
Spliddit: Unleashing Fair Division Algorithms

Jonathan Goldman

Advisor: Ariel Procaccia

Abstract

The field of fair division has been rapidly expanding in recent years, capturing the interest

of researchers in economics, mathematics, and computer science. The literature encom-

passes provably fair solutions for a wide variety of problems — many of them relevant to

society at large. However, few fair division systems are used in practice, with even fever

available to the public. Enter Spliddit, a first-of-its-kind website which provides easy

access to carefully designed methods for dividing rent, goods, credit, chores, and fares.

Since launching in November 2014, Spliddit has received coverage in popular technology

websites such as Gizmodo and Fast Company, and has been used by tens of thousands

of people. In this thesis, we’ll discuss the overall design and implementation of Spliddit,

as well as the algorithmic details of Spliddit’s various applications.

1 Introduction

Fair division theory has evolved into a major field of study in mathematics, computer

science, and economics over the past several decades. Historically, much of the literature

has focused on designing and analyzing various notions of fairness. Nowadays, more

attention is being devoted to developing provably fair solutions to a wide variety of

problems. However, despite the relevance of many of these problems to society at large,

very few fair division methods have been made publicly available. Exceptions include

the Adjusted Winner Website, which provides access to a method for dividing indivisible

goods between two people, and Francis Su’s Fair Division Calculator, which implements

methods for splitting rent, divisible goods, and chores. However, these websites are both

limited in scope and usability. Other applications, including Splitwise and Splittable, offer

functionality for splitting bills but rely on simple methods which don’t offer mathematical

fairness guarantees1.

Enter Spliddit (www.spliddit.org), a new fair division website. Quoting from the

website:

Spliddit is a not-for-profit academic endeavor. Its mission is twofold:

• To provide easy access to carefully designed fair division methods, thereby

making the world a bit fairer.

• To communicate to the public the beauty and value of theoretical research

in computer science, mathematics, and economics, from an unusual per-

spective.

Spliddit launched on November 4, 2014 with applications for sharing rent, dividing

goods, and assigning credit. On April 28, 2015 Spliddit launched additional applications

for splitting taxi fare and distributing tasks. Spliddit has attracted tens of thousands

of unique visitors, building on press coverage in popular technology and science websites

such as Gizmodo, Lifehacker, and Fast Company. In this thesis, we’ll discuss the design
1The websites mentioned in this section are www.nyu.edu/projects/adjustedwinner/,

www.math.hmc.edu/˜su/fairdivision/calc/, www.splitwise.com, and www.splittable.co.

1

and implementation of Spliddit. Section 2 details many of the important design decisions

made and how they relate to the mission statement quoted above. Then, section 3 delves

into the five different applications, including the mathematical models, fairness guaran-

tees, and algorithms, and section 4 discusses some technical details regarding Spliddit’s

implementation. To demonstrate the impact of Spliddit and in particular how well Splid-

dit achieves its mission, section 5 gives some statistics and testimonials. Finally, section

6 concludes by exploring Spliddit’s potential to serve as a platform for empirical fair

division research.

2 Design and Ideology

Before diving into Spliddit’s implementation, it is worth taking a look at some key design

decisions, and in particular how they contribute towards Spliddit’s mission.

In order to be useful to society at large, Spliddit’s first three applications were chosen

to maximize broad appeal and usability. The Sharing Rent application, which helps

people moving into a new apartment with roommates to fairly assign rooms and split

the rent, can be used by some 32.0% of American adults who live with roommates2. The

Dividing Goods application may be useful to the 800,000 couples a year in the United

States who seek divorce3, but is also useful for estate planning and any other situation

in which a collection of goods are to be shared among multiple people. Finally, the

Assigning Credit application may be used to help determine contributions of individuals

to any group project, such as a research paper, school project, or business endeavor. The

remaining two applications were chosen based on user feedback: the Distributing Tasks

application is designed for divvying up household chores or work shifts, and the Splitting

Fare application fairly divides the cost of a taxi ride between friends who need to be

dropped off in different locations. In summary, each of the five applications apply to

common problems faced by millions of people. Figure 1 shows the five applications as

they appear on Spliddit’s homepage.
2Roommate statistic from Zillow’s “Doubled-up for Dollars” study:

www.zillow.com/research/doubling-up-households-7947/.
3Divorce statistic from www.cdc.gov/nchs/mardiv.htm

2

Figure 1: Spliddit’s five applications.

