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Combining data derived from a meta-analysis of human disease-associated 5′ splice

site GT>GC (i.e., +2T>C) variants and a cell culture-based full-length gene splicing

assay (FLGSA) of forward engineered +2T>C substitutions, we recently estimated that

∼15–18% of +2T>C variants can generate up to 84% wild-type transcripts relative to

their wild-type counterparts. Herein, we analyzed the splicing outcomes of 20 +2T>C

variants that generate some wild-type transcripts in two minigene assays. We found

a high discordance rate in terms of the generation of wild-type transcripts, not only

between FLGSA and the minigene assays but also between the different minigene

assays. In the pET01 context, all 20 wild-type minigene constructs generated the

expected wild-type transcripts; of the 20 corresponding variant minigene constructs,

14 (70%) generated wild-type transcripts. In the pSPL3 context, only 18 of the 20 wild-

type minigene constructs generated the expected wild-type transcripts whereas 8 of the

18 (44%) corresponding variant minigene constructs generated wild-type transcripts.

Thus, in the context of a particular type of variant, we raise awareness of the limitations

of minigene splicing assays and emphasize the importance of sequence context in

regulating splicing. Whether or not our findings apply to other types of splice-altering

variant remains to be investigated.

Keywords: aberrant transcript, full-length gene splicing assay, genetic variant, minigene splicing assay, splice

site, SpliceAI

INTRODUCTION

In principle, both coding and intronic variants within a gene have the potential to affect splicing
(Cooper et al., 2009; Scotti and Swanson, 2016; Anna andMonika, 2018; Truty et al., 2021). Genetic
variants occurring within the 5′ splice site GT dinucleotide, whenever found in disease-causing
or disease-predisposing genes, have generally been classified as pathogenic (Mount et al., 2019;
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Stenson et al., 2020). However, a problem is posed by 5′ splice site
GT>GC variants (henceforth simply termed +2T>C variants)
due to the fact that in the human genome, a small but nevertheless
significant minority (∼1%) of introns contain the 5′ splice site
GC dinucleotide (Burset et al., 2000, 2001; Abril et al., 2005;
Sheth et al., 2006; Parada et al., 2014). Recently, combining
data derived from a meta-analysis of human inherited disease-
associated +2T>C variants and a cell culture-based Full-Length
Gene Splicing Assay (FLGSA) of forward engineered +2T>C
substitutions, we estimated that ∼15–18% of +2T>C variants
can generate up to 84% wild-type transcripts relative to their
wild-type counterparts (Lin et al., 2019). This finding was
corroborated by a re-analysis (Chen et al., 2020) of the saturation
genome editing data on 12 BRCA1+2T>C substitutions (Findlay
et al., 2018).

Our aforementioned findings have two direct clinical
implications. Firstly, many +2T>C variants in human disease
genes that have been capable of generating some wild-type
transcripts are likely to have gone largely unreported; this
represents a significant deficiency in terms of our understanding
of genotype-phenotype relationships and tailored treatment
options given that even the minor retention of wild-type
transcripts derived from a variant allele might significantly
impact disease expression and severity (Ramalho et al., 2002; Den
Uijl et al., 2011; Raraigh et al., 2018; Lin et al., 2019; Scalet et al.,
2019; Joynt et al., 2020). In this regard, it is pertinent to mention
that CFTR c.3873+2T>C and c.4242+2T>C transitions (Joynt
et al., 2020) and SRP68 c.184+2T>C (Schmaltz-Panneau et al.,
2021) are among the most recently reported examples of
disease-causing +2T>C variants that generated some wild-type
transcripts. Secondly, +2T>C variants in human disease genes
may not invariably be pathogenic, a notion that has received
support from at least two recent publications, which reclassified
BRCA2 c.8331+2T>C (Nix et al., 2021) and BAP1 c.783+2T>C
(Goldberg et al., 2021) as variants of unknown significance.

