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ABSTRACT
Motivation: The traditional approach to annotate alterna-
tive splicing is to investigate every splicing variant of the
gene in a case-by-case fashion. This approach, while use-
ful, has some serious shortcomings. Recent studies indi-
cate that alternative splicing is more frequent than previ-
ously thought and some genes may produce tens of thou-
sands of different transcripts. A list of alternatively spliced
variants for such genes would be difficult to build and hard
to analyse. Moreover, such a list does not show the rela-
tionships between different transcripts and does not show
the overall structure of all transcripts. A better approach
would be to represent all splicing variants for a given gene
in a way that captures the relationships between different
splicing variants.
Results: We introduce the notion of the splicing graph that
is a natural and convenient representation of all splicing
variants. The key difference with the existing approaches
is that we abandon the linear (sequence) representation of
each transcript and replace it with a graph representation
where each transcript corresponds to a path in the graph.
We further design an algorithm to assemble EST reads
into the splicing graph rather than assembling them into
each splicing variant in a case-by-case fashion.
Availability:
http://www-cse.ucsd.edu/groups/bioinformatics/software.
html
Contact: sheber@ucsd.edu
Keywords: EST assembly; splicing graph; alternative
splicing.

INTRODUCTION
Recent studies provide evidence that oncogenic potential
in human cancer may be modulated by alternative splicing.
For example, the progression of prostate cancer from
an androgen-sensitive to an androgen-insensitive tumor
is accompanied by a change in the splicing pattern
of fibroblast growth factor receptor 2 (Carstens et al.,
1997). Another study (Heuze et al., 1999) characterized
a prominent alternatively spliced variant for Prostate-

Specific Antigen, which is the most important marker
available today for diagnosing and monitoring patients
with prostate cancer. In these studies, the found isoforms
were discovered by chance in a case-by-case fashion—
the question whether other alternatively spliced variants
of these genes are implicated in cancer remains open.

The first systematic attempt to elucidate the splicing
variants of genes implicated in (ovarian) cancer was
undertaken by Hu et al. (1998). They found a new splicing
variant for the human multidrug resistance gene MDR1
and the major vault protein MVP. However, the question
of how to find all alternatively spliced variants of a given
gene remained open. We argue that the splicing graph
(defined below) built from available EST and cDNA data
is a tool to visualize all potential splicing variants, to
guide further research efforts, and to decide which putative
splicing variants are really expressed in certain tissues.

Let {s1, . . . , sn} be the set of all RNA transcripts for a
given gene of interest. Each transcript si corresponds to
a set of genomic positions Vi with Vi �= Vj for i �= j .
Define the set of all transcribed positions V = ⋃n

i=1 Vi
as the union of all sets Vi . The splicing graph G is
the directed graph on the set of transcribed positions V
that contains an edge (v, w) if and only if v and w are
consecutive positions in one of the transcripts si . Every
transcript si can be viewed as a path in the splicing graph
G and the whole graph G is the union of n such paths. We
usually collapse vertices with indegree = outdegree =
1 to obtain a more compact representation of the splicing
graph. Splicing graphs are similar to gene models that
represent exons connected by edges if they are consecutive
in a transcript (Figure 1a). However, in contrast to from
gene models, splicing graphs can be built solely from
transcript data without any knowledge of the genomic
sequence.

Splicing graphs may be rather complicated. For exam-
ple, the gene model of the Drosophila Dscam gene implies
roughly 38 000 potential transcripts (Graveley, 2001).
Representation of these transcripts in a case-by-case
fashion does not show the relationships between different
potential transcripts and makes it difficult to design PCR

c© Oxford University Press 2002 S181



S.Heber et al.

primers (or DNA arrays) for further identification of
transcripts present in certain tissues.

Information about alternative splicing is often derived
from EST assemblies. Most available EST assemblies
are built by traditional fragment assemblers that attempt
to assemble reads into linear sequences rather than into
a graph reflecting information about splicing variants.
Since these assemblers were designed for a very different
combinatorial problem, we argue that it is an inadequate
approach that becomes infeasible when a gene has many
alternatively spliced variants. A better approach would be
to assemble EST reads into a splicing graph. Below we
describe a fragment assembly algorithm that assembles
ESTs into graphs that represent all potential splicing
variants rather than assembling them in a case-by-case
fashion.