Ease-of-use is another key aspect of Spliddit’s ideology. Each of Spliddit’s applications

have three phases. In the first phase, a user specifies all of the inputs: the list of partic-

ipants, the list of resources (rooms, goods, tasks, etc.), and any remaining information

needed to describe the problem (for example, the monthly rent.) Figure 2 illustrates the

first phase of the Sharing Rent application.

Figure 2: The interface for creating a new Sharing Rent instance.

In the second phase, each participant enters her evaluations, which indicate preferences

over the resources. In many fair division models, preference elicitation can be quite

complex: for example, Su’s rent division algorithm requires participants to take turns

answering a long series of questions of the form “which room do you prefer at this price

vector?” [3]. This is problematic because it is time consuming and requires all participants

to be in the same room at the same time. In contrast, all of Spliddit’s applications are

designed to require minimal input from the user, and to allow users to submit their

evaluations independently of one another. Figure 3 illustrates the evaluations form for

3

the Dividing Goods application, in which users are asked to divide a pool of 1000 points

among the items. It is important to note that simplifying user preferences typically

requires making some additional assumptions. For the Dividing Goods and Distributing

Tasks applications, we assume that preferences are additive, i.e. the value a user derives

from receiving two goods is the sum of values derived from each individual good. For

the Sharing Rent application, we assume quasi-linear utilities: each housemate wishes to

maximize the difference between her value for a room and its price. These assumptions,

which are clearly indicated on the website, are common in the literature and thus we

believe including them to be a worthwhile tradeoff.

Figure 3: The bidding interface for the Dividing Goods application.

In the third and final stage, the solution is presented, as illustrated in Figure 4 for

the Sharing Rent application. Spliddit uses email to coordinate the three phases: when

a new instance is created Spliddit sends private evaluation links to each participant, and

once all evaluations are submitted Spliddit sends emails to each participants with the

results. This stage also includes personalized information explaining why the presented

solution is mathematically fair.

4

Figure 4: The results interface for an example run of the Sharing Rent application.

For convenience, and as a response to heavy demand, we added a live demo mode in

which users can quickly create application instances, place bids, and compute the results

on a single screen. This is especially helpful for new users who wish to obtain a better

understanding of how altering bids can affect the outcome. The demo for Assigning

Credit is illustrated in Figure 5.

Figure 5: The demo mode for the Assigning Credit application.

5

Another major aspect of Spliddit’s ideology is to convey the importance and beauty of

mathematics and computer science, specifically as applied to fair division theory. All of

the methods implemented by Spliddit yield provably fair solutions, using fairness notions

which can be formalized mathematically. The landing pages include descriptions of the

fairness guarantees, animations illustrating these guarantees, a high level overview of

the algorithms used, and links where one could further explore these algorithms. Some

screenshots of the animations are shown in Figure 6. In addition, as previously mentioned

we include personalized explanations for why our allocations are fair when presenting

results (see Figure 4 for an example.)

Figure 6: Some screenshots from the animations included on the various landing pages
used to illustrate fairness concepts. Each of these concepts are formally defined in Section
3.

3 Fair Division Models and Algorithms

We’re now ready to formally describe each of Spliddit’s applications, along with their

corresponding algorithms and fairness guarantees. A single algorithm is provided for

each application, even in cases where several incomparable approaches are present in the

fair division literature. This nontrivial design choice is driven by usability: it allows us

to focus on giving an accessible explanation (enhanced by animations) of the guaranteed

fairness properties in the context of each of the applications. It’s also worth noting that

while algorithm runtime is important for being able to serve a large number of users

quickly, the primary consideration is always to provide strong fairness guarantees.

6

3.1 Sharing Rent

In the rent division problem, we have a set of agents I = {1, 2, . . . , n}, a set of rooms

R = {1, 2, . . . , n}, and the monthly rent P ∈ R+. We assume that each player i has

nonnegative value vij for room j so that for all i, ∑
j vij = P . We further assume quasi-

linear preferences, that is, if agent i receives room j at price pj, i′s utility is vij − pj. A

solution is a pair (σ, p) where σ is a bijection from I to R, and p ∈ Rn satisfies ∑
i pi = P .