Another important finding arising from our study was that
none of the widely used splicing prediction tools were capable
of reliably distinguishing those +2T>C variants that generated
wild-type transcripts from those that did not (Lin et al., 2019).
The root of this problem is twofold: apart from the use of
GC instead of GT as the 5′ splice site dinucleotide in ∼1% of
introns, these prediction tools only take into consideration short
local DNA sequence motifs (Chen et al., 2020). The recently
developed deep learning-based tool, SpliceAI (Jaganathan et al.,
2019), performed somewhat better in this regard but was
still far from perfect (Chen et al., 2020). These observations
underscored the importance of experimentally determining
the splicing outcomes of +2T>C variants in a clinical as
well as a basic research setting. Whilst RNA analysis, using
pathophysiologically relevant tissues, provides the most accurate
and reliable mRNA phenotyping information on human splicing
variants, this is often not possible if appropriate tissue samples
are not available (Aicher et al., 2020). RNA analysis using
either patient blood cells or immortalized lymphoblastoid cells
represents an alternative option, providing that the gene of
interest is normally expressed in these cells (Wai et al., 2020). In
case of the non-feasibility of both approaches, a cell culture-based

minigene splicing assay has often been devised (for some most
recent examples, see Damasio et al., 2021; Hao et al., 2021;
Kim et al., 2021; Kortum et al., 2021; Le Tertre et al., 2021;
Morbidoni et al., 2021; Qian et al., 2021; Saint-Martin et al., 2021;
Torrado et al., 2021).

Our FLGSA assay (focused on genes whose genomic sizes
were < 8 kb) (Lin et al., 2019, 2020) cannot be readily used
for large genes for various practical and/or technical reasons.
Genome editing (Findlay et al., 2018) is a promising trend but its
wide application is still some way from becoming reality. Thus,
the minigene splicing assay will for the time being remain the
mainstream approach for functionally characterizing potential
splice-altering variants. However, an inherent drawback of the
minigene splicing assay is the lack of the wider genomic sequence
context of the gene under study (Zou et al., 2016; Lin et al., 2019,
2020; Tang et al., 2019). This could lead to inaccurate results
and incorrect conclusions being drawn owing to the complexity
of the splicing code (Fu and Ares, 2014; Drexler et al., 2020),
as exemplified by the contrasting findings from the study of
the SPINK1 c.194G>A variant in a minigene assay (Beer and
Sahin-Toth, 2014) and our own FLGSA assay (Wu et al., 2017).
Herein, we explored whether the splicing outcomes of 20+2T>C
variants that have been previously shown to generate some wild-
type transcripts by means of FLGSA and/or patient RNA analysis
(Lin et al., 2019) could be replicated in two minigene assays.

MATERIALS AND METHODS

+2T>C Variants Included for Minigene
Splicing Assay and Variant Nomenclature
A total of 26 +2T>C variants were previously shown to generate
some wild-type transcripts by means of FLGSA and/or patient
RNA analyses (Lin et al., 2019). Of these, six variants that
occurred within the first intron of their respective genes could
not be readily analyzed by the minigene assay and hence were
excluded from further consideration.

All the remaining 20 variants were included in the current
analysis (Table 1). Of these, six had been originally reported
to be both naturally occurring and disease causing. These six
pathogenic variants included the five variants that had previously
been demonstrated to generate some wild-type transcripts by
means of patient RNA analysis (i.e.,CD3E IVS7+2T>C,CD40LG
IVS3+2T>C, DMD IVS54+2T>C, PLP1 IVS5+2T>C and
SPINK1 IVS3+2T>C) plus HBB IVS2+2T>C. Although the
latter HBB IVS2+2T>C variant had no accompanying patient
RNA data, it was suggested to have had a limited impact
on splicing due to its associated hematological phenotype that
was milder than would have been expected from a null allele
(Frischknecht et al., 2009); its orthologous counterpart in the
rabbitHbb gene has been experimentally shown to generate wild-
type transcripts (Aebi et al., 1986, 1987); and the human variant
was also shown to generate wild-type transcripts in a FLGSA
assay (Lin et al., 2019). Of the five pathogenic variants subjected
to patient RNA analysis, only SPINK1 IVS3+2T>C was also
analyzed by FLGSA; the findings from the patient RNA analysis
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(Kume et al., 2006) and FLGSA assay (Zou et al., 2016; Lin et al.,
2019) were remarkably similar.

