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Abstract

Motivation: During the last decade, improvements in high-throughput sequencing have generated

a wealth of genomic data. Functionally interpreting these sequences and finding the biological

signals that are hallmarks of gene function and regulation is currently mostly done using

automated genome annotation platforms, which mainly rely on integrated machine learning

frameworks to identify different functional sites of interest, including splice sites. Splicing is an

essential step in the gene regulation process, and the correct identification of splice sites is a major

cornerstone in a genome annotation system.

Results: In this paper, we present SpliceRover, a predictive deep learning approach that outper-

forms the state-of-the-art in splice site prediction. SpliceRover uses convolutional neural networks

(CNNs), which have been shown to obtain cutting edge performance on a wide variety of prediction

tasks. We adapted this approach to deal with genomic sequence inputs, and show it consistently

outperforms already existing approaches, with relative improvements in prediction effectiveness

of up to 80.9% when measured in terms of false discovery rate. However, a major criticism of

CNNs concerns their ‘black box’ nature, as mechanisms to obtain insight into their reasoning proc-

esses are limited. To facilitate interpretability of the SpliceRover models, we introduce an approach

to visualize the biologically relevant information learnt. We show that our visualization approach is

able to recover features known to be important for splice site prediction (binding motifs around the

splice site, presence of polypyrimidine tracts and branch points), as well as reveal new features

(e.g. several types of exclusion patterns near splice sites).

Availability and implementation: SpliceRover is available as a web service. The prediction tool and

instructions can be found at http://bioit2.irc.ugent.be/splicerover/.

Contact: jasper.zuallaert@ugent.be

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

The identification of functional sites such as splice sites, start/stop

codons and coding and non-coding regions in the genome constitutes an

essential component of current annotation systems (Sterck et al., 2012).

These annotation systems highly depend on state-of-the-art machine

learning approaches that are used for both identifying the specific

functional sites as well as for constructing integrative models that

combine different predictions to learn the overall gene structure

(Foissac et al., 2008). In particular, splice site prediction models are

used to identify donor and acceptor splice sites, which respectively de-

note the exon–intron and intron–exon junctions. Identifying splice sites

is an essential step in elucidating the gene structure, and splice site pre-

diction systems can be used to gain novel insights into alternative splic-

ing events as well as potential splicing defects, e.g. by identifying

mutations that would hinder correct splicing (Jian et al., 2014).

The identification of donor splice sites is typically seen as a

binary classification problem different from the identification of ac-

ceptor splice sites, and where both problems require making a dis-

tinction between true splice sites and pseudo splice sites. The

corresponding datasets are composed of sequences of a fixed length,

representing the regions around canonical splice site dinucleotide

patterns (GT and AG for donors and acceptors, respectively), as they

account for almost 99% of known sites (Burset et al., 2001).

In this paper, we introduce SpliceRover, an approach that lever-

ages convolutional neural networks (CNNs) for splice site predic-

tion. CNNs are highly suitable for pattern recognition tasks, and

they have been successfully applied in many state-of-the-art solu-

tions for image processing problems (Krizhevsky et al., 2012) and

natural language processing tasks (Kim, 2014). However, deep neur-

al networks often behave as black box models, yielding limited in-

terpretability of the decision-making processes carried out by these

models.

This work presents the following contributions:

• We outline an effective CNN-based architecture for genomic

data analysis, outperforming the state-of-the-art for the use case

of splice site prediction.
• We conduct a systematic and comparative evaluation of our end-

to-end learning approach using four different datasets, consisting

of arabidopsis thaliana or human DNA samples, targeting both

donors and acceptor splice sites. For the sake of reproducibility,

we added all experimental details as Supplementary Materials.
• We provide detailed insights into the inner workings of our mod-

els, visualizing and interpreting a variety of biologically relevant

features they automatically learn without any prior knowledge.

Our visualizations produce qualitatively coherent results, verifi-

able against known hypotheses that have been put forward by

human experts.
• We provide a publicly available prediction tool as a web service,

for both donor and acceptor splice site prediction, aiming at

both the human and the arabidopsis genome.

2 Related work

We can divide existing methods for splice site prediction into three

major categories: (i) probabilistic methods; (ii) alignment-based

methods; and (iii) machine learning methods.

