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Abstract

Over the course of more than two decades, natural products isolated from various microorganisms and plants have built the

foundation for chemical biology research into the mechanism of pre-mRNA splicing. Hand in hand with advances in

scientific methodology small molecule splicing modulators have become powerful tools for investigating, not just the

splicing mechanism, but also the cellular effect of altered mRNA processing. Based on thorough structure-activity studies,

synthetic analogues have moved on from scientific tool compounds to experimental drugs. With current advances in drug

discovery methodology and new means of attacking targets previously thought undruggable, we can expect further advances

in both research and therapeutics based on small molecule splicing modulators.

Introduction

Even with advances in scaffold-based synthesis and natural

product-like molecule production, genuine natural products still

form a corner stone of chemical biology. However, the path

from identification of a new and interesting molecule to a

detailed understanding of its mechanism of action, cellular

effect and utility in research and in medicine is a long, winding

and arduous one. Many compounds prove to act upon different

targets than initially thought. Discovery of practical uses as

bioprobes or, with a lot of good luck, as therapeutics may take

many years. Splicing inhibitors are no exception. While the first

molecules were described in 1992, it took till 2007 before their

mechanism came to light and only now are we understanding

their profound effect on cellular mRNA metabolism, signaling

and physiology. Recent studies are testament to the utility of

natural products, the tenacity of researchers working on them,

as well as significant advances in research technology and

methodology.

Initial discoveries

In 1992, herboxidiene, a Streptomyces chromofuscus natural

product with strong phytotoxic activity was first described

[1, 2] (Fig. 1a, b). It was re-discovered in a different strain of

Streptomyces in 2002, this time as one of a group of molecules

named GEX1 compounds [3, 4], displaying cytotoxicity in the

low to mid-nanomolar range against human tumor cell lines. At

the time closer mechanistic studies were not undertaken and the

molecular target remained unknown.

Four years later, evaluating whether transcriptional

modulators would have antitumor activity, three molecules

isolated from a broth of Pseudomonas sp. No.2663. were

tested for their effect on the viral SV-40 promoter [5, 6].

The compounds, labeled FR901463, FR901464, and

FR901465 led to significant promoter activation. The

molecules were cytotoxic at low nanomolar concentration

and inhibited the cell cycle in G1 and G2/M phase.

FR901464 displayed strong antitumor activity, extending

the lifespan of mice carrying the P388 lymphoma cell line

and also inhibiting the growth A549 human lung adenoma

xenografts. Observing internucleosomal DNA fragmenta-

tion at higher concentration, the authors assumed the FR

compounds to act directly on chromatin, thereby changing

transcriptional activity. Spliceostatin A, a methyl ketal

derivative of FR901464 proved more stable in solution at

equal potency and became pivotal in identifying the FR

compounds’ mechanism of action [7]. Consequently, this

family of molecules became known as the spliceostatins.

In 1994, another report appeared in this journal, presenting a

cytotoxic polyketide from a culture of Streptomyces
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Fig. 1 a The three families of SF3B1-targeting splicing modulators;

spliceostatins, pladienolides and herboxidienes. Synthetic and semi-

synthetic derivates of the original natural products are labeled in

orange. b Timeline of discovery or synthesis of the molecules shown

in (a). Herboxidienes are labeled in black, spliceostatins in green and

pladienolides in blue. c Splicing modulators not targeting SF3B1
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hygroscopicus strain A-9561, isolated in Okinawa [8]. The

molecule, named FD-895 proved toxic to doxorubicin-resistant

HL-60 leukemia cells, but again mechanistic studies did not

commence. Interest in FD-895 reemerged when the structurally

related pladienolide family of natural products attracted atten-

tion a decade later. Pladienolides were first described in 2004

when a group of 7 related molecules was isolated from a

Streptomyces platensis broth, taken from a soil sample from

Kanagawa prefecture, Japan [9–11]. The initial study aimed at

finding new antitumor agents, specifically compounds that

would prevent angiogenesis in the hypoxic environment of

solid tumors. The screen utilized an alkaline phosphatase

reporter driven by the hypoxia inducible factor 1α (HIF1α)-

dependent promoter of vascular endothelial growth factor

(VEGF) [9, 11].

