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Abstract. In many statistical applications, nonparametric modeling can

provide insights into the features of a dataset that are not obtainable

by other means. One successful approach involves the use of (univariate

or multivariate) spline spaces. As a class, these methods have inherited

much from classical tools for parametric modeling. For example, stepwise

variable selection with spline basis terms is a simple scheme for locating

knots (breakpoints) in regions where the data exhibit strong, local features.

Similarly, candidate knot configurations (generated by this or some other

search technique), are routinely evaluated with traditional selection criteria

like AIC or BIC. In short, strategies typically applied in parametric model

selection have proved useful in constructing flexible, low-dimensional

models for nonparametric problems.

Until recently, greedy, stepwise procedures were most frequently sug-

gested in the literature. Research into Bayesian variable selection, however,

has given rise to a number of new spline-based methods that primarily rely

on some form of Markov chain Monte Carlo to identify promising knot lo-

cations. In this paper, we consider various alternatives to greedy, determin-

istic schemes, and present a Bayesian framework for studying adaptation in

the context of an extended linear model (ELM). Our major test cases are

Logspline density estimation and (bivariate) Triogram regression models. We

selected these because they illustrate a number of computational and method-

ological issues concerning model adaptation that arise in ELMs.

Key words and phrases: Adaptive triangulations, AIC, BIC, density estima-

tion, extended linear models, finite elements, free knot splines, GCV, linear

splines, multivariate splines, regression.

1. INTRODUCTION

Polynomial splines are at the heart of many popu-

lar techniques for nonparametric function estimation.

For regression problems, TURBO (Friedman and Sil-

verman, 1989), multivariate adaptive regression splines

or MARS (Friedman, 1991) and � (Breiman, 1991)

have all met with considerable success. In the con-

text of density estimation, the Logspline procedure
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of Kooperberg and Stone (1991, 1992) exhibits ex-

cellent spatial adaptation, capturing the full height of

spikes without overfitting smoother regions. And fi-

nally, among classification procedures, classification

and regression trees (CART) (Breiman, Friedman, Ol-

shen and Stone, 1984) is a de facto standard, while

the more recent PolyMARS models (Kooperberg, Bose

and Stone, 1997) have been able to tackle even large

problems in speech recognition. Stone et al. (1997) and

a forthcoming monograph by Hansen, Huang, Kooper-

berg, Stone and Truong are the prime references for

the application of polynomial splines to function es-

timation. In this paper, we review a general method-

ological framework common to procedures like MARS

and Logspline, and contrast it with several Bayesian
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approaches to spline modeling. We begin with some

background material on splines.

1.1 Splines

Univariate, polynomial splines are piecewise poly-

nomials of some degree d . The breakpoints marking

a transition from one polynomial to the next are re-

ferred to as knots. In this paper, we will let the vector

t = (t1, . . . , tK) ∈ R
K denote a collection of K knots.

Typically, a spline will also satisfy smoothness con-

straints describing how the different pieces are to be

joined. These restrictions are specified in terms of the

number of continuous derivatives, s, exhibited by the

piecewise polynomials. Consider, for example, piece-

wise linear curves. Without any constraints, these func-

tions can have discontinuities at the knots. By adding

the condition that the functions be globally continu-

ous, we force the separate linear pieces to meet at

each knot. If we demand even greater smoothness (say,

continuous first derivatives), we loose flexibility at the

knots and the curves become simple linear functions.

In the literature on approximation theory, the term “lin-

ear spline” is applied to a continuous, piecewise linear

function. Similarly, the term “cubic spline” is reserved

for piecewise cubic functions having two continuous

derivatives, allowing jumps in the third derivative at

the knots. In general, it is common to work with splines

having maximal smoothness in the sense that any more

continuity conditions would result in a global polyno-

mial.

Given a degree d and a knot vector t, the collection

of polynomial splines having s continuous derivatives

forms a linear space. For example, the collection of

linear splines with knot sequence t is spanned by the

functions

1, x, (x − t1)+, . . . , (x − tK )+,(1)

where (·)+ = max(·,0). We refer to this set as the

truncated power basis of the space. In general, the

basis for a spline space of degree d and smoothness s

is made up of monomials up to degree d together with

terms of the form (x − tk)
s+j
+ , where 1 ≤ j ≤ d − s.

Using this formula the classical cubic splines have

d = 3 and s = 2 so that the basis has elements

1, x, x2, x3, (x − t1)
3
+, . . . , (x − tk)

3
+.(2)

From a modeling standpoint, the truncated power basis

is convenient because the individual functions are tied

to knot locations. In the expressions (1) and (2), there

is exactly one function associated with each knot, and

eliminating that function effectively removes the knot.

This observation is at the heart of many statistical

methods that involve splines and will be revisited

shortly.

The truncated power functions (1) and (2) are known

to have rather poor numerical properties. In linear

regression problems, for example, the condition of

the design matrix deteriorates rapidly as the num-

ber of knots increases. An important alternative rep-

resentation is the so-called B-spline basis (de Boor,

1978). These functions are constructed to have sup-

port only on a few neighboring intervals defined by

the knots. (For splines having maximal smoothness,

this means d+ 1 neighboring intervals.) A detailed de-

scription of this basis is beyond the scope of this pa-

per, but the interested reader is referred to Schumaker

(1993). For the moment, assume we can find a basis

B1(x; t), . . . ,BJ (x; t) for the space of splines of de-

gree d with smoothness s and knot sequence t so that

any function in the space can be written as

g(x;β, t)= β1B1(x; t)+ · · · + βJBJ (x; t),(3)

for some coefficient vector β = (β1, . . . , βJ )
t . If we

are dealing with spline spaces of maximal smoothness,

then J = K + d + 1, as we have seen in (1) and (2).

Given this structure, we now briefly describe a broad

collection of estimation problems that admit relatively

natural techniques for identifying good fitting func-

tions g.

1.2 Extended Linear Models

Extended linear models (ELMs) were originally de-

fined as a theoretical tool for understanding the prop-

erties of spline-based procedures in a large class of es-

timation problems (Hansen, 1994; Stone et al., 1997;

Huang, 1998, 2001). This class is extremely rich, con-

taining all of the standard generalized linear models

as well as density and conditional density estimation,

hazard regression, censored regression, spectral den-

sity estimation and polychotomous regression. To de-

scribe an ELM, we begin with a probability model

p(W |h) for a (possibly vector-valued) random vari-

able W ∈W that depends on an unknown (also pos-

sibly vector-valued) function h. Typically, h represents

some component of the probability model about which

we hope to make inferences. For example, in a nor-

mal linear model, h is the regression function; while

for density estimation, we take h to be the log-density.

Let l(W |h) = logp(W |h) denote the log-likelihood

for an ELM, and assume that there exists a unique
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function φ that maximizes the expected log-likelihood

El(W |h) over some linear space of real-valued func-

tions H . The maximizer φ defines “truth,” and is the

target of our estimation procedures. [In Stone et al.

(1997) a slightly more general notion of “truth” is de-

veloped to handle ANOVA-like functional decompo-

sitions.] We refer to this set-up as an extended linear

model for φ. In this case, the term “linear” refers to our

use of a linear model space H . The class H is chosen

to capture our beliefs about φ, and is commonly de-

fined through smoothness conditions (e.g., we might

assume that the true regression function in a linear

model has two continuous, bounded derivatives). These

weak assumptions about φ tend to result in classes H

that are infinite dimensional. Therefore, for estima-

tion purposes we choose to work with flexible, finite-

dimensional spaces G that have good approximation

properties. That is, the elements g ∈G can capture the

major features of functions φ ∈H , or ming∈G ‖g − φ‖
is small in some norm for all φ ∈ H . Splines are one

such approximation space.

Given a series of observations W1, . . . ,Wn from the

distribution of W , we estimate φ by maximizing the

log-likelihood

l(g)=
∑

i

l(Wi|g) where g ∈G.(4)

Our appeal to maximum likelihood in this context does

not imply that we believe p(W |φ) to be the true, data-

generating distribution for W . Rather, p may be chosen

for computational ease in the same way that ordinary

least squares can be applied when the assumption of

strict normality is violated. In theoretical studies, it

is common to let the dimension of G depend on the

sample size n. For example, if G is a spline space with

K knots, we let K = K(n)→∞ as n→∞. As we

collect more data, we are able to entertain more flexible

descriptions of φ. Asymptotic results describing the

number of knots K(n) and their placement needed to

achieve optimal mean squared error behavior are given

in Stone (1985), Stone (1994), Hansen (1994), and

Huang (1998, 2001), and Stone and Huang (2002).

An ELM is said to be concave if the log-likelihood

l(w|h) is concave in h ∈ H for each value of w ∈W

and if El(W |h) is strictly concave in h [when restricted

to those h for which El(W |h) > −∞]. Strict concav-

ity holds for all of the estimation problems listed at the

beginning of this section. Now, let G be a spline space

with knot sequence t so that any g ∈G can be written

in the form (3). Then since g(·) = g(·;β, t), the log-

likelihood (4) can be written as l(β, t). Because of con-

cavity, the maximum likelihood estimates (MLEs) β̂

for the coefficients β and a fixed t can be found ef-

ficiently in reasonably-sized problems through simple

Newton–Raphson iterations. Therefore, it is possible to

compute

l(t)=max
β

l(β, t).(5)

After making the dependence on t explicit in this

way, we can consider adjusting the knot locations

t1 < · · · < tK to maximize the log-likelihood. It is

intuitively clear that the knot sequence t= (t1, . . . , tK)

controls the flexibility of elements in g to track local

features: tightly-spaced knots can capture peaks, while

widely-separated knots produce smooth fits.

However, even in the simplest case, linear regression

with a single univariate predictor, maximizing (5) over

knot sequences is a difficult optimization problem. To

see this, we first translate univariate regression into

an ELM: let W = (X,Y ) and define p(W |φ) via the

relationship

Y = φ(X)+ ε,

for an unknown regression function φ. The error ε

is assumed independent of X with a normal distribu-

tion having mean zero and variance σ 2. For a spline

space G, the negative log-likelihood for β is propor-

tional to the regression sum of squares

RSS(β, t)=
∑

i

(
Yi − g(Xi;β, t)

)2

=
∑

i

(
Yi − β1B1(Xi; t)− · · ·

−βJBJ (Xi; t)
)2
.

If we hold t fixed, then

l(t)∝−RSS(t)=max
β
{−RSS(β, t)}

= −RSS(β̂, t),

(6)

where β̂ is the ordinary least squares estimate of β .

Jupp (1978) demonstrated that −RSS(t) has local

maxima along lines of the form tk = tk+1, making

the solution to (6) difficult for standard optimization

software. Not surprisingly, this problem persists in

even more exotic ELMs.

Several authors have considered special transforma-

tions, penalties or ad hoc optimization schemes to max-

imize the log-likelihood with respect to t (Jupp, 1978;

Lindstrom, 1999; Kooperberg and Stone, 2002). In this

paper, we will instead consider an approximate solu-

tion that begins by connecting knot placement with

model selection.
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1.3 Model Selection

The concavity of an ELM together with the asso-

ciation of knot locations to terms in the truncated

power basis suggests simple approximations to maxi-

mizing (5) based on fast, stepwise approaches to model

selection. Consider splines of degree d having max-

imal smoothness and knot sequence t. According to

Section 1.1, this means that s = d − 1 and each knot

point tk in t is associated with only one of the trun-

cated monomials (x− tk)
d
+; the linear (1) and cubic (2)

splines are two examples. Therefore, moving tk ef-

fects only one basis element in G, and in fact remov-

ing tk entirely is equivalent to deleting (x − tk)
d
+ from

the model. Many existing spline methods use this idea

in some form. It was originally proposed by Smith

(1982a, b) and it has been the workhorse of many

procedures suggested since (TURBO, DKCV, MARS,

PolyMARS).

Returning to the problem of maximizing (5), sup-

pose we have a finite set of candidate knots T =
{t ′1, . . . , t ′K ′}, from which we want to select a subset of

size K , t = (t1, . . . , tK ), K ≤ K ′. The connection be-

tween knots and basis functions suggests that finding a

good sequence t is really a problem in model selection

where we are choosing from among candidate basis

functions of the form (x− t)d+, t ∈ T . For linear regres-

sion and moderate numbers of candidate knots K ′, we

can find the sequence of length K that minimizes (6)

using traditional branch-and-bound techniques. How-

ever, when K ′ gets large, or when we have a more

exotic ELM requiring Newton–Raphson iterations to

evaluate (5), this approach quickly becomes infeasible.

For computational efficiency, the algorithms dis-

cussed by Stone et al. (1997) take a stepwise ap-

proach, introducing knots in regions where the un-

known function φ exhibits significant features, as eval-

uated through the log-likelihood, and deleting knots

in regions where φ appears relatively smooth. More

formally, starting from a simple spline model, knots

are added successively, at each step choosing the lo-

cation that produces the greatest increase in the log-

likelihood. This is followed by a pruning phase in

which unnecessary knots are removed, at each stage

eliminating the basis element that results in the small-

est change in the log-likelihood. Because we are al-

ways taking the best single alteration to the current

model, these schemes are often referred to as greedy.

To prevent this process from tracking spurious patterns

in the data, it is common to impose constraints on the

initial model, the size M of the largest model fit dur-

ing addition, and the minimal number of data points

between each knot. These restrictions are defined in

terms of allowable spaces, a topic we will discuss in

more detail in the next section.

