rib area; splicing; structural 

engineering. 
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INTRODUCTION 

The reinforcing bar deformation patterns currently used in the United States were estab­

lished over forty-five years ago. In the interim, material properties and design procedures have 

changed, resulting in more congested reinforcement, the use of higher strength materials, and the 

application of coatings to provide corrosion protection. Based on an improved understanding of 

the interaction between reinforcing steel and concrete, changes have been made in the design 

provisions for reinforced concrete buildings and bridges to account more accurately for structural 

behavior and material properties. However, corresponding changes have not been made in the 

steel reinforcement 

With the goal of improving the development characteristics of reinforcing steel, studies 

have been under way since 1991 to accurately characterize the development and splice behavior of 

current reinforcing bars and to modify the deformation characteristics of the bars to attain improved 

bond strength (Darwin, McCabe, Idun and Schoenekase 1992a, 1992b, Darwin and Graham 

1993a, 1993b). As part of the study, Darwin and Graham (1993a, 1993b) demonstrated that, for 

uncoated reinforcement, the higher the relative rib area, Rr (ratio of projected rib area normal to bar 

axis to the product of the nominal bar perimeter and the center-to-center rib spacing), the higher the 

bond strength between reinforcing steel and concrete for bars confined by transverse reinforce­

ment Bars in U.S. practice typically have values of R, between 0.06 and 0.08. Using specially 

machined 1 in. (25 mm) diameter bars with values of Rr between 0.05 and 0.20, Darwin and 

Graham observed that the increase in bond strength does not depend on the specific combination of 

rib height and spacing, but only on the value of R,. Deformation pattern was found to have no 

effect on the bond strength of unconfined bars, matching the findings for uncoated conventional 

bars in a study by Choi, Hadje-Ghaffari, Darwin and McCabe (1990, 1991). In that earlier study, 

however, Choi et al. (1990, 1991) did observe that an increase in R, resulted in an increase in the 

bond strength of epoxy-coated bars relative to uncoated bars, even without confining steel. The 

latter observation suggests that the development lengths of epoxy-coated high R, bars might not 
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have to be increased by 50 percent compared to uncoated bars, as required by the 1989 ACI 

Building Code and the 1992 AASHTO Bridge Specifications. 

The next step in the current study, reponed here, involves tests of commercially produced 

reinforcing bars with high relative rib areas. As with the vast majority of the tests used to establish 

development length criteria (Chinn et al. 1955, Chamberlin 1956, 1958, Mathey and Watstein 

1961, Ferguson and Breen 1965, Ferguson and Thompson 1965, Thompson et al. 1975, Zekany 

et al. 1981, Choi et al. 1990, 1991, De Vries et al. 1991, Hester et al. 1991, 1993, Rezansoff et al. 

1991, 1993, Azizinarnini et al. 1993, 1995), the bond strength of these bars was evaluated using 

splice specimens. The test results, including comparisons with conventional reinforcing bars, are 

presented in this repon. An analysis of the results indicates that significant reductions in develop­

ment and splice length can be obtained by using reinforcing bars with high relative rib areas. 

EXPERIMENTAL PROGRAM 

The experimental program described in this repon consisted of 83 beam-splice specimens, 

cast in 18 groups of 4 to 6 specimens each. The key test parameters were the bar size [No. 5, No. 

8, or No. 11 (16, 25 or 36 mm)], the relative rib area (0.065 to 0.140), and the degree of confine­

ment provided by transverse reinforcement Concretes containing two different coarse aggregates 

were used to evaluate the effect of aggregate properties on bond strength. Sixty specimens con­

tained uncoated bars with confining reinforcement; thineen specimens contained uncoated bars 

without confining reinforcement; and ten specimens contained epoxy-coated bars, nine without 

confining reinforcement and one with confining reinforcement. The bars used in the study are 

shown in Figs. la and lb. 

Test Specimens 

The splice specimens, 13 or 16 ft long ( 4 or 4.9 m), were tested as invened simply sup­

poned beams to produce, respectively, a 4 or 6 ft (1.2 or 1.8 m) constant moment region, as 
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shown in Fig. 2. The specimens contained two to four adjacent bottom-cast splices (Fig. 3). No. 

3 or No. 4 (9.5 or 13 mm) closed stirrups were spaced equally within the splice regions to deter­

mine the effects of stirrups on splice strength, and No. 3 (9.5 mm) stirrups were placed outside the 

constant moment region to provide shear strength. One specimen contained two splices and two 

continuous bars. No. 4, No. 5 and No. 6 (13, 16, and 19 mm) bars were used as top reinforce­

ment for specimens with No. 5, No. 8 and No. 11 (16, 25 and 35 mm) test bars, respectively. 

The beams had nominal widths of 12 or 18 in. (305 or 457 mm) and nominal depths of 15.5 to 17 

in. (394 to 432 mm). Total depths were varied to maintain a nominal effective depth, d, of 133/4 

in. (350 mm). Nominal values for bottom cover varied between 1.25 and 3 in. (32 and 7 6 mm), 

and side covers on the splices ranged between 1 and 3 in. (25 and 76 mm). Actual member dimen­

sions are given in Table 1. 

Materials 

Reinforcing Steel-Bars with both conventional and experimental deformation patterns 

were evaluated in the study. The bars met the requirements of ASTM A 615, with the exception 

that some of the experimental bars did not have bar markings. Seven conventional bars and five 

experimental bars were evaluated. The conventional bars consisted of one No. 5 (16 mm) bar, 

designated 5NO; four No. 8 (25 mm) bars, designated 8CO, 8NO, 8SO and 8SHO; and two No. 11 

(36 mm) bars designated 1 IBO and 1 lNO. The high relative rib area bars consisted of one No. 5 

(16 mm) bar, 5C2; three No. 8 (25 mm) bars, 8Cl, 8Fl, and 8N3; and one No. 11 (36 mm) bar, 

11F3. [Note: The first number in the designation is the bar size; the letter(s) identify the manufac­

turer; a trailing zero identifies a conventional bar; a nonzero trailing number identifies an experi­

mental deformation pattern.] Bar properties are presented in Table 2. The high Rr bars have closer 

and generally higher ribs than the corresponding conventional bars (Figs. la and lb). Convention­

al ASTM Grade 60 (400 MPa) bars were used as stirrups and top reinforcement. 

Concrete-Air-entrained concrete was supplied by a local ready mix plant. Two types of 

coarse aggregate (crushed limestone and basalt) with a 3/4 in. (19 mm) maximum nominal size 
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were used, along with Type I portland cement and Kansas River sand. 1 in. (25 mm) square by 3 

in. (152 mm) long specimens of the limestone have compressive strengths of about 15,000 psi 

(103 MPa), while similar specimens of the basalt have compressive strengths of about 50,000 psi 

(345 MPa). Water-cement ratios, ranging from 0.36 to 0.45, were used to produce concrete 

strengths ranging from 3810 to 5250 psi (26 to 36 MPa) at the time of test. Testing ages ranged 

from 5 to 30 days. Mix proportions and concrete properties are summarized in Table 3. 