The remaining 14 variants included in this study were not
known to be disease causing at the time (Lin et al., 2019). They
represent forward engineered +2T>C substitutions, all being
found to generate wild-type transcripts by means of FLGSA (Lin
et al., 2019).

For ease of description and to be consistent with our
previous publications (Lin et al., 2019, 2020; Chen et al.,
2020), all included +2T>C variants were described in
accordance with the traditional IVS (intervening sequence
or intron) nomenclature (Table 1). Their respective chromosome
locations, hg38 coordinates, reference alleles in hg38 and HGVS
nomenclature (den Dunnen et al., 2016) are, however, provided
in Supplementary Table 1.

Construction of pET01 and pSPL3
Wild-Type Minigene Expression Vectors
by Means of In-Fusion Cloning
For a given +2T>C variant, the corresponding wild-type
genomic sequences cloned into the pET01 and pSPL3 exon
trapping vectors were always identical. Of the 20 wild-type
inserts, 18 comprised 63-330 bp sequence from the 3′ end of
N-1 intron, the entire exon N and 65–328 bp sequence from

the 5′ end of intron N (N is the number of the variant-affected
intron) (see upper panel in Figure 1A). The other two wild-type
inserts (for PSMC5 IVS10+2T>C and SELENOS IVS5+2>C,
respectively) instead comprised 50–116 bp sequence from intron
N-2, entire exon N-1, entire intron N-1, entire exon N and 96–
294 bp sequence from intron N (lower panel in Figure 1A);
this was done primarily due to the small size (<100 bp) of the
respective intron N-1 in these two cases. See Supplementary

Table 2 for the sequences of all inserts.
Two pairs of 5′ XhoI-harboring and 3′ BamHI-harboring

primers, one for in-fusion cloning into the pET01 trapping
vector and the other for in-fusion cloning into the pSPL3 exon
trapping vector, were designed to amplify each insert (Figure 1B).
Primer sequences are provided in Supplementary Table 3. PCR
was performed in a 25 µL reaction mixture containing 0.5 U
KAPA HiFi HotStart DNA Polymerase (Kapa Biosystems), 0.75
µL KAPA dNTP Mix (300 µM final), 5 µL 5× KAPA HiFi
Buffer, 50 ng DNA (from a healthy Chinese subject), and 0.3
µM forward and reverse primers. The PCR program comprised
an initial denaturation at 95◦C for 5 min, followed by 30
cycles of denaturation at 98◦C for 20 s, annealing at 66◦C for
15 s, extension at 72◦C for 1 min, and a final extension at
72◦C for 5 min.

PCR products of the expected size were purified with the
Cloning Enhancer kit (TaKaRa). The purified products were

TABLE 1 | Results from minigene splicing analyses of 20 +2T>C variants that were previously reported to generate wild-type transcripts.

Gene mRNA reference Varianta Summary of previous data Current resultsc

Analytical method employed Expression level of the wild-type transcriptb pET01 pSPL3

CD3E NM_000733.3 IVS7+2T>C Patient RNA analysis 1-5% – –

CD40LG NM_000074.2 IVS3+2T>C Patient RNA analysis 15% + +

DBI NM_001079862.2 IVS2+2T>C FLGSAd Not quantified + –

DMD NM_004006.2 IVS54+2T>C Patient RNA analysis 10% + +

DNAJC19 NM_145261.3 IVS5+2T>C FLGSA 42% + ×

FOLR3 NM_000804.3 IVS4+2T>C FLGSA Not quantified + +

HBB NM_000518.5 IVS2+2T>C FLGSA Not quantified + –

IFNL2 NM_172138.1 IVS5+2T>C FLGSA 5% + +

IL10 NM_000572.3 IVS3+2T>C FLGSA Not quantified + +

MGP NM_000900.4 IVS2+2T>C FLGSA 80% – –

PLP1 NM_000533.4 IVS5+2T>C Patient RNA analysis 8% – –

PSMC5 NM_001199163.1 IVS6+2T>C FLGSA 56% – –

IVS8+2T>C FLGSA 56% – –

IVS10+2T>C FLGSA 46% + –

RPL11 NM_000975.5 IVS2+2T>C FLGSA Not quantified + +

IVS3+2T>C FLGSA Not quantified + +

RPS27 NM_001030.4 IVS2+2T>C FLGSA 63% – –

IVS3+2T>C FLGSA Not quantified + ×

SELENOS NM_203472.2 IVS5+2T>C FLGSA 14% + +

SPINK1 NM_003122.3 IVS3+2T>C Patient RNA analysis/FLGSA 10% + –

a In accordance with the traditional IVS (intervening sequence or intron) nomenclature as previously described (Lin et al., 2019, 2020). See Supplementary Table 1 for