Several facts about ELMs make this approach attrac-

tive computationally. Consider placing a single knot in

a linear regression model. Then, among all basis sets

of the form 1, x, (x − t)+, we want to find the one

that minimizes the criterion (6), which in this case is

a function of t . It is not hard to show that RSS(t) is

a piecewise smooth function of t , with breaks in the

first derivative at each of the data points. This means

we can derive fast heuristics to guide the search for

new knots during the addition phase without having to

evaluate all the candidates. Next, the concavity of the

ELMs listed in Section 1.2 means that we can quickly

approximate the change in log-likelihood from either

adding or deleting a knot without actually fitting each

candidate model. We now describe each alteration or

“move” in more detail.

Knot addition. Let G be a J -dimensional spline

space with a given knot sequence, t, and let β̂ denote

the MLE of β. When using the truncated power basis

inserting a new knot is equivalent to adding a single

basis function to G, taking us to a new (J + 1)-

dimensional space G1 with coefficient vector β1 and

knot sequence t1 (where we let BJ+1 be the basis

function associated with the new knot). To evaluate

the improvement, we employ a Taylor expansion of

the log-likelihood l(β1, t1) around β1 = (β̂,0), which

specifies a function in G1. This approximation yields

the well-known Rao (score) statistic and is convenient

because it allows us to entertain a large number of

candidate knot locations without having to compute the

MLE β̂1 in each candidate space.

Knot deletion. Again, let G be a given spline space

and β̂ the associated MLE. Removing a knot from G

reduces the dimension of G by one and takes us to a

space G0. To evaluate the impact of this alteration, we

again employ a Taylor expansion, this time around β̂ . If

a ∈ R
J represents the linear constraint that effectively

removes a given knot, this expansion yields the Wald

statistic for testing the hypothesis that atβ = 0. For the

truncated power basis, a is a binary vector with a single

nonzero entry. With this approach, we can compare the

impact of removing each knot in G without having to

compute the MLE in these reduced spaces.

Alternating phases of knot addition and deletion

produces a sequence of models, from which we select



6 M. H. HANSEN AND C. KOOPERBERG

the single best according to some selection criterion

like generalized cross validation (GCV)

GCVa(t)=
RSS(t)

n

/[
1− a(J (t)− 1)

n

]2

,(7)

or a variant of the Akaike information criterion (AIC)

AICa(t)=−2l̂(t)+ aJ (t)(8)

(Akaike, 1974), where J (t) is the dimension of the

spline space. The parameter a in each of these ex-

pressions controls the penalty assigned to models with

more knots and is introduced to offset the effects of

selection bias (Friedman and Silverman, 1989; Fried-

man, 1991). In Stone et al. (1997) the default value of a

in (8) is logn, resulting in a criterion that is commonly

referred to as BIC (Schwarz, 1978).

Notice that our search for good knot locations

based on the log-likelihood (5) has led to a heuristic

minimization of a selection criterion like (7) or (8).

Several comments about this reduction are in order.

First, greedy schemes are often criticized for not

exploring a large enough set of candidate models. In

the stepwise algorithms of Stone et al. (1997), for

example, the simple two-pass scheme (knot addition

to a model of size M followed by deletion) evaluates

essentially 2M different knot sequences. These 2M

candidates are also highly constrained, representing a

potentially narrow path through the search space. As a

result, when we identify the “best model” according

to some selection criterion, we have visited at most

a handful of its “good-fitting” neighbors, those spline

spaces with about the same number of knots found

during either addition or deletion. However, as is

typical with variable selection problems, many spline

models offer essentially equivalent fits (in terms of AIC

or GCV).

Despite these caveats, examples in Stone et al. (1997)

and other papers show that greedy algorithms for knot

selection can work quite well. They lead to a surprising

amount of spatial adaptivity, easily locating extra knots

near sharp features, while removing knots in smooth

areas. It is natural, however, to question whether or not

alternative methods might prove more effective. In the

discussion following Stone et al. (1997), for example,

the Bayesian framework of Smith and Kohn (1996) is

shown to approximately minimize the same objective

function (8), but with a stochastic search algorithm.

In general, the recent work on Bayesian model selec-

tion offers interesting solutions to the shortcomings of

greedy methods.

1.4 A Bayesian Approach

The desire to compare alternative search schemes

is half the motivation for this paper. As mentioned

earlier, a major source of inspiration comes from the

recent work on Bayesian model selection and the

accompanying Markov chain Monte Carlo (MCMC)

methods for identifying promising models. To date,

several Bayesian spline methods have appeared that

make the connections with model selection listed

above. The first was Halpern (1973), who constructed

a hierarchical model for regression with linear splines.

This application necessarily focused on small problems

with a limited number of potential knots, succumb-

ing to the computational resources of the day. More

modern research in this area has followed a similar ap-

proach in terms of prior assignment, but makes use of

MCMC to sample from a (possibly very) large set of

candidate knots. Perhaps the first such procedure was

exhibited by Smith (1996) and Smith and Kohn (1996)

for univariate and additive regression models. Simi-

lar in spirit are the Bayesian versions of TURBO and

CART proposed by Denison et al. (1998a, b), which

employ reversible jump MCMC (Green, 1995).

In a Bayesian setup, model uncertainty comes from

both the structural aspects of the space G—knot

placement—as well as from our selection of members

g ∈G—determining coefficients in expression (3). We

now spell out a simple hierarchical formulation that we

will revisit in the next section. At the first level of the

hierarchy, we assign a prior distribution p(G) to some

set of candidate models G. In the setup for univariate

regression using linear splines, for example, we would

typically do that by first choosing a prior distribution

on the number of knots p(K), and then by choosing an

additional prior on the collection of knots t given K ,

p(t|K). Through p(t|K) we can prevent knots from

getting too close, reducing the chance that the fitted

model will track spurious features in the data. Next,

given a space G, we generate elements g according to

the distribution p(g|G). Consistent with our motiva-

tion for modeling with splines in the first place, our

priors on K, t and g should somehow reflect our be-

liefs about the smoothness of the underlying function

of interest in an ELM, φ. In the literature on smooth-

ing splines we find a class of priors for g that given

a basis for G and an expansion (3) involves the coef-

ficients β = (β1, . . . , βJ ). This amounts to a partially

improper, normal distribution for β (Silverman, 1985;

Wahba, 1990; and Green and Silverman, 1994), which

we will return to in Section 2.
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Given a prior for spline functions g, we can gener-

ate a sample from the posterior distribution of g us-

ing MCMC. In particular, in Sections 2 and 3 we will

use the reversible jump algorithm of Green (1995) for

Logspline density estimation and Triogram regression,

respectively. Details about how to choose priors and

how to tune algorithms are discussed in these sections.

When properly tuned, these stochastic methods can

identify many more good-fitting knot configurations

than their greedy, deterministic competitors. By focus-

ing their search in regions of model space that have

high posterior probabilities, the MCMC schemes listed

above visit many more “promising” configurations.

The second major motivation for this paper is the

form of the final function estimate itself. Since deter-

ministic searches identify a very small number of us-

able models, the unknown function is typically esti-

mated by straight maximum likelihood applied to some

basis for the identified spline space. Suppose for the

moment, that the function being estimated is smooth in

some region, perhaps requiring not more than a single

knot to adequately describe the curve. From the point

of view of mean squared error, there are many roughly

equivalent ways to place this knot in the region. There-

fore, if given a number of good knot configurations, it

might be more reasonable to combine these estimates

in some way. This is roughly a spline or knot-selection

version of the classical motivation for Bayesian model

averaging. In later versions of the Gibbs sampling ap-

proach of Smith and Kohn (1998) and the Bayesian

versions of TURBO and MARS by Denison, Mallick

and Smith (1998a, b), the final function estimate is a

posterior mean.

In this paper, we compare greedy (stepwise) al-

gorithms with nongreedy (stochastic, Bayesian) algo-

rithms for model selection. We evaluate different ap-

proaches to adaptation by examining strategies for both

knot placement and coefficient estimation. We focus on

four classes of methods: greedy, stepwise procedures

with maximum likelihood estimates in the final spline

space; MCMC for selecting a single model; model av-

eraging using maximum likelihood estimates of the co-

efficients; and finally a fully Bayesian approach with

model and coefficient averaging. Our two main es-

timation problems will be Logspline density estima-

tion and (bivariate) Triogram regression. We selected

these because they illustrate a number of computational

and methodological issues concerning model adapta-

tion that arise in ELMs.

In Section 2 we discuss greedy and Bayesian model

selection approaches in the context of Logspline den-

sity estimation. In Section 3 we turn to Triogram re-

gression, contrasting it with Logspline. Finally, in Sec-

tion 4 we identify areas of future research. Our goal in

preparing this paper was not to advocate one scheme

over another, but rather to investigate the performance

of various approaches to model selection in the con-

text of univariate and multivariate nonparametric esti-

mation with splines.

2. LOGSPLINE DENSITY ESTIMATION

Recall that density estimation is an example of an

ELM. In the notation of the previous section, the target

of our analysis, φ, is a log-density, and W = Y , a ran-

dom variable taking values in some interval (L,U). If

the density of Y has infinite support, then L,U will

be ±∞. In Stone and Koo (1986), Kooperberg and

Stone (1991, 1992) and Stone et al. (1997), a tech-

nique known as Logspline is developed in which φ

is modeled with a natural cubic spline. Like the or-

dinary cubic splines in (2), these functions are also

twice continuously differentiable, piecewise polynomi-

als defined relative to a knot sequence t= (t1, . . . , tK ).

Within each interval [t1, t2], . . . , [tK−1, tK ], natural cu-

bic splines are cubic polynomials, but on (L, t1] and

[tK ,U) they are forced to be linear functions. It is not

difficult to see that this tail constraint again yields a

linear space, but with dimension K . Also, the space

will contain spline terms providing we have at least

K ≥ 3 knots (otherwise we have only linear or con-

stant functions). In this application, we use a basis of

the form 1,B1(y; t), . . . ,BJ (y; t), where J = K − 1.

We chose to make the constant term explicit in this

way because it disappears from our model; recall that

each density estimate is normalized to integrate to one.

Therefore, let G denote the J -dimensional span of the

functions B1, . . . ,BJ . So that g ∈ G is of the form

g(y;β, t)= β1B1(y; t)+ · · · + βJBJ (y; t).
A column vector β = (β1, . . . , βJ )

T ∈ R
J is said to

be feasible if

C(β, t)= log

(∫ U

L
exp

(
β1B1(y; t)+ · · ·

+βJBJ (y; t)
)
dy

)
<∞.

Let B denote the collection of such feasible column

vectors. Given β ∈ B , we define a family of positive
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density functions on (L,U) of the form

f (y;β, t)= exp
(
g(y;β, t)−C(β, t)

)

= exp
(
β1B1(y; t)+ · · · + βJBJ (y; t)
−C(β, t)

)
, L < y <U.

(9)

Now, given a random sample Y1, . . . , Yn of size n

from a distribution on (L,U) having an unknown

density function exp(φ), the log-likelihood function

corresponding to the Logspline model (9) is given by

l(β, t)=
∑

i

logf (Yi;β, t)

=
∑

i

∑

j

βjBj (Yi; t)− nC(β; t), β ∈B.

The maximum likelihood estimate β̂ is given by β̂ =
arg maxβ∈B l(β, t), corresponding to ĝ(y) = g(y;
β̂, t) for L< y <U .

Stepwise knot addition begins from an initial model

with Kinit knots, positioned according to the rule

described in Kooperberg and Stone (1992). Given a

knot sequence t1, . . . , tK , the addition scheme finds

a location for a candidate knot corresponding to the

largest Rao statistic. For numerical stability, we do

not allow the breakpoints t1, . . . , tK to be separated

by fewer than nsep data points. We say that in this

context, a space G is allowable, providing the knot

sequence satisfies this condition. Stepwise addition

continues until a maximum number of knots Kmax is

reached. Knot deletion is then performed according to

the outline in the previous section, and a final model is

selected according to the generalized AIC criterion (8)

with parameter a = logn.

2.1 A Bayesian Framework

We set up the framework for a Bayesian approach

to Logspline density estimation by selecting several

priors: first a prior p(G) on the structure of the model

space G, and then a prior p(g|G) on the splines g in a

given space. In addition, we will need to specify how

we sample from the posterior distributions.

Priors on model space. For Logspline we choose

to specify p(G) by creating a distribution on knot se-

quences t formed from some large collection of candi-

dates T = {t ′1, . . . , t ′K ′}. We construct p(G) hierarchi-

cally, first choosing the number of knots K < K ′ (in

this case recall that the dimension J of G is K − 1)

according to p(K), and then given K , we generate

t from the distribution p(t|K). Regularity conditions

on the structural aspects of the associated spline space

G can be imposed by restricting the placement of

t1, . . . , tK through p(t|K). While other authors have

also considered a discrete set of candidate knot se-

quences (Denison, Mallick and Smith, 1998a; Smith

and Kohn, 1996), we could also specify a distribution

that treats the elements of t as continuous variables

(e.g., Green 1995). In our experiments we have found

that for Logspline density estimation the discrete ap-

proach is sufficient, and we consider those spaces G

for which all K knots are located at data points. This

restriction is purely for convenience, but represents lit-

tle loss of flexibility especially in the context of den-

sity estimation (where peaks in the underlying density

naturally produce more candidate knots). For numeri-

cal stability, we require that there are at least nsep data

points in between any two knots.

This leaves us with the task of specifying p(K).

To the extent that the number of knots also acts as

a smoothing parameter, this distribution can have a

considerable effect on the look of the final curves

produced. We explore several of the proposals that have

appeared in the literature. The first is a simple Poisson

distribution with mean γ suggested by Green (1995).

Denison et al. (1998a) take the same distribution for

more general spline spaces and argue that their results

are somewhat insensitive to the value of γ . The next

prior we will consider was suggested by Smith and

Kohn (1996). Either by greatly reducing the number

of candidate knots or by scaling the prior on the

coefficients, these authors suggest that K be distributed

uniformly on the set Kmin, . . . ,Kmax.