Earlier approaches utilize probabilistic models to perform pre-

dictions, for instance taking advantage of Markov models (Pertea

et al., 2001). Alignment-based approaches use reads from RNAseq

for measuring gene expression levels and splice site prediction

(Trapnell et al., 2009; Wang et al., 2010). Recently, machine learn-

ing has become increasingly popular, as the steep increase in cheap

computational power makes the use of computationally complex

models feasible. Moreover, given that sequencing techniques are

becoming cheaper and more effective, more sequencing data and

annotations are available, which means that complex models can

take advantage of more data to train on.

A well-known machine learning technique consists of the use of

support vector machines (SVM). While being a popular technique,

an SVM-based approach often still makes use of manually defined

features (Bari et al., 2012; Degroeve et al., 2005), though string ker-

nels are available for pattern analysis (Sonnenburg et al., 2007).

Other machine learning techniques allow for automatic feature ex-

traction, and these techniques have been used for splice site predic-

tion as well, including an approach based on restricted Boltzmann

machines (Lee and Yoon, 2015). CNNs also facilitate automatic fea-

ture extraction. With respect to splice sites, CNNs have been used

for combined donor/acceptor prediction (Zhang et al., 2016) and

branch point prediction (Dean et al., 2016; Paggi and Bejerano,

2017), though model interpretability is provided only to a limited

degree. In addition, they have been deployed in a wide range of gen-

omic analysis use cases, such as predicting DNA-protein binding

(Zeng et al., 2016), sequence classification (Nguyen et al., 2016), al-

ternative splicing pattern prediction (Leung et al., 2014) and others

(Alipanahi et al., 2015; Quang and Xie, 2016; Sønderby et al.,

2015).

To address the lack of understanding of the decision-making

processes executed by neural networks, multiple studies have been

conducted on visualizing learnt features. Different approaches util-

ize occlusion masks or mutation maps to measure sensitivity in the

input (Alipanahi et al., 2015; Zeiler and Fergus, 2014). Zeiler and

Fergus (2014) also define transposed convolutions to create so-

called deconvnets, which allow propagating a specific activation

back to the input layer, yielding visualizations of specific neurons or

convolutional filters. Other approaches calculate the gradient to

measure which input signals have the greatest impact on a specific

prediction (Bach et al., 2015). Shrikumar et al. (2017) present

DeepLIFT, which addresses the shortcomings of the aforementioned

visualization approaches, calculating contribution scores by com-

paring the activation of each neuron to a reference activation.

However, while being intuitive in the visual domain, it is not

straightforward to interpret the calculated scores in genomic data to

determine the decisive prediction factors. Therefore, the research ef-

fort presented in this paper utilizes DeepLIFT to visualize the rea-

soning of our neural network models in an interpretable way.

3 Proposed approach

In this section, we outline our approach for predicting splice sites.

We first give an introduction to CNNs, followed by an overview of

the network architecture designed. Finally, we discuss the visualiza-

tion algorithm used.

3.1 Convolutional neural networks
Artificial feed-forward neural networks (NNs) are computer models

designed for the representation of high-level abstractions in data,

largely based on how the human brain works (LeCun et al., 2015).

These models consist of different layers, each holding a number of

neurons. Each neuron consists of a number of parameters (weights).

Typically, a network consists of an input layer, a number of hidden

layers and an output layer. Input data are propagated through the
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network, yielding activations (intermediary results) for each hidden

layer and resulting in a final prediction at the last layer. To create a

more complex model that enables the representation of non-linear

functions, a non-linearity is applied to the activations of each layer

(e.g. a rectified linear unit). Typically, in classification problems, the

last layer uses the softmax function in its calculations, generating a

probability for each class.

NNs learn from annotated training data by adjusting the weights

based on a cost function. This cost function represents the difference

between the predictions of the network and the annotated labels.

However, a hidden layer of a NN has individual, independent

weights for every position in the input it receives. This implies that it

is not possible to learn to look for a particular pattern over a whole

sequence. For that purpose, CNNs were introduced. These are NNs

with one or more convolutional layers. Each of these layers has a

number of filters, sliding over the sequence and detecting patterns.

Here, weights are stored within a filter to be shared over different

positions.