additional information including specifically the HGVS nomenclature (den Dunnen et al., 2016).
bExpression level of the wild-type transcripts generated from the variant allele relative to that (set as 1) generated from the wild-type allele (see Lin et al., 2019; Chen et al.,

2020).
c+, the variant generated wild-type transcripts; –, the variant did not generate wild-type transcripts; ×, the variant was not analyzed by the minigene assay owing to the

non-expression of the wild-type transcripts from the corresponding wild-type minigene vectors.
dFLGSA, full-length gene splicing assay.
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FIGURE 1 | Schematic illustrations of the minigene expression constructs in the context of wild-type inserts. (A) Illustration of the target gene sequence (in red)

inserted into the pET01 and pSPL3 exon trapping vectors. The number of the +2T>C variant-affected intron is N and the IVSn+2T site is indicated by a downward

pointing arrow. For most variants (n = 18), the insert comprised a single exon (i.e., exon N) plus flanking intronic sequences on both sides (upper panel). For two

variants, the insert comprised two exons (exon N-1 and exon N) plus flanking and intervening intronic sequences (lower panel). The two exons (exon A and exon B)

located within the vector and the canonical splice donor GT and acceptor AG sites defining the two chimeric introns (upper panel) or the two chimeric introns and

intron N-1 (lower panel) are also denoted in the figure. (B) Illustration of how a wild-type minigene expression vector was constructed. The insert (in red) was PCR

amplified with 5′ XhoI-harboring and 3′ BamHI-harboring in-fusion primers with respect to the pET01 or pSPL3 vector. The resulting PCR products were inserted into

their respective linearized vectors by means of in-fusion cloning.

then cloned into the XhoI and BamHI restriction sites of the
linearized pET01 or pSPL3 vector with the In-FusionHDCloning
kit (TaKaRa) according to the manufacturer’s instructions.
Transformation was performed using Stellar Competent Cells
(TaKaRa). Transformed cells were spread onto LB agar plates
with 50 µg/mL ampicillin and incubated at 37◦C overnight.
Plasmid constructs containing inserts were confirmed by
Sanger sequencing.

Primers were designed by our laboratory in the Changhai
Hospital. Primer synthesis, insert amplification, in-fusion cloning
and verification of the inserted fragments were all performed by
GENEWIZ, Beijing, China.

Generation of pET01 and pSPL3 +2T>C
Variant Minigene Expression Vectors by
Means of Site-Directed Mutagenesis
+2T>C variants were introduced into their respective wild-type
minigene expression constructs by means of the QuikChange
II XL Site-Directed Mutagenesis Kit (Agilent Technologies).
Mutagenesis, transformation, plasmid preparation and validation
of the introduced variants were performed as previously
described (Lin et al., 2019). Sequences of the mutagenesis primers
are provided in Supplementary Table 4.

Cell Culture, Transfection, RNA
Extraction, and Reverse Transcription
These were performed as previously described (Lin et al., 2019).

Reverse Transcription-Polymerase Chain
Reaction (RT-PCR) Analysis
RT-PCR was performed in a 25-µL reaction mixture containing
12.5 µL HotStarTaq Master Mix (Qiagen), 1 µL cDNA, and 0.4
µM each primer (5′-GAGGGATCCGCTTCCTGGCCC-3′