We say a solution (σ, p) is envy-free if for each i, j ∈ I, viσ(i) − pσ(i) ≥ viσ(j) − pσ(j). It

is straightforward to show that in this domain, all envy-free solutions are also Pareto

efficient, that is, there is no other allocation for which all players have weakly greater

utility, and at least one player has strictly greater utility. In fact, we can prove something

slightly stronger: if (σ, p) is envy-free, than σ is a socially optimal assignment in that

it maximizes the sum of utilities across all players. In symbols, σ is socially optimal if

σ ∈ argmaxσ′
∑
i viσ′(i).

Lemma 1. If (σ, p) is envy-free, than σ is socially optimal.

Proof. Suppose (σ, p) is envy-free and let σ′ be any bijection from I to R. By envy-

freeness of (σ, p), for each i ∈ I, viσ(i) − pσ(i) ≥ viσ′(i) − pσ′(i). So, summing all of these

inequalities, we obtain

∑
i∈I

(viσ(i) − pσ(i)) ≥
∑
i∈I

(viσ′(i) − p′σ′(i)). (1)

Since σ and σ′ are bijections and the components of p sum to P , adding P to both sides

yields ∑
i∈I

viσ(i) ≥
∑
i∈I

viσ′(i). (2)

Moreover, Klijn shows that for every socially optimal σ, there exists p such that (σ, p)

is envy-free [1]. However, this p is not guaranteed to be positive. In fact, Brams and

Kilgour observe that there are situations where some prices are negative at every envy-

free allocation — some players are paid to live in the house [2]! Since it is unlikely that

7

housemates would agree to such an arrangement, a natural question arises: when do

nonnegative envy-free allocations exist? Su’s Rental Harmony Theorem [3] provides a

partial answer to this question. In the case of quasi-linear preferences, Su shows that if

each person always prefers a free room to the most expensive room at any nonnegative

price vector p, then there exists an envy-free solution4. Equivalently, as long as no agent

values one room P
n−1 more than another room, nonnegative envy-free prices are guaranteed

to exist. This condition seems likely to be met in practice, where rooms of an apartment

are rarely drastically different from one another.

With this in mind, we seek an algorithm which yields envy-free solutions at nonnega-

tive prices whenever possible. The following result due to Gal et al. gives us one possible

approach.

Lemma 2 (Gal et al. Lemma 2.6). Suppose (σ, p) is envy-free, and σ′ is socially optimal.

Then, there exists a p′ such that for all i ∈ I, viσ(i)−pσ(i) = viσ′(i)−p′σ′(i), where p′ contains

the same values as p, possibly in a different order.

Proof. See [4].

Using this result, we conclude that if there exists an envy-free allocation at nonnega-

tive prices, than for every socially optimal σ there exists a nonnegative p such that (σ, p)

is envy-free. So, a candidate algorithm would simply identify a socially optimal allocation

and then solve for envy-free prices via a linear program.

Despite its prevalence in the literature, envy-freeness is often not enough to satisfy our

intuitive notions of fairness. For example, consider the n = 2 case with v11 = 600, v12 =

400, v21 = 400, and v22 = 600. Then, by assigning room 1 to agent 1 and room 2 to agent

2, any p = (p1, p2) with 400 ≤ p1 ≤ 600 and p2 = 1000 − p1 gives an envy-free solution.

However, most would agree in this case that the “fair” solution would be p1 = p2 = 500.

In general, we seek solutions which minimize the following quantity (referred to by [4] as

pettiness):
4This statement requires applying the stronger version of the Miserly Tenants condition as described

in Section 8 of [3].

8

max
i,j∈I

(viσ(i) − pσ(i))− (vjσ(j) − pσ(j)) (3)

Our goal becomes to find an algorithm which minimizes pettiness subject to envy-

freeness. The algorithm should also yield nonnegative prices if possible. Lemma 2 gives

us a method to do just this.

Theorem 3. Minimum pettiness across all envy-free solutions can be achieved from any

socially optimal allocation. Furthermore, the same holds when restricting to nonnegative

envy-free solutions, if any exist.