The final proposal for p(K) is somewhat more ag-

gressive in enforcing small models. To properly moti-

vate this distribution, we think of the model selection

procedure as two stages: in the first we find the poste-

rior average of all models with k knots by integrating

out t and g, to obtain, say ḡk and its posterior probabil-

ity p(ḡk|Y1, . . . , Yn,K = k). Suppose that we consider

ḡk to have k degrees of freedom (an admittedly ques-

tionable assumption). If we now were to use an AIC-

like criterion to choose among the ḡk , we would select

the model that minimized

−2 logp(ḡk|Y1, . . . , Yn,K = k)+ ak,

compare (8). On the other hand, using the posterior to

evaluate the best model suggests maximizing

p(ḡk|Y1, . . . , Yn,K = k)p(K = k).

If we take p(K = k) ∝ exp(−ak/2) these two ap-

proaches agree. Thus, taking a geometric distribution
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for p(K) implies an AIC-like penalty on model dimen-

sion. In particular a = logn and q = 1/
√
n imposes the

same cost per knot as AIC with penalty logn. For rea-

sonable settings of Kmin and Kmax, however, the ex-

pected prior number of knots under this prior will tend

to zero with n. While it is certainly intuitive that the

prior probability of K decreases monotonically with k,

this drop may be at a faster rate than we would expect!

If a ≥ 2 then p(K = k + 1)/p(K = k)≤ 1/e.

Priors on splines in a given space. We parameterize

p(g|G) through the coefficients β in the expansion (3),

and consider priors on β that relate to our assumptions

about the smoothness of g. Recall that as the solution to

a penalized maximum likelihood fit, smoothing splines

(Wahba, 1990) have a straightforward Bayesian inter-

pretation (Silverman, 1985). In univariate smoothing,

for example, G is a space of natural splines (given

some knot sequence t), and the “roughness” of any

g ∈ G is measured by the quantity
∫ U
L (g′′)2. Expand-

ing g in a basis, it is not hard to see that

∫ U

L
(g′′)2 = β ′Aβ

where Aij =
∫ U

L
B ′′i (x)B

′′
j (x) dx

for 1≤ i, j ≤ J.

(10)

The traditional smoothing spline fit maximizes the

penalized likelihood

arg max
β
{l(β)+ λβ ′Aβ},

for some parameter λ. Silverman (1985) observes

that the solution to this problem can be viewed as

a posterior mode, where β is assigned a partially

improper, normal prior having mean 0 and variance-

covariance matrix (λA)−1. This setup has the favorable

property that it is invariant to our choice of basis. This

is desirable, as the choice of the basis will often be

made for computational reasons.

In our simulations we will compare this smoothing

prior to the scheme of Denison et al. (1998a) in which

no stochastic structure is assigned to the coefficients β

once G is selected. Instead, these authors employ

maximum likelihood to make a deterministic choice

of β.

Markov chain Monte Carlo. In order to treat a va-

riety of estimation problems simultaneously, we have

chosen the reversible jump MCMC scheme developed

by Green (1995). Denison et al. (1998a) implement this

technique in the context of general univariate and ad-

ditive regression. We refer to these papers for the de-

tails of the scheme, and we instead focus on the type

of moves that we need to implement the sampler. In

general, we alternate (possibly at random) between the

following moves.

• Increase model dimension. In this step, we intro-

duce a new knot into an existing collection of break-

points. Given the concavity properties of ELMs the

change in the log-likelihood could either be computed

exactly or approximated using the appropriate Rao sta-

tistic. In our experiments we have computed the change

in the log-likelihood exactly. The new knot is selected

uniformly from among the set that yields an allowable

space.

• Decrease model dimension. As with the greedy

scheme, knots are deleted by imposing a constraint

on one or more coefficients in the spline expansion.

We can either evaluate the drop in the log-likelihood

exactly, or through the Wald statistics. Any knot can

be removed at any time (assuming we have more than

Kmin breakpoints to chose from).

• Make structural changes to G that do not change

dimension. Unlike our standard greedy scheme, non-

nested steps like moving a knot are now possible.

Moving a knot from tk to t∗k technically involves

deleting tk and then inserting a new breakpoint at t∗k .

With smart initial conditions on the Newton–Raphson

steps, we can calculate the change in the log-likelihood

exactly and still maintain an efficient algorithm.

• Update ( possibly) g. In a nonlinear model like

Logspline, we can either apply a suitable approxima-

tion to the posterior and integrate with respect to the

coefficients β , or we can fold sampling them into our

Markov chain.

Following Green (1995) and Denison et al. (1998a),

we cycle between proposals for adding, deleting and

moving knots, assigning these moves probabilities bJ ,

dJ and 1− bJ − dJ (see Denison et al., 1998a). New

knots can be positioned at any data point that is at

least nsep data points removed from one of the current

knots. Subject to this constraint, knot addition follows

a simple two step procedure. First, we select one of

the intervals (L, t1), (t1, t2), . . . , (tK ,U) uniformly at

random (where the tk are the current breakpoints).

Within this interval, the candidate knot is then selected

uniformly at random from one of the allowable data

points. When moving a knot, we either propose a large

move (in which a knot is first deleted, and then added

using the addition scheme just described) or a small
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move (in which the knot is only moved within the

interval between its two neighbors). Each of these two

proposals have probability (1− dJ − bJ )/2.

After each reversible jump step, we update the

coefficients β. To do this, we use the fact that for a

given set of knots, we have a parametric model, and

that the posterior distribution of β given G and the

data is thus approximately multivariate normal with

covariance matrix 1 = (λA+H)−1, and mean 1H β̂,

where β̂ is the maximum likelihood estimate of β in G,

and H is the Hessian of the log-likelihood function

at β̂. An observation from this distribution is used as

a proposal in a Metropolis step. Because we are using

(partially improper) smoothing priors, the acceptance

ratio for this proposal is formally undetermined (recall

that the prior covariance matrices are degenerate). We

solve this problem by “canceling” the zero eigenvalue

in the numerator and the denominator (see also Besag

and Higdon, 1999).

2.2 A Simulation Study

To compare the performance of the various possible

implementations of Logspline density model selection

procedures, we carried out a simulation study. We

generated data from three densities:

• normal—the standard normal density;

• slight bimodal—f (y) = 0.5fZ(y;1.25,1) + 0.5

fZ(y;−1.25,1.1), where fZ(y;µ,σ) is the normal

density with mean µ and standard deviation σ ;

• sharp peak—f (y) = 0.8g(y) + 0.2fZ(y;2,
0.07), where g(Y ) is the density of the lognormal ran-

dom variable Y = exp(Z/2) and Z has a standard nor-

mal distribution.

These three densities are displayed in Figure 1. From

each we generated 100 independent samples of size

n= 50, 200, 1,000 and 10,000. We applied a variety of

Logspline methods, see Table 1. For all the Bayesian

methods we estimated the posterior mean by a simple

pointwise average of the MCMC samples. Otherwise,

the Bayesian approaches differ in two aspects:

FIG. 1. Densities used in the simulation study.

TABLE 1

Versions of Logspline density estimation used in

the simulation study

Model size Parameters

(i) Greedy optimization of AIC

proposed by Stone et al. (1997)

(ii) Simulated annealing optimization

of AIC (SALSA)

(iii) Geometric ML

(iv) Poisson (5) ML

(v) Uniform λ= 1/n

(vi) Uniform λ= 1/
√
n

(vii) Uniform λ= 1

(viii) Geometric λ= 1/n

• the prior on the model size—we used the geomet-

ric prior with parameter p = 1 − 1/
√
n, the Poisson

prior with parameter 5, and a uniform prior;

• parameter estimates β̂—we took either the maxi-

mum likelihood (ML) estimate, or we assigned a mul-

tivariate normal prior to β (for one of several choices

for λ).

Table 1 summarizes the versions of Logspline which

are reported here.

For simulated annealing (ii) (termed SALSA for

“Simulated Annealing LogSpline Approximation”) we

ran the same MCMC iterations as for version (iii), but

rather than selecting the mean of the sampled den-

sities, we chose the density which minimizes AIC.

As described above this is very similar to taking the

density with the largest a posteriori probability (the

mode), except that we ignore the prior on knot loca-

tions given the number of knots, K . This would have

changed the penalty in the AIC criterion from K logn

to K logn + 1
2

log
(n
K

)
. Since version (ii) begins with

the fit obtained by the greedy search (i), it is guaran-

teed to improve as far as AIC is concerned. Version (iii)

uses the same penalty structure as version (ii), but av-

erages over MCMC samples. Version (iv) is included

since a Poisson (5) prior was proposed by Denison et

al. (1998a). It applies a considerably smaller penalty

on model size. Versions (v)–(viii) experiment with

penalties on the coefficients. Generating the parame-

ters using a multivariate normal prior distribution im-

plies smoothing with a AIC-like penalty. As such, we

would expect that using λ= 1/n with a uniform prior

[version (v)] may give reasonable results, but that us-

ing a geometric prior [version (ix)] would smooth too

much. Choosing λ too large, as in versions (vi)–(vii),

leads to oversmoothing, while choosing λ too small

tends to produce overly wiggly fits.
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TABLE 2

Mean integrated squared error (MISE) for the simulation study

Version

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Distribution n MISE Ratio of MISE over MISE of the greedy version (i)

Normal 50 0.02790 0.73 1.52 1.84 0.66 0.40 0.26 0.67

Normal 200 0.01069 0.49 0.60 1.23 0.79 0.50 0.24 0.66

Normal 1,000 0.00209 0.59 0.58 1.33 0.87 0.90 0.42 0.73

Bormal 10,000 0.00020 0.33 0.49 1.45 1.35 1.10 0.80 0.87

Slight bimodal 50 0.02502 0.88 1.09 1.34 0.48 0.36 0.36 0.50

Slight bimodal 200 0.00770 0.80 0.61 1.14 0.70 0.38 0.46 0.61

Slight bimodal 1,000 0.00164 0.57 0.60 1.13 0.89 0.66 0.40 0.77

Slight bimodal 10,000 0.00020 0.77 0.61 0.88 0.71 0.82 0.51 0.84

Sharp peak 50 0.15226 0.97 0.78 0.81 0.68 0.90 1.12 0.72

Sharp peak 200 0.03704 0.89 0.75 0.94 0.93 2.02 3.62 1.13

Sharp peak 1,000 0.00973 0.81 0.67 0.81 0.67 2.01 8.90 0.74

Sharp peak 10,000 0.00150 0.72 0.57 0.57 0.64 0.58 21.43 0.76

Average 1.00 0.71 0.74 1.12 0.78 0.89 3.21 0.75

For versions (iii) and (iv) we ran 600 MCMC

iterations, of which we discarded the first 100 as burn-

in. Some simple diagnostics (not reported) suggest that

after 100 iterations the chain is properly mixed. For

versions (v)–(viii) each structural change was followed

by an update of the coefficients β .

In Table 2, we report ratios of integrated squared er-

rors between the greedy scheme and the other methods

outlined above. In addition, we feel that it is at least as

important for a density estimate to provide the correct

general “shape” of a density as to have a low integrated

squared error. To capture the shape of our estimates,

we counted the number of times that a scheme pro-

duced densities having too few, too many and the cor-

rect number of modes. These results are summarized

in Tables 3 and 4. Table 5 calculates the “total” lines of

Tables 3 and 4. Note that for simulations of a normal

distribution it is not possible for an estimate to have too

few modes.

From Table 2 we note that most methods show a

moderate overall improvement over the greedy ver-

sion of Logspline, except for (vii). This scheme over-

smoothes the data, so that the details (like the mode in

the sharp-peaked distribution) are frequently missed.

We note that version (iii), choosing the mode of a

Bayesian approach, is the only version that outper-

forms the greedy version for all 12 simulation setups.

Otherwise, the difference between versions (ii), (iii),

and (viii) seems to be minimal. In particular, if we had

chosen another set of results than those for (i) to nor-

malize by, the order of the average MISE for these four

methods was often changed.

TABLE 3

Number of times out of 100 simulations that a Logspline density estimate had too few modes

Version

Distribution n (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Slight bimodal 50 45 52 4 0 21 74 99 31

Slight bimodal 200 6 22 13 0 1 18 96 19

Slight bimodal 1,000 5 17 19 0 7 6 45 16

Slight bimodal 10,000 4 12 4 1 3 4 2 10

Sharp peak 50 24 38 1 0 9 56 99 13

Sharp peak 200 0 1 0 0 0 0 89 1

Sharp peak 1,000 0 0 0 0 0 0 0 0

Sharp peak 10,000 0 0 0 0 0 0 0 0

Total 84 142 41 1 41 158 430 90
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TABLE 4

Number of times out of 100 simulations that a Logspline density estimate had too many modes

Version

Distribution n (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Normal 50 18 11 94 100 49 5 0 28

Normal 200 34 9 38 100 81 21 0 24

Normal 1,000 26 4 15 91 68 54 32 32

Normal 10,000 4 1 7 61 31 29 1 17

Slight bimodal 50 4 1 84 99 6 0 0 4

Slight bimodal 200 16 1 19 99 55 4 0 5

Slight bimodal 1,000 15 1 13 93 51 31 1 17

Slight bimodal 10,000 6 1 8 68 33 39 0 6

Sharp peak 50 15 8 90 93 3 1 0 2

Sharp peak 200 36 19 46 94 43 5 0 5

Sharp peak 1,000 28 14 30 77 32 12 1 9

Sharp peak 10,000 25 12 15 31 20 30 11 7

Total 227 82 459 1006 472 231 46 156

From Table 3 we note that version (vii), and to a

lesser extent (ii) and (vi), have trouble with the slight

bimodal density, preferring a model with just one peak.