While it appeared that the active pladienolides did inhibit

VEGF expression more strongly than they proved cyto-

toxic, the IC50 values for both activities only differed

around 2–4 fold [9, 11]. Therefore, a specific mechanism

targeting HIF1α signaling appeared unlikely. The paper

offered a limited amount of structure activity relationship

data and noted that pladienolide B (PlaB) inhibited growth

of several tumor cell cultures from a panel of 39 cancer cell

lines at low nanomolar IC50 values, even cell lines resistant

to clinical anticancer agents, such as etoposide, cisplatin,

camptothecin, vincristine, taxol and 5-flurouracil. PlaB did

not appear to kill cells indiscriminately but was only spe-

cifically cytotoxic to some cell lines in the panel, though it

remained unclear what drove its selectivity. In mouse

xenograft models, PlaB proved effective against tumors

from the BSY-1 breast cancer cell line [10]. These initial

experiments indicated that pladienolides likely acted by a

novel mechanism of action but gave little indication of the

molecules’ actual target.

In addition, FD-895 and pladienolides share some

superficial structural similarity with the lactimidomycin and

isomigrastatin family of translation inhibitors, showing once

more that 2D molecular structures are not predictive of

activity [12, 13].

Since the herboxidienes, spliceostatins and pladienolides

were each discovered assessing completely unrelated

activities, nobody would have suspected that, despite

representing vastly different structures, the three com-

pounds share virtually identical mechanisms of action. In

light of their activity and potency against tumor cells,

synthetic routes to producing FR901464 and pladienolide

were developed, though owing to an inordinate number of

necessary steps, total synthesis for clinical use appeared

impractical [14–17]. The spectrum of available active

compounds keeps also increasing by natural means and for

a change not from another strain of Streptomyces. The

proteobacterium Burkholderia thailandensis MSMB43

yielded thailanstatin A [18, 19]. Not as potent as FR901464

itself, thailanstatin A still inhibits tumor cell growth in the

mid to high nanomolar range [20]. In a similar manner, a

herboxidiene derivative, RQN-18690A or 18-deox-

yherboxidiene, was re-discovered in a screen for angio-

genesis inhibitors [21]. It’s activity against human umbilical

vein endothelial cells could also be traced back to SF3B1

inhibition.

Despite structural dissimilarity, computational studies

indicated that the solution structures of both FR901464 and

PlaB adopt similar conformations, centered on their central

diene moiety, suggesting that they could bind the same

physiological target [22]. Based on this hypothesis fully

synthetic molecules centered on a common pharmacophore

between FR901464 and PlaB were produced. The analogue

displayed cytotoxic activity and induced G2/M cell cycle

arrest, but not as potently as the original natural products.

Since FR901464 was difficult to synthesize and somewhat

unstable in solution, strategies were developed to generate

simplified and stable analogues, culminating in the sude-

mycin family of molecules [23], which also inhibited tumor

cell growth, albeit at IC50 values in the micromolar range

[24–26].

While sudemycins suffered from significantly decreased

potency, another synthetic attempt at producing FR901464

analogues yielded meayamycin, which, if anything, proved

even more potent than the original natural product [17]. As

can be seen in Fig. 1, the chemical space occupied by

splicing modulators appears rather accommodating. It took

till 2007 before the converging mechanisms of all molecules

describes started to become apparent, with PlaB and SSA

becoming the first known specific inhibitors of pre-mRNA

splicing [27, 28].

Target identification

Splicing, the process of removing intronic sequences from a

primary transcript, constitutes a key step in gene regulation

of eukaryotic cells (reviewed in [29]). The coordinated

interplay of several large ribonucleoprotein complexes not

only allows producing a readable template for protein

synthesis, likely it presents the very key to the complexity

of large, multicellular organisms [30]. Every splicing reac-

tion involves a coordinated intramolecular transesterifica-

tion of an RNA polynucleotide, excising an internal

sequence stretch. Via splicing the same primary RNA

transcript can yield several different protein isoforms spe-

cific to a particular cell type, tissue or developmental stage.