Proof. Suppose the minimum pettiness D is achieved by the solution (σ, p), and let σ′ be

socially optimal. By Lemma 2, we can fix a permutation p′ of p such that viσ(i) − pσ(i) =

viσ′(i)− p′σ′(i) for every i. Then maxi,j∈I(viσ(i)− pσ(i))− (vjσ(j)− pσ(j)) = maxi,j∈I(viσ′(i)−

p′σ(i)) − (vjσ′(j) − p′σ′(j)) = D, so the first part of the theorem follows. The second part

of the theorem holds by the same argument, since permutations of a nonnegative vector

remain nonnegative.

This leads us to the following polynomial-time algorithm: first, find a socially optimal

allocation σ using, say, the O(n3) Hungarian algorithm [5]. Then solve the following

linear program to obtain envy-free prices minimizing pettiness (we first try the program

with the nonnegative constraints, and then remove them if needed.) The first constraint

guarantees that pettiness is bounded by the variable being minimized, y. The second

constraint ensures envy-freeness, and the third ensures feasibility.

minimize y

subject to |(viσ(i) − pσ(i))− (vjσ(j) − pσ(j))| ≤ y ∀i, j ∈ I

viσ(i) − pσ(i) ≥ viσ(j) − pσ(j) ∀i, j ∈ I∑
k∈R pk = P

pk ≥ 0 ∀k ∈ R

9

3.2 Dividing Goods

Spliddit’s second application allocates a set of indivisible goods G to a set of n players; a

solution is a list (A1, . . . , An) where the Ai’s partition G. Inheritance is the paradigmatic

use case, e.g., dividing an art or jewelry collection among three or more heirs. Each

player i has value vij for good j. As mentioned in Section 2, we assume that valuations

are additive, that is, the value of player i for a bundle of goods X is vi(X) ,
∑
j∈X vij.

So, each user i reports vij for j ∈ G.

In the divisible goods case, the two competing solutions are the Competitive Equilib-

rium from Equal Incomes (CEEI) and the Egalitarian Equivalent (EE) [6]. Both solutions

are Pareto efficient; the CEEI solution is also envy-free, while the EE solution is equitable.

Let us denote an allocation of the goods by A1, . . . , An, where Ai is the bundle of goods

allocated to player i. In this setting, a solution is envy-free if for every pair of players

i, j ∈ I, vi(Ai) ≥ vi(Aj). A solution is equitable if for every i, j ∈ I, vi(Ai) = vj(Aj).

While the EE and CEEI solutions are guaranteed to exist in the divisible case, envy-

freeness and equitability are not always feasible in the indivisible case; this is especially

obvious when |G| < n. However, Moulin shows that when n = 2, both solutions involve

splitting at most one good [6]. Because we believe it is always reasonable to split a single

good (which can be achieved by either time sharing or selling the good and sharing the

profits), Spliddit’s Dividing Goods app uses the EE solution for n = 2. EE was chosen

over CEEI because when n = 2, equitability implies envy-freeness. For an efficient

algorithm to compute EE solutions when n = 2, see [7].

Unfortunately, there is no bound on the number of goods split by EE and CEEI for

n > 2, so we turn elsewhere to handle this case. Again, fix an allocation A1, . . . , An.

Spliddit’s algorithm considers three increasingly weaker levels of fairness:

1. Envy-freeness: (Defined above.) It is clear that envy-freeness is not always feasible.

2. Proportionality: vi(Ai) ≥ vi(G)/n. In Spliddit, this means each player assigns

at least 1000/n points to her bundle. Again, clearly proportionality may not be

feasible.

10

3. Maximin share guarantee: The maximin share (MMS) guarantee of player i is

MMS(i) = max
X1,...,Xn

min
j
vi(Xj),

where the max is taken over partitions of the items into n subsets X1, . . . , Xn. Intu-

itively, this is the value player i could guarantee if she divided the items into n bun-

dles, but then selected a bundle last. An MMS allocation satisfies vi(Ai) ≥ MMS(i)

for all players i. Although an MMS allocation may not exist, counterexamples are

elaborate and extremely unlikely to occur in practice. Moreover, an approximate

MMS allocation is guaranteed to exist. Specifically, we can always find an allocation

such that vi(Ai) ≥ 2
3MMS(i) [8].