Versions (vi) and (vii) find too few modes, leading us

to conclude that λ should be chosen smaller than 1/
√
n

when using a uniform prior on model size. On the other

hand, the Poisson prior leads to models exhibiting too

many peaks, as do versions (iii) and (v).

Overall, it appears that the greedy, stepwise search

is not too bad. It is several orders of magnitude faster

than any of the other methods. The greedy approach,

as well as SALSA have the advantage that the final

model is again a Logspline density, which can be

stored for later use. For the other methods, we must

record the posterior mean at a number of points. This

has the potential of complicating later uses of our

estimate. Among the Bayesian versions that employ

ML estimates, version (iii) seems to perform best

overall, while among those that put a prior on the

coefficient vector, versions (v) and (viii) (both of which

set λ = 1/n) are best. It is somewhat surprising that

version (viii) performs so well, since it effectively

imposes twice the AIC penalty on model size: one

coming from the geometric prior, and one from the

normal prior on the parameters. Kooperberg and Stone

(1992) argue that the Logspline method is not very

sensitive to the exact value of the parameter, possibly

explaining the behavior of version (viii). In Kooperberg

and Stone (2002) a double penalty is also employed in

the context of free knot Logspline density estimation.

2.3 Income Data

We applied the nine versions of Logspline used

for the simulation study to the income data discussed

in Stone et al. (1997), and the results are displayed

in Figure 2. For the computations on the income

data we ran the MCMC chain for 5000 iterations in

which a new model was proposed, after discarding the

first 500 iterations for burn-in. For the versions with

priors on the parameters we alternated these iterations

with updates of the parameters. The estimates for

versions (ii), which was indistinguishable from version

(iii), and versions (viii) which was indistinguishable

from version (v) are not shown. In Kooperberg and

Stone (1992) it was argued that the height of the peak

should be at least about 1. Thus, it appears that versions

TABLE 5

Number of times that a Logspline density estimate had an incorrect number of modes

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Too few modes 84 142 41 1 41 158 430 90

Too many modes 227 82 459 1,006 472 231 46 156

Total 311 224 500 1,007 513 389 476 246
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FIG. 2. Logspline density estimates for the income data.

(vi) and (vii) have oversmoothed the peak. On the other

hand, version (iv) seems to have too many small peaks.

It is interesting to compare the number of knots for

the various schemes. The greedy estimate (version i)

has 8 knots, and the simulated annealing estimate (ver-

sion ii) has 7 knots. The Bayesian versions (iii), (v)

and (viii) have an average number of knots between 5

and 8, while the three versions that produced unsatis-

factory results (iv, vi and vii) have an average number

of knots between 14 and 17.

The MCMC iterations can also give us informa-

tion about the uncertainty in the knot locations. To

study this further, we ran a chain for version (iii) with

500,000 iterations. Since the knots are highly corre-

lated from one iteration to the next (at most one knot

moves at each step), we only considered every 250th

iteration. The autocorrelation function of the fitted log-

likelihood suggested that this was well beyond the time

over which iterations are correlated. This yielded 2,000

sets of knot locations: 1,128 with five knots, 783 with

six knots, 84 with seven knots, and 5 with eight knots.

When there were five knots, the first three were always

located close to the mode, the fourth one was virtually

always between 0.5 and 1.25, and the last knot between

1 and 2. The locations of the first three knots overlap

considerably. When there are six knots, the extra knot

can either be a fourth knot in the peak, or it is beyond

the fifth knot.

3. TRIOGRAM REGRESSION

When estimating a univariate function φ, our “piec-

es” in a piecewise polynomial model were intervals

of the form (tk, tk+1). Through knot selection, we

adjusted these intervals to capture the major features

in φ. When φ is a function of two variables, we

have more freedom in how we define a piecewise

polynomial model. In this section we take our separate

pieces to be triangles in the plane, and consider data-

drive-techniques that adapt these pieces to best fit φ.

Our starting point is the Triogram methodology of

Hansen et al. (1998) which employs continuous, piece-

wise linear (planar) bivariate splines. Triograms are

based on a greedy, stepwise algorithm that builds on

the ideas in Section 1 and can be applied in the

context of any ELM where φ is a function of two

variables. After reviewing some notation, we present a

Bayesian version of Triograms for ordinary regression.

An alternative approach to piecewise linear modeling

was proposed in Breiman (1993) and given a Bayesian

extension in Holmes and Mallick (2001).

Let △ be a collection of triangles δ (having disjoint

interiors) that partition a bounded, polygonal region

in the plane X = ⋃
δ∈△δ. The set △ is said to be a

triangulation of X. Furthermore, △ is conforming if

the nonempty intersection between pairs of triangles in

the collection consists of either a single, shared vertex

or an entire common edge. Let v1, . . . ,vK represent the

collection of (unique) vertices of the triangles in △.
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Over X, we consider the collection G of continuous,

piecewise-linear functions which are allowed to break

(or hinge) along the edges in △. It is not hard to show

that G is a linear space having dimension equal to

the number of vertices K . A simple basis composed

of “tent functions” was derived in Courant (1943):

for each j = 1, . . . ,K , we define Bj (x;△) to be

the unique function that is linear on each of the

triangles in △ and takes on the value 1 at vj and 0

at the remaining vertices in the triangulation. The set

B1(x;△), . . . ,BK(x;△) is a basis for G. Also notice

that each function Bj (x;△) is associated with a single

vertex vj , and in fact each g ∈G

g(x;β,△)=
K∑

j=1

βjBj (x;△),(11)

interpolates the coefficients β = (β1, . . . , βK) at the

points v1, . . . ,vK .

We now apply the space of linear splines to estimate

an unknown regression function. In the notation of an

ELM, we let W = (X, Y ), where X ∈ X is a two-

dimensional predictor and Y is a univariate response.

We are interested in exploring the dependence of Y

on X by estimating the regression function φ(x) =
E(Y |X = x). Given a triangulation △, we employ

linear splines over △ of the form (11). For a collection

of (possibly random) design points X1, . . . ,Xn taken

from X and corresponding observations Y1, . . . , Yn,

we apply ordinary least squares to estimate β. That is,

we take β̂ = arg maxβ

∑
i[Yi − g(Xi;β,△)]2, and use

ĝ(x)= g(x; β̂,△) as an estimate for φ.

As with the univariate spline models, we now con-

sider stepwise alterations to the space G. Following

Hansen, Kooperberg and Sardy (1998), the one-to-one

correspondence between vertices and the “tent” ba-

sis functions suggests a direct implementation of the

greedy schemes in Section 1. Stepwise addition in-

volves introducing a new vertex into an existing tri-

angulation, thereby adding one new basis function to

the original spline space. This operation requires a rule

for connecting the new point to the vertices in △ so

that the new mesh is again a conforming triangulation.

In Figure 3, we illustrate three options for vertex addi-

tion: we can place a new vertex on either a boundary

or an interior edge, splitting the edge, or we an add a

point to the interior of one of the triangles in △. Given

a triangulation △, candidate vertices are selected from

a regular triangular grid in each of the existing trian-

gles, as well as a number of locations on each of the

existing edges (for details see Hansen et al., 1998).

FIG. 3. Three “moves” that add a new vertex to an existing

triangulation. Each addition represents the introduction of a single

basis function, the support of which is colored gray.

We impose constraints on our search by limiting, say,

the area of the triangles in a mesh, their aspect ratio,

or perhaps the number of data points they contain. As

with Logspline, spaces satisfying these restrictions are

referred to as allowable. At each step in the addition

process, we select from the set of candidate vertices

(that result in an allowable space), the point that maxi-

mizes the decrease in residual sum of squares when the

Triogram model (11) is fitted to sample data. (In re-

gression, the Rao and Wald statistics are the same and

reduce to the change in the residual sum of squares be-

tween two nested models.)

Deleting a knot from an existing triangulation can

be accomplished most easily by simply reversing one

of the steps in Figure 3. Observe that removing a

vertex in one of these three settings is equivalent

to enforcing continuity of the first partial derivatives

across any of the “bold edges” in this figure. Such

continuity conditions are simple linear constraint on

the coefficients of the fitted model, allowing us to once

again apply a Wald test to evaluate the rise in the

residual sum of squares after the vertex is deleted.

3.1 A Bayesian Framework

Priors on model space. As with univariate spline

models, a prior on the space of Triograms is most easily

defined by first specifying the structure of the approx-

imation space, which in this case is a triangulation △.

For any△, we need to select the number of vertices K ,

their placement v, and the triangles that connect them.
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FIG. 4. Additional structural moves for the reversible jump MCMC scheme. Note that these two proposals result in a nonnested sequence

of spaces.

Each set v can be joined by a number of different trian-

gulations (assuming v has more than 3 points). Sibson

(1978) shows that by starting from one triangulation

of v, we can generate any other by a sequence of “edge

swaps.” (This operation is given in Figure 4 and will

come up later when we discuss MCMC for bivariate

splines.) Unfortunately, a closed-form expression for

the number of triangulations associated with a given

set of vertices does not exist. Computing this number

for even moderately sized configurations is difficult be-

cause two sets each with K vertices can have different

numbers of triangulations.

To see how this complicates matters, suppose we fol-

low the strategy for Logspline and propose a hierarchi-

cal prior of the form

p(△|v,K)p(v|K)p(K),(12)

where △ is a triangulation of the vertices v= {v1, . . . ,

vK}. Assigning any proper distribution to △ given v

introduces a normalizing constant in p(△|v,K) that

involves enumerating the different triangulations of v.

Therefore, when taking ratios of (12) for two different

sets of vertices, we are usually left with a prohibitively

expensive computational problem. MCMC methods

for exploring the model space are not possible.

To avoid this problem, we will use a tractable

prior on triangulations developed by Nicholls (1998).

This distribution depends on a pair of Poisson point

processes, one that generates vertices on the interior

of X and one for the boundary. As constructed, there

is one parameter β that controls the intensity of this

process, where larger values of β produce triangula-

tions with more vertices. Nicholls (1998) avoids count-

ing triangulations by normalizing across all triangu-

lations obtainable from all vertex sets generated by

this point process, and produces a distribution p(△).

Bounds on the number of triangulations obtainable

from a given vertex set are used to show that this kind

of normalization is possible. This construction also has

the advantage that restrictions on the size and shape

of triangles are easily enforced and only change the

(global) normalization constant in p(△). In our experi-

ments, we set β so that the expected number of vertices

for this base process is 5. We then adapted Nicholls’s

approach, so that the underlying point process pro-

duces a geometric (with parameter 1− 1/
√
n) or a uni-

form (on Kmin, . . . ,Kmax) number of vertices, follow-

ing the simulation setup in the previous section.

Priors on splines in a given space. Unlike the Log-

spline example, we do not have a single obvious choice

for the smoothing prior for linear splines g ∈G defined

relative to a triangulation △. Dyn, Levin and Rippa

(1990a, b) propose several criteria of the form
∑

e

s2(g, e) for g ∈G,

where the summation is over all edges in △. Their cost

function s(g, e) evaluates the behavior of g along an

edge, assigning greater weight when the hinged lin-

ear pieces are farther from a single plane. Koenker

and Mizera (2001) elegantly motivate a cost function

s(g, e)= ‖ ▽ g+e −▽g−e ‖·‖e‖, where ▽g+e and ▽g−e
are the gradients of g computed over the triangles that

share the common edge e having length ‖e‖. This is

similar to the approach taken by Nicholls (1998) who

derived an edge-based smoothness penalty for piece-

wise constant functions defined over triangulations.

We choose to work with the cost function of Koenker

and Mizera (2001). It is not hard to show that this

gives rise to a quadratic penalty on the coefficient

vector β = (β1, . . . , βK) which can be written β tAβ

for a positive-semidefinite matrix A. Since constant

and linear functions have zero roughness by this

measure, A has two zero eigenvalues. As was done for

Logspline, we use A to generate a partially improper

normal prior on β (with prior variance σ 2/λ, where σ 2

is the error variance). Following Denison et al. (1998a),

we assign a proper, inverse-gamma distribution to σ ,

and experiment with various fixed choices for λ that

depend on sample size.
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Markov chain Monte Carlo (MCMC). Our approach

to MCMC for Triograms is similar to that with Log-

spline except that we need to augment our set of

structural changes to △ to include more moves than

simple vertex addition and deletion. In Figure 4,

we present two additional moves that maintain the

dimension of the space G but change its structure.

The middle panel illustrates swapping an edge, an

operation that we have already noted is capable of

generating all triangulations of a given vertex set

v. Quak and Schumaker (1991) use random swaps

of this kind to come up with a good triangulation

for a fixed set of vertices. In in the final panel of

Figure 4, we demonstrate moving a vertex inside

the union of triangles that contain it. These changes

to △ are non-nested in the sense that they produce

spline spaces that do not differ by the presence or

absence of a single basis function. For Triograms, the

notion of an allowable space can appear through size

or aspect ratio restrictions on the triangulations, and

serves to limit the region in which we can place new

vertices or to which we can move existing vertices.

For example, given a triangle, the set into which we

can insert a new vertex and still maintain a minimum

area condition is a subtriangle, easily computable in

terms of barycentric coordinates (see Hansen et al.,

1998). As with Logspline, we alternate between these

structural moves and updating the model parameters,

following essentially the recipe in Denison et al.

(1998a). Because we are working with regression, we

can integrate out β and only have to update σ 2 at each

pass. This approach allows us to focus on structural

changes as was done by Smith and Kohn (1996) for

univariate regression. [Of course, we can also integrate

out σ 2, but to retain consistency with Denison et al.

(1998a) we chose to sample.]