(forward) and 5′-CTCCCGGGCCACCTCCAGTGCC-
3′ (reverse) for pET01 expression vectors (both primers
are located within the pET01 vector sequence); 5′-
TCTGAGTCACCTGGACAACC-3′ (forward) and
5′-ATCTCAGTGGTATTTGTGAGC-3′ (reverse) for pSPL3
expression vectors (both primers are located within the pSPL3
vector sequence)). The PCR program had an initial denaturation
step at 95◦C for 15 min, followed by 30 cycles of denaturation
at 94◦C for 45 s, annealing at 58◦C for 45 s, extension at
72◦C for 1 min/kb, and a final extension step at 72◦C for
10 min. RT-PCR products of a single band were cleaned by
ExoSAP-IT (Affymetrix). In the case of multiple bands, the
bands were excised from the agarose gel and then purified by
QIAquick Gel Extraction Kit (Qiagen). Sequencing primers
were those used for the RT-PCR analyses and sequencing was
performed using the BigDye Terminator v1.1 Cycle Sequencing
Kit (Applied Biosystems).

RESULTS

Rationale of Experimental Protocol
The experimental procedures adopted in this study are
summarized in Figure 2. Before presenting the results obtained
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FIGURE 2 | Outline of the experimental procedures. IVS, intervening sequence or intron; RT-PCR, reverse transcription-polymerase chain reaction. FLGSA,

full-length gene splicing assay.

in some detail, we would like to summarize our protocol in terms
of its four components.

First, the 20 +2T>C variants included for minigene assay
analysis represent the totality of the variants that were previously
found to generate wild-type transcripts as assessed by FLGSA
and/or patient RNA analyses excluding all IVS1+2T>C ones (Lin
et al., 2019). (NB. Intronic variants located near the first or last
exon of the gene cannot be readily evaluated by a minigene assay
without special adaptation (Chen et al., 2018; Raud et al., 2019;
Tang et al., 2019).) The accuracy and reliability of the FLGSA-
obtained functional assessment of the+2T>C variants have been
extensively addressed in our previous publications (Lin et al.,
2019, 2020; Chen et al., 2020).

Second, for each +2T>C variant under study, the
corresponding wild-type genomic sequences inserted into the
two minigene vectors, pET01 and pSPL3, were always identical.

Third, the generation (or not) of wild-type transcripts—
determined by qualitative RT-PCR analyses as previously
described (Lin et al., 2019)—was used as the basis for comparison.

Fourth, a wild-type transcript refers to the product containing
precisely Exon A, ExonN and Exon B or Exon A, ExonN-1, Exon
N and Exon B as depicted in Figure 1A. The authenticity of all

wild-type transcripts was confirmed by Sanger sequencing. Most
aberrant transcripts were also Sanger sequenced.

Generation (or Not) of Wild-Type
Transcripts
Two Exceptions to the Rule That Wild-Type Minigene

Constructs Invariably Express the Expected

Wild-Type Transcripts

Of the 40 wild-type minigene constructs (20 in the pET01 context
and 20 in the pSPL3 context), only two did not express the
expected wild-type transcripts (Supplementary Figures 1–20),
both of them in the pSPL3 context. Specifically, the pSPL3
DNAJC19 IVS5+2T minigene construct expressed a transcript
lacking DNAJC19 exon 5 but containing instead a 118-bp
pseudoexon (Figure 3). The pSPL3 RPS27 IVS3+2T minigene
construct expressed a transcript with RPS27 exon 3 being skipped
(Supplementary Figure 18). These two wild-type minigene
constructs were thus not mutated to their corresponding variant
versions. In other words, DNAJC19 IVS5+2T>C and pSPL3
RPS27 IVS3+2T>C were not analyzed by the minigene assay in
the pSPL3 context.
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FIGURE 3 | Reverse transcription-polymerase chain reaction results from minigene assays with respect to the DNAJC19 IVS5+2T (i.e., wild-type) construct. In the

pET01 minigene assay, the DNAJC19 IVS5+2T construct yielded the expected wild-type transcripts (indicated by the left oblique downward pointing arrow). In the

pSPL3 minigene assay, the DNAJC19 IVS5+2T construct yielded an aberrant transcript, whose nature was illustrated in the call-out box. In the call-out box, the

sequence delimited by the two vertical blue lines refers to the entire wild-type DNAJC19 DNA insert, which comprised exon 5 (in upper case and in red) and partial

intronic sequences on both sides. The sequence downstream of the second vertical line refers to partial downstream pSPL3 vector sequence. The aberrant

transcript did not contain DNAJC19 exon 5 but instead contained a 118-bp pseudoexon (in bold and underlined) that spanned the chimeric region of the chimeric

intron 2 (see Figure 1A for term definition). The aberrantly inactivated AG-GT splice sites flanking DNAJC19 exon 5 are highlighted in red and denoted by crosses.