The notions are increasingly weak in the sense that envy-freeness implies proportion-

ality, and proportionality implies maximin share guarantee. Spliddit’s algorithm works

as follows. First, it finds the highest feasible level of fairness. If envy-freeness and pro-

portionality are infeasible, the algorithm computes the maximum α > 0 such that each

player can achieve an α fraction of her MMS guarantee. Second, the algorithm maximizes

social welfare — ∑
i vi(Ai) — subject to the fairness constraint found in the first phase.

Crucially, while we believe that it will always be possible to find an MMS allocation

(with α = 1), α ≥ 2/3 is provably feasible even in the worst case [8]. This fact enables

us to specify an indisputable fairness guarantee, honoring Spliddit’s promise to provide

provably fair solutions.

3.3 Assigning Credit

The third application divides credit for a joint project between n players. Possible use

cases include determining scientific credit for a paper, dividing a company bonus based

on employees’ relative contributions, or sharing credit for a class project. Player i reports

how the rest of the credit should be distributed among the other players. For example, if

player 1 thinks that players 2 and 3 contributed equally, and player 4 contributed twice

as much, then player 1 would report the contributions 25%, 25%, and 50%, respectively.

11

A solution divides 100% of the full credit for the project among the players.

Work by de Clippel et al. provides a family of rules for credit division; Spliddit

implements one of them [9].5 This solution is guaranteed to satisfy a slew of desirable

properties. Most importantly, it is impartial: a player’s share of the credit is independent

of her report. The solution is also consensual: if there is a division that agrees with all

players’ reports, then it is the outcome. While consensuality seems to be quite unrestric-

tive at first glance, de Clippel et al. show that if n = 3, an impartial and consensual

rule cannot be exact, that is, it would have to sometimes allocate less than 100% credit

overall.6 Spliddit therefore enforces n ≥ 4.

It is worth noting that one of the possible use cases of the credit division application —

sharing scientific credit for a paper — gives rise to interesting questions. Determining the

order of authors is a notorious source of acrimony in scientific fields where contribution-

based ordering is the norm (that is, almost all scientific fields). Ordering authors by

their (fair) share of the credit is an obvious solution. But doing so would not preserve

impartiality! Intuitively, while a player cannot change her own share of the credit, she

can decrease another player’s share below her own, thereby increasing her position in

the author ordering. Very recent work by Berga and Gjorgjiev establishes impossibility

results for impartial ranking under a strong notion of impartiality [10]. Despite this

theoretical difficulty, we do believe it is reasonable (albeit not ideal) to use Spliddit’s

credit division application for the explicit purpose of ordering authors.

3.4 Splitting Fare

The fourth application involves splitting the cost of a taxi or other ridesharing service

(for example, Uber or Lyft) between multiple passengers who need to be dropped off at

different locations. Let I = {1, 2, . . . , n} be our set of agents (passengers), and suppose

we have a function f : (I ∪ {pickup})× I ⇒ R+ which computes the fare between every
5Specifically, the formula in Equation (17) of the paper of de Clippel et al. is used, with arithmetic

means as the aggregators ρ and τ .
6Note that normalizing the shares would violate impartiality: by changing the sum of shares, a player

can change her own normalized share of the credit.

12

pair of passengers, as well as the fare from the initial pickup location to each passenger7.

For each i ∈ I, f(i, i) = 0. Then, a solution is a pair (σ, p) where σ is a permutation of

I (interpreted as a route), and p = (pi)i∈I records how much each passenger contributes

to the total fare. In any valid solution, the total amount paid must equal the fare of the

entire route8:

∑
i

pi = f(pickup, σ(1)) +
n−1∑
i=1

f(σ(i), σ(i+ 1)) (4)

At first glance, it seems that simply dividing the total fare in proportion to f(pickup, σ(i))

for each i is a good approach. However, as illustrated in Figure 7, there are scenarios in

which the proportional method yields unintuitive and arguably unfair outcomes.

Figure 7: By the proportional method, each agent would be asked to split the total fare
of $10 evenly: $2.50 each. However, since D lives far away from everyone else, D has a
large impact on the total fare. In contrast, if any one of A, B, and C wasn’t in the taxi,
the cost of the cheapest route would stay the same.

Instead, we turn to the Shapley value, described by Moulin as the most important

contribution of game theory to distributive justice [6]. To apply the Shapley value, we

view the problem as a cooperative game with players I. For each S ⊂ I, the cost C(S)

of the coalition S is the minimum fare required to drop off everyone in S. In symbols,
7Spliddit uses the TaxiFareFinder API, a service which estimates the cost of taxis and rideshares

such as Uber and Lyft worldwide, to compute f . To reduce burden on their servers, we assume f is
symmetric.