3.2 Simulations

In Figure 5, we present a series of three fits to

a simulated surface plotted in the upper lefthand

corner. A data set consisting of 100 observations

was generated by first sampling 100 design points

uniformly in the unit square. The actual surface is

described by the function

f (x)= 40 exp{8[(x1 − 0.5)2+ (x2− 0.5)2]}
·
(
exp{8[(x1− 0.2)2+ (x2− 0.7)2]}

+ exp{8[(x1 − 0.7)2+ (x2− 0.2)2]}
)−1

,

to which we add standard Gaussian errors. This func-

tion first appeared in Gu et al. (1989), and it will be

hereafter referred to as simply GBCW. The signal-to-

noise ratio in this setup is about 3. In the lower left-

hand panel in Figure 5, we present the result of apply-

ing the greedy, Triogram algorithm. As is typical, the

FIG. 5. In the top row we have the true surface (left) and the fit resulting from model averaging (right). In the bottom row we have two

isolated fits, each a “minimal” BIC model, the leftmost coming from a greedy search, and the rightmost produced by simulated annealing

(the triangulations appear at the top of each panel ).
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procedure has found a fairly regular, low-dimensional

mesh describing the surface (the MISE is 0.31). For

the fit plotted in the lower righthand panel, we em-

ployed a simulated annealing scheme similar to that

described for Logspline. The geometric prior for △ is

used to guide the sampler through triangulations, and

in each corresponding spline space G we consider ĝ,

the MLE (or in this case the ordinary least squares fit).

In this way, the objective function matches that of the

greedy search, the generalized AIC criterion (8). The

scheme alternates between (randomly selected) struc-

tural changes (edge swaps and vertex moves, additions

and deletions) and updating the estimate σ̂ 2 of the

noise variance. After 6,000 iterations, the sampler has

managed to find a less regular, and marginally poorer-

fitting model (the MISE is 0.32). In the context of tri-

angulations, the greedy search is subject to a certain

regularity that prevents configurations like the one in

Figure 5. We can recapture this in the MCMC simula-

tions either by placing restrictions on the triangulations

in each mesh (say, imposing a smallest allowable size

or aspect ratio) or by increasing the penalty on dimen-

sion, specified through our geometric prior.

In the last panel, we present the result of model

averaging using a uniform prior on model size and

a smoothing prior on the coefficients (λ = 1/n). The

sampler is run for a total of 6,000 iterations, of which

1,000 are discarded as burn-in. We then estimate the

mean as a pointwise average of the sampled surfaces.

The final fit is smoother in part because we are

combining many piecewise-planar surfaces. We still

see sharp effects, however, where features like the

central ridge are present. The model in the lower

righthand panel is not unlike the surfaces visited by

this chain. As spaces G are generated, the central spine

(along the line y = x) of this surface is always present.

The same is true for the hinged portions of the surface

TABLE 6

Versions of Triogram used in the simulation study

Model size Parameters

(i) Greedy optimization of AIC

(ii) Simulated annealing optimization of AIC

(iii) Poisson (5) ML

(iv) Geometric ML

(v) Uniform λ= 1/n

along the lines x = 0 and y = 0. With these caveats

in mind, the MISE of the averaged surface is about

half of the other two estimates (0.15). We repeated

these simulations for several sample sizes, taking n=
100, 500 and 1000 (100 repetitions for each value of

n). In Table 6, we present several variations in the

prior specification and search procedure. In addition to

GBCW, we also borrow a test function from Breiman

(1991), which we will refer to as Exp. Here, points

X = (X1,X2) are selected uniformly from the square

[−1,1]2. The response is given by exp(x1 sin(πx2)) to

which normal noise is added (σ = 0.5). The signal-to-

noise ratio in this setup is much lower, 0.9. The results

are presented in Table 7. It seems reasonably clear that

the simulated annealing approach can go very wrong,

especially when the sample size is small. Again, this

argues for the use of greater constraints in terms of

allowable spaces when n is moderate. It seems that

model averaging with the smoothing prior (λ = 1/n)

and the Poisson/ML prior of Denison et al. (1998a)

perform the best. A closer examination of the fitted

surfaces reveals the same kinds of secondary structure

as we saw in Figure 5. To be sure, smoother basis

functions would eliminate this behavior. It is not clear

at present, however, if a different smoothing prior on

the coefficients might serve to “unkink” these fits.

TABLE 7

Mean integrated squared error (MISE) for two smooth test functions

Version

(i) (ii) (iii) (iv) (v)

Distribution n MISE Ratio of MISE over (i)

GBCW (high snr) 100 0.31 1.35 0.85 0.78 0.77

GBCW (high snr) 500 0.10 1.0 0.64 0.76 0.80

GBCW (high snr) 1,000 0.08 0.91 0.82 0.94 0.79

Exp (low snr) 100 0.15 0.90 0.52 0.51 0.49

Exp (low snr) 500 0.04 0.85 0.46 0.50 0.47

Exp (low snr) 1,000 0.03 0.51 0.32 0.40 0.46
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TABLE 8

Mean integrated squared error (MISE) for two piecewise-planar test functions

Version

(i) (ii) (iii) (iv) (v)

Distribution n MISE Ratio of MISE over (i)

Model 1 50 0.16 0.97 0.70 0.35 0.80

Model 1 200 0.04 0.82 0.95 0.52 0.62

Model 1 1,000 0.01 0.63 0.72 0.76 0.40

Model 3 50 0.70 1.40 0.86 0.51 0.50

Model 3 200 0.17 0.85 0.63 0.27 0.30

Model 3 1,000 0.03 0.34 0.45 0.21 0.20

The performance of the Poisson (5) distribution is

somewhat surprising. While for Logspline this choice

led to undersmoothed densities, it would appear that

the Triogram scheme benefits from slightly larger mod-

els. We believe that this is because of the bias involved

in estimating a smooth function by a piecewise-linear

surface. In general, these experiments indicate that tun-

ing the Bayesian schemes in the context of a Triogram

model is much more difficult than univariate set-ups.

One comforting conclusion, however, is that essentially

each of the schemes considered outperform the simple

greedy search.

As a final test, we repeated the simulations from

Hansen et al. (1998). We took as our trial functions

two piecewise-planar surfaces, one that the greedy

scheme can jump to in a single move (Model 1), and

one that requires several moves (Model 3). In this

case, the model averaged fits (iv) were better than

both simulated annealing and the greedy procedure.

The estimate built from the Poisson prior tends to

spend too much time in larger models, leading to its

slightly poorer MISE results, while the geometric prior

extracts a heavy price for stepping off of the “true”

model. (Unlike the smooth cases examined above, the

extra degrees of freedom do not help the Poisson

scheme.) The simulations are summarized in Table 8.

One message from this suite of simulations, therefore,

is that a posterior mean does not oversmooth edges,

and in fact identifies them better than the greedy

alternatives.

4. DISCUSSION

Early applications of splines were focused mainly

on curve estimation. In recent years, these tools have

proved effective for multivariate problems as well. By

extending the concepts of “main effects” and “interac-

tions” familiar in traditional d-way analysis of variance

(ANOVA), techniques have been developed that pro-

duce so-called functional ANOVAs. Here, spline basis

elements and their tensor products are used to construct

the main effects and interactions, respectively. In these

problems, one must determine which knot sequence to

employ for each covariate, as well as what interactions

are present.

In this paper we have discussed a general frame-

work for adaptation in the context of an extended linear

model. Traditionally, model-selection for these prob-

lems is accomplished through greedy, stepwise algo-

rithms. While these approaches appear to perform rea-

sonably well in practice, they visit a relatively small

number of candidate configurations. By casting knot

selection into a Bayesian framework, we have dis-

cussed an MCMC algorithms that sample many more

promising models. We have examined various tech-

niques for calibrating the prior specifications in this

setup to more easily compare the greedy searches and

the MCMC schemes. An effective penalty on model

size can be imposed either explicitly (through a prior

distribution on dimension), or through the smoothness

prior assigned to the coefficient vector. In general, we

have demonstrated a gain in final mean squared er-

ror when appealing to the more elaborate sampling

schemes.

We have also gone to great lengths to map out con-

nections between this Bayesian method and other ap-

proaches to the knot placement problem. For example,

a geometric prior distribution on model size, has a nat-

ural link to (stepwise) model selection with BIC, while

we can choose a multivariate normal prior on the co-

efficients to connect us with the penalized likelihood

methods employed in classical smoothing splines. In

addition, the Bayesian formalism allows us to account

for the uncertainty in both the structural aspects of our

estimates (knot configurations and triangulations) as
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well as the coefficients in any given expansion. Model

averaging in this context seems to provide improve-

ment over simply selecting a single “optimal” model

in terms of say BIC. The disadvantage of this approach

is that we do not end up with a model based on one set

of knots (or one triangulation).

While running our experiments, we quickly reached

the conclusion that the priors play an important role:

an inappropriate prior can easily lead to results that are

much worse than the greedy algorithms. However, in

our experiments we found out that, when the priors are

in the right ballpark, Bayesian procedures do perform

somewhat better than greedy schemes in a mean

squared error sense. This improvement in performance

is larger for a relatively “unstable” procedures such

as Triogram, while the improvement for a “stable”

procedure such as Logspline is smaller.

For the Triogram methodology there is an addi-

tional effect of model averaging: the average of many

piecewise-planar surfaces will give the impression of

being smoother. Whether this is an advantage or not

probably depends on the individual user and her/his

application: when we gave seminars about the origi-

nal Triogram paper, there were people who saw the

piecewise-planar approach as a major strength, while

others saw it as a major weakness of the methodology.
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Comment
Hugh A. Chipman, Edward I. George and Robert E. McCulloch

This paper uses ideas for stochastic search imple-

mentations of adaptive Bayesian models, such as those

outlined in Denison, Mallick and Smith (1998a, b) and

Chipman, George and McCulloch (1998a) and effec-

tively applies these ideas to logspline density estima-

tion and triogram regression. Interesting comparisons

are made to assess the effect of greedy search, stochas-

tic search and model averaging. Such comparisons are
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valuable, since readily available computing power en-

ables the construction of many methods, and an under-

standing of what works is important in developing new

methodology.

It is very important to note the role of the prior

when adaptive models are used in conjunction with

stochastic searches. Inevitably, priors guide and temper

our wandering in a large space of models. This benefit

comes with a price: the need to select a prior that is

appropriate for the problem at hand. It is important

to acknowledge the simple fact that a prior choice

represents a bet on what kind of models we want to

consider.

If we skip to the end of the paper and read the

discussion, what lessons have been learned? We have

that (i) “ . . . we have demonstrated a gain . . . when

appealing to the more elaborate sampling schemes”

(relative to simple greedy search) and that (ii) “priors

play an important role.” These things we know to be
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true in general from much experience. The question is:

what should be done in practice?

In general, a practical approach usually involves first

getting the prior specification down to a few hyper-

parameters (about which we hopefully have some un-

derstanding) and then developing a scheme for mak-

ing reasonable choices. At one end of the spectrum

we can use automatic methods such as cross-validation

to choose hyperparameters that are appropriate for the

problem at hand. At the other end of the spectrum we

choose “reasonable values” based on our understand-

ing and prior beliefs. Often, compromise strategies that

combine a peek at the data with some judgment are ef-

fective and somewhat in the spirit of empirical Bayes.

We believe Chipman, George and McCulloch (2002) is

a good example of this middle ground approach.

We have some general Bayesian insights that help us

understand the effects of these hyperparameters. Often

we can think of prior in two stages: p(Mk) a prior on

“models;” and p(θk|Mk) a prior on the parameters of a

given model. A set of hyperparameters would specify

a choice for each of these components. In Section 2

of the paper, θ corresponds to the coefficients β , and

Mk would be (K, t). Both choices can be important.

Often we choose p(Mk) to express the belief that the

model is not too large. More subtle is the effect of a

choice p(θ |Mk). If we make the prior too tight, we will

miss parameter values that give good fit to the data,

diminishing the posterior probability on model Mk. If

we make the prior too spread out, the likelihood will

be washed out and again we diminish the posterior

probability. These are the basic facts of odds ratio

calculations.

In Section 2 of the paper, the choices of A and λ

are the hyperparameters that determine the spread

of the prior given the model. We know from the

general insight outlined above that these choices will

be influential. The paper discusses these choices in

terms of penalties and the AIC. We find the basic

Bayesian intuition about odds ratio calculations is also

helpful in understanding what is going on. It may be

helpful to recall that the AIC is just a (very poor)

approximation to the odds ratio calculation.

Table 2 compares the performance of algorithms for

various values of λ. We see that the choice of λ matters.

What choice is best? It depends. Based on Table 2, the

authors state that choice (vii) is bad, yet it is best in

several scenarios! The question remains: how do you

choose λ?

While the authors consider the impact of different

prior choices (e.g., for λ), methods for selection of

the prior are not considered. Without such choices, the

use of MCMC technology for stochastic search non-

Bayesian is more limited.

One of the most important advantages of Bayesian

methods in adaptive modeling problems is the effec-

tiveness of stochastic search methods such as MCMC.

In applications where the model space is complicated,

constructing an effective chain can be challenging. For

example, in the triogram regression problem, models

are arranged somewhat hierarchically, with regions re-

cursively subdivided into smaller and smaller triangles.

Hierarchical structure makes the construction of an ef-

fective chain challenging because it constrains the pos-

sible set of proposals that can be made. Proposals mak-

ing small local changes are easiest to make and most

likely to be accepted, but a long succession of simple

proposals may need to be accepted for the stochas-

tic search to move on to a different posterior mode.

With this dilemma in mind, we appreciate the impor-

tance of using good proposal steps in effective explo-

ration of the model space. These transitions need to

work within the model constraints (e.g., hierarchy in

triograms) while not being so constrained as to have

difficulty moving. Hansen and Kooperberg have effec-

tively accomplished this by developing a set of pro-

posal steps which move around the space in a natural

way while respecting the nested nature of the models.