The aberrantly activated cryptic AG-GT splice sites are highlighted in blue. See Supplementary Figure 5 for the full gel photographs.

Four +2T>C Variants Exhibited Discordance

Between the Two Minigene Assays

Four variants, DBI IVS2+2T>C (Figure 4), HBB IVS2+2>C
(Supplementary Figure 7), PSMC5 IVS10+2T>C
(Supplementary Figure 14) and SPINK1 IVS3+2T>C
(Supplementary Figure 20), generated wild-type transcripts in
the pET01 minigene assay but not in the pSPL3 minigene assay.

Six +2T>C Variants Failed to Generate Wild-Type

Transcripts in Both Minigene Assays

The six variants are CD3E IVS7+2T>C (Supplementary

Figure 1), MGP IVS2+2T>C (Supplementary Figure 10),
PLP1 IVS5+2T>C (Supplementary Figure 11), PSMC5
IVS6+2T>C (Supplementary Figure 12), PSMC5 IVS8+2T>C
(Supplementary Figure 13) and RPS27 IVS2+2T>C (Figure 5).

Eight Variants Generated Wild-Type Transcripts in

Both Minigene Assays

These eight variants are CD40LG IVS3+2T>C (Supplementary

Figure 2), DMD IVS54+2T>C (Supplementary Figure 4),
FOLR3 IVS4+2T>C (Figure 6), IFNL2 IVS5+2T>C
(Supplementary Figure 8), IL10 IVS3+2T>C (Supplementary

Figure 9), RPL11 IVS2+2T>C (Supplementary Figure 15),

RPL11 IVS3+2T>C (Supplementary Figure 16) and SELENOS
IVS5+2T>C (Supplementary Figure 19).

Synthesis

The above findings are summarized in Table 1. In short, in the
pET01 context, all 20 wild-type minigene constructs generated
the expected wild-type transcripts; of the 20 corresponding
variant minigene constructs, 14 (70%) generated wild-type
transcripts. In the pSPL3 context, only 18 of the 20 wild-
type minigene constructs generated the expected wild-type
transcripts; of the 18 corresponding variant minigene constructs,
only 8 (44%) generated wild-type transcripts.

DISCUSSION

In this study, we set out to systematically analyze the splicing
outcomes of 20 +2T>C variants that had been previously
shown to generate varying levels of wild-type transcripts by
means of FLGSA and/or patient RNA analyses (Lin et al.,
2019), in two minigene systems. We found a fairly high level
of discordance between the different systems in terms of the
generation of wild-type transcripts (Table 1). First and foremost,
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FIGURE 4 | Reverse transcription-polymerase chain reaction (RT-PCR) results from the pET01 and pSPL3 minigene assays with respect to the DBI IVS2+2T>C

variant. Results from the previously performed full-length gene splicing assay (FLGSA) (Lin et al., 2019) are included for the sake of comparison (NB. The two

aberrant transcripts were newly sequenced in this study). In all panels, wild-type transcripts are indicated by oblique downward pointing arrows. See

Supplementary Figure 3 for the full gel photographs with respect to the minigene assays. The FLGSA data were adapted from Lin et al. (2019) with permission

(Copyright 2020 Wiley Periodicals LLC).

30% (n = 6) of the 20 +2T>C variants analyzed in the
pET01 minigene assay and 56% (n = 10) of the 18 +2T>C
variants analyzed in the pSPL3 minigene assay failed to generate
wild-type transcripts. It would thus appear that the minigene
assays have a tendency to exaggerate the negative effect of the
+2T>C variants on splicing. Whether this is bound up with
the artificiality of the minigene structure or simply represents a
chance finding, remains to be established. In line with our own
findings, the aforementioned reclassified BRCA2 c.8331+2T>C
variant (Nix et al., 2021) had been previously found to generate
no wild-type transcripts at all by means of a minigene assay
(Fraile-Bethencourt et al., 2017). However, using exonic tag-
SNP analysis of transcripts expressed in Epstein-Barr virus-
immortalized lymphoblastoid cells from a heterozygous BRCA2
c.8331+2T>C carrier, Gelli et al. (2019) demonstrated that
wild-type transcripts were derived from both the wild-type and
c.8331+2T>C alleles, although they did not specify the relative
levels of wild-type transcript emanating from the wild-type and
variant alleles. More recently, using exonic tag-SNP analysis of