Placement Procedure 

The concrete was placed in two lifts. In the initial lift, the end regions were placed first, 

followed by the splice regions. In the second lift, the splice regions were placed first. Each lift 

was vibrated on alternate sides of the beams at staggered 1 ft (0.3 m) intervals. 

Standard 6 x 12 in. (152 x 305 mm) test cylinders were cast in steel molds and cured in the 

same manner as the test specimens. Forms were stripped after the concrete had reached a compres­

sive strength of at least 3000 psi (21 MPa), and the specimens were then left to dry until the time of 

the test. 

Test Procedure 

The splice specimens were invened and tested as shown in Fig. 2. The beams were 

supported by pin and roller supports mounted on concrete pedestals. S tee! plates separated the 

beams from the suppons. Loads were applied at the ends of the cantilever regions. Beams were 

loaded continuously to failure at a rate of about 3 kips ( 13 kN) per minute at each end. Deflections 

were measured at each end and at the middle of the beams using linear variable differential trans­

formers (L VDTs). Tests lasted about 15 minutes. 
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SPECIMEN BEHAVIOR AND ANALYSIS OF TEST RESULTS 

Results and Observations 

Load-deflection curves for the test specimens are shown in Appendix A. Failure loads, 

moments and bar stresses are given in Table 1. Beams without stirrups failed suddenly and with 

little warning. Beams with stirrups behaved ductilely after initial cracking, and ultimately exhibited 

much more cracking due to splice failure than did beams without stirrups. Beams containing 

epoxy-coated bars had lower strengths than the corresponding beams with uncoated bars. Typical 

sections following failure are shown in Figs. 4a and 4b. 

Splice failure was preceded by extensive longitudinal and transverse cracking in the splice 

region. Longitudinal cracks formed first on the tension face of the specimen and later on the sides 

of the specimen at the level of the splices, terminating at the ends of the splice. At each end of the 

splice, transverse cracks, normal to the longitudinal cracks on the tension surface, ran across the 

full width of the beam, extending to the sides. 

Following the tests, the concrete cover was removed to study the nature of the interaction at 

the steel-concrete interface. For uncoated bar specimens, both with and without stirrups, the 

concrete between the ribs at the concrete-steel interface showed signs of crushing. Concrete 

damage between ribs was higher near the discontinuous end of the spliced bars than near the 

continuous end. For the high R, bars, the concrete failure looked more like a shear failure than a 

crushing failure, with sections of the concrete remaining intact between the ribs. On a number of 

specimens, the concrete between the ribs near the "loaded" end of the splice showed little damage -

as if the bars had been removed cleanly. Concrete near the discontinuous end of the splice showed 

progressively more damage. This type of failure was more evident for the new N<>. 11 bars (36 

mm) (designated l IF3) confined by stirrups than for the other cases. 

For the epoxy-coated bar specimens, the concrete at the interface had a smooth, glassy 

surface and exhibited little local damage. 
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Evaluation of Test Results - Uncoated Bars 

The splice strengths obtained with the new high relative rib area, R,, bars are compared to 

tests of conventional bars performed at the University of Kansas with similar concretes (Choi et al. 

1990, 1991, Hester et al. 1991, 1993) and with the results of a statistical analysis of a wide range 

of tests performed in North America over the past forty years (Chinn et al. 1955, Chamberlin 

1956, 1958, Mathey and Watstein 1961, Ferguson and Breen 1965, Ferguson and Thompson 

1965, Thompson et al. 1975, Zekany et al. 1981, DeVries et al. 1991, Rezansoff et al. 1991, 

1993, Azizinamini et al. 1993, 1995), including those reported here. The details of the statistical 

analysis are presented by Darwin, Zuo, Tholen and Idun (1995). 

The comparisons show that, as predicted by Darwin and Graham (1993a, 1993b), an 

increase in R, has no effect on the splice strength of bars (with typical covers) that are not confined 

by transverse reinforcement, but has a positive effect on the splice strength of bars that are con­

fined. 

In the analyses that follow, the total force in a bar at splice failure, Tb, is taken as the sum 

of a concrete contribution, Tc, and a confining steel contribution, T5• 

The comparisons use t)le results of a statistical analysis of the results of 133 development 

and splice tests of bottom-cast bars without confining transverse reinforcement and 166 tests with 

confining transverse reinforcement (Darwin et al. 1995). Based on that analysis, the ultimate bond 

force of bars not confined by transverse reinforcement, Tc (the concrete contribution), can be 

expressed as 

Tc 

f' 1/4 
c 

in which Ab 

f, 

(1) 

= bar area, in in.2 

= steel stress at failure, in psi 

= concrete compressive strength, in psi; f' cl/4 in psi 

= development or splice length, in in. 
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c;,,, CM = minimum or maximum value of c, or Cb (ewe;,, s; 3.5), in in. 

Cs = min (Csi + 0.25 in., C50), in in. 

Csi = one-half of clear spacing between bars, in in. 

c,0 , Cb = side cover or bottom cover of reinforcing bars, in in. 

db = bardiameter 

As shown in Eq. I, a key observation of the analysis is that splice and development 

strength is better represented as a function of the 1/4 power of the concrete compressive strength 

than by the square root of the strength, as traditionally assumed (ACI 318-89). 

Splices Not Confined by Transverse Reinforcement-During the course of the 

study, the results of the splice tests for high R, bars not confined by transverse reinforcement were 

found to differ little from the results of similar tests using conventional bars. As a result, the 

current tests were included in the data base used to develop Eq. I. 

The lack of sensitivity of splice strength to R, for unconfined bars is demonstrated by 

twelve tests with high R, bars (two with 5C2 bars, four with SCI bars, three with 8Fl bars, one 

with 8N3 bars, and two with 11F3 bars) performed in this study. The average test/prediction ratio 

for the twelve tests, based on Eq. I, is 1.00, compared to an average ratio of 1.02 for sixteen tests 

performed at the University of Kansas using conventional reinforcement [one in this study, eight 

by Choi et al. (1990, 1991) and seven by Hester et al. (1991, 1993)] and an average ratio of 1.00 

for all 133 tests used to develop Eq. 1. 