In some problems, such as logspline density estima-

tion, it may be easier to move around the space. In that

case, the knots do not depend on the order in which

they are added.

The authors use a single long chain to explore the

model space, which can be an issue if the posterior

on models has many sharp local peaks. In such situ-

ations, MCMC methods can tend to gravitate toward

a single mode and have difficulty in moving to other

regions of the model space. We expect such issues to

arise in the triogram regression problem, for example.

Denison, Mallick and Smith (1998b) use single chains

as well and, by carefully controlling the early stages

of the chain, achieve an algorithm which seems to ex-

plore a region of the model space around a single local

maximum. We have found that another effective tech-

nique is to use multiple chains as a means of more fully

exploring the space. Single and multiple chains were

explored on a simulated dataset in Chipman, George

and McCulloch (1998a) and the use of multiple chains

resulted in a more complete exploration of the model

space.

The authors examine the performance of Bayesian

model averaging, which is an appealing and natural
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means of improving predictive accuracy. We are not

surprised that greedy methods can be improved upon

by a better search and model averaging. What does sur-

prise us is the omission of a trivial (and often effec-

tive) frequentist competitor: bootstrapping. The boot-

strap has been used as a method of generating multi-

ple models for model averaging (Breiman, 1996) and

as an easy way to improve upon greedy search algo-

rithms (Tibshirani and Knight, 1999). In this approach,

multiple pseudodatasets are generated by resampling

with replacement the rows of the data matrix, and a

(often greedy) modeling algorithm is applied to each

bootstrap dataset. Bootstrapping the data and averag-

ing over models is an effective and easy way to model

average. It enhances the search by perturbing the data

and letting the greedy algorithm converge to different

local maxima. Predictions are improved by averaging

across all the different models. We have carried out

some experiments with bootstrapping in the context

of Bayesian CART (Chipman, George and McCulloch,

1998b). In the example we considered, we found that

bootstrapping identified a wider variety of good mod-

els than a single greedy search, but the models iden-

tified by a bootstrap algorithm were still a subset of

those identified by Bayesian stochastic search proce-

dures.

Comment
C. C. Holmes

Mark Hansen and Charles Kooperberg have done

an excellent job in tying (or should I say knot-

ting) together the various methodological and philo-

sophical approaches to random regression splines.

My personal experience in this area derives from

a fully probabilistic (Bayesian) standpoint and my

comments will reflect this view. While I am aware

that the authors may be familiar with much of what

I am about to say I hope that the reader will benefit

from the insights and subjective observations that fol-

low.

1. INTRODUCTION

It is well known empirically that model averaging

over flexible regression models tends to produce more

accurate predictions. This is especially true when the

individual model is “nonsmooth” such as for the tri-

ogram model described in Section 3. Flexible mod-

els typically show high variance to the data which the

averaging tends to counter. The term “high variance”

refers to the fact that small changes or perturbations to

the data can lead to large changes in the form or out-

put of the selected model. In this article Hansen and

Kooperberg, hereafter H&K, consider some averaging

methods using penalized likelihood. In the field of ma-

C. C. Holmes is Lecturer, Department of Mathematics,

Imperial College, London, SW7 2BZ, United Kingdom

(e-mail: c.holmes@ic.ac.uk).

chine learning, algorithms such as Boosting, Bagging

and Stacked Regression are popular methods to imple-

ment this strategy; see Hastie, Tibshirani and Fried-

man (2001), Chapters 8 and 10, for details and refer-

ences.

In contrast to these mainly empirically motivated

approaches, the probabilistic (Bayesian) modeller is

forced into model averaging by the requirement to

remain coherent. Bayesian inference is an axiomatic

system; if you buy into the axioms you must follow

the rules and the rules state that when fully quanti-

fying measures of uncertainty in a response variable

you should report the marginal distribution p(y|x); this

is subsequently combined with a loss function when

reporting point estimates. The Bayesian approach re-

quires a priori that we quantify, via probability distri-

butions, measures of uncertainty in all aspects of the

model.

Bayesian inference provides us with a rich modelling

paradigm with probability as its central pillar. How-

ever, this richness comes with a price. In defining prob-

ability distributions over complex model spaces we

must be careful about the implications on the joint mar-

ginal prior distribution p(Y ). I shall expand on this last

point in Section 3 with reference to the precision para-

meter λ used in H&K. The Bayesian and non-Bayesian

methods presented in H&K appear to be doing some-

thing similar, namely model averaging. However, the

procedures behind them are very different. In the next

section I will highlight what I believe to be the key dif-

ference.
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2. BAYESIAN INFERENCE AND PENALIZED

LIKELIHOOD

In the averaging procedure of the non-Bayesian

methods the weight given to each model is

w(t)∝max
β̂

(β̂, t)+ aJ (t),

where a model is characterized by a knot configu-

ration t that records the number and position of the

splines, max
β̂t
l(β̂t, t) is the profile log likelihood of

model t and J (t) denotes the dimension of t. The cor-

responding weight given to t in the Bayesian procedure

is

w(t)∝ l(t)+ p(t),

where l(t) is the marginal likelihood and p(t) the prior.

Matching the user-defined quantities p(t) = aJ (t) we

see that the central difference between the procedures

lies in the use of the marginal or profile likelihood. The

marginal likelihood is special to Bayesian inference

and is defined as

l(t)= p(Y = y|t)

=
∫

p(Y = y|β, t)p(β|t) dβ,

where Y denotes the observed data and the measure

p(Y = y|t) is also known as the prior predictive as

it records the probability of observing the data before

the data arrived. In contrast the profile likelihood

conditions on the observed data through the maximum

likelihood estimate β̂t.

The prior predictive contains a natural penalty

against overly complex models which is a direct con-

sequence of using a fully probabilistic approach. Com-

plex models spread their probability measure over

a wide space of possible data generators (possible real-

izations Y = y). By definition this distribution is nor-

malized (integrates to 1) and hence the actual quantity

p(Y = y|t) will be diluted as the space spanned by the

model increases. Accordingly, simple models that are

consistent with the observed data have greater marginal

likelihood. The exact opposite is true of the profile like-

lihood.

It is worth stating now that I do not consider

the “Bayesian ML” models considered by H&K as

Bayesian. They do not relate to proper probabilistic

models and do not use the marginal likelihood in

their inference. Moreover, in Bayesian inference we

are typically interested in reporting the full distribution

p(y|x) not just reporting the mean. By not taking into

account uncertainty in β these will be artificially tight

if ML is used.

The form of the marginal likelihood l(t) highlights

another important issue, namely the significant role

played by the prior distribution p(β|t) within the pos-

terior inference. This is noted in the results in H&K

in their comparison of models (v)–(vii) given in Ta-

ble 1. Throughout, the prior distribution p(β|t) is taken

to be multivariate normal, p(β|t)=N(0, (λA)−1), for

fixed positive-definite matrix A. The precision para-

meter λ is highly influential to the inference. In Sec-

tion 2.2 the authors suggest that “choosing λ too large

. . . leads to oversmoothing, while choosing λ too small

. . . tends to produce overly wiggly fits.” This statement

is not strictly true and the reason for this is interest-

ing.

Consider the smoothing spline introduced in Sec-

tion 2.1 equation (10). The smoothing spline has a ba-

sis function representation with a knot point at every

data value. The parameter λ controls the smoothness

of the fit such that as λ→ 0 the model has n degrees of

freedom and interpolates the data. In this case the es-

timates of β match the maximum likelihood estimates.

For λ = 0 the prior p(β|t) is improper and is known

as the reference prior which would be considered as

noninformative. However, suppose we wish to enter-

tain the prospect that some knots are not needed, as

in the methods of this article. For the variable dimen-

sion case as λ→ 0 we find we select no knots at all

regardless of the data and we are left with a smooth

global polynomial! That is, all of the posterior mass

lies on the simplest model. This effect, that the nonin-

formative reference prior for the fixed dimension case

is a maximumly informative prior in the the variable di-

mension case, is a consequence of the Lindley–Bartlett

paradox.

3. LINDLEY–BARTLETT PARADOX AND

COVARIANCE REPRESENTATION

Lindley (1957) and Bartlett (1957) discuss an appar-

ent paradox in the hypothesis testing of the location of

the mean of a normal distribution. The consequence of

their result for the Bayes linear model, y ∼N(xβ, σ 2)

with prior p(β) ∼ N(0, λ−1A) and random covariate

set x, is that for λ→ 0 the posterior distribution p(x|y)
places ever greater mass on the simplest model. In this

article, the basis set x would refer to the output from

the set of splines with knot locations t.

This result may seem surprising and even a little

worrying to the non-Bayesian observer. However, it is
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merely a consequence of the prior induced on p(Y )

by the model and is not really a paradox at all when

considered in this way. To be specific, given a normally

distributed prior on the coefficients β ∼N(0, (λA)−1)

we find that the marginal prior induced on Y is

normal

p(Y = y|x)=
∫

p(Y = y|x,β)p(β|x)

=N
(
0,X(λA)−1X′

)
,

where X denotes the n × k design matrix, which in

our situation records the k responses from the set of

polynomial and spline bases for the n data points. We

see that the normal prior on β induces a Gaussian

process prior on Y with variance–covariance matrix

X(λA)−1X′. Hence, setting λ→ 0 specifies huge vari-

ance along the column space spanned by X. Adding a

column to X inflates the variance and hence typically

reduces the probability of Y = y.

The covariance representation of the Bayesian re-

gression spline is instructive and peculiar to the Baye-

sian model. The Bayesian methods discussed in H&K

can be considered as modelling Y or log(Y ) as a

Gaussian process with covariance matrix defined by λ,

A and the knot locations t. The MCMC algorithm is

then seen to perform a random walk on the state space

of fixed dimensional n× n covariance matrices deter-

mined by the spline locations. Of course, the covari-

ance form is rarely used in practice as it requires the

inversion of an n× n matrix while the usual basis rep-

resentation requires inversion of k × k matrices. Nev-

ertheless, they are equivalent.

In this manner we can view the Bayesian method of

free-knot splines as a flexible approach to automati-

cally constructing appropriate covariance structures for

a Gaussian process model for Y , or log(Y ). The use

of free knots readily allows the covariance matrix to

be nonstationary in that different amounts of smooth-

ing are achieved in different regions of x. The covari-

ance representation also highlights that fact that the set-

ting of λ is critical to the inference. In the recent work

of Holmes and Denison (2002) we advocate reducing

the sensitivity to this parameter by adopting a further

prior distribution on λ; see also the forthcoming mono-

graph by Denison, Holmes, Mallick and Smith (2002)

on Bayesian methods for nonlinear classification and

regression.

To conclude, I greatly enjoyed reading the paper.

You get a real sense that the authors have a great

feel for the various approaches they discuss. To the

committed Bayesian, phrases such as “an inappropri-

ate prior” are inappropriate but these are minor quib-

bles.

Comment
Robert E. Kass and Garrick Wallstrom

Over the past several years Hansen and Kooper-

berg have contributed substantially to the development

of spline-based nonparametric function estimation. As

they show in this paper and in their 1997 paper with

Stone and Truong, Logspline and its variants can be

effective in diverse settings. Indeed, the unification of

those settings with the rubric of extended linear models

is itself an important contribution. Here, they empha-

size the contrast between the deterministic, frequen-

tist optimization methods and stochastic, Bayesian al-

ternatives. We and our colleagues have been using
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Bayesian spline fitting in a variety of applications and

we are pleased to be able to contribute to the discus-

sion.

Hansen and Kooperberg are mainly interested in

Bayesian methods for algorithmic, as opposed to in-

ferential, reasons: reversible-jump MCMC can visit a

large number of models, and the resulting posterior

mode, and posterior mean based on model averaging,

turn out to be very good estimates. In fact, as we dis-

cuss in Section 1, MCMC can be even better than

Hansen and Kooperberg’s simulations indicate. Hansen

and Kooperberg provide interpretations for the meth-

ods they investigate in their simulation study, but this

is a place where we disagree with them on technical

grounds. In Section 2 we suggest somewhat different

interpretations, which make it easier to understand the

authors’s numerical results. In Section 3 we briefly em-
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phasize the importance of maximization schemes such

as Logspline; in Section 4 we discuss some related

work; in Section 5 we summarize our view of the cur-

rent state of the art.

1. WHEN IS A METHOD BAYESIAN?

Bayesian methods are optimal when the data are

generated according to the assumed model (giving

the likelihood function) and the prior correctly rep-

resents a priori knowledge. From a practical stand-

point, when the model does a reasonably good job

of describing the data, and the prior contributes rela-

tively little erroneous information, Bayesian methods

work well. With moderately large data sets we ex-

pect Bayesian methods to reflect the model, so that

Bayes estimates are essentially maximum likelihood

estimates.

Many researchers, including Hansen and Kooper-

berg, find it informative to try to recast frequentist pro-

cedures in Bayesian terms, so as to get a clearer un-

derstanding of the way those procedures work. Typi-

cally, this exercise shows a frequentist method to be

approximately Bayesian in some sense, and one then

hopes to have a relatively easy time seeing what the

model and prior each contribute. For this to be justi-

fied, however, there must be a formal sense in which

the method is “approximately Bayesian.” That is, there

must be a formal sense in which the procedure com-

putes a probability (or an estimate) that is approx-

imately equal to a probability (or estimate) coming

from some posterior distribution. For example, max-

imum likelihood estimates may be shown to approx-

imate posterior means as sample sizes become infi-

nite.

Hansen and Kooperberg have made central to their

study the algorithm of Denison, Mallick and Smith

(1998a). We would like to take issue with their in-

terpretation of it. We will call it DMS, and we will

contrast it with a modification of DMS that DiMatteo,

Genovese and Kass (2001) called BARS.