This goes so far, that splice isoforms of the same transcript

may produce proteins with antagonistic properties

(reviewed in [31]). Besides simply cutting out an intronic

sequence, splicing of one pre-mRNA may lead to different

outcomes. These include the choosing of alternative 3ʹ and

5ʹ splice sites, exon skipping (ES), inclusion of a cassette

Splicing modulators: on the way from nature to clinic 605



exon or of mutually exclusive exons (Fig. 2a). In general, an

intron is defined by its 5ʹ and 3ʹ splice sites. Toward the 3ʹ

end lies the branchpoint sequence containing the adenosine

residue whose 2’OH group will conduct the nucleophilic

attack on the 5ʹ splice site’s phosphodiester bond, creating a

free 3ʹ hydroxyl group, which can then perform an attack on

the 3ʹ splice site, connecting two exons and excising a lariat

shaped intron (Fig. 2b). This branchpoint A (BPA) is sur-

rounded by the branch-point sequence (BPS) and followed

by a poly-pyrimidine tract. Naturally, choosing the right

splice site and branch point requires a high degree of reg-

ulation and control [29]. Besides the core spliceosome,

hundreds of accessory factors, including SR (serine and

arginine-rich) proteins, may act as splicing enhancers or

repressors, influencing the utilized splice site.

The process begins with E complex formation, where the

U1 snRNP marks the 5ʹ splice site, while accessory factors

SF1 and the dimeric U2AF bind toward the 3ʹ end, pre-

paring arrival of the U2 snRNP. The U2 snRNP binds to the

branch point sequence, displacing SF1, thereby forming A

complex. During A complex formation the BPS will form a

stable helix with the branchpoint interacting stem loop

(BSL) of the U2 snRNA. The BPS is moderately conserved

and the degree of complementarity to the U2 snRNA,

especially within the BSL, determines the strength of the

splice site, with better matches accounting for higher

strength. At this point, the pre-mRNA is still intact. The

actual cleavage reaction requires binding of the U4/U5/U6

tri-snRNP complex and displacement of U1 and U4. This

review will focus on A complex formation, as SSA, PlaB,

the herboxidienes and all their derivatives act on this step,

specifically on the SF3b subcomplex of the U2 snRNP [32].

The U2 snRNP consists of the U2 snRNA polynucleo-

tide, whose base-pairing to the branch point sequence

maintains specificity, and a set of two protein subcomplexes

SF3a and SF3b, as well as a set of Sm proteins which form a

ring structure around the nascent transcript and enhance

splicing fidelity [33]. The SF3b subcomplex, at its core

consists of the proteins SF3B1 through SF3B6, PHF5A,

TAT-SF1 and the ATPase PRP5. The largest SF3B subunit,

SF3B1, contains two N-terminal domains for interaction

with U2AF and PHF5A, followed by 20 tandem HEAT

(Huntingtin, elongation factor 3, protein phosphatase 2A,

target of rapamycin) repeats [34]. SF3B1 forms a long,

superhelical structure, curving around PHF5A and con-

tacting part of the U2 snRNA and many key protein factors,

including PRP5 and TAT-SF1. Currently, it is thought that

U2 finds the right position on the intron by interaction with

U1, SF1, and U2AF. At that point the U2 BSL seems

protected by TAT-SF1 and part of PRP5. RNA binding

leads to PRP5 activation and the ATP-dependent displace-

ment of TAT-SF1, such that BPS and U2 BSL can begin

base-pairing, eventually disrupting the stem loop and

forming an RNA-RNA double helix between U2 and pre-

mRNA. In the early stages of A complex formation SF3B1

is present in an open conformation but will clamp down

onto the U2-mRNA helix adopting a closed conformation,

thereby also displacing PRP5. In addition, SF3B1 and

PHF5A together form a pocket to protect the reactive BPA

[35]. Mutations in SF3B1 have been implicated in myelo-

dysplastic syndromes (MDS), chronic lymphocytic leuke-

mia (CLL), chronic myeloid leukemia (CML) and a number

of late-stage cancers. Mutations appear to primarily cluster

around the more N-terminal HEAT repeats with changes in

R625, K666 and K700 leading to alternative BPS usage and

cryptic 3′ splice site selection [36–39]. Especially HEAT

repeat 6 and surroundings appear as mutational hotspots,

likely affecting PRP5 binding and function, thereby redu-

cing the fidelity of branch point selection.

Since 2007 further characterization of SF3B1’s promi-

nent role in splicing has become possible thanks to specific

chemical probes. Derivatives of FR901464 and pladienolide

finally allowed target identification [27, 28]. A biotinylated

version of SSA, as well as derivates of PlaB incorporating

radiolabels, fluorescent markers and photo-crosslinkers

enabled identifying the SF3B complex as the true mole-

cular target. Further experimentation confirmed that SSA,

PlaB, herboxidienes and related compounds did interrupt

pre-mRNA splicing [40, 41]. In in vitro studies the

U2 snRNP interacted more weakly with the pre-mRNA in

presence of inhibitor and proved prone to bind at cryptic

splice sites. Furthermore, inhibition appeared to occur

before ATP hydrolysis, which means that A complex for-

mation was not completed.