The EST assembly problem is more difficult than the
traditional fragment assembly problem. In the first approx-
imation, EST assembly corresponds to the Graph Recon-
struction Problem (GRP) that generalizes the String Re-
construction Problem in the traditional fragment assem-
bly. In GRP, one assumes that there exists an (unknown)
directed graph (splicing graph) with each vertex labeled
by a letter from the {A,T,G,C} alphabet. A path in this
graph can be interpreted as a string by concatenating the
labels of the traversed vertices. The input data to the GRP
is a collection of strings (ESTs) corresponding to a set
of paths. The GRP problem is to reconstruct the graph
from the collection of these strings (i.e. to build a graph
in which EST reads correspond to paths). Similarly to the
traditional fragment assembly, the objective for such re-
construction may vary. For example, one may want to re-
construct the graph with minimal number of edges (com-
pare with the Shortest Superstring Problem).

Our approach to the Graph Reconstruction Problem
takes advantage of the Eulerian approach to fragment
assembly. It is based on the observation that the splicing
graph is the union of paths corresponding to ESTs. One
therefore can visualize such a graph as the ‘gluing’ of all
similar segments in ESTs. The mathematical technique
for such gluing amounts to de Bruijn graphs that were
studied in Pevzner et al. (2001). The difficulty in applying
this approach to EST assemblies is the high error rate
in EST data. Every error in ESTs creates a bulge in the
constructed graph thus concealing the underlying structure
of the splicing graph. Below we describe an approach that
resolves this problem and generates the splicing graphs.

EST ASSEMBLIES
Nucleotide sequence databases are growing rapidly and
expressed sequence tags (ESTs) are their fastest growing
division. ESTs are important tools for gene and exon
finding (Burke et al., 1998), gene expression analysis
(Schmitt et al., 1999), detection of alternative splicing

(Kan et al., 2001) and SNPs (Picoult-Newberg et al.,
1999), as well as for investigating the proteome (Lisacek
et al., 2001). ESTs are collected in gene indices like
UniGene, the TIGR Gene Index, GeneNest, and STACK
(see Bouck et al. (1999) for an overview). They are
clustered into sets which are supposed to correspond to
single genes.

Due to the fragmentary nature and low quality of EST
sequences, biologists assemble them into consensus se-
quences in order to form EST contigs, to eliminate se-
quencing errors, and to analyse alternative splicing vari-
ants (Burke et al., 1998; Zhuo et al., 2001; Coward et
al., 2002). Reconstruction of all putative transcripts from
a collection of EST reads is a difficult problem. Conven-
tional EST assembly approaches like Phrap (Green, 1994),
CAP3 (Huang and Madan, 1999), TIGR Assembler (Sut-
ton et al., 1995), typically use algorithms borrowed from
fragment assembly that were designed for the very differ-
ent problem of assembling reads into a single linear con-
sensus sequence. Most efforts in these algorithms are in-
vested into coping with repeats, which is not a bottleneck
for EST assemblies. As a result, it is not clear how such
algorithms perform in the presence of alternative splicing,
which is estimated to occur in up to 60% of human genes
(Mironov et al., 1999; Modrek and Lee, 2001) and may
produce thousands of transcripts (Graveley, 2001). Possi-
ble problems in EST assemblies are truncated and misas-
sembled (erroneous) contigs. See Figure 1b and the Re-
sults Section for examples. Our new assembly approach
is tailored especially for EST assembly in the presence of
alternative splicing. It overcomes the above problems by
assembling ESTs into a splicing graph instead of a lin-
ear consensus sequence. This enables us to integrate, in a
natural and unambiguous way, transcripts which originate
from the same gene, but differ due to alternative splicing
or polymorphisms.

The splicing graph combines reoccurring EST parts
into single paths and displays sequence variations and
alternative splicing as bifurcations in the graph. The result
is a compact representation of EST data. In contrast to
other bioinformatical approaches (Mironov et al., 1999;
Kan et al., 2001; Modrek et al., 2001; Coward et al.,
2002), the splicing graph can be constructed without
any knowledge of the genomic sequence. We consider
this as an advantage, since although genome sequencing
advances rapidly, a large amount of accessible EST
data still cannot be mapped onto genomic sequences
(e.g. because of this, in Modrek et al. (2001) about
45% of all UniGene clusters had to be discarded from
further analysis). In addition, there are several organisms
with EST data available but without their own genome
sequencing projects.
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ALGORITHMS
Splicing graphs
We first describe the construction of the splicing graph
in the error-free case. Our approach follows the ideas of
Pevzner (1989) and Idury and Waterman (1995). For a
collection S = {s1, . . . , sn} of ESTs, we define Speck(S)