8In reality, this formula is a bit simplistic, as taxis usually charge a one-time base fare known as the
“flag drop” charge. Spliddit takes this into account, but for simplicity it is omitted from the presentation.

13

C(S) = min
σ

(f(pickup, σ(1)) +
|S|−1∑
i=1

f(σ(i), σ(i+ 1)) (5)

where the minimization is over all permutations σ of S. Then, the Shapley value assigned

to agent i ∈ I is defined as follows:

si = 1
n!

∑
σ

(C(P σ
i ∪ {i})− C(P σ

i)) (6)

where the summation is over all permutations σ of I and P σ
i is the set of agents preceding

i in σ. The Shapley value of agent i can be interpreted as her expected marginal cost over

all ordering of agents. In the example from Figure 7, A, B and C each have Shapley value

$1.67 while D has a value of $5.00. The Shapley value is characterized as the unique

value satisfying the following two properties for all cooperative games [6]:

1. Symmetry: if agents i and j are equivalent in the sense that for every S ⊂ I \ {i, j}

C(S ∪ {i}) = C(S ∪ {j}), then si = sj.

2. Marginalism: si is dependent only on i’s marginal contributions to the cost of every

subset S ⊂ I \ {i}

There are two more appealing properties of the Shapley value when applied to the

Splitting Fare application. The first, as shown in Lemma 4, is that whenever C is subad-

ditive (∀S, T ⊂ I, S ∩ T = ∅ ⇒ C(S ∪ T) ≤ C(S) + C(T)), the value satisfies individual

rationality: si ≤ f(pickup, i). That is, no passenger pays more than what she would pay

if she took a taxi alone. In practice, C will typically be subadditive since subadditivity

of costs is the main reason to share rides in the first place!

Lemma 4. If C is subadditive, si ≤ f(pickup, i) for all i.

14

Proof.

si = 1
n!

∑
σ

(C(P σ
i ∪ {i})− C(P σ

i))

≤ 1
n!

∑
σ

(C(P σ
i) + C({i})− C(P σ

i)) [By subadditivity]

= 1
n!

∑
σ

C({i})

= 1
n!

∑
σ

f(pickup, i) [By definition of C in Eq. (5)]

= f(pickup, i) [There are n! permutations of I]

One final noteworthy property of the Shapley value for our setting is linearity: if we

describe another cooperative game where C ′(S) = αC(S) for all S ⊂ I, then the new

Shapley value for agent i is αsi. This is important for Spliddit because the function f

is only an estimate, and may be inaccurate due traffic conditions, weather conditions, or

discrepencies in cost per mile among different taxi companies. As long as these inaccu-

racies result in a roughly linear scaling of the actual cost function, linearity implies that

all passengers are affected roughly equally.

Despite being conceptualized in 1953 [11] and appearing in thousands of research

papers since, the Shapley value has yet to be implemented in a publicly available service

to the author’s knowledge. In general, the Shapley value is difficult to apply because it

requires computing the cost of every subset of agents. However, for the Splitting Fare

application each of these costs are well defined, and as long as n is reasonable small can be

computed quickly. We hope that this application brings additional welcomed attention

to the value.

3.5 Distributing Tasks

The fifth and final application allocates a set of undesirables (tasks, work shifts, chores,

etc.) to a set of n players. Let I = {1, 2, . . . , n} be our set of agents, T be a set of tasks,

and associate with each t ∈ T a quantity qt ∈ N+ corresponding to the number of times t is

15

to be completed. A solution is a nonnegative matrix Q = (qit)i∈I,t∈T such that ∑
i qit = qt

for each task t. Here, qit is interpreted as the number of times agent i is to complete task t.

Unlike the Dividing Goods application, it is likely the the Distributing Tasks application

will be used for tasks which are repeated frequently, such as on a daily, weekly, or monthly

basis. For this reason, we believe that it’s reasonable to treat tasks as divisible and then

convert fractional assignments into pure assignments via randomization. We’ll use the

EE solution for distributing tasks, partially due to relative ease of computation compared

to CEEI.