It was soon appreciated that in vivo these molecules do

not necessarily interrupt splicing in total but modulate cel-

lular splicing behavior. On a global scale, rather than

exclusively causing intron retention, a large percentage of

aberrant splicing events leads to ES with a smaller fraction

displaying altered 3ʹ and 5ʹ splice sites or alternative

incorporation of otherwise excluded exons. Percentages

differ, depending on experimental conditions and small

molecule used, but it appears that intronic GC content

affects the choice between ES and intron retention [42, 43].

Resistance mutations to the modulators cluster to HEAT

repeats 15 and 16 on SF3B1 and also Y36 on PHF5A. The

resistance mutations against the splice modulators on

SF3B1 fell much further toward the C-terminus than the

mutational hotspots associated with disease phenotypes.

Structural studies confirmed the resistance mutations to lie

around the actual drug binding site (Fig. 3) [42]. While

structural data is currently limited to PlaB, the observed

hourglass-shaped binding site with the diene moiety in its

“neck” agrees with the idea of a common pharmacophore

between the different molecular families (Fig. 3d). Drug

binding to SF3B1 arrests the complex in its open

606 T. Schneider-Poetsch et al.
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gray [31]. b Simplified overview of spliceosome formation and pre-

mRNA splicing
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conformation, thereby preventing completion of A complex

formation [44] (Fig. 3a–c). While initial studies, based on

the location of resistance mutations, suggested that the

splicing modulators competed with the BPA, in light of

structural evidence, it appears more likely that the mole-

cules compete with the intron for the open conformation of

the complex. This agrees with in vitro observations that

once A complex formation is complete, PlaB loses its effect

[45, 46].

While for all practical purposes, SSA, PlaB, herbox-

idienes and synthetic colleagues employ the same molecular

mechanism, their cellular effects are not necessarily iden-

tical. Weaker binders, such as sudemycin D6 or herbox-

idiene tend to mainly induce ES but less intron retention

compared to the more potent SSA or PlaB [42]. This again,

appears to relate to intronic GC content with a lower GC

percentage making the splice site more resistant to mod-

ulator activity compared to introns with high GC content.

These observations strengthen the idea that not only the

mechanism of action, but also relative potency of the

binding molecule determine the efficacy of a particular

modulator.

Honorable mention

While pladienolide and SSA’s effect on splicing were ser-

endipitous discoveries, isoginkgetin not only stands out

from the molecules discussed thus far as a plant natural

product, isolated from leaf extracts of Ginkgo biloba [47], it

is also the first actively sought splicing inhibitor (Fig. 1c).

Using a reporter with the luciferase coding sequence sitting

downstream of a canonical splice site, isoginkgetin emerged

SF3B1 open closed conformation

U2 snRNA

mRNA

PHF5A

SF3B1

PlaB

PlaB bound

a b c

PHF5A

SF3B1

PlaB

d

Fig. 3 a Structure of SF3B1 in open conformation. b PlaB arrests

SF3B1 in its open conformation. c SF3B1 in closed conformation. The

closed conformation in (c) is based on structural data from B complex

SF3B1, but is thought to be highly similar to its shape in A complex.

SF3B1 is represented in green, PHF5A in yellow, PlaB in red, pre-

mRNA in blue and U2 snRNA in orange. d Depiction of the splicing

modulator binding site. Pladienolide (red) binds at the interface of

SF3B1 (green) and PHF5A (yellow). Central element to the binding

site is the diene moiety in the middle of PlaB (and also of spliceostatin

and herboxidiene), fitting through a narrow passage between the two

binding proteins. Structural information taken from PDB 5IFE (open),

6EN4 (PlaB-bound) and 6FF4 (closed conformation) [35, 44, 120]
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from screening a chemical library. While thought to prevent

binding of the U4/U5/U6 tri-snRNP to A complex, its

mechanism has not been described in as much detail as the

SF3B1-targeting compounds, likely also owing to much

weaker activity. To this day its binding site remains

unknown [48].