as the set of all kmers and their reverse complements
contained in S (k = 20 by default). Let V = Speck−1(S)

be the set of (k−1)mers in S. We construct a graph G with
vertex set V , where for each k-mer x1 . . . xk ∈ Speck(S),
there exists an edge e = (x1 . . . xk−1, x2 . . . xk) between
vertices (x1 . . . xk−1) and (x2 . . . xk). See Pevzner et al.
(2001) for the analysis of this approach as compared to the
traditional overlap graph approach to fragment assembly.

Error correction
Sequencing errors are a serious problem for the con-
struction of the splicing graph. They ‘blur’ the graph by
adding tangles of erroneous edges, making it very hard to
recognize any structure. The error correction procedure
described in Pevzner et al. (2001) works for relatively low
error rates (like in traditional fragment assembly) and may
fail for noisy EST data. We overcome this problem by
developing a different error correction approach based on
the evaluation of multiple alignments among overlapping
reads. An overlap is only accepted if the corresponding
alignment satisfies certain constraints (i.e. alignment
length larger than 30 bases, identity score higher than
95% in the overlapping segments). We correct only those
positions where a base is overwhelmingly out-voted by
bases aligned to it. Finally, we trim reads to exclude
regions with low quality value.

In simulated EST data we found that our error correction
procedure removes about 99% of the sequencing errors. It
is rarely possible that it introduces errors, but these cases
occur mostly in ambiguous low coverage regions and at
read ends. They usually do not affect the topology of the
splicing graph and therefore can be easily fixed at the
consensus stage (see below).

Although our error correction procedure is very effi-
cient, it leaves few errors uncorrected. These errors lead
to spurious bifurcations in the splicing graph and need
to be deleted. To detect such spurious bifurcations, we
align reads which pass through a bifurcation node but
diverge afterwards. If they align well, it is an indication
of an uncorrected sequencing error rather than alternative
splicing. In this case, we eliminate the bifurcation from
the graph. We also mask non-alignable read ends.

Consensus derivation
Once we have the read layout on the splicing graph,
we deduce the consensus nucleotide at a certain position
(vertex of the graph) by aligning all overlapping reads

at this position. A quality-weighted vote determines the
consensus base. The benefit of the splicing graph approach
at this point is that it takes into account all ESTs derived
from different transcripts which cover a given position
(vertex) rather than only ESTs derived from a single
transcript as in the conventional approach.

Visualization
We display the splicing graph in a user-friendly interactive
graphical viewer using the LEDA package (Melhorn and
Näher, 1999). To reduce the complexity of the graph, we
merge successive nodes with in- and out-degree equal
to one to a single supernode. We draw supernodes by
rectangles, with width corresponding to the length of
the represented sequence and indicate the number of
supporting reads of a splice site by edge thickness. The
corresponding sequences and supporting reads can be
accessed by selecting vertices and edges. Additionally,
we offer further graph simplifications based on coverage
based thresholding, where we remove bifurcations which
are supported only by a small number of reads.

Alternative splicing
In the resulting splicing graph (without repeated k-mers),
vertices of in- or outdegree larger than one point to alter-
native splicing events. For each such bifurcation we select
reads which witness the sequence variance and optimize
quality constraints such as the position of splice site and
error rate. They can be used for further validation of the
alternative splicing by additional experiments and are
very useful to discern bifurcations generated by contam-
inations, immature mRNA, or data processing artifacts.

RESULTS
Input Data
We applied our approach to UniGene clusters of UniGene
Build #141 (ftp://ncbi.nlm.nih.gov/repository/UniGene)
and to assemblies of the TIGR Human Gene Index (HGI)
Release 7.0 (http://www.tigr.org/tdb/hgi/index.html). To
evaluate our results, we used the human genomic assembly
sequences in GenBank.

Splicing graphs of UniGene clusters
Our goal is to represent a UniGene cluster by a splicing
graph and to determine a corresponding catalog of alter-
native splicing candidates.