transcripts expressed in blood cells from a BRCA2 c.8331+2T>C
heterozygote, Nix et al. (2021) demonstrated that 62 and 38%
of the wild-type transcripts were derived from the wild-type
and variant alleles, respectively. For the purpose of comparison,
BRCA2 c.68-7T>A, which causes an ∼20% functional loss of the
variant allele, has been firmly established to be nonpathogenic
(Colombo et al., 2018) whilst analysis of a neutral leaky variant
(c.231T>G) has served to demonstrate that a reduction of
∼60% of full-length BRCA2 transcripts from the mutant allele
does not give rise to any measurable increase in cancer risk
(Tubeuf et al., 2020).

Significant discordance was also apparent between the two
minigene systems, into which identical inserts were cloned for
each variant under study, in terms of the results obtained
(Table 1). Moreover, even in the cases that showed concordance
in terms of the generation (or not) of wild-type transcripts, the
splicing outcomes may have differed in terms of the nature of
the aberrant transcripts and/or relative levels of the wild-type
transcripts. Take, for example, the FOLR3 IVS4+2T>C variant
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FIGURE 5 | Reverse transcription-polymerase chain reaction results from the pET01 and pSPL3 minigene assays with respect to the RPS27 IVS2+2T>C variant.

Results from the previously performed full-length gene splicing assay (FLGSA) (Lin et al., 2019) are included for the sake of comparison. In all panels, wild-type

transcripts are indicated by oblique downward pointing arrows. See Supplementary Figure 17 for the full gel photographs with respect to the minigene assays.

The FLGSA data were adapted from Lin et al. (2019) with permission (Copyright 2020 Wiley Periodicals LLC).

that generated wild-type transcripts in all three systems: the
aberrant transcripts generated from FLGSA were different from
those generated from the two minigene assays; moreover, the
relative levels of the wild-type transcript were markedly different
between the two minigene assays. Specifically, the FLGSA-
derived aberrant transcript had retained intron 4 whereas the
minigene-derived aberrant transcript had skipped exon 4; further,
the level of the pET01-derived wild-type transcripts was much
higher than that of the pSPL3-derived wild-type transcripts, as
indicated by the relative intensities of the wild-type and aberrant
transcript bands (Figure 6).

All the above mentioned discordant findings could be
attributed primarily (if not solely) to differences in the underlying
sequence contexts because our previous FLGSA and the current
minigene assays were all performed under the same experimental
conditions and employing the same procedures. As such, the high
level of discordant findings between the different systems used
should not be regarded as surprising given that (i) the sequence
determinants for the 5′ splice site go beyond the best studied

9-bp consensus sequencemotif (see Lin et al., 2019 and references
therein) and (ii) splicing is a complicated as well as a coordinated
process across different introns (Fu and Ares, 2014; Drexler et al.,
2020). In this context, it is pertinent to cite a previous study,
in which two splicing reporter minigenes were found to exhibit
very different sensitivities in relation to the effects of 13 MLH1
variants on exon 10 skipping; it was the one that most closely
approximated the pattern of exon 10 skipping in vivo (in the
context of the wild-type MLH1 exon 10 minigene construct)
that was used for the final analysis (Soukarieh et al., 2016).
Taken together with our current findings, this indicates that it is
most unlikely that a universal splicing reporter minigene could
ever be developed that would be suitable for the analysis of all
splicing variants. In other words, different exon trapping vectors
carrying a particular wild-type target gene insert might need to
be tested in advance with a view to selecting one empirically
that most closely resembled the normal expression pattern of the
gene designated for functional analysis. Alternatively, a midigene
splicing assay (Sangermano et al., 2018) might be considered
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FIGURE 6 | Reverse transcription-polymerase chain reaction results from the pET01 and pSPL3 minigene assays with respect to the FOLR3 IVS4+2T>C variant.