Recent studies suggest that isoginkgetin not only inhibits

the proteasome [49] but also transcriptional elongation,

which may indicate that its cellular effect is much messier

than originally anticipated [50]. Especially the latter issue

may be difficult to resolve. The original study showed

stalled B complex formation in vitro requiring no de novo

pre-mRNA synthesis, while the work on transcriptional

elongation relied on directional transcriptome analysis. It

remains possible that the different behavior on RNA poly-

merase observed between SF3B targeting molecules and

isoginkgetin reflects differences in mechanism with iso-

ginkgetin blocking splicing at a later step, producing a

different cellular phenotype. A more recent study on hino-

kiflavone, a different plant flavonoid, reported inhibition of

the SENP de-SUMOylation enzyme, albeit at fairly high

concentrations. While detailed mechanistic data is still

lacking, the report suggested that hyper-SUMOylation of

splicing factors may interfere with proper B complex

assembly [51].

Cellular consequences

Since splicing constitutes a fundamental regulatory step at

the upstream end of gene expression the downstream cel-

lular consequences of splicing manipulation are numerous.

Many different aspects of cellular dysregulation brought

about by splicing modulation may each contribute to the

observed anticancer activity of these molecules (Table 1).

Besides changing splicing patterns and causing intron

retention, changed splicing behavior also leads to alterations

in RNA production itself [52, 53]. Genome wide

transcription decreased ~20–30% upon SSA treatment [54].

Owing to altered splicing of some effector proteins such as

IκBα, ERK and NF-κB signaling pathways displayed

increased activity [27, 55]. Furthermore, splicing perturba-

tion leads to slowed RNA polymerase II (RNAPII) pro-

gression with the enzyme increasingly failing to reach the

end of its transcripts and concomitant decrease in Ser-2

phosphorylation on the RNAPII C-terminal domain

[56, 57].

It is important to keep in mind that the snRNPs are not

present in stoichiometric proportions, but that U1 con-

centration far exceeds the level of U2 or U4/U5/U6. Besides

marking the 5ʹ splice site, U1 protects mRNA from pre-

mature cleavage and poly-adenylation [58, 59]. A recent

study observed that SSA treatment led to aberrant poly-

adenylation in the MALAT1 (Metastasis Associated Lung

Adenoma Transcript 1), a long non-coding RNA (lncRNA),

as well as a few canonical mRNA transcripts [60].

MALAT1 is the most abundantly expressed lncRNA in

nuclear speckles [61]. Its elevated expression is commonly

observed in metastasis-prone tumors [62]. MALAT1 plays

an important role in regulating transcription, alternative

splicing and posttranscriptional processing [63]. It is known

to bind a number of splicing factors, including SRSF1 and

hnRNPC, modulating their activities [64, 65] Under normal

circumstances MALAT1 is strictly located in the nucleus,

but under SSA treatment its polyadenylated form is

exported to the cytoplasm. While the currently known

splicing modulators do not directly alter U1 activity,

impeded U2 function and the subsequent buildup of

improperly processed transcripts seem to eventually exhaust

the pool of available U1 snRNP and cause further cellular

effects from an unexpected source. Importantly, aberrant

poly-adenylation was only observed in presence of non-

functional U2 snRNP, but not when U2 itself was depleted.

The acronym MALAT1’s meaning indicates the transcript’s

association with cancer [66–68]. Whether its aberrant poly-

Table 1 Possible antitumor mechanisms of splicing modulators

Effect Target Molecules References

Cell cycle inhibition through dominant negative p27* SF3B1 SSA [27, 31, 73]

Changing cellular signaling and triggering cellular stress response SF3B1 SSA [27, 55]

Synthetic lethality in combination with SF3B1 mutations SF3B1 H3B-8800 [76]

Changing alternative splicing of tumor-related genes, favoring

tumor suppressive isoforms

SF3B1, RBM39 SSA, Indisulam, CQS, tasisulam [74, 83, 103, 104]

Triggering antiviral response SF3B1 H3B-8800, sudemycin D6 [70]

Generating neo-immunogens Spliceosome Isoginkgetin [90, 91, 94]

Changing lncRNA behavior SF3B1 SSA [60]

Slowing RNA polymerase II SF3B1 SSA [56]

Targeting splicing factor for degradation RBM39 Indisulam, CQS,

tasisulam, E7820

[103, 104]
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adenylation and export to the cytosol has any bearing on the

antitumor activity of splicing modulators or whether it

presents a phenomenon of limited scope and relevance

remains to be seen, especially when considering that only a

fraction of MALAT1 undergoes poly-adenylation.