To recognize a particular pattern on different positions, we also

need to reduce the dimensionality throughout our network. By

doing so, an activation in the final layers of a network holds infor-

mation over a range of positions. To reduce the dimensionality of an

input sequence, subsampling can be applied by combining neighbor-

ing activations into a single value. An example is max-pooling,

where the maximum activation over a number of positions is kept.

Like this, dimensionality is reduced, whilst keeping track of the

most significant activations.

3.2 Network architecture
To detect discriminatory patterns in DNA sequences that lead to

correct predictions, we constructed a CNN. An illustration of our

network architecture is given in Figure 1. Given the use of filters,

sliding over the input layer, the need for manually defined positional

and compositional features is eliminated. The network automatical-

ly learns which features are critical.

Training is conducted on a set of raw DNA sequences, which we

convert to numerical vectors using a one-hot encoding (e.g. A corre-

sponds to the vector [1, 0, 0, 0]). Next, a number of alternating con-

volutional, dropout and max-pooling layers are applied, followed

by one or more fully connected layers, to conclude with a softmax

classifier. The classifier outputs a number between 0 and 1 for both

the positive and negative classification, indicating the probability it

assigns to those predictions.

In Section 4, we provide the exact parameters of our topology.

3.3 Visualization and interpretation
To achieve the visualization of the features learnt by our network,

we make use of the DeepLIFT algorithm, as recently proposed by

Shrikumar et al. (2017). Given a particular prediction, DeepLIFT

allows computing an individual contribution score for each nucleo-

tide, based on the difference of the output from some ’reference’ out-

put in terms of differences of the inputs from their ’reference’ inputs,

by backpropagating that difference through the network.

Our approach consists of three steps:

1. Computation of contribution scores

2. Normalization of contribution scores into weighted contribution

scores

3. Aggregation of weighted contribution scores so to be able to

identify regions/structures of interest

Firstly, for every nucleotide of an input sequence, a contribution

score is calculated by making use of the Rescale Rule of the

DeepLIFT algorithm. As a reference input, the strategy as proposed

by the authors of DeepLIFT is used, which uses the expected fre-

quency of every nucleotide at each position. To that end, we calcu-

late the averages of the one-hot encodings at every position over the

negative training set. For more details on the usage of DeepLIFT, we

would like to refer the interested reader to Shrikumar et al. (2017).

The obtained contribution scores express the importance of the

corresponding nucleotides for the final prediction. This results in

contribution scores for all nucleotides of each input sequence in a

given dataset. However, these scores do not always act on the same

scale for different models. Therefore, we normalize the scores for all

sequences in a given dataset.

The formula for normalizing to weighted contribution scores is

as follows:

wcsij ¼ 100 �m � csijPm
p¼1

Pn
q¼1 jcspqj

; (1)

with csij denoting the contribution score for the nucleotide in se-

quence i at position j, wcsij denoting the weighted contribution score

at that position, m denoting the number of samples in the dataset,

and n denoting the sequence length. That way, each weighted contri-

bution score indicates the importance of the corresponding nucleo-

tide towards the prediction made, and where this importance is

expressed as a percentage.

The absolute values of the percentages of one sequence add up to

100% if the prediction for that particular sequence by the network

Fig. 1. Our proposed network architecture. Input vectors are fed to a first convolutional layer, with filter size k� 4 (with k denoting the length of the input se-

quence). After the first convolutional layer, a max-pooling layer is applied, followed by a number of alternating convolutional and max-pooling layers. After the

last max-pooling, all filter outputs are fed to a fully-connected layer. If necessary, extra fully-connected layers can be added. Finally, the last fully-connected layer

is connected with a softmax classifier
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is made with an average confidence. If it has more discriminative

features, resulting in a higher confidence, then the sum will be higher

than 100%, and analogously, in case of a lower confidence, the sum

will be lower than 100%. Like that, the scores for different datasets

can be normalized to the same scale, whilst also providing an inter-

pretation of the resulting numbers.

For example, given a dataset with sequences ACTG and CGTG with

respective contribution scores (0.1, –0.2, 0.3, –0.05) and (0.5, 0.6, 0.15,

–0.01), this would result in (10, –20, 30, –5) and (50, 60, 15, –10)

after normalization. As can be seen, the absolute values of the weighted

contribution scores of the second sequence add up to a total of 135,

indicating that the features in this sequence result in a prediction with

higher confidence.