Splices Confined by Transverse Reinforcement-Transverse reinforcement in­

creases splice strength. To calculate the increase in strength resulting from the presence of trans­

verse steel, Ts. the concrete contribution, Tc (represented by Eq. I), is subtracted from the experi­

mentally determined force in a bar at splice failure, T1>-

The statistical analysis by Darwin et al. (1995) demonstrates that T 5, normalized with 

respect to f'c!/4, depends principally on the "effective transverse reinforcement," NA1r/n, in which 

N = the number of transverse reinforcing bars (stirrups or ties) crossing J.i; Air= area of each 

stirrup or tie crossing the potential plane of splitting adjacent to the reinforcement being developed 



8 

or spliced, in in.2; and n = number of bars being developed or spliced along the plane of splitting. 

The value of n is determined by the smaller of cb or c 5 • If cb controls, the plane of splitting passes 

through the cover and n = I. If c, controls, the plane of splitting intersects all of the bars and n = 

the total number of bars spliced or developed at one location. The analysis (Darwin et al. 1995) 

demonstrates that Ts does not depend on the yield strength of transverse reinforcement, fyt· This 

result is supported by experimental observations that show that transverse reinforcement rarely 

yields due to a bond failure (Maeda et al. 1991, Sakurada et al. 1993, Azizinamini et al. 1995). 

Therefore, it is the total area, not the total yield force, of the confining steel that governs the in­

crease in bond force provided by transverse steel, T5• 

Comparisons of Tsff'cl/4 with NAtt/n for the splices in the current study are presented in 

Figs. 5 and 6 for the concretes containing limestone and basalt coarse aggregates, respectively. 

The tests are treated separately because the concrete containing the high compressive strength basalt 

provides significantly higher bond strengths than does the concrete containing the lower compres­

sive strength limestone, even though the compressive strengths of the concretes are the same. The 

slopes, m, and intercepts, b, of the best-fit lines are presented in Table 4. 

Fig. 5 illustrates that the increase in bond strength provided by transverse steel, T,, increas­

es with increasing size of the spliced bar, as well as with increasing relative rib area. The results 

shown in Fig. 5 include the tests performed in this study, along with 10 tests performed by Hester 

et al. (1991, 1993) using concrete with the same type of coarse aggregate (test data in Appendix 

B). The smallest contribution from transverse reinforcement is obtained by the conventional No. 5 

(16 mm) bars with R, = 0.082, followed by the 5C2 No. 5 (16 mm) bars with R, = 0.109, the 

conventional No. 8 (25 mm) bars with R, = 0.065 to 0.085, the SCI No. 8 (25 mm) bars with R, 

= 0.101, the conventional No. 11 (36 mm) bars with R, = 0.070 and 0.072, the 8Fl No. 8 (25 

mm) bars with R, = 0.140, and finally the 11F3 No. 11 (36 mm) bars with R, = 0.127. 

The relationships shown in Fig. 5 suggest that an increase in the wedging action of the 

bars, resulting from both an increase in R, (a relative measure of rib size and spacing) and an 

increase in the bar size (an absolute measure of rib size) will increase the stress in the stirrups, 
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resulting in an increase in the confining force. A relationship between confinement and the degree 

of wedging action is in concert with the observation that stirrups do not yield (Maeda et al. 1991, 

Sakurada et al. 1993, Azizinamini et al. 1995), allowing an increase in lateral displacement to be 

translated into an increase in confining force. 

The results for the splices cast in concrete containing basalt are shown in Fig. 6. Only No. 

8 (25 mm) bars were evaluated using this concrete. As demonstrated in Fig. 5, Ts increases with 

increasing relative rib area. The sensitivity of bond strength to coarse aggregate properties is 

shown in Fig. 7, where the results for bars cast in both types of concrete [conventional bars (R, = 

0.065 to 0.085) and 8Fl bars (R, = 0.140)] are compared. On the average, transverse reinforce-

ment is 35 percent more effective for the conventional reinforcement and 46 percent more effective 

for the high relative rib area bars for the concrete containing basalt coarse aggregate than for the 

concrete containing limestone. This sensitivity of bond strength to concrete properties, as affected 

by the properties of the coarse aggregate, is not widely recognized. 

Application of Test Results to Design - Uncoated Bars 

The test results shown in Figs. 5 and 6 serve as the basis for the development of design 

criteria for high R, bars. To accomplish this, the effects of R, and bar size must be separated. 

Effect of Relative Rib Area-As a first step, it is assumed that changes in Ts caused by 

changes in R, are independent of bar size and concrete properties. To test this assumption, the 

results in Figs. 5 and 6 are first modified so that the relationships between T5 and NAw'n are 

expressed as linear functions with zero intercepts at NAtr/n = 0. These linear functions take the 

form 

Ts 

f' 114 
c 

= 
(2m + b) NAtr 

2 n 

NA tr 
=M-­

n 
(2) 

in which m and b = the slope and intercept, respectively, of the best-fit lines shown in Figs. 5 and 

6 (Table 4). The representation provided by Eq. 2 will be conservative for test results with a 

positive intercept, b, and thus will be conservative for the development of design criteria based on 
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the new high Rr bars. The advantage of an expression of the form shown in Eq. 2 is that the 

combined effects ofRr and bar size on T, can be represented by a single number, M, the slope of 

the modified relationship. 

The values of M developed using Eq. 2 are plotted versus Rr in Fig. 8 for the No. 5, No. 

8, and No. 11 (16, 25, and 36 mm) bars shown in Fig. 5 and the No. 8 bars shown in Fig. 6. For 

each data point, the value of Rr represents a single value, with the exception of the conventional 

No. 8 and No. 11 (25 and 36 mm) bars which use a weighted average, since a range of values was 

used for these tests. 

Best-fit lines relating M to Rr are obtained for each of the four sets of data and used to 

establish the value of M corresponding to Rr = 0.075, midway in the range used for conventional 

bars in this study. [Note: The average value of Rr obtained in a survey of steel from 28 heats, 

produced by 6 steel mills, for bar sizes No. 5, No. 6, No. 8, and No. 11, and metric bar sizes No. 

20, No. 25, No. 30, and No. 35 is 0.0727 (Darwin et al. 1995).] The individual values of Mare 

then normalized with respect to M for Rr = 0.075 to obtain the factor tr= M/MR = 0.
075 

for each 

' 
set of data. The normalization process should, presumably, remove the effects of bar size and 

conctete properties, and tr should reflect only the effect of relative rib area on T,. 

The values of tr are plotted versus Rr in Fig. 9. Each data point is weighted based on the 

number of tests represented. Based on the best-fit line, the relationship between tr and Rr is 

tr= 9.6 Rr + 0.28 (3) 

with a coefficient of determination r2 = 0.966 (Note: tr= 1 for Rr = 0.075). 

The strongly linear relationship between tr and Rr supports the accuracy of the initial 

assumption that the effects of Rr are independent of bar size and concrete properties. 

Effect of Bar Size-Once the effect of relative rib area has been determined, the next step 

is to determine the effect of bar size on T,. This is done by dividing the values ofM by tr from Eq. 
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3, thus converting the original values of M to values com:sponding to bars with Rr = 0.075. If the 

resulting values of M/tr for a single concrete are used in a regression analysis versus the bar diame­

ter, db, the equation of the best-fit line will give a relationship that represents the effect of bar 

diameter on Ts for that concrete. For the bars cast in limestone concrete (Fig. 10), the resulting 

expression is 

M 
-t = 1189 db+ 457 (4) 

r 

with r2= 0.974. 

To generalize this relationship for other concretes (an assumption at this point), Eq. 4 is normalized 

with respect to Mltr for % = 1 in. to obtain a term representing the effect of bar size on Ts. 

t.i = 0.72 % + 0.28 (5) 

The final result of the analysis is a combined variable that includes the effects of relative rib area, 

bar diameter, and transverse steel. 

NA 
t 

tr 
t-­

r d n 

NA tr 
= (9.6 R + 0.28)(0.72 d• + 0.28) --

r n 
(6) 

The individual values of M, tr, and M/tr used to develop Eqs. 3-6 are summarized in Table 

4. 

Increase in Splice Strength-When Eq. 6 was used in the statistical analysis of the 

results of 166 development and splice tests for bars confined by ttansverse reinforcement, includ­

ing the 60 tests from this study (Darwin et al. 1995), the resulting best-fit line was 

Ts 

f, 114 
c 

NA" 
= 2226 (9.6 R + 0.28)(0.72db + 0.28) -- + 66 

r n 
(7a) 



with r2 = 0.856. 

Ts 

( 1/4 
c 

12 

NA 
= 2226 t td __ ir + 66 

r n 

(7b) 

When used in conjunction with Eq. 1 to calculate total bond force, Tb = Tc + Ts, Eq. 7 

produced a mean test/prediction ratio LO I and a coefficient of variation of 0.125 (Darwin et al. 

1995). 

For conventional reinforcement (average R, = 0.0727), Eq. 7a (dropping the final term, 66) 

becomes 

Ts 

f' 1/4 
c 

NA,, 
= 2175 (0.72 db + 0.28) -n- (9) 

Recommended Value of R,...-Experience obtained during this study has demonstrated 

that bars with relative rib areas as high as 0.14 can be rolled successfully using current technology. 

However, a minimum value of R, = 0.12 appears to be a good starting point for the new bars in 

practice, because the difficulty in rolling increases with increases in R, and because steel mills will 

need to shoot for higher values of R, to insure a minimum of 0.12. Assuming that the standard 

deviation in R, for the new reinforcement will be one-half of that for conventional bars (Darwin et 

al. 1995) means that an average value ofR, = 0.1275 will be needed to insure that not more than 5 

percent of all bars will have a value of R, < 0.12. For an average relative rib area of 0.1275, Eq. 

7a (dropping the final term) becomes 

Ts 

f' 1/4 
c 

NA 
= 3350 (0. 72 db + 0.28) ~ (10) 

representing a 54 percent increase in the average contribution of transverse reinforcement to Tb 

compared to that obtained with conventional bars (Eq. 9). 

Development Length Criteria-Combining Eqs. 1 and 7b (dropping the final term in 

Eq. 7b) provides an expression for Tb· 
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T +T 
c s 

( 1/4 
= ;~~: = [63ld(cm + 0.5 db)+ 2130Ab] (o.l :: + 0.9) 

c 

+ 2226 t,td N:tr (11) 

Eq. 11 can be converted to an expression for development length, l.i, by substituting the 

yield strength, fy, for f, and I.ifs for N, in which s = spacing of transverse reinforcement in in., and 

solving for Id. 

(12) 

Eq. 12 can be altered to express ~ as a multiple of the bar diameter, ~. 

(13) 

Eq. 13 can be simplified further by setting CM/Cm= 1. 

(14) 

in which c = Cm + 0.5 db= smaller of the cover to the center of the bar or one-half of the center-
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to-center bar spacing (Note: The simplification includes dropping 0.25 in. from 

the definition of c5 that follows Eq. 1) 

A 
Kir = K1r(conv.) = 34.5 (0.72 db+ 0.28) _!. for conventional reinforcement (average Rr 

sn 

= 0.0727) 

Kir = K1r(new) = 53 (0.72 db+ 0.28) A,, for new reinforcement (average Rr = 0.1275) 
sn 

The term (c + Kir)/db in Eq. 14 must be limited to a maximum value of 4 to insure that a splitting 

failure, rather than a pullout failure, will govern bond strength. Values of (c + Kir)/db > 4 do not 

provide an increase in strength commensurate with that predicted in Eq. 11 (Darwin et al. 1995). 

The relative effect of high bearing area bars on development length can be evaluated using 

Eq. 14 by taking the ratio of I.i for the new reinforcement to I.i for conventional bars. 

ld(new) 

ld(conv.) = 
c + Ktr(conv.) 

c + Ktr(new) 
(15) 

The maximum reduction in I.i will occur for c/db = 1 [the minimum allowed under the ACI 

Building Code (1989)] and [c + K1r(new)]/~ = 4. In this case, K1r(new)/db = 3 and K1r(conv.)/db 

= (34.5/53) 3 = 0.65 x 3 = 1.95, giving l,i(new)/l.i(conv.) = 0.74, for a 26 percent savings. For 

c/db = 1 and K1r(new)/db = 2 and 1, the savings become 23 and 19 percent, respectively. Values 

ofl.i(new)/I.i(conv.) are summarized in Table 5 fore/db= 1, 1.5, 2, 2.5 and 3, and K1r(new)/db = 

0, 1, 2 and 3. Table 5 demonstrates that lower savings will be obtained as cover and bar spacing 

increase, or when [c + Kir(new)]/db exceeds 4. 

Evaluation of Test Results - Epoxy-Coated Bars 

Bar stresses at failure for the ten splice specimens containing epoxy-coated high relative rib 

area bars [Rr = 0.10 to 0.14] are compared to the corresponding uncoated bar specimens in Table 

6. All of the splices had a cover of less than 3 db, and nine out of ten of the matched pairs con­

tained splices that were not confined by transverse reinforcement The ratios of coated to uncoated 

bar splice strength, C/U, range from 0.82 to 0.95, with an overall average of 0.88. These values 
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contrast sharply with both 1) the average ratio of 0.66 for the 21 tests (Treece and Jirsa 1987, 

1989) used to establish the current development length modification factor of 1.5 for bars with 

cover less than 3 db or clear spacing less than 6 db (ACI 318-89, AASillO Highway 1992), and 

2) the average ratio of 0.74, for a data base including 113 splice tests (Hester, Salamizavaregh, 

Darwin, and McCabe 1991, 1993). These comparisons indicate that high relative rib area bars will 

require lower development length modification factors than are in current use (ACI 318-89, 

AASmo Highway 1992). 

The size of the current data set, ten matched pairs of splice specimens, closely matches the 

21 beams used to establish the current development length criteria. However, since 20 tests 

represent a relatively small data base and since additional tests are under way, it would seem wise 

to delay the formulation of specific recommendations for development length modification factors 

at this time. If the additional tests bare out the results presented in Table 6, the maximum develop­

ment length modification factor for epoxy-coated bars could be dropped from 1.5 to 1.2, providing 

a 20 percent reduction in development and splice length. That reduction would apply whether or 

not the bars were confined by transverse reinforcement 

SUMMARY AND CONCLUSIONS 

This report describes the testing and analysis of 83 beam-splice specimens containing No. 

5, No. 8, and No. 11 (16, 25, and 36 mm) bars with relative rib areas ranging from 0.065 to 

0.140. Concretes containing two different coarse aggregates were used to evaluate the effect of 

aggregate properties on bond strength. Sixty specimens contained uncoated bars with confining 

transverse reinforcement. Thirteen specimens contained uncoated bars without confining rein­

forcement. and ten specimens contained epoxy-coated bars, nine without confining reinforcement 

and one with confining reinforcement The tests were analyzed to determine the effect of relative 

rib area and bar diameter on the increase in bond strength provided by confining reinforcement. 

The tests also provided a preliminary indication of the effect of high relative rib area on the splice 
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strength of epoxy-coated bars. 

report. 

The following conclusions are based on the test results and analyses presented in this 

1. In the range of relative rib areas tested, the splice strength of uncoated bars not confined 

by transverse reinforcement does not appear to be affected by bar defoxmation pattern. 

2. The splice strength of uncoated reinforcement confined by transverse reinforcement 

increases with an increase in the relative rib area of the spliced bars. 

3. The splice strength of uncoated reinforcement confined by transverse reinforcement 

increases with an increase in the bar diameter of the spliced bars. 

4. The increase in splice strength provided by transverse reinforcement is influenced by the 

properties of the coarse aggregate used in the concrete. For a given concrete compres­

sive strength, higher strength coarse aggregates provide higher bond strengths. 

5. The use of reinforcing bars with an average relative rib area R, = 0.1275 (minimum R, 

= 0.12) can provide up to a 26 percent decrease in splice length compared to conven­

tional reinforcement. The savings obtainable with the high relative rib area bars is 

highest for low covers and bar spacings and high amounts of confining transverse 

reinforcement. The reduction in splice length decreases with increases in cover and bar 

spacing and decreases in transverse reinforcement. The relative savings with high R, 

bars will also decrease for high levels of confinement that result in bar pullout rather 

than concrete splitting governing bond strength. 

6. Epoxy coating appears to have a less detrimental effect on splice strength for high 

relative rib area bars than for conventional bars. The relative improvement in the splice 

strength of epoxy-coated reinforcement with an increase in Rr is obtained whether or not 

the splices are confined by transverse reinforcement. The results indicate that the 

maximum development length modification factor used for epoxy-coated reinforcement 

could be reduced as much as 20 percent compared to the current requirement. 
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Table 1 

Splice specimen properties and test results 

Specimen Bar++ n 15 db c10 c.; cb b h l I.: d f; N ds fyt P 

No.+ Designation (in.) (if!:L __ -.li!!)~_Jin.) __ __{i_n._) _ _Q_nJ ____ Otl____ (ft) (f!} _(in.)____ (p~i) <!'!) (ksi) (kips) 

I.I 8Cl 2 16.0 l.000 2.969 2.938 2.938 16.08 17.22 13.00 4.00 13.76 5020 20.69 

l.2 8Cl 2* 16.0 1.000 2.032 2.281 l.938 24.06 16.25 13.00 4.00 13.79 5020 35.53 

l.3 8Cl 3 16.0 l.000 2.032 l.438 l.938 16.07 16.21 13.00 4.00 13.75 5020 26.74 

l.4 SCI*' 3 16.0 l.000 2.032 l.375 l.938 16.ll 16.20 13.00 4.00 13.74 5020 21.93 

l.5 8Cl 3 16.0 l.000 2.063 l.375 l.938 16.07 16.19 13.00 4.00 13.74 5020 5 0.500 70.75 31.08 

l.6 8Cl 3 16.0 l.000 2.063 l.438 l.938 16.05 16.19 13.oo 4.00 13.74 5020 3 0.500 70.75 30.93 

2.l 8SO 2 24.0 l.000 2.250 l.706 1.328 12.!2 15.56 16.00 6.00 13.70 5250 7 0.375 69.92 22.12 

2.2 8Fl 2 24.0 l.000 2.125 l.801 l.406 12.12 15.52 16.00 6.00 13.58 5250 7 0.375 69.92 27.90 

2.3 8FI 2 24.0 l.000 2.125 l.780 l.969 12.ll 16.06 16.00 6.00 13.56 5250 4 0.375 69.92 25.77 

2.4 8FI 2 24.0 l.000 2.000 l.914 1.313 12.13 15.64 16.00 6.00 13.79 5250 19.24 

2.5 8FI 2 24.0 l.000 2.063 l.856 l.813 12.13 16.01 16.00 6.00 13.67 5250 20.69 

2.6 8Fl" 2 24.0 l.000 2.000 l.917 l.938 12.12 16.19 16.00 6.00 13.71 5250 17.41 

3.4 SCO 2 24.0 l.000 2.llO l.857 2.000 12.14 16.26 16.00 6.00 13.73 5ll0 4 0.375 69.92 19.73 

3.5 8CO 3 28.0 l.000 l.001 0.965 l.906 12.17 16.17 16.00 6.00 13.74 3810 8 0.375 69.92 27.00 

4.1 8SO 2 24.0 l.000 2.063 l.926 l.250 12.16 15.49 16.00 6.00 13.72 4090 6 0.500 70.75 22.05 

4.2 8FI 2 24.0 l.000 2.094 l.848 l.313 12.!7 15.59 16.00 6.00 13.74 4090 8 0.375 69.92 25.61 
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Table 1 

Splice specimen properties and test results (continued) 

Specimen Bar++ n I, db c,0 Csi ch b h I L: d t; N d, fy1 p 

No. + Designation (in.) (in.) (in.) (in.) (in.) (in.) (in.) (ft) (ft) (in.) (psi) _(in.) (ksi) (kips) 

8.4 8N3 2 16.0 LOOO 2.063 1.891 1.906 12.10 16.35 16.00 6.00 13.91 3830 2 0.375 6455 17.38 
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Table 1 

Splice specimen properties and test results (continued) 

Specimen Bar++ n I, d, c,. Csi c, b h I ~ d f: 
No.+ Desil:l:nation (in.) (in.) (in.) (in.) (in.) (in.) (in.) (ft) (ft) (in.) <esi) 

17.3 llF3 2 38.0 1.410 3.047 2.984 1.888 18.03 16.12 16.00 6.00 !3.48 4710 

17.4 llBO 2 38.0 1.410 3.094 3.000 1.866 18.o? 16.09 16.00 6.00 !3.49 4710 

17.5 llBO 2 30.0 1.410 3.079 3.000 1.907 18.09 16.09 16.00 6.00 13.45 4710 

17.6 llF3 2 30.0 1.410 3.063 2.969 1.911 18.07 16.20 16.00 6.00 !3.54 4710 

18.I llF3 2 40.0 1.410 1.484 4.500 1.845 18.05 16.11 16.00 6.00 13.52 4700 

18.2 JJF3** 2 40.0 1.410 2.984 3.000 1.922 18.07 16.14 16.00 6.00 !3.48 4700 

18.3 llF3 2 40.0 1.410 3.031 3.000 1.911 18.05 16.08 16.00 6.00 13.43 4700 

18.4 llBO 2 40.0 1.410 3.016 3.031 1.871 18.08 16.23 16.00 6.00 13.62 4700 

+ Specimen No. 

G.P, G =group number (l-18). P =casting order in the group (1-6) 

++ Bar Designation 

#AA.#= bar size (No. 5, No. 8 or No. 11). AA= bar manufacturer and deformation pattern 

BO 

co 
Cl,C2 

Fl,F3 

Conventional Binningham Steel bar 

Conventional Chaparral Steel bar 

New Chaparral Steel bars 

New Florida Steel bars 

NO Conventional North Star Steel bar 

N3 New North Star Steel bar 

SO Conventional Structural Metals, Inc. bar 

SHO Conventional Sheffield Steel bar 

N d, 

(in.) 

8 0.375 

8 0.375 

7 0.500 

7 0.500 

lO 0.375 

6 0.375 

6 0.375 

6 0.375 

+++ Bar stress is computed based on working stress if fJ does not exceed bar yield stress, otherwise computed based on ultimate strength 

Mu and f1 include effects of beam self weight and loading system 

• Contained 2 splices and 2 continuous bars 

** Spliced bars were coated 

I in.= 25.4 mm; I ft= 305 mm; I psi= 6.89 kPa; I ksi = 6.89 MPa; I kip= 4.45 kN; I k-in. = 0. 113 kN-m 

f" 
p M, f,+++ 

(ksi) (ki2s) (k-in.) (ksi) 

64.55 46.74 2558 68.85 

64.55 44.77 2451 65.98 

84.70 39.69 2175 58.72 

84.70 47.03 2572 68.92 

64.55 55.06 3007 80.72 

68.90 38.88 2134 57.48 

64.55 46.85 2564 69.33 

64.55 45.49 2491 66.33 

N -
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Table 2 

Properties of reinforcing bars 

Bar+ Yield Nominal Weight % Light Rib Rib Height Relative Coating 

Designation Str. Diameter or Heavy Spacing ASTM Avg.* Rib Area Thick.** 

(ksi) (in.) (lb/ft) (in.) (in.) (in.) (mils) 

5NO 65.00 0.625 1.015 2.6%L 0.350 0.036 0.035 0.082 

5C2 64.00 0.625 1.013 2.9%L 0.275 0.042 0.041 0.109 9.9 

8CO 1.000 2.615 2.1%L 0.589 0.066 0.063 0.085 

SCI 60.00 1.000 2.529 5.3% L 0.504 0.064 0.060 0.101 13.3 

8Fl 75.00 1.000 2.600 2.6%L 0.471 0.078 0.074 0.140 16.8 

8NO 79.00 1.000 2.594 2.8%L 0.650 0.057 0.054 0.069 

8N3 81.00 1.000 2.730 2.2%H 0.487 0.072 0.068 0.119 12.l 

8SO 70.00 1.000 2.568 3.8%L 0.668 0.056 0.054 0.071 

8SHO 1.000 2t6I8 1.9% L 0.637 0.054 0.052 0.065 

IINO 64.00 1.410 5.157 2.9%L 0.911 0.079 0.075 0.072 

11BO 70.00 1.410 5.102 4.0%L 0.825 0.070 0.066 0.070 

11F3 81.00 1.410 5.I45 3.2%L 0.615 0.090 0.088 0.127 6.3 

+ Bar Designation 

#AA,#= bar size (No. 5, No. 8 or No. I I), AA= bar manufacturer and deformation pattern 

BO Conventional Birmingham Steel bar 

CO Conventional Chaparral Steel bar 

CJ, C2 New Chaparral Steel bars 

Fl, F3 New Florida Stoel bars 

NO Conventional North Star Steel bar 

N3 New North SIM Steel bar 

SO Conventional Structural Metals, Inc. bar 

SHO Conventional Sheffield Steel bar 

No coated bars tested 

* Average rib height between longitudinal ribs 

** Average coating thicknesses for epoxy-~oated bars belonging to bar designation 

I ksi = 6.89 MPa; I in.= 25.4 mm; I lb/ft= 1.49 kg/m; I mil= 0.001 in.= 25.4 µm 
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Table3 

Concrete mix proportions (lb/yd3) and properties 

Group w/c Cement Water Fine CoarseAgg. wr Slump Concrete Air Test Cylinder 

Ratio Agg.* Type Temp Content Age Strength 

(oz) (in.) (F) (%) <ctaxs> (Esil 

0.41 550 225 1564 L 1588 0 2.00 80 3.50 14 5020 

2 0.36 575 205 1556 L 1588 3 0.75 91.5 3.10 7 5250 

3 0.36 575 205 1556 L 1588 3 2.75 93 3.70 5 3810 

7 5110 

4 0.36 575 205 1556 L 1588 3 1.75 95 4.50 5 4090 

5 0.36 575 205 1556 L 1588 3 1.00 83 3.60 5 4190 

6 0.36 575 205 1556 L 1588 3 2.25 77 4.70 5 4220 

7 0.36 575 205 1556 L 1588 3 5.25 67 3.50 7 4160 

8 0.45 556 250 1556 B 1670 0 1.25 86 3.00 8 3830 

9 0.45 578 260 1512 B 1670 0 3.00 95 2.30 16 4230 

10 0.42 578 240 1512 B 1670 0 2.50 91 2.50 10 4250 

11 0.42 578 240 1512 B 1670 0 3.00 91 2.10 7 4380 

12 0.36 575 205 1556 L 1588 3 2.50 88 5.50 6 4120 

13 0.36 575 205 1556 L 1588 3 2.50 91 5.20 6 4110 

14 0.44 511 225 1564 L 1661 0 2.50 90 2.90 10 4200 

15 0.44 511 225 1564 L 1661 0 2.50 83 2.30 19 5250 

16 0.44 511 225 1564 L 1661 0 3.25 59 3.10 22 5180 

17 0.44 511 225 1564 .L 1661 0 2.50 59 4.00 21 4710 

18 0.44 511 225 1564 L 1661 0 2.50 65 3.70 30 4700 

• Kansas River Sand - Lawrence Sand Co .. Lawrence. KS 

Bulk Specific Gravity (SSD) = 2.62; Absorption= 0.5 %; Fmeness Modulus= 2.89 

L Crushed Limestone - Fogel's Quarry, Ottawa, KS 

Bulk Specific Gravity (SSD) = 2.58; Absorption = 2. 7 %; Max. Size= 3/4 in.; 

Unit Weight= 90.5 !b/cu. ft 

B Basalt - Iron Mountain Trap Rock Company 

Bulk Specific Gravity (SSD) = 2.64; Absorption= 0.44 %; Max. Size= 3/4 in.; 

Unit Weight= 95.5 !b/cu. ft 

wr Water Reducer per 100 lb Cement 

1 lb/yd
3 

= 0.5933 kg/m
3

; 1 oz= 29.57 cm3
; I psi = 6.89 kPa 
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Table 4 

Analysis of effects of relative rib area, R., and bar diameter, db, on increase in 
splice strength, represented by Tsff'c114, provided by transverse reinforcement, 

represented by NA1rln (Ts in lb, f'c in psi, and Atr in in,2) 

Weighted 
No. of Mean 

Bars Tests R, 

Conv. No. 5 (L)*** 4 0.082 
5C2 (L) 4 0.109 

Conv. No. 8 (L) 19 0.073 
8Cl (L) 7 0.101 
8Fl (L) 10 0.140 

Conv. No. 8 (B) 5 0.069 
8N3 (B) 4 0.119 
8Fl (B) 4 0.140 

Conv. No. 11 (L) 6 0.071 
11F3 (L) 7 0.127 

+Slope of best-fit line 

++Intercept of best-fit line at NAtrfn = 0 

+++M = (2m + b )/2 

m+ b++ 

1347 100 
1524 122 

1727 -228 
1901 100 
2594 84 

2415 -382 

3078 -36 
3879 5 

1876 333 
2909 732 

++++Based on best-fit line for each bar size and concrete type 

*t, = MI MR, = o.01s 

**t, = 9.6 R, + 0.28 (used to calculate t,i) 

***L = limestone coarse aggregate 

B = basalt coarse aggregate 

I lb= 4.45 N; 1 psi= 6.89 kPa; 1 in.= 25.4 mm 

Mean+++ +H+ 

Slope, M MR,= oms t,* 

1397 1348 1.036 
1585 1.176 

1612 1606 1.004 

1951 1.214 
2636 1.641 

2224 2295 0.969 

3060 1.333 
3881 1.691 

2043 2138 0.956 

3275 1.532 

M/t,** 

1310 
1196 

1643 
1563 
1625 

2134 
2188 
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Table 5 

Ratios of development lengths, ld(new)/ld(conv.), comparing new (high Rr) 
and conventional reinforcing bars confined by transverse reinforcement 

(based on Eq. 14) 

c/db 0 

1 1.00 

1.5 1.00 

2 1.00 

2.5 1.00 

3 1.00 

*K1r(conv.) = 0.65 KtrCnew) 

(c + K1r)/db ~ 4 

1 

0.83 

0.86 

0.88 

0.90 

0.91 

K1r(new)/db * 

2 3 

0.77 0.74 

0.80 0.86 

0.83 0.99 

0.95 1.00 

1.00 1.00 
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Table 6 

Comparison of splice strengths for epoxy-coated (C) and uncoated 
(U) high Rr bars 

Bar 
Bar Bar Specimen Surface Stress c ** 
Size Designation R,* No. Condition (ksi) u 

No. 5 5C2 0.109 13.4 u 59.96 
13.3 c 53.91 0.899 
14.3 u 62.84 
14.4 c 57.34 0.912 

No. 8 SCI 0.101 1.3 u 45.01 
1.4 c 37.09 0.824 
4.5 u 51.06 
4.6 c 41.72 0.817 

8N3 0.119 10.1 u 61.17 
10.2 c 57.79 0.945 

8Fl 0.140 2.5 u 58.67 
2.6 c 49.37 0.841 
6.5 u 53.59 
6.6 c 49.63 0.926 

No. 11 11F3 0.127 15.5 u 54.12 
15.6 c 48.19 0.890 
16.2 u 52.38 
16.1 c 48.83 0.932 
18.3*** u 69.33 
18.2*** c 57.48 0.829 

Average 0.882 

*R, = relative rib area 
**C/U = ratio of splice strengths of coated to uncoated bars 
***Splices confined by stirrups 

1 ksi = 6.89 MPa 
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Fig. la Reinforcing bar deformation patterns, No. 8 (25 mm) bars 
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Fig. lb Reinforcing bar deformation patterns, No. 5 and No. 11 (16 and 36 mm) bars 
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splice length contains 
0 or N stirrups 
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Fig. 3 Splice test specimens, (a) as tested, (b) configurations as cast (1 in.= 25.4 mm) 
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(a) 

{b) 

Fig. 4 Cracked splice specimens after failure, (a) without confining reinforcement, (b) with 

confining reinforcement 
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Fig. 6 Increase in bond force, T., normalized with respect to f'cl/4 versus effective transverse reinforcement NA1/n, for splices in 
concrete containing basalt coarse aggregate (T, in lb, f'c in psi, A1r in in.2) (I lb= 4.45N, 1psi=6.89 kPa, I in.= 25.4 mm) 
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Fig. A.7 Load-deflection curves for splice specimens in Group 7 (1 kip = 4.45 kN, 1 in. = 25.4 mm) 
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Fig. A.8 Load-deflection curves for splice specimens in Group 8 (I kip= 4.45 kN, 1 in. = 25.4 mm) 
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Fig. A.9 Load-deflection curves for splice specimens in Group 9 (1 kip= 4.45 kN, 1 in.= 25.4 mm) 
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Fig. A.10 Load-deflection curves for splice specimens in Group 10 (1 kip= 4.45 kN, 1 in.= 25.4 mm) 
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Fig. A.I I Load-deflection curves for splice specimens in Group 11 (1 kip= 4.45 kN, 1 in.= 25.4 mm) 
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Fig. A.12 Load-deflection curves for splice specimens in Group 12 (1 kip= 4.45 kN, 1 in.= 25.4 mm) 
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Fig. A.13 Load-deflection curves for splice specimens in Group 13 (1 kip= 4.45 kN, 1 in.= 25.4 mm) 
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Fig. A.14 Load-deflection curves for splice specimens in Group 14 (1kip=4.45 kN, 1in.=25.4 mm) 

Vi 
~ 



60 
I I 

Spec. 

50l-
No. 

15.1 --- ) --- 15.2 / 
------ 15.3 

/ 40 - - 15.4 

'" (/) 
- - - 15.5 \ ' 0.. 

\ " ·- ---- 15.6 
.::L \ 

/,, ~ 30 
-0 / 
0 / 

0 / 
/ 

_J 
20 ~// -I Vl 

N 

10l- /'/ 
/ 

o· • . - • 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1 .6 1.8 

Deflection, 
• 
1n. 

Fig. A.15 Load-deflection curves for splice specimens in Group 15 (1kip=4.45 kN, 1in.=25.4 mm) 
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Fig. A.16 Load-deflection curves for splice specimens in Group 16 (1 kip= 4.45 kN, 1 in.= 25.4 mm) 
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Fig. A.18 Load-deflection curves for splice specimens in Group 18 (1kip=4.45 kN, 1in.=25.4 mm) 



AppendixB 

TableB.1 

Splice specimen properties and test results from Hester et al. 1991 

Specimen Bar++ Relative n I, d, Cw c., c, b h 

No.+ Designation Rib Area !in.) ~in.) (in.} (in.) ~in.) (in.) (in.) 

1.2 8NO O.o78 3 16.00 1.000 2.000 1.500 2.000 16.00 16.00 

2.2 8CO 0.071 3 16.00 1.000 2.000 1.500 1.830 16.00 16.28 

3.2 8SO 0.o70 3 16.00 1.000 2.000 1.500 2.080 16.06 16.24 

4.2 8SO 0.070 3 16.00 1.000 2.000 1.500 2.040 16.09 16.36 

4.3 8SO 0.070 3 16.00 1.000 2.000 1.500 2.IOO 16.09 16.28 

5.2 8CO 0.071 3 16.00 1.000 2.000 1.500 2.060 16.10 16.42 

5.3 8CO 0.071 3 16.00 1.000 2.000 1.500 2.060 16.09 16.12 

6.2 8CO 0.071 3 22.75 1.000 2.000 1.500 2.170 16.06 16.20 

6.3 8CO 0.071 3 22.75 1.000 2.000 1.500 2.160 16.03 16.17 

7.2 8CO 0.071 2 16.00 1.000 2.000 4.000 2.030 16.00 16.30 

+ Specimen No. 

G.P, G =group number (1-7), P =casting order in the group (1-3) 

++ Bar Designation 
#AA,#= bar size (No. 5, No. 8 or No. 11), AA= bar manufacturer and defonnation pattern 

CO Conventional Chaparral Steel bar 

NO Conventional North Star Steel bar 

SO Conventional Structural Metals, Inc. bar 

I l d f; 
(fil (fi) (in.~ (Esi) 

13.00 4.00 13.50 5990 

13.00 4.00 13.95 6200 

13.00 4.00 13.66 6020 

13.00 4.00 13.82 6450 

13.00 4.00 13.68 6450 

13.00 4.00 13.86 5490 

13.00 4.00 13.56 5490 

13.00 4.00 13.53 5850 

13.00 4.00 13.51 5850 

13.00 4.00 13.77 5240 

+++ Bar stress is computed based on working stress if f, does not exceed bar yield stress, otherwise computed based on ultimate strength. 

M11 and f,1 include effect of beam self weight and loading system. 

lin.=25Arnm; lft=305mm; 1psi=6.89kPa; lksi=6.89MPa; lkip=4.45kN; lk-in.=0.113kN-m 

N d, f, M, f.+++ 
(in.) (ksi) ~k-in.) (ksi) 

2 0.375 77.30 1604 56.00 

2 0.375 54.10 1305 43.99 

2 0.375 68.90 1348 46.47 

2 0.375 68.90 1384 47.06 

3 0.375 68.90 1456 50.04 

2 0.375 54.IO 1367 46.51 

3 0.375 54.IO 1244 43.31 

3 0.375 54.IO 1620 56.45 

4 0.375 54.IO 1595 55.67 

3 0.375 54.IO 1019 51.49 

(.}\ 

°' 
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Appendix C 

Notation 

Ab = bar area, in in.2 

Atr = area of each stirrup or tie crossing the potential plane of splitting adjacent to the 
reinforcement being developed or spliced, in in.2 

b = intercepts of the best-fit lines relating T Jf cl/4 to NAtri'n in Figs. 5 and 6 or beam 
width in Table 1, in in. 

C =Cm+ 0.5 db 

Cb = bottom cover of reinforcing bars, in in. 

CM =maximum value of c, or cb (cM/Cm ~ 3.5), in in. 

Cm =minimum value of c, or Cb (cM/Cm ~ 3.5), in in. 

c, =min (Csi + 0.25 in., c50) or min (Csi• C50), in in. 

Csi = one-half of clear spacing between bars, in in. 

c,0 = side cover of reinforcing bars, in in. 

d = beam effective depth, in in. 

db = nominal bar diameter, in in. 

d, = stirrup diameter, in in. 

f c = concrete compressive strength, in psi; f cl/4 in psi 

fs = steel stress at failure, in psi 

fy = yield strength of bars being spliced or developed, in psi 

fyt = yield strength of transverse reinforcement, in ksi 

h = beam depth, in in. 

Ktr = Ktr(conv.) = 34.5 (0.72 db+ 0.28)Atri'sn for conventional reinforcement (average 
Rr = 0.0727) 

= Ktr(new) = 53 (0.72 db+ 0.28)Atrl'sn for new reinforcement (average Rr = 0.1275) 

l = beam length, in ft 

le = length of constant moment region, in ft 

!ct = development or splice length, in in. 
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ls = splice length, in in. 

M = slope of the modified relationship in Eq. 2 

MR,= O.D7S = value of M at R,=0.075 

Mu = moment at splice failure, in kip-in. 

m = slopes of the best-fit lines relating Ts/f' cl/4 to NAa:fn in Figs. 5 and 6 

N =number of transverse reinforcing bars (stirrups or ties) crossing l<J 

n = number of bars being developed or spliced along the plane of splitting 

P = total applied load at splice failure, in kips 

Rr = ratio of projected rib area normal to bar axis to the product of the nominal bar 

perimeter and the center-to-center rib spacing 

s = spacing of transverse reinforcement, in in. 

Tb = total force in a bar at splice failure, in lb 

Tc = concrete contribution to total force in a bar at splice failure, in lb 

Ts = confining steel contribution to total force in a bar at splice failure, in lb 

t,i = term representing the effect of bar size on Ts 

tr =term representing the effect of relative rilY area on Ts 