The sheer amount of misspliced RNAs appears to over-

whelm quality control mechanisms, including nonsense-

mediated decay. Unspliced pre-mRNA accumulates in the

nucleus, with nuclear speckles also increasing in size

[27, 69]. Some improperly processed transcripts escape to

the cytoplasm and are translated into protein. Initial studies

observed production of truncated polypeptides, including a

shortened, constitutively active version of the cell cycle

regulator p27, labeled p27* [70–72]. p27* production and

subsequent G1 cell cycle arrest likely account for part of the

observed antitumor effect, though it does not explain the

full extent of specific toxicity toward some cell lines [73].

Specificity likely derives from a particular tumor’s tran-

scriptome and splicing state. Beyond SF3B1 itself many other

splicing factor mutations have been implicated in hemato-

poietic malignancies. U2AF, SRSF1 and 2 or RBM39 may

contain mutually exclusive point mutations on specific residues

affecting splice site selection [74, 75]. Cancer cells bearing

splicing factor mutations appear particularly sensitive to spli-

cing modulators, with two perturbations in the same cellular

system proving synthetic lethal [75–79].

Splice isoforms of VEGF may stimulate or inhibit

angiogenesis, depending on whether exon 8 is spliced at a

proximal (pro-angiogenic) or a distal (anti-angiogenic)

splice site [80–82]. SSA treatment leads to a decrease in

VEGF expression in malignant tumors, another aspect that

may explain part of the antitumor activity of splicing

modulators [54].

In a similar vein, CLL relies on high levels of the Bcl2

family apoptosis regulator Mcl-1 for survival. Mcl-1’s long

splice isoform (Mcl-1L) has antiapoptotic activity, while the

short variant (Mcl-1S) is pro-apoptotic. Splicing modulators

appear to favor production of the short isoform [83, 84].

Yet another aspect in the relation between splicing and

cancer has garnered attention in recent years, as myc-

dependent tumors appear particularly sensitive to splicing

modulators. One link connects the arginine methyl trans-

ferase PRMT5, which acts on the Sm proteins [85]. It

appears that Sm protein assembly aids in the splicing of

introns with weak 5ʹ splice sites, leading to increased ES. In

addition, myc also drives expression of splicing factor

SRSF1, an oncogenic protein in its own right [86, 87].

Some myc-driven tumors seem particularly sensitive to

small molecule splicing inhibitors, possibly because the

small molecule shifts an already precarious balance in

splicing toward acute cytotoxicity [70, 85, 88, 89].

Perhaps focusing on isolated cells in tissue culture alone

is not sufficient to appreciate the physiological role and

clinical potential of splicing modulators. A recent study

observed formation of double-stranded RNA species from

intronic sequences upon treatment with sudemycin D6 or

the more recently described synthetic PlaB derivative H3B-

8800 in myc-driven triple-negative breast cancer [70].

These double-stranded RNAs appear to trigger cellular

antiviral immune responses and subsequent cell death.

With mutated splicing factors, leading to altered 5ʹ and

3ʹ splice sites, proteome composition significantly changes,

potentially providing a generous source of neoantigens

[90–92]. A study of 32 TCGA cancer types from 8705

patients investigated the effect of alternative splicing on

cancer-specific markers presented on cellular MHC-I anti-

gen presenting complexes [91]. It found a number of

tumor-specific markers absent in normal cells, which may

act as neoantigens and allow development of mRNA vac-

cines or other immunotherapies [93]. Splicing modulation

very likely alters proteome content and therefore also

presented antigens, providing a potential source for

immunotherapy. Data generated with isoginkgetin indicates

that splicing modulation does lead to presentation of

neoantigens on MHC-I complexes [94].

It was appreciated early on that splicing modulators

might not only prove potent bioprobes in the laboratory but

also provide clinical benefits, especially in cancer treatment.

The use of splicing modulators in treating malignancies

might be a case of needing to find a suitable disease for the

right medication.

Clinical trials

The first splicing modulator to enter the clinic was pladie-

nolide’s semisynthetic derivative E7107. The molecule’s

development preceded the identification of its molecular

target [95] and E7107 initially showed promise in xenograft

models, displaying a wide therapeutic window. Human

trials against solid tumors were halted owing to dose-

limiting toxicity but showed little or no clinical benefit

[96, 97], though splicing modulation was observed.

Given that splicing modulators appear most efficacious

against hematopoietic cancers, one could argue that the

initial E7107 trials were using the right medication on

the wrong disease. While research on E7107 seems to

continue, it appears that focus is shifting to a different

compound [98].