For each player i and task t, vit represents the fraction of the total work i assigns to

a single unit of task t.9 In particular, ∑
t∈T qtvit = 1 for each i. Valuations are assumed

to be additive: that is, q units of task t and q′ units of task t′ constitute a qvit + q′vit′

fraction of the total work according to i.

The EE solution Q∗ = (q∗it)i∈I,t∈T satisfies ∑
t q
∗
itvit = ∑

t q
∗
jtvjt for each i, j as well as

Pareto efficiency. Note that in the tasks setting, an allocation is Pareto efficient if there

is no other allocation in which one agent believes she receives strictly less work, while all

other agents believe that they receive weakly less work. We’ll show that the following

linear program arrives at the EE solution.

minimize ∑
i∈I,t∈T qitvit

subject to ∑
i∈I qit = qt ∀t ∈ T∑
t∈T qitvit = ∑

t∈T qjtvjt ∀i, j ∈ I

qit ≥ 0 ∀i ∈ I, t ∈ T

First, observe that there is always a feasible solution: qit = qt

n
works. Second, observe

that by the second constraint, any solution to this program will be equitable. So, the

following theorem completes the proof that the linear program computes the EE solution.

Theorem 5. The linear program yields a Pareto optimal solution.

Proof. Since the EE solution is guaranteed to exist [8], there is some equitable solution

which is also pareto optimal. Fix such a solution Q, and let u be the utility of each
9On the website, agent i reports the ratios vit

vit′
which can be interpretted as the number of units of

task t agent i views as equivalent to a single unit of task t′.

16

agent under Q. Let QLP be the solution output by the linear program, and uLP the

utility assigned to each agent under QLP . Since Q is Pareto efficient, u ≤ uLP . However,

u < uLP is impossible, since then the linear program would then be able to achieve a

smaller objective value of nu < nuLP . We conclude u = uLP . Since QLP yields identical

utilities as a Pareto efficient allocation, QLP is Pareto efficient as well.

The output of the Distributing Tasks application must be an assignment of whole

tasks to agents, but each qit may be fractional in the EE solution. The approach we take

is to view each qit as the expected number of times agent i is assigned task t, and then

round each qit up or down via a lottery. With this approach, all of our fairness guarantees

are in expectation; however, the actual allocation will differ from the expected allocation

by at most one of each task. Budish et al. proves that such a lottery exists10, and provides

an algorithm which implements the lottery in polynomial time [12].

4 Implementation Details

The implementation of Spliddit is centered around a single web application written in

Ruby on Rails. All of Spliddit’s nouns, including application instances, players, goods,

valuations, and allocations, are modeled using Ruby on Rails Active Record, an object-

relational mapping system. On the front end, Spliddit uses the jQuery Javscript library

to create interactive user interfaces such as the one used for bidding. Spliddit takes

advantage of several services offered by Amazon’s cloud computing platform: Elastic

Compute Cloud (for hosting Spliddit’s webservers and running the division algorithms),

Elastic Beanstalk (for deploying and automatically scaling Spliddit to handle heavy web

traffic), Relational Database Service (for hosting Spliddit’s database), and Simple Email

Service (for sending email notifications). Figure 8 provides a diagram of Spliddit’s server

architecture.
10Budish [12] shows that an expected assignment can be implemented by a distribution over pure

assignments as long as the constraints form a so-called bihierarchy. In our case, we can use one constraint
hierarchy to make sure that each task is fully assigned, and another to ensure that each agent i receives
an amount of task t within one unit of qit.

17

Figure 8: A diagram of Spliddit’s server architecture, which is hosted on Amazon’s cloud
computing platform.

The algorithms described in the previous section are written in Java for improved

performance and ease of implementation. All linear and integer linear programs are

modeled and solved using IBM’s CPLEX Optimizer and IBM’s Concert Technology. For

the n ≥ 3 case of the Dividing Goods application, each fairness constraint is attempted in

turn from strongest to weakest; however, for the weakest level of fairness, the algorithm

must first solve integer linear programs to compute each player’s MMS guarantee. In

order to free the webservers to quickly respond to incoming HTTP requests, Spliddit

uses Delayed Job to run the algorithms in background processes.