To validate our approach we applied it to the human
adenylosuccinate lyase (ADSL) gene (Kmoch et al., 2000).
ADSL is about 20 kb long, and contains 13 exons of
overall length about 2 kb. The ADSL gene model is shown
in Figure 1a.

To demonstrate the accuracy of our approach we built
the splicing graph of the ADSL gene (UniGene cluster
Hs.75527) using only EST sequences in a blind exper-
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Fig. 1. (a) Gene model and splicing graph of the ADSL gene. Boxes represent individual exons. Bent lines indicate alternative splicing that
amounts to skipping exon 12. (Not drawn to scale!) (b) Problems of EST assemblies in the presence of alternative splicing. While the ESTs
can have ambiguous or degenerate conventional assemblies (some examples are shown), the splicing graph is uniquely defined.

(a) (b)

(c)

Fig. 2. (a) Visualization of the ADSL splicing graph of UniGene cluster Hs.75527 using word size k = 20. (b) The same graph after coverage
thresholding (t = 3). The numbers on edges show the number of EST reads supporting each alternative splicing junction. (c) Splicing graph
of UniGene cluster Hs.75527 using genomic sequence for error correction and word size k = 20. (Colors indicate matching parts in the gene
model.)

iment (i.e. we ignored all cDNA full-length sequences
and the genomic template). After coverage thresholding
(t = 3) the resulting splicing graph (Figure 2b) perfectly

reflects the ADSL gene model (Figure 1a). It shows two
alternatively spliced variants: P1 = exon 1–11 → exon
12 → exon 13 and P2 = exon 1–11 → exon 13.
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We aligned the sequence of P1 with GenBank entry
XM 010008.5 (ADSL mRNA). Except for the first 3
bases, P1 aligned with only one mismatch to the mRNA
(99.9% sequence identity). The mRNA showed an ad-
ditional region of about 30 bases at the 5′-end and an
unmatched region of about 60 bases at the 3′-end. This
corresponds nicely to the trimmed sequence in our error
correction step. We also compared the sequence of P2
with GenBank entry AF067854.1 (alternatively spliced
ADSL mRNA). Except for the first 3 bases, P2 aligned
perfectly to the mRNA. The mRNA showed an additional
unmatched region of about 30 bases at the 5′-end and
P2 showed an unmatched region of about 180 bases at
the 3′-end. The missing sequence at the 5′-end of P2 can
be explained by sequence trimming, while the additional
sequence at the 3′-end corresponds to a shorter transcript.

We emphasize that Figure 2b (which perfectly fits the
ADSL gene model) represents the original splicing graph
(Figure 1a) after thresholding. Thresholding removes
all ‘weak’ alternative splicing junctions (i.e. splicing
junctions supported by less than 3 ESTs). Some of these
removed junctions may be EST artifacts while others may
correspond to rarely appearing, biologically important
splicing variants. Splicing graphs like the one in Figure 2a
may guide further PCR primer design to verify which of
the putative transcripts are expressed in certain tissues.

To further evaluate the accuracy of our error correction
procedure, we built the ADSL splicing graph with an
ideal error correction procedure under the assumption that
the genomic sequence is known (for similar approaches
using genomic sequence, see Kan et al. (2001); Modrek
et al. (2001)). We used sim4 (Florea et al., 1998) to
match the ESTs to their genomic template. Poorly aligned
sequences (less than 95% identity, less than 80% of the
sequence unmatched, or unmatched interior splice sites)
were deleted. In the remaining sequences we corrected
matched sequence parts correspondingly to their genomic
counterparts and masked unmatched fragment ends. The
resulting splicing graph is shown in Figure 2c. One can
see that the blind experiment (i.e. assuming that genomic
sequence is unavailable) produces roughly the same
result as the ‘ideal’ experiment with genomic sequence
available.

Analysis of TIGR Tentative Human Consensus
sequences
We analyse Tentative Human Consensus sequences
(THCs) and demonstrate that the potential problems of
conventional EST assembly approaches can be detected
and corrected using splicing graphs.

We applied our splicing graph approach to the human
hippostasin gene for which alternative splicing has been
recently shown to be connected with prostate cancer
(Nakamura et al., 2001). The gene is about 9 kb long and

contains 6 exons (Figure 3). The two isoforms have an
overall length of about 1.3 kb (prostate form) and about
1.1 kb (brain form).