Finally, we produce visualizations by aggregating the weighted

contribution scores of all sequences in a dataset in four different

ways:

1. Average contribution score per position: At each nucleotide pos-

ition, we calculate the average contribution score for all nucleo-

tides occurring at that position, regardless of their type.

2. Average/median contribution score per position per nucleotide:

At each nucleotide position, we calculate the average contribu-

tion score per nucleotide. This means we achieve an average/me-

dian score at that position per type of nucleotide.

3. Most important patterns in a specific region: We specify a pat-

tern length k and a region [a, b]. All k-mers occurring in that re-

gion are extracted from the dataset, and the contribution score

for each occurrence is calculated, by summing up the individual

contribution scores. Next, for each possible pattern (4k possibil-

ities), we calculate the average/median contribution score in the

extracted occurrences. Finally, we select the patterns with the

most positive and most negative average/median contribution

scores.

4. Average contribution score of a specific pattern in different

regions in the sequence: We specify a pattern, of which we ex-

tract the occurrences at every possible starting position, whilst

also calculating their corresponding contribution scores. Next,

at each starting position, we calculate the average/median contri-

bution score of the extracted occurrences. Finally, as an optional

extension, we also group together multiple starting positions

into regions. This is further clarified in the Supplementary

Materials (Section 2.5).

4 Experimental setup

To evaluate the effectiveness of the proposed predictive models, we

compare our approach to a number of state-of-the-art techniques. In

this section, we first give an overview of the datasets and metrics

used. For detailed information about the composition of each data-

set, we refer the interested reader to the respective papers. The size

and class distribution of each dataset can be found in Table 1. Next,

we give an overview of the parameters of our network architecture

and the settings used by our training procedure. Finally, we discuss

our setup for visualizing the decisive features in our splice site pre-

diction models.

4.1 Data, metrics and benchmark methods
4.1.1 Degroeve et al. (2005)

The authors define SpliceMachine, an approach that uses linear

SVMs with manually defined positional and compositional features.

Tests are conducted on an arabidopsis thaliana donor and acceptor

splice site dataset. Ten-fold crossvalidation is applied. Effectiveness

is measured in terms of the precision (Pr) for a sensitivity (Se) or re-

call of 0.95. We will refer to this metric as Pr.95. To quantify rela-

tive improvements, we take into account the false discovery rate

(FDR) for a sensitivity of 0.95, which is equal to 1-Pr.95. We refer

to this metric as FDR.95.

Se ¼ TP

TPþ FN
Pr ¼ TP

TPþ FP
FDR ¼ FP

TPþ FP
;

where TP denotes true positives, FP false positives, FN false nega-

tives and TN true negatives.

4.1.2 Sonnenburg et al. (2007)

The authors use SVMs for splice site recognition by making use of a

weighted degree kernel with shifts complemented by six spectrum

kernels. Tests are conducted on the Genome Wide Human (GWH)

dataset, containing sequences of 140 nucleotides. 5-fold crossvalida-

tion is applied. In each of the five validations, the negative samples

in the training set are subsampled by a factor of 5. However, the

pos:neg ratios of the validation and test sets are kept at their original

values. Effectiveness is measured in terms of area under the

precision-recall curve (auPRC).

4.1.3 Bari et al. (2012)

The authors use a self-defined encoding scheme with an SVM to pre-

dict splice sites in the NN269 dataset. In the acceptor set, sequences

have a length of 90 nucleotides (68 nucleotides preceding and 20

nucleotides succeeding the splice site). In the donor set, sequences

have a length of only 15 nucleotides (7 in front of and 6 behind the

splice site). The data are divided into a set for training and a set for

testing. Effectiveness is measured in terms of sensitivity, specificity

Table 1. Characteristics of the datasets used in our experiments

Authors Dataset Origin # pos # neg Pos:neg Seq length Metrics

Degroeve et al. (2005) arabidopsis donors Plant 9208 263 507 1:28.6 402 Pr.95

arabidopsis acceptors 9310 227 225 1:24.4 402 Pr.95

Sonnenburg et al. (2007) GWH donors Human 160 600 76 335 126 1:475.3 141 auPRC

GWH acceptors 158 217 54 469 622 1:344.3 141 auPRC

Bari et al. (2012) NN269 donors Human 1324 4922 1:3.7 15 sensitivity, specificity,

accuracy, auROC

NN269 acceptors 1324 5553 1:4.2 90 sensitivity, specificity,

accuracy, auROC

Lee and Yoon (2015) GWH donors Human 80 515 402 575 1:5 398 F1

GWH acceptors 79 250 396 250 1:5 398 F1
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(Sp), accuracy (Acc) and area under the receiver operating character-

istic curve (auROC).