1.1 DMS Is neither Bayesian nor Approximately

Bayesian in Large Samples

Green (1995) pointed out that reversible-jump

MCMC was well-suited for finding breakpoints in

piecewise constant functions. The paper by Denison,

Mallick and Smith (1998a) was important because it

extended this observation to cubic-spline curve-fitting.

From a Bayesian point of view, the likelihood

function on the knot set t based on data y, model

p(y|β, t) and prior π(β) is the marginal density

L(t)= p(y|t)

=
∫

p(y|β, t)π(β) dβ.

[Here, for simplicity, we are ignoring σ , which is

handled by integration with respect to the prior π(σ )=
1/σ .] The DMS method replaces this marginal density

p(y|t) with the conditional density p(y|β̂, t), where,

in the context of curve-fitting, β̂ is the least-squares

estimate. The advantage of doing so is that no prior

distribution on β need be considered. Because there

is no prior on β , DMS is not an exact Bayesian

method. It might be thought that it is approximately

Bayesian in the same sense that maximum likelihood

is approximately Bayesian, but that is not the case

either.

In many situations it is innocuous to ignore the

prior or to assume a flat prior. For instance, if the

knots t are fixed so that the problem is one of mul-

tiple linear regression, for moderately large samples

the posterior of β based on a flat prior will be-

come a good approximation to the posterior of β

based on any relatively diffuse proper prior, and the

least-squares estimate will become a good approxi-

mation to the posterior mean of β . In contrast, the

conditional density p(y|β̂, t) will not approximate

the marginal density p(y|t) in large samples for any

prior.

This point may seem pedantic but, as we spell out

below, it has important implications both for practice

and for interpretation.

1.2 For Gaussian Nonparametric Regression,

BARS is Bayesian

For curve-fitting, a very simple alternative to DMS

is to define an analytically tractable prior on β given t.

DiMatteo, Genovese and Kass (2001) chose the prior

β ∼N
(
0, nσ 2(XT

t Xt)
−1)

,

where Xt is the design matrix based on the spline

basis. Because the Fisher information in the data is

XT
t Xt/σ

2, this prior may be understood as having

the same amount of information as a single obser-

vation. Thus, Kass and Wasserman (1995) called it

the unit-information prior. Many other authors have

used this prior; see Pauler (1998). In the context of

spline curve-fitting, Smith and Kohn (1996) used the

same prior but with variance matrix cσ 2(XT
t Xt)

−1,

where c was chosen to be between 10 and 1,000, val-

ues not terribly different than the sample size. Any
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such choice yields an explicit form for the likelihood

L(t) required in the reversible-jump MCMC scheme.

Thus, any such prior in conjunction with the MCMC

scheme used in DMS yields an exactly Bayesian

method for Gaussian nonparametric regression. The

unit-information prior was chosen as a simple default

but, aside from its connection with BIC described be-

low, there is nothing special about the particular choice

c= n.

An additional feature of the BARS implementation

was the incorporation of a locality heuristic: contin-

uous proposal distributions for addition of a knot are

used; these attempt to place knots close to existing

knots. This is based on the observation, stressed by

Zhou and Shen (2001), that extra knots are needed

where curves change sharply. Hansen and Kooperberg

mention the general idea that more knots are needed

in regions where the function changes rapidly, but

their implementations apparently ignore this fact. The

DMS implementation attempts to spread knots out,

rather than clumping them as would be needed for

rapidly varying curves. This produces a somewhat in-

efficient chain, that is, one that needs to be run a long

time.

1.3 BARS Achieves Much Smaller MISE than

Does DMS

When the conditional density p(y|β̂, t) replaces

the correct marginal density p(y|t) it is no longer

possible to learn about the number of knots needed

to model the data. The practical implication is that

DMS severely overfits the data and suffers extreme

sensitivity to the choice of prior. It is easy to see

why: when using the conditional density, the likeli-

hood increases as knots are added so that the poste-

rior mode will be at the maximum allowable num-

ber of knots. Indeed, it is precisely to avoid this sit-

uation that dimensionality penalization methods such

as AIC and BIC are introduced. The DMS likeli-

hood on the number of knots (based on the con-

ditional density) will level off as the number of

knots increases and will become dominated by the

prior.

As reported by Denison, Mallick and Smith (1998a),

and also by Hansen and Kooperberg, fits obtained

using DMS may sometimes appear reasonable, and

it may also appear that the prior on the number of

knots has relatively little effect. This happens for

two reasons: first, overfitting will often produce a

model with relatively small MISE and, second, short

MCMC chains may traverse regions of reasonably

good models. Long chains will allow the method to

explore regions of higher probability, which in DMS

are regions involving large numbers of knots leading

to excessively rough (wiggly) models. One might then

be tempted to advocate DMS with short chains—in

fact, this is precisely what Hansen and Kooperberg

used in their simulation study—but that approach

is very worrisome: with MCMC we want to make

sure we have adequate mixing, particularly in highly

multimodal problems. A safer strategy is to use a

Bayesian method.

In the three simulated examples reported by DiMat-

teo, Genovese and Kass (2001), which were similar

in spirit to the three used by Hansen and Kooper-

berg except in the context of curve-fitting, BARS

reduced the MISE compared to DMS by 70% or

more (with chains of length 10,000). Gains for curves

with very sharp jumps are most dramatic. Further-

more, when fits were examined, BARS was appropri-

ately smooth while DMS was very rough, with very

large numbers of local modes; and the number of

DMS modes was highly dependent on the choice of

prior.

1.4 BIC Is Approximately Bayesian with Respect to

the Unit-Information Prior

Schwarz (1978) showed that the criterion now most

commonly known as BIC provides consistent model

selection, in the sense that BIC will choose the cor-

rect model (among alternative choices, one of which is

assumed true) for sufficiently large samples. The ar-

gument was Bayesian: Schwarz used the log of the

Bayes factor and then omitted constant-order terms

(see Kass and Raftery, 1995, for additional references).

Kass and Wasserman (1995) and Pauler (1998) showed

that BIC approximates the log of the Bayes factor very

well when the unit-information prior is used: analyt-

ically the error is of order Op(n
−1/2) and numeri-

cally the results are remarkably close, even for mod-

erate sample sizes. Thus, in very general terms, model

selection using BIC is approximately the same thing

as model selection via Bayes factors with the unit-

information prior. We should caution that this asymp-

totic argument requires the sample size to be well de-

fined (see Pauler, 1998) and grow to infinity while the

number of parameters remains finite. In the spline ap-

plications we have faced, however, these seem to be

reasonable assumptions and the BIC-based BARS pro-

cedure we describe below, in Section 1.5, performs

well.
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In the case of Gaussian curve-fitting it is particularly

easy to see the BIC approximation in action. DiMatteo,

Genovese and Kass (2001) noted that the likelihood

ratio for adding a knot in the BARS reversible-jump

MCMC is

ratio≈ exp(−BIC/2),(1)

where the approximation error is simply omission of

the factor
√
n/(n+ 1). DiMatteo, Genovese and Kass

also pointed out that DMS multiplies the right-hand

side by
√
n, which is another way to see why that

method leads to severe overfitting.

Hansen and Kooperberg observe that BIC may be in-

terpreted as using the conditional density p(y|β̂, t) to-

gether with a Geometric prior distribution on the num-

ber of knots, with parameter p = 1− n−1/2. We would

prefer to state this differently, in line with Schwarz’s

analysis: for large samples, the marginal density p(y|t)
based on any prior on β will differ from the conditional

density by a factor that behaves like this Geometric

prior; that is, it falls at the exponential rate n−k/2. [For

consistency the factor multiplying p(y|β̂, t) must fall

at the rate e−kf (n), where f (n)→∞ and f (n)/n→ 0;

see Nishii, 1988.] Thus, DMS with a uniform prior

could be interpreted as doing the same thing as would

a Bayesian method that uses a proper prior on β to-

gether with an improper prior on the number of knots

that increases roughly as nk/2.

1.5 BARS May Be Generalized with Laplace’s

Method and BIC

We described BARS very briefly above in the case

of Gaussian curve-fitting. There, with the unit-infor-

mation prior or any other Gaussian prior on β , the

integral required for the marginal density p(y|t) may

be evaluated analytically. For other ELMs the integral

is no longer tractable. DiMatteo, Genovese and Kass

(2001) approximated the integral by Laplace’s method.

With the unit-information prior this yields

logp(y|t)≈ logp(y|β̂, t)− J

2
logn,

where J is the dimensionality of the basis. That is, for

general models BARS uses BIC in its MCMC scheme.

It would be equally easy to use Laplace’s method for

an alternative prior. It might also be more effective to

use a different prior, but DiMatteo, Genovese and Kass

(2001) were satisfied with the results obtained with

BIC.

DiMatteo, Genovese and Kass (2001) approximated

the integral defining p(y|t) to improve simulation

efficiency: marginal chains (here, a chain on t) tend to

be more efficient than joint chains (here, a chain on

(β, t); see Liu, Wong and Kong, 1994). In addition,

chains on (β, t) must be constructed with care to

ensure detailed balance (see Genovese, 2000). From

Hansen and Kooperberg’s brief description of the

procedure they used with their smoothing priors we

could not understand whether they ran chains on t

or (β, t). (In addition, it appears that they used a

Normal approximation to the conditional posterior

distribution on β; note that this is less accurate than

using Laplace’s method, though it may be corrected by

importance weighting as in DiMatteo, Genovese and

Kass, 2001.)

2. REINTERPRETATION OF HANSEN AND

KOOPERBERG’S RESULTS

We now return to the methods Hansen and Kooper-

berg examined in their simulation study. Keeping in

mind that when Hansen and Kooperberg refer to the

use of AIC in these methods they actually mean BIC

(which, in contrast to the terminology in the literature,

they choose to regard as a special case of AIC), we in-

terpret the methods from our own Bayesian point of

view as follows:

• method (i) is a quick-and-dirty way to find a model

having high posterior probability (approximately,

for moderate or large samples, using BIC), based on

the unit-information prior on β and a flat prior on the

number of knots;

• method (ii) is an attempt to find the posterior

mode (again, approximately), based on the unit-

information prior on β and a flat prior on the number

of knots; (The authors call this simulated annealing

but did not describe any annealing; if they actually

did some annealing we would be very interested to

find out the details: what did they learn about the

appropriate cooling schedule?)

• method (iii) is an approximately Bayesian method,

based on the unit-information prior on β and a flat

prior on the number of knots. DiMatteo, Genovese

and Kass (2001) called it modified-DMS in their

simulation study and found that it worked reason-

ably well, though not as well as BARS because

BARS also incorporated the locality heuristic, which

used continuous proposal distributions and produced

a more efficient MCMC scheme;

• method (iv) is the pseudo-Bayesian DMS method,

which tends to overfit;
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• method (v) is a Bayesian method, based on the

smoothing prior on β with λ = 1/n and a flat prior

on the number of knots. The smoothing prior is very

similar to the unit-information prior: both use the

multiplier 1/n while the smoothing prior uses A in

place of the information matrix. We would expect

this method to behave fairly similarly to method (iii),

except that the authors may have used different

MCMC schemes;

• by increasing the multiplier to be of order greater

than 1/n, methods (vi) and (vii) make the prior on β

much more informative than a single observation; in

method (vii) it has the same order of information

as does the full data set. In these cases, and more

dramatically for (vii), the prior will substantially

smooth the fit and the net result will be to destroy

the local adaptation that is the chief benefit of knot

location algorithms. We would expect to see these

methods behave somewhat similarly to smoothing

splines, and often poorly, sometimes overfitting and

sometimes smoothing over sharp changes in the

function;

• method (viii) is similar to method (v), using the same

order of information on β as a single observation,

except that it has the geometric prior on the number

of knots. We would expect this method to work

well on functions that require only small numbers

of knots, and also when there is sufficiently much

data to overcome the prior’s very thin tails. We

would expect this method to perform poorly with

functions having many sharp peaks and moderate

sample sizes.

To summarize, with our reinterpretation we would

expect methods (ii), (iii), (v) and (viii) to perform well

for the four examples used by Hansen and Kooperberg,

and methods (iv), (v) and (vi) to be considerably worse.

We would also expect the performance of (viii) to

deteriorate on examples with moderate sample sizes

and multiple peaks. Note that our interpretation of

method (iii) should be contrasted with Hansen and

Kooperberg’s characterization of method (iii) as being

ML with a geometric prior on the number of knots.

We would expect (viii) to deteriorate on examples with

moderate sample sizes and multiple peaks because of

its geometric prior, but we would not expect such

poor behavior from method (iii) because we think

of it as having a flat prior rather than a geometric

prior.

We also would be concerned that good performance

of methods (ii), (iii), (v) and (viii) might sometimes

require very long chains. It is worth repeating that

short chains, such as those used by Hansen and

Kooperberg in their simulation study, may fail to

properly sample from the posterior distribution. This

depends, of course, on the MCMC method and we

mentioned that BARS can perform better due to its

increased efficiency. Further improvements may well

be possible. In addition, as we said above, for reasons

of efficiency we prefer running the chain on t rather

than on (β, t).

As far as method (i) is concerned, we would expect

it to do a reasonably good job, and its speed is

very appealing. On the other hand, given the goal

of finding the posterior mode (approximately, via

BIC), alternative maximization methods may be even

better.

We believe these remarks provide a straightforward

understanding of Hansen and Kooperberg’s numerical

results, aside from a few perplexing anomalies: for

the most part the methods perform just as we would

expect. It is possible that the anomalies (the most

egregious being method (iii) at 1.52 for normal and

1.09 for slightly bimodal with n = 50, method (v) at

1.35 for normal with n = 10,000 and method (viii) at

1.13 for sharp peak with n= 200) might go away with

a more efficient MCMC method and/or substantially

longer chains.