We downloaded the Tentative Human Consensus se-
quences THC683186 (1337 bp) and THC683187 (861
bp). Figure 4 shows the cartoons of the assemblies
(provided by TIGR) showing the location of individ-
ual ESTs within the consensus sequence. THC683186
corresponds to the full prostate-type hippostasin while
THC683187 corresponds to brain-type hippostasin with
an end-truncation of about 300 bases in exon 6. The TIGR
assembly contains at this position only the suspicious read
zd29b01.r1 with a deletion of 30 bases or an unreported
skipped exon. We hypothesize that this truncation is due
to the fact that all reads which could possibly extend
zd29b01.r1 were assembled into THC683186 yielding the
degenerate assembly.

For comparison, we show the corresponding splicing
graph generated only from the inputs of the two TIGR
assemblies in Figure 5a and a schematic representation
indicating the positions of THC683186, THC683187, and
zd29b01.r1 in Figure 5b. The splicing graph contains four
paths P1 = 1 → 3 → 4 → 5, P2 = 1 → 3 → 5,
P3 = 2 → 3 → 4 → 5 and P4 = 2 → 3 → 5.
Here P1 and P3 correspond to the (untruncated!) brain-
and prostate-forms while P2 and P4 correspond to similar
transcripts containing the suspicious read zd29b01.r1. We
also computed the hippostasin splicing graph visualization
(see Figure 5c) based on the corresponding UniGene
cluster Hs.57771. This graph indicates further possible
alternative transcripts missed in the TIGR assemblies.
After thresholding (t = 3), we obtain a splicing graph (see
Figure 5d) which agrees with the gene model postulated in
Nakamura et al. (2001).

Tropomyosin 1 (alpha) splicing graph
Among human genes, the tropomyosin 1 alpha gene
encodes one of the most extensively alternatively spliced
transcripts known (Balvay and Fiszman, 1994). A visual-
ization of the corresponding UniGene cluster Hs.77899
with about 1000 EST reads is shown in Figure 6. Even
after thresholding with t = 7 one can see that the
corresponding splicing graph is very complicated, with
thousands of potential transcripts. We emphasize that
each of these transcripts deserves further analysis since
every splicing junction in these transcripts is supported
by at least 7 EST reads. The splicing graph would be an
invaluable tool for designing PCR experiments or DNA
arrays to study these potential splicing variants.

DISCUSSION
In contrast to other approaches, our algorithm does not
assemble ESTs into linear sequences, but integrates the
whole data set into one unambiguously defined splicing
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1a 2 3 4 5 61b

Fig. 3. Gene model of hippostasin gene. Exon 1a is spliced out in prostate-type hippostasin, while exon 1b is spliced out in brain-type
hippostasin. (Not drawn to scale!)

THC683186 THC683187

zd29b01.r1

Fig. 4. Cartoon of the assemblies THC683186 (left) and THC683187 (right), showing the location of individual ESTs within the consensus
sequences. Adapted from the TIGR Human Gene Index.

zd29b01.r1

1a 1b

THC683187

THC683186

(a) (b)

(c) (d)

Fig. 5. (a) Splicing graph of THC683186 and THC683187 using word size k = 20. (b) Schematic representation (THC683186 marked black,
THC683187 marked blue grey) indicating the locations of EST zd29b01.r1. (c) Hippostasin splicing graph of UniGene cluster Hs.57771
using word size k = 20 and referring to genomic sequence for error correction. (d) The same graph after thresholding (t = 3). (Colors
indicate matching parts in the gene model.)
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(a) (b)

Fig. 6. (a) Tropomyosin 1 (alpha) splicing graph of UniGene cluster Hs.77899. (b) The same graph after thresholding (t = 7).

graph. The splicing graph visualizes the alternative splic-
ing variants. Although sequence variations on a smaller
scale (e.g. small exon sliding events or SNPs) may be sup-
pressed by the error correction algorithm, we emphasize
that these variations are not lost and are easily restored at
the later consensus stage.

The resulting splicing graph is a compact but biologi-
cally meaningful representation of the huge EST/cDNA
data set, an important requirement for any subsequent
exploratory data analysis. In the ideal situation, the
transcripts correspond to paths in the splicing graph and
splice sites correspond to vertices with in/outdegree larger
than one.