Sp ¼ TN

TN þ FP
Acc ¼ TN þ TP

TN þ TPþ FPþ FN

4.1.4 Lee and Yoon (2015)

The authors tackle the problem of splice site prediction using deep

belief networks (DBNs), consisting of stacked restricted Boltzmann

machines. The encoding strategy is a unigram one-hot encoding. Tests

are conducted on the GWH dataset. For training and evaluation, each

chromosome is treated separately. In particular, for each chromo-

some, the negative samples are randomly subsampled to achieve a

pos:neg ratio of 1:5. Next, 10-fold crossvalidation is conducted, lead-

ing to a total of 240 tests. For each test, the F1 score is calculated.

F1 ¼ 2 � Se � Pr

Seþ Pr
¼ 2 � TN

2 � TN þ FN þ FP

The experiments performed are equivalent to the use of 24 separ-

ate datasets of different sizes. There is an important difference in the

size of these datasets. Where the average size of the datasets used is

equal to 19 965 samples, the smallest set consists of 1458 samples,

and the biggest set of 47 736 samples.

4.2 Model parameters and training procedure
Our proposed architecture consists of five convolutional layers. The

first layer uses 70 filters of size 9�4 over the input. The next convo-

lutional layers have 100, 100, 200 and 250 filters for each layer, re-

spectively, all of size 7�1. The third, fourth and fifth convolutional

layer are followed by subsampling, taking the form of max-pooling

layers having a size of 3�1, 4�1 and 4�1, respectively. The last

convolutional layer is followed by a fully-connected layer with 512

neurons. We end by adding a softmax layer with an output for the

positive class and an output for the negative class. Furthermore, all

convolutional and fully-connected layers are succeeded by a rectified

linear unit (ReLU). During training, a dropout layer (p¼0.2) is also

added behind each of the first two convolutional layers, each max-

pooling layer and the fully-connected layer.

For training, we used the categorical cross-entropy cost function. In

addition, training was done using stochastic gradient descent with nes-

terov momentum, starting at a learning rate of 0.05. Every five epochs,

we divided the learning rate by two, until we reached 50 epochs.

Finally, we selected the model that yielded the best validation result.

For input sequences with a length of 205 or less, we scaled down

the pooling sizes of our subsampling layers, as the sequence length

after the last pooling layer would otherwise drop below two, which

would too greatly decrease the expressive capacity of the network.

Additionally, as the samples in the NN269 donors set only have a

sequence length of 15, we also downscaled the number of layers and

the filter sizes. The exact details can be found in the Supplementary

Materials (Section 1).

4.3 Visualization
For visualizing the features learnt, we ran tests on four distinct data-

sets: arabidopsis donor, arabidopsis acceptor, GWH donor and

GWH acceptor. Given that we want to compare the results obtained

for the aforementioned datasets, we performed random subsampling

on each dataset in order to achieve an equal pos:neg ratio of 1:20.

Besides that, we only made use of samples representing canonical

splice sites.

We divided each of the datasets into a set for training, validation

and testing, using a 3/1/1 distribution. Each dataset yields an indi-

vidual model, by first training on the training set and then selecting

the optimal model using the validation set. Finally, we use the

sequences in the test set for visualization purposes.

4.4 Test setup
All tests were conducted on a system with 64 GB of RAM, a 1 TB

SSD and 4 Titan X GPUs, each with 12 GB of memory. We made

use of the Theano (v0.9), Lasagne (v0.2) and Keras (v1.1.1) Python

packages for training and testing, and of the DeepLIFT (v0.4.0) soft-

ware package (Shrikumar et al., 2017) for feature visualization.