A more recently published synthetic pladienolide deri-

vative may hold more promise. H3B-8800 is orally bioa-

vailable and appears efficacious against tumors with

splicing factor mutations, not limited to SF3B1 but also

encompassing U2AF and SRSF2 [76]. The study reiterated

differences in physiological behavior even between two

related molecules with identical mechanisms of action.

H3B-8800 and E7107 displayed different behavior in cell
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killing and splicing modulation with H3B-8800 pre-

ferentially retaining short (<300 bp) GC-rich introns with a

weak BPS. These preferences did not appear as pronounced

in the experimental system when using E7107. The authors

argued that H3B-8800’s selectivity for short GC-rich

introns especially impacted expression of other splicing

regulators, including U2AF, thereby further disrupting

proper mRNA processing.

Initial results from phase I clinical trials against MDS,

AML and CML indicated that H3B-8800 acts on its target at

similar doses as in preclinical xenograft studies [99] and

leads to altered mRNA splicing. However, while the drug

appeared to act as expected, clinical responses to splicing

modulator treatment were not observed. Trials are still in

progress with completion expected by 2022.

With the varied effect on gene expression, depending on

the chosen inhibitor and its cellular context, predicting the

benefit of splicing modulation for a particular disease

proves exceedingly difficult and necessitates the search for

suitable prognostic markers. Perhaps, future promise lies in

more specific, targeted inhibitors working on individual

splicing factors, rather than throwing the entire pre-mRNA

processing out of whack.

New tools

The identification of the sulfonamide anticancer drug

indisulam points in a promising direction (Fig. 1c). Ori-

ginally identified in a screen for molecules with antitumor

activity [100, 101], indisulam appeared efficacious in

xenograft models [102]. In clinical trials against solid

tumors, indisulam elicited a response in some 10% of

patients with no means of predicting which group of people

treated would benefit from taking sulfonamides. Two

independent research efforts, using a forward genetic [103]

or proteomic approach [104] respectively, realized that

indisulam and related sulfonamides E7820, tasisulam and

CQS act as a molecular glue, tying the U2AF-related spli-

cing factor RBM39 to DCAF15, an adaptor protein of the

CUL4-DDB1-DDA1-DCAF15 E3 ubiquitin ligase complex

(Fig. 4a). This association leads to RBM39 poly-

ubiquitination and proteasome-dependent degradation.

RBM39 has been identified as a coactivator for several

transcription factors and a regulator of receptor-dependent

alternative splicing, including splicing of VEGF [105, 106].

In absence of the sulfonamide DCAF15 and RBM39

have no affinity toward each other. Under indisulam treat-

ment intron retention and ES were observed with only a few

cases of changed 3ʹ and 5ʹ splice sites [103], as well as

changes in the splice pattern of VEGF [104]. Mutational

and structural studies identified a degron motif present in

RBM39 and also RBM23, another U2AF-related splicing

factor, which destined RBM23 and RBM39 to sulfonamide-

dependent proteasomal degradation. In clinical phase II

trials, about 1/3 of patients with chronic or relapsed acute

myeloid leukemia (AML) responded to indisulam in com-

bination with the nucleotide analogue cytarabine and DNA

topoisomerase inhibitor idarubicin [107]. Perhaps, using the

emerging targeted protein degradation technology to indi-

vidually destroy a particular splicing factor holds promise in

providing specific therapies with fewer side effects and

more predictable clinical behavior.

RNA-binding modulators

In addition, a further field of small molecule modulators in

splicing has emerged, relying on compounds that primarily

interact with RNA, not protein [108]. It was this area of

investigation that led to the first clinically approved ther-

apeutics altering splicing behavior to treat spinal muscular

atrophy (SMA) [109].

Spinal muscular atrophy (SMA) is an autosomal reces-

sive genetic disorder, occurring in about 1 out of 11,000 life

births. A loss-of-function mutation in the survival of motor

neurons 1 (SMN1) gene prevents cells from producing

sufficient levels of SMN protein, essential for normal

development and cellular homeostasis, not limited to motor

neurons. A second gene, SMN2, is present in human cells,

but a translationally silent C to T mutation at the 5ʹ end of

exon 6 produces a weak splice site, leading to exon 7

exclusion. Consequently, only ~10% of functional SMN

protein is produced, as resultant SMNΔ7 protein without

exon 7 is unstable and inactive. Chemical screening for

molecules enhancing splicing from a reporter gene con-

taining the SMN2 exon6-intron7 splice site followed by

optimization through medicinal chemistry led to NVS-SM1,

the first molecule to specifically alter splicing behavior at a

particular splice site (Fig. 1c). NVS-SM1, also labeled

branaplam, enhances the interaction between the SMN2

pre-mRNA and the U1 snRNA, thereby turning a weak

splice site into a strong one (Fig. 4b). While branaplam is

still in clinical trials, three further therapies against SMA

have gained FDA approval in recent years.