Our assembly program has been tested on simulated
data, on UniGene EST-clusters, and on THCs of TIGR
Human Gene Index. In most cases with sufficient cover-
age, the quality of the assembled sequence is excellent.
While transcript truncations are hard to determine, the
splicing graph generates many putative transcripts and
accurately depicts alternative splicing by bifurcations,
even in the absence of known genomic sequence. For
THCs the splicing graph is usually very ‘clean’, showing
mostly biologically meaningful and confirmed splicing
events. The splicing graphs built from EST clusters
depend on data quality and stipulated coverage. Their
complexity usually decreases with increasing quality of
EST reads and increasing coverage threshold. Unfortu-
nately, there is an unavoidable trade-off between reducing
the representation complexity (by thresholding or error
correction) and the danger of eliminating biologically
meaningful information (by incorrectly homogenizing
differing transcripts). Another problem is caused by
overlapping genes and paralogs that may ‘glue’ different
splicing graphs together.

In the future, we plan to build a catalog of splicing
graphs and putative splicing variants as well as SNPs
for all UniGene clusters. This immediately raises the
(still unsolved) question of how to distinguish alternative
splices from ‘biological noise’, and how to assess their bi-
ological importance. This will ultimately need additional
experiments.

ACKNOWLEDGMENTS
The authors are grateful to Tim Beißbarth, Eivind Coward,
Stefan Haas, Antje Krause, Christopher Lee, and Zufar
Mulyukov for help and very valuable discussions. This
work was supported by National Institute of Health grant
1 R01 HG02366-01.

REFERENCES
Balvay,L. and Fiszman,M. (1994) Analysis of the diversity of

tropomyosin isoforms. C. R. Seances Soc. Biol. Fil., 188, 527–
540.

Bouck,J., Yu,W., Gibbs,R. and Worley,K. (1999) Comparison of
gene indexing databases. Trends Genet., 15, 159–162.

Burke,J., Wang,H., Hide,W. and Davison,D. (1998) Alternative gene
form discovery and candidate gene selection from gene indexing
projects. Genome Res., 8, 276–290.

Carstens,R., Eaton,J., Krigman,H., Walther,P. and Garcia-
Blanco,M. (1997) Alternative splicing of fibroblast growth
factor receptor 2 (FGF-R2) in human prostate cancer. Oncogene,
15, 3059–3065.

Coward,E., Haas,S. and Vingron,M. (2002) SpliceNest: visualizing
gene structure and alternative splicing based on EST clusters.
Trends Genet., 18, 53–55.

Florea,L., Hartzell,G., Zhang,Z., Rubin,G. and Miller,W. (1998) A
computer program for aligning a cDNA sequence with a genomic
DNA sequence. Genome Res., 8, 967–974.

Graveley,B. (2001) Alternative splicing: increasing diversity in
the proteomic world. Trends Genet., 17, 100–107.

Green,P. (1994) Phrap documentation. http://www.phrap.org.
Heuze,N., Olayat,S., Gutman,N., Zani,M. and Courty,Y. (1999)

Molecular cloning and expression of an alternative hKLK3 tran-
script coding for a variant protein of prostate-specific antigen.
Cancer Res., 59, 2820–2824.

Hu,Y., Tanzer,L., Cao,J., Geringer,C. and Moore,R. (1998) Use of
long RT-PCR to characterize splice variant mRNAs. Biotech-
niques, 25, 224–229.

Huang,X. and Madan,A. (1999) CAP3: A DNA sequence assembly
program. Genome Res., 9, 868–877.

Idury,R. and Waterman,M. (1995) A new algorithm for dna
sequence assembly. J. Comput. Biol., 2, 291–306.

Kan,Z., Rouchka,E., Gish,W. and States,D. (2001) Gene structure
prediction and alternative splicing analysis using genomically
aligned ESTs. Genome Res., 11, 889–900.

S187



S.Heber et al.

Kmoch,S., Hartmannová,H., Stibùrková,B., Krijt,J., Zikánova,M.
and Sebesta,I. (2000) Human adenylosuccinate lyase (ADSL),
cloning and characterization of full-length cDNA and its isoform,
gene structure and molecular basis for ADSL deficiency in
six patients. Hum. Mol. Genet., 9, 1501–1513.

Lisacek,F., Traini,M., Sexton,D., Harry,J. and Wilkins,M. (2001)
Strategy for protein isoform identification from expressed se-
quence tags and its application to peptide mass fingerprinting.
Proteomics, 1, 186–193.
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