5 Results and discussion

5.1 Comparison with other approaches
We compare our approach with the state-of-the-art on all of the

datasets listed in Section 4. The obtained results are shown in

Table 2.

As can be seen in Table 2, we significantly outperform the

SpliceMachine models with ours. On the donors dataset, we de-

crease the FDR.95 from 0.20 to 0.044, which is a relative decrease

of 78.0%. On the acceptors dataset, we are able to decrease the

FDR.95 from 0.32 to 0.061, yielding a relative decrease of 80.9%.

It is clear that our models are able to automatically learn decisive

features, substantially outperforming the aforementioned linear

SVMs using manually defined features.

Results for the Sonnenburg et al. benchmark are given in

Table 2. For the donors set, we are able to increase the auPRC from

0.5469 to 0.6194, an increase of 13.2%. When testing on the ac-

ceptor set, we increase the auPRC from 0.5412 to 0.5960, yielding a

relative improvement of 10.1%.

As can be seen in Table 2, the difference in effectiveness between

our model and the Bari et al. benchmark is negligible for the donors

Table 2. Results obtained for the various datasets, compared to the benchmark results

Pr.95 auPRC med F1 score Se Sp Acc auROC

Donors SpliceMachine 0.80 Sonnenburg et al. 0.5469 Lee et al. 0.816 Bari et al. (Poly) 0.8798 0.9719 0.9525 0.9830

SpliceRover 0.956 SpliceRover 0.6194 SpliceRover 0.907 Bari et al. (RBF) 0.8894 0.9693 0.9525 0.9824

SpliceRover 0.9011 0.9674 0.9535 0.9829

Acceptors SpliceMachine 0.68 Sonnenburg et al. 0.5412 Lee et al. 0.753 Bari et al. (Poly) 0.7740 0.8716 0.9339 0.9790

SpliceRover 0.939 SpliceRover 0.5960 SpliceRover 0.873 Bari et al. (RBF) 0.7930 0.8728 0.9358 0.9791

SpliceRover 0.9077 0.9739 0.9612 0.9899

Note: Comparisons are made with SpliceMachine on the arabidopsis dataset, Sonnenburg et al. on the GWH dataset, Bari et al. on the NN269 dataset, listing

the results for a polynomial kernel and an RBF kernel and Lee et al. on the GWH dataset. The bold value indicates the best performance for that particular metric

over all approaches tested.
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set. We observe an auROC of 0.9830 and 0.9829 for the benchmark

with polynomial kernel and SpliceRover, respectively, resulting in a

relative increase in (1-auROC) of 0.6%.

The similarity in effectiveness in terms of auROC is related to

the length of the sequences. Indeed, sequences in the donors set con-

tain less information than sequences in the other datasets, as the for-

mer only consist of 15 nucleotides. The NN269 acceptors dataset

contains 90 nucleotides per sequence. Therefore, we expect to see a

higher effectiveness on this set for our model. Here, we obtain an in-

crease in auROC from 0.9791 to 0.9899, resulting in a relative de-

crease of 51.7% in terms of (1-auROC). Further confirmation of

our hypothesis can be found in the Supplementary Materials

(Section 1.4), where we compare both approaches over datasets

with an increasing sequence length.

In Table 2, we enlist the medians of the results of the 10-fold

crossvalidation on 24 chromosomes, in terms of F1 score, both for

our models and the Lee et al. benchmark. The median for donor

splice sites increases from 0.816 to 0.907, implying a relative de-

crease in error in terms of F1 score (1-F1) of 49.5%. For acceptor

splice sites, we see an increase from 0.753 to 0.873, resulting in a

relative error reduction of 48.6%.

5.2 Visualization and interpretation
In this section, we present our visualizations based on four models

trained independently on four distinct datasets. The prediction ef-

fectiveness of these models is presented in Table 3.

To interpret the decisions made by the networks, we evaluate

five hypotheses. Extra visualizations can also be found in the

Supplementary Materials (Section 3).

1. The nucleotides in the proximity of a splice site have the high-

est impact on the prediction outcome. The regions around these

nucleotides are also more influential than the regions at the edges of

the input sequence.

Figure 2 visualizes the nucleotide importance per position for the

human donors dataset and the human acceptors dataset. The nucleo-

tides around the splice site have the highest average influence on the

result. The wider regions around the splice site are generally also

more important than the edges. Particularly, in front of an acceptor

site, this difference in contribution is noticeable, as it is caused by

the presence of the polypyrimidine tract (PPT, see Hypothesis 5).