Results from the previously performed full-length gene splicing assay (FLGSA) (Lin et al., 2019) are included for the sake of comparison (NB. the aberrant transcript

with retained intron 4 was newly sequenced in this study). In all panels, wild-type transcripts are indicated by oblique downward pointing arrows. See

Supplementary Figure 6 for the full gel photographs with respect to the minigene assays. The FLGSA data were adapted from Lin et al. (2019) with permission

(Copyright 2020 Wiley Periodicals LLC).

with a view to increasing the natural sequence context of the
variant under study.

Although we have provided experimental evidence that
genomic sequence context has influenced the splicing outcome of
+2T>C variants capable of generating wild-type transcripts, it is
beyond our current ability to discern precisely how and why these
differences originated. For illustrative purposes, let us take the
two pSPL3 wild-type minigene constructs that did not generate
the expected wild-type transcripts. First, the pSPL3 DNAJC19
IVS5+2T minigene construct expressed a transcript lacking
DNAJC19 exon 5 and containing instead a 118-bp pseudoexon.
As shown in Figure 3, this was due to the inactivation of the
physiological GT-AG splice sites defining DNAJC19 exon 5 and
the concurrent activation of cryptic splice sites located within
the chimeric intron 2. However, based upon comparisons with
the 3′ splice site consensus sequence (CAG|G) and 5′ splice site
consensus sequence (MAG|GTRAGT where M is A or C and
R is A or G)1, we could not draw any meaningful conclusions

1https://science.umd.edu/labs/mount/RNAinfo/consensus.html

about the alternative use of theDNAJC19 exon 5-defining GT-AG
splice sites and the aberrantly activated cryptic GT-AG splice sites
observed in the minigene construct. Second, the pSPL3 RPS27
IVS3+2T minigene construct expressed an RPS27 transcript
skipping exon 3 (Supplementary Figure 18). One might argue
that this could somehow be associated with alternative splicing.
However, although RPS27 has three alternative transcripts,2 exon
3 (in the context of NM_001030.6) is common to all three.
Even if RPS27 exon 3 was differentially used by the three
transcripts, the fact of its being skipped only in the pSPL3
context points to differences in sequence that extend beyond the
gene inserts.

There is one final point to make. Although we have provided
experimental evidence that points to limitations in the minigene-
based analysis of splicing, our findings should not be interpreted
as a challenge to the current preeminence of theminigene splicing

2https://www.ncbi.nlm.nih.gov/gene/6232
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assay which is one of the most widely used analytical tools
employed for the interpretation of potentially pathogenic
variants. Indeed, all methods for assessing splicing have their
advantages and inconveniences.

Our study has its limitations. For example, we used only
one cell line for transfection and subsequent RT-PCR analysis.
It would be interesting to see whether the same results were
obtained employing another cell line. Here it may nonetheless be
pertinent tomention that in our previous study, we have analyzed
10 +2T>C substitutions that generated wild-type transcripts
and 10 +2T>C substitutions that did not generate wild-type
transcripts in HEK293T cells for FLGSA in HeLa cells; we
observed entirely consistent findings in the two cell lines in
terms of the generation of wild-type transcripts or not (Lin
et al., 2019). Moreover, in common with our previous studies
(Lin et al., 2019, 2020), our findings were based on qualitative
RT-PCR/gel analysis in terms of the absence or presence of the
wild-type transcripts. Repeating the experiments using another
more precise method would strengthen our findings. However,
we believe that since an aberrant transcript band was always
generated by the variant minigene expression vectors (or in
other words, the aberrant transcripts always served as an
internal control for gene expression), our findings should be
highly reliable.

CONCLUSION

Our study provides experimental evidence that +2T>C variants
capable of generating some wild-type transcripts exhibit
remarkable differences not only between minigene and full-
length gene splicing assays but also between different minigene
assays. Our results therefore bring fresh glimpses of the
limitations that are inherent to minigene splicing assays and
emphasize the role of sequence context in regulating splicing of a
particular variant type. Whether our findings also apply to other
types of splice-altering variant remains to be investigated.
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