3. POSTERIOR MAXIMIZATION

In our applied work we always need not only

fits for an unknown function but also assessments

of uncertainty. We consider the availabilty of the

posterior as an inference engine to be a big advantage

of the Bayesian approach. However, in many of our

applications we have sufficiently large sets of data

(often hundreds of function-fitting problems, each

having tens of thousands of binary observations) that

computing time is a big issue. We desperately need fast

methods. The speed of Logspline is appealing, but we

cannot use it in practice unless we also have a way to

assess uncertainty.

It seems to us that a reasonable compromise would

be to apply a rapid fitting method, and then run

a relatively short chain to get a rough idea of the

posterior—enough of an idea to get at least some

notion of uncertainty. The initial rapid fitting method

should provide a good estimate of the function and, as

a by-product, a sufficiently good starting value for the

short chain that no burn-in is necessary. We could use

Logspline for this purpose, as Hansen and Kooperberg
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apparently did for method (iii), but our sense is that it

may be possible to do better.

As a method of fitting, the big advantage of revers-

ible-jump MCMC for finding good fits is its ability to

“tunnel” across regions of low posterior density. Algo-

rithms that try to maximize the posterior for a given

number of knots can get stuck when knot movement

requires traversing an interval where the posterior den-

sity is comparatively small; by instead moving to a

model with an additional knot, and then subsequently

deleting a knot, an algorithm can effectively move past

the region of low posterior density. This makes us think

that a maximization method should incorporate some

of this “stepwise” alternation of models with differ-

ent numbers of knots. Hansen and Kooperberg refer to

Logspline as a stepwise method but, as we understand

it, it actually uses a “forward selection” method to

add knots and then a “backward elimination” method

to delete them. While it apparently does a good job,

we wonder whether alternatives that attempt to build

some of the “tunneling” features of the MCMC method

into a fast maximization scheme might be effective.

We have tried simple variants on BARS that maximize

rather than sampling, and they can work reasonably

well, but we have not done systematic research and are

unable to report any dramatic improvements in com-

putation time. We would be interested in any further

comments Hansen and Kooperberg may have on this

point.

4. RELATED WORK

Spline-based approaches to function estimation have

received much recent attention and there are variations

that Hansen and Kooperberg did not touch on. Some

relevant additional references may be found in Shively,

Kohn and Wood (1999) and in DiMatteo, Genovese

and Kass (2001).

Our own applied work has focused primarily on

applications to neuroscience. In addition to using

BARS for functional imaging and identification of

neuronal firing patterns (as illustrated in DiMatteo,

Genovese and Kass, 2001), this has included artifact

removal from EEG’s (Wallstrom et al., 2002). For some

of our neuronal work we have also needed to fit two-

dimensional surfaces and for this we have applied a

mild modification of the method in Denison, Mallick

and Smith (1998c), which (unlike their curve-fitting

approach) is fully Bayesian. Here we would be very

interested in any remarks Hansen and Kooperberg

might be able to make regarding the performance of

their triogram methods compared to those using the

more familiar product spline bases as in Denison,

Mallick and Smith (1998c). We have also implemented

a generalization of BARS that fits multiple curves

simultaneously, which is closely related to the method

of Shi, Weiss and Taylor (1996). This provides a

Bayesian approach to a basic problem in functional

data analysis, that of describing the variation among

many curves. We hope to report on it soon.

5. CONCLUSIONS

Here and in cited publications, Hansen and Kooper-

berg have taken advantage of important insights to pro-

duce useful methods and have enlightened us concern-

ing their behavior.

Currently, BARS appears to be the most power-

ful available method for spline-based curve-fitting in

ELMs. The essence of BARS is that it uses the follow-

ing:

1. a proper prior on β that contains relatively little

information;

2. a reversible-jump MCMC scheme on t with contin-

uous proposals for knot addition that try to place

new knots close to existing knots;

3. approximation of the marginal density p(y|t) by

Laplace’s method when it is not available analyti-

cally.

Innovations that would improve behavior, or make

the chain more efficient, are certainly possible. For

example, one obvious idea is to replace the factor

1/n that multiplies the prior information in the unit-

information prior (or the λ in Hansen and Kooperberg’s

smoothing priors) with a value 1/c (as in Smith and

Kohn, 1996) and then put a prior on c (as in George

and Foster, 2000). We have not tried this ourselves as

yet.

In many applications, faster methods, such as Log-

spline, or alternative schemes designed to maximize

the posterior, are highly desirable. However, evalua-

tion of uncertainty is essential. Some hybrid approach

involving maximization steps together with short sim-

ulation chains may provide a useful solution. We look

forward to further work by Hansen, Kooperberg and

others on this important problem.
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Comment
Roger Koenker and Ivan Mizera

1. INTRODUCTION

Piecewise linear approximations on adaptively se-

lected triangulations of planar domains provide an ef-

fective framework for many aspects of applied mathe-

matics, from surface modeling in computer aided de-

sign to numerical methods for solving partial differen-

tial equations. Hansen and Kooperberg have convinc-

ingly demonstrated that these methods also deserve a

prominent place in the statistical arsenal. On equivari-

ance grounds alone a persuasive case can be made for

their superiority to competing tensor product methods.

The most challenging aspect of the triogram ap-

proach lies in chosing a strategy for the adaptive tri-

angulation. Hansen and Kooperberg have undertaken a

wide ranging exploration of these strategies: initially

in Hansen, Kooperberg and Sardy (1998) within the

regression spline, model-selection paradigm and now

from a more Bayesian viewpoint. The prior plays two

important roles in the latter approach. It controls the

number and position of the vertices of the triangula-

tions, and it acts to shrink the parameters of the ba-

sis expansion toward a globally linear fit. Vertex se-

lection and the attendant choice of the triangulation

are the computationally difficult aspects of this process

and seem to demand an MCMC implementation. In-

herently, there is a trade-off between the flexibility al-

lowed by the triangulation and the amount of shrink-

age. Parsimonious triangulations, that is, those with

few vertices, need little shrinkage; more profligate tri-

angulations need more shrinkage. Hansen and Kooper-

berg opt for priors yielding rather parsimonious trian-

gulations with only a handful of vertices. This is quite

suitable for the test function of Section 3.2, but we are

curious about how their MCMC methods would scale

for problems that required many more vertices.

Roger Koenker is Professor, Departments of Eco-

nomics and Statistics, University of Illinois, Cham-

paign, Illinois 61820 (e-mail: rkoenker@uiuc.edu).

Ivan Mizera is Associate Professor, Department of

Mathematical Sciences, University of Alberta, Edmon-

ton, Alberta, Canada T6G 2G1 (e-mail: mizera@stat.

ualberta.ca).

2. A TOTAL VARIATION ROUGHNESS PENALTY

In recent work (Koenker and Mizera, 2001), we have

been exploring total variation regularization methods

for estimating triogram models. We take an extremely

liberal attitude to the choice of the triangulation,

allowing vertices at each of the distinct (xi, yi) points,

and then adopting the resulting Delaunay triangulation.

In the spirit of the smoothing spline literature we rely

entirely on our “roughness penalty” to achieve the

appropriate degree of smoothness. Our penalty may be

interpreted as the total variation of the gradient of the

fitted function defined as

J (g)= V (∇g)=
∫∫

;
‖∇2g‖dx dy,

where the integral may need to be interpreted in the

sense of distributions as lim inf of a sequence of

smooth approximates. For general functions, g, the

choice of the norm in the penalty may pose real

problems; however, for triograms we are able to show

that for any orthogonally invariant norm we obtain a

scalar multiple of

J (g)=
∑

e

‖∇g+e −∇g−e ‖‖e‖,

where e runs over all the interior edges of the trian-

gulation, ‖e‖ is the Euclidean length of the edge e and

‖∇g+e −∇g−e ‖ is the Euclidean length of the difference

between gradients of g on the two triangles adjacent

to e.

This penalty is particularly convenient when paired

with absolute error fidelity,

n∑

i=1

|zi − f (xi, yi)| + λJ (f ),

where it can be reformulated as a data augmentation

strategy and minimization can be accomplished by

efficient linear programming methods. It is important

to mention that the sparsity of the linear algebra in

these problems enables us to solve large problems even
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FIG. 1. Median triogram fit of Chicago land values.

though the nominal parametric dimension is several

hundred.

Hansen and Kooperberg employ a modified version

of our J (·) penalty that sums the squares of the con-

tributions along the edges as a measure of roughness.

This pairs nicely with Gaussian fidelity as a compu-

tational device, again yielding a data augmentation

strategy. But the rationale for this quadratic form of

the penalty remains, at least to us, a bit mysterious.

The total variation form of the penalty has the advan-

tage that it is less sensitive to sharp bends in g along

the edges and thus may be better adapted to sharp

edges and spiky behavior. This viewpoint has been

emphasized in the image processing literature where

penalties based on total variation of the function it-

self, rather than its gradient, have been widely em-

ployed and rationalized as an edge detection device.

While there may be perhaps reason to believe that the

quadratic form will retain similar features, we cannot

offer any positive evidence for that—except perhaps

for Figure 2.

3. AN EXAMPLE

To illustrate the fexibility of this approach we

briefly describe an application. The data consist of

1,194 vacant land sales occuring at 761 distinct sites

in the Chicago metropolitan area during the period

1995–97. Extending the model described in Koenker

FIG. 2. Mean fit of Chicago land values.

and Mizera (2001), we consider the partially linear

model

log(zi)= g(xi, yi)+ β1 log(si)+ β2 log2(si),

where zi denotes the sale price of the land in dollars

per square foot and depends on the geographic loca-

tion (xi, yi), measured in miles from the intersection

of State and Madison, and the effect of the size of the

parcel, si , in square feet is modeled as quadratic in

log(si).

In Figures 1 and 2 we illustrate two fits of this

model: one representing the median fit using the

absolute error fidelity and the total variation form of

the triogram penalty, the other representing a mean fit

using Gaussian fidelity and the quadratic version of

the penalty. The smoothing parameter λ was chosen to

achieve roughly the same (Gaussian) fidelity in both

plots. In both plots the parcel size is set to its sample

(geometric) mean. Evaluating the parcel size effect

at the mean parcel size, we obtain for the median

fit −0.5148, indicating that parcel prices are roughly

proportional to frontage (square root of area) rather

than to area itself.
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Comment
Mary J. Lindstrom

The authors give an insightful overview of spline

regression and extended linear models and compare

a number of methods for model selection. Table 1 in

this Comment divides the methods into the four classes

described at the end of Section 1 of the paper. The

methods grouped together in the third and fourth lines

of Table 1 differ only in the specification of the prior

on K (the number of knots) and (for the fourth line)

the prior on the coefficient vector β.

The methods are distinguished by the definition of

the estimate, the handling of β, the computational

algorithm and the method for choosing the model

size. The definitions of the estimates are relatively

straightforward. The handling of β is not an issue for

the first two methods since, for any fixed t, AIC(β, t)

is minimized at AIC(β̂(t), t), where β̂(t) is the MLE

for β. In contrast, for the MCMC-based estimation,

the choice of whether to remove β from the estimation

problem [methods (iii) and (iv)] or to specify a prior for

β [methods (v) through (viii)] will affect the resulting

estimates. Complicating matters is the effect of the

prior for β on the relative posterior probabilities of

the various model sizes. A diffuse prior will tend to

drive down the size of the model with highest posterior

probability. Thus for methods (v) through (vii) the

model size is controlled by the priors on both β and K .

Model size is controlled by the penalty in the AIC

for the first two methods and by the prior on K for

methods (iii) and (iv).

The computational algorithms consist of the follow-

ing: a simple stepwise method for optimizing the AIC;

a simulated annealing algorithm to optimize the AIC

(which the authors state is nearly equivalent to MCMC

estimation where the posterior mode is chosen as the

point estimate); and reversible jump MCMC (RJM-

CMC) algorithms which, while not usually thought of

as optimization algorithms, can be viewed as maximiz-

ing an objective function (the posterior) by generat-

ing a sample from the domain of the function which

is concentrated in places where the objective function

is largest (assuming the chain mixes well). However,

Mary J. Lindstrom is Associate Professor, Department

of Biostatistics and Medical Informatics, University of

Wisconsin–Madison, Madison, Wisconsin 53792-4675

(e-mail: lindstro@biostat.wisc.edu).

the estimate used for these methods is not simply the

fit corresponding to the sampled parameter vector with

largest posterior probability but is an average of the

sampled fits.

It is clear that the eight methods are not simply al-

ternate ways to optimize an objective function. Ap-

propriately, the authors base their simulation compar-

isons on the ability to recover the truth. The compari-

son of the greedy algorithm to the stochastic methods

is of interest since the greedy algorithm is in general

use. However, it would also be of interest to fix some

measure of overall computing time (perhaps number

of model evaluations) and compare to the greedy al-

gorithm with random restarts. That is, once no addi-

tional improvement is possible, select a new K and a

new t at random and start the algorithm again, repeat-

ing until the time limit is reached. A more sophisti-

cated scheme would be to allow knot addition, knot

deletion or knot movement at each step. This sort of

heuristic algorithm (often called steepest descent with

random restarts) usually does quite well against other

heuristic optimization schemes, including genetic al-

gorithms, simulated annealing and taboo searches. The

random restarts are crucial. No deterministic algorithm

run from one starting value will do well against sto-

chastic algorithms when there are numerous local op-

tima.

The real advantage of the RJMCMC methods over

heuristic algorithms for optimizing an information

criterion is that the output from the algorithm can

be used to assess the variability of the estimate—