The importance per position graphs for the arabidopsis datasets con-

firmed the observations made for the human datasets.

Additionally, the contribution score of the nucleotides GT or AG

that embody the splice site, will always be zero, as all the input sam-

ples have the same nucleotides at that position.

2. At the center of the sequence, the networks look for a splice

site pattern that resembles well-known splice site motifs.

In Figure 3, we compare the average weighted contribution

scores around the splice site to well-known splice site motifs

(Stephens and Schneider, 1992). Specifically, we study the region

[–3, 5] of the donor sites, and the region [–10, 1] of the acceptor

sites. The bar charts represent the average scores per nucleotide. We

found that on each position studied but one (for donors at position

�3), the most frequent nucleotide (as depicted in the sequence motif)

is also always the nucleotide with the highest average score at that

position in our calculations.

In general, the proportions between the weighted contribution

scores of the different nucleotides are also similar to the propor-

tions between the nucleotide frequencies. One exception can be

found at donors position 2, where we have a positive average

score for A but not for G, even though the sequence motif suggests

an almost equal distribution of As and Gs at that position. If we

Table 3. Evaluation results obtained for the four models on the test

set to be used for visualization

Dataset auPRC

Arabidopsis donors 0.9861

Arabidopsis acceptors 0.9611

GWH donors (human) 0.9398

GWH acceptors (human) 0.9550

Fig. 2. Importance per position. The average absolute weighted contribution score for each nucleotide position is shown for our human donors and acceptors

models

Fig. 3. The average weighted contribution score for each nucleotide, per position. For comparison purposes, we also make use of sequence logos to visualize the

well-known splice site motifs, as determined by Stephens and Schneider (1992)
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look at that position in the dataset used for the visualization, we see

that 58% of all positives contain an A at that position, and 35% con-

tain a G. Additionally, we see that 12% of the sequences with an A at

that position are labeled positive, yet only 5% of the sequences with a

G are labeled positive. These observations explain the difference be-

tween both nucleotides in our visualization.

Additionally, the acceptor model clearly learns the characteris-

tics of the PPT preceding each acceptor site. In this region, they

achieve a positive average weighted contribution score for T and C

content. This is confirmed by the positive samples in our data, where

we have a CþT rate of 76% for humans in region [–18, –5].

3. The networks automatically learn to distinguish exon content

from intron content. For a positive classification, the content at the

left and right side of the splice site under investigation should con-

form to the characteristics of introns or exons.

To evaluate this hypothesis, we plot the median weighted contri-

bution scores per position, rather than the averages, to rule out the

influence of outliers that are part of a bigger pattern. Amit et al.

(2012) suggest an increase of GþC content in exons as compared to

introns in arabidopsis.

Figure 4 confirms that our arabidopsis donor model indeed

learns the aforementioned property. GþC content yields positive

scores in front of the splice site (exon), and negative scores behind

the splice site (intron). The opposite is true for TþA content.

The opposite effect occurs for our arabidopsis acceptor model.

GþC content yields positive scores behind the splice site (exon) and

negative scores in front of the splice site (intron). For Ts, this effect

particularly occurs in front of the splice site, due to the abundance

of Ts in the PPT.

4. The networks are highly sensitive to other potential splice sites

occurring in the remainder of the sequence, decreasing or increasing

the possibility that the currently investigated splice site is indeed a

true splice site.

Apart from single nucleotides, our networks also take into ac-

count longer patterns when predicting splice sites.

We make a distinction between patterns preceding the potential

splice site and patterns succeeding the splice site. Figure 5 shows patterns

with a length of six nucleotides, yielding the highest and lowest average

weighted contribution scores for the arabidopsis donors model. A pat-

tern size of six was chosen to maintain a significant number of occur-

rences per pattern in our dataset. The most positive patterns preceding

the splice site again justify Hypothesis 3, as the fifteen highest scoring

patterns in front of the site consist for 70% of GþC content, and the fif-

teen highest scoring patterns behind the site for 81% of TþA content.