5 Reception

Spliddit officially launched on November 4, 2014. Following launch, Spliddit received

press coverage in a variety of popular technology and science websites such as Gizmodo,

Lifehacker, Slashdot, and Fast Company. Building on this coverage, Spliddit received

nearly 40,000 unique visitors, who combined to use the three launch application (Sharing

Rent, Dividing Goods, and Assigning Credit) over 9,000 times. Feedback has been over-

18

whelmingly positive, with many users commending the interfaces, ease-of-use, and overall

mission of Spliddit. Some of our favorite feedback has come from teachers and professors

in quantitative fields who commented on how Spliddit is able to demonstrate the beauty

and impact of mathematical research. To this end, Spliddit has also been mentioned

on social media by the Mathematical Association of America and the National Science

Foundation.

Through user-submitted comments and social media posts, we’ve also been able to get

a better grasp on how people are using our applications. The Assigning Credit application

has been applied in many interesting ways, including splitting bonuses at both small and

very large companies, sharing profits from craft projects, ordering authors on scientific

papers, and monitoring group dynamics in school projects at both the high school and

university level. Out of the three applications, the Sharing Rent has been the most

popular, having been used over 5,000 times.

Finally, many users submitted ideas new ideas for new applications; the most popular

two suggestions evolved into the Splitting Fare and Distributing Tasks applications, which

launched on April 28, 2015. In particular, the Distributing Tasks application arose due

to several requests for dividing different kinds of shifts (evening, weekend, holiday) in

hospital settings. Spliddit will continue to evolve based on feedback from users.

6 Closing Remarks: Empirical Fair Division Research

As discussed above, Spliddit’s two primary goals are providing access to fair division

methods, and outreach. However, Spliddit also has the potential to become a revolution-

ary platform for empirical fair division research. Indeed, as noted by Herreiner and Puppe

[13], fairness properties such as envy-freeness are difficult to study in the lab. A typical

experiment in the context of indivisible goods informs each participant of her “value”

for each virtual “good”, and pays each participant based on her value for her allocated

bundle. In this setting envy-freeness is problematic, because a participant does not truly

care about which goods were allocated to another participant (as the goods have no real

19

value) — presumably she mainly cares about how much other participants were paid.

In contrast, Spliddit allows us to partition thousands of users (who report their values

for real goods) into multiple groups, and employ a different solution for each group.

Happiness surveys will then allow us to gage the relative importance of various criteria

in a way that was previously impossible.

7 References

1. Klijn, Flip. ”An algorithm for envy-free allocations in an economy with indivisible

objects and money.” Social Choice and Welfare 17.2 (2000): 201-215.

2. Brams, Steven J., and D. Marc Kilgour. ”Competitive fair division.” Journal of

Political Economy 109.2 (2001): 418-443.

3. Su, Francis Edward. ”Rental harmony: Sperner’s lemma in fair division.” American

Mathematical Monthly (1999): 930-942.

4. Gal, Ya’akov, Mash, Moshe, Procaccia, Ariel D., and Yair Zick. “Equitability and

Envy-Freeness Tradeoffs in Rent Division.” Manuscript, 2015.

5. Wikipedia: http://en.wikipedia.org/wiki/Hall’s marriage theorem

6. Moulin, Hervé. Fair division and collective welfare. MIT press, 2004.

7. Brams, Steven J., and D. Alan Taylor. “Adjusted Winner Website.”

http://www.nyu.edu/projects/adjustedwinner/.

8. Procaccia, Ariel D., and Junxing Wang. ”Fair enough: Guaranteeing approximate

maximin shares.” Proceedings of the fifteenth ACM conference on Economics and

computation. ACM, 2014.

9. De Clippel, Geoffroy, Herve Moulin, and Nicolaus Tideman. ”Impartial division of

a dollar.” Journal of Economic Theory 139.1 (2008): 176-191.

10. Berga, D. and Riste Gjorgjiev. “Impartial Social Rankings.” Manuscript, 2014.

20

11. Shapley, Lloyd S. ”Stochastic games.” Proceedings of the National Academy of

Sciences of the United States of America 39.10 (1953): 1095.

12. Budish, Eric, et al. ”Designing random allocation mechanisms: Theory and appli-

cations.” The American Economic Review 103.2 (2013): 585-623.

13. Herreiner, D. K. and Puppe, C. D. “Envy freeness in experimental fair division

problems.” Theory and decision 67.1 (2009), 65-100.

21