The first approved medication, nusinersen, relies on anti-

sense oligonucleotides (ASO), and while efficacious, requires

repeated intrathecal injections, making prolonged treatment

expensive, risky and somewhat impractical. The nusinersen

ASO acts by displacing the hnRNP A1/A2 splicing repressor

from intron 7 of the SMN2 gene, enhancing exon 7 inclusion

[110]. The second approved treatment, marketed as zolgen-

sma, is a gene therapy, delivering functional SMN1 protein

through an adeno-associated virus vector, aimed at infants

under 2 years of age [111]. Branaplam phase 1 and 2 clinical

trials were halted over toxicity concerns from an animal study
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but seem to have meanwhile resumed again (clinicaltrials.gov

NCT02268552). At the beginning of 2021, branaplam did

receive orphan drug status from the FDA, though as a treat-

ment for Huntington’s disease. With branaplam trials halted

over safety concerns, risdiplam, a competing compound

became the first FDA approved oral medication for SMA.

Likely sharing the same general mechanism with branaplam,

risdiplam constitutes the result of extensive structural opti-

mization, which seems to have yielded a molecule with higher

specificity, less off-target toxicity and a more favorable

pharmacokinetic profile [112].

While branaplam and risdiplam represent the best studied

examples of compounds specifically changing splicing

behavior at a particular exon, a recent report identified a

small molecule, dubbed RECTAS, changing splicing

behavior of the IKAP gene involved in familial dysauto-

nomia, a hereditary sensory neuropathy [113]. Judging by

its activity in vitro RECTAS may very well interact directly

with the splicing or RNA-processing machinery. Recent

findings indicated RECTAS’s potential in the treatment of

Parkinson’s disease [114], however, its target still awaits

discovery [115].

Outlook

The discussed molecules constitute by no means the only

way of pharmacologically changing splicing behavior. A

whole body of research has evaluated the effects of CLK

and DYRK kinase inhibitors on changing SR protein

behavior and thereby alternative splicing. These signaling

modulator show some promise in treating several diseases

caused by underlying splicing defects, including Duchenne

muscular dystrophy, familial dysautonomia and certain

types of cystic fibrosis [116, 117]. A discussion of the role

of signal transduction in splicing deserves its own review

[118].
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Fig. 4 a Depiction of indisulam acting as a molecular glue, targeting RBM39 for proteasomal degradation. b Simplified depiction of the

mechanism of branaplam (NVS-SM1) in increasing SMN2 exon 7 splicing efficiency. Risdiplam is thought to act in the same manner.
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From a medicinal point of view, RNA specific medications

and molecules exploiting the protein degradation machinery

point in the future direction of chemical splicing modulation.

This activity is not limited to mammalian mRNA processing,

but promising results have also been obtained with molecules

targeting group II self-splicing introns in pathogenic yeast

[119], potentially providing a pathogen specific target to fight

opportunistic Candida parapsilosis infections. While drug

resistance should not become an issue in treating muscular

atrophy, one needs to keep in mind that against cancer

increasing specificity in mechanism also increases the chances

of drug-specific resistance. Therefore, the potential of rela-

tively broad inhibitors acting on novel targets should not be

underestimated.

Splicing modulators provide great study objects for

the promises and challenges in chemical biology. They

display both the power of natural products as well as the

necessity for medicinal chemistry in providing sufficient

quantities of stable and potent molecular effectors. Fur-

thermore, they demonstrate how structurally disparate

molecules may share a binding site and mechanism of

action, yet how small differences in binding may bring

about very different cellular outcomes. With splicing

modulators perturbing a fundamental process in gene

expression control, the need to understand the cellular

effects beyond the interaction between drug and target

molecule becomes ever more apparent. Even that may not

suffice when trying to understand the workings of a small

molecule in an organismal context. The next years will

show whether splicing modulators targeting SF3B will

mature into efficacious therapeutics. In laboratory research,

they have already proven themselves powerful bioprobes

into the basis of gene expression and we can expect them to

provide powerful tools for future discoveries.
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