More interestingly, the fifteen most negative average scores are

of a much greater magnitude than the positive ones. For example,

the GGTAAG pattern contributes negatively for 41.2% on average to

the final prediction when preceding the splice site, whereas the

CCAGGA pattern only contributes for 2.3%. We conclude that the

model is highly sensitive to the negative patterns shown in this plot.

Furthermore, when we take a closer look at the patterns, we can see

that they actually represent another donor splice site.

Figure 6a gives an overview of how the CAGGTAAG pattern con-

tributes over different positions, for arabidopsis donors. The pattern

scores negatively over the whole sequence. This is as expected, be-

cause the sequences are too short to contain both a full exon and a

full intron in the first or the last 200 nucleotides, which would yield

the possibility of the presence of a second true donor site. As a re-

sult, as soon as the model encounters the CAGGTAAG splice site pat-

tern in another place, it will conclude that the site in question is

much more likely to be a true donor site, resulting in a negative pre-

diction for the splice site under investigation.

5. Additional biological features are recognized by the networks,

such as the polypyrimidine tract (PPT) located upstream of an ac-

ceptor splice site, and the presence of a branch point.

In Hypothesis 2 and Hypothesis 3, we already indicated that our

network learns several characteristics of the PPT in front of an

acceptor site. In addition, we know that a branch site should be

located upstream of the PPT. This branch site is located in the re-

gion [–36, –23] for humans in approximately 83% of the cases

Fig. 4. Median weighted contribution scores for the different types of nucleotides at each position, for both arabidopsis donors and acceptors

Fig. 5. The lowest and highest average weighted contribution scores for patterns of length six occurring in the regions specified, for our arabidopsis donors

model
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(Gao et al., 2008). A typical branch site is represented by the nucleo-

tide pattern CTNA (Iwata and Gotoh, 2011).

In Figure 6b, we investigate the influence of the typical branch site

pattern CTNA (Iwata and Gotoh, 2011). We observe a clear peak in the

aforementioned region, which is marked in the graph. Furthermore,

we observe that the branch site pattern scores negatively when it occurs

in the proximity of the splice site under investigation. This confirms

that the network looks for a branch point in the correct region.

An extra characteristic upstream of acceptor sites is the presence

of an AG exclusion zone (AGEZ), as suggested by Gooding et al.

(2006). For humans, the AGEZ spans the region between the twelve

nucleotides before the branch point, up to the acceptor site. Thus,

when investigating the region [–23, 2] in Figure 6c, a sharp drop in

median weighted contribution score occurs for the pattern AG.

6 Conclusions

In this paper, we introduced SpliceRover, a CNN-based end-to-end

learning approach for splice site detection, facilitating automatic

feature extraction and classification of genomic sequences as true or

pseudo splice sites. Specifically, we designed and implemented a

multi-layered convolutional neural network architecture, taking

genomic sequences as one-hot vectors as input, and generating prob-

abilities for a positive and negative classification as output. When

compared to four state-of-the-art splice site prediction techniques,

our trained models performed better.

Furthermore, we provided an in-depth analysis of the choices

made by our network models, demonstrating that our models learn

biologically relevant properties of splice sites, exons and introns. In

particular, we presented five hypotheses, which we were all able to

prove, mainly through interpreting visualizations. In that context,

we could observe that most of the decision-making is happening in

the proximity of the splice site itself, where we found that our mod-

els learnt the well-known splice site motifs. Also, the arabidopsis

models were able to make a distinction between exons and introns

by comparing the GþC and AþT content of the different regions in

the input sequence. Besides that, we could observe that our models

are highly sensitive to other splice site patterns present in the se-

quence, greatly lowering the odds of the currently investigated splice

site to be seen as a real splice site when this situation occurs. Finally,

our models also learnt the properties and the position of the

polypyrimidine tract and the branch point preceding an acceptor

splice site.

All visualizations were obtained for models that did not possess

any biological knowledge prior to training on the datasets used. As a

result, we can state that our visualizations help in interpreting the

underlying decision-making processes of the CNN-based predictive

models, which typically have a black box nature. At the same time,

we believe that our visualizations open up a door towards under-

standing biological questions of which we currently have little

knowledge, by granting the possibility of training a network on raw

genomic data and evaluating which features that network is sensitive

to, a direction we plan to pursue in future research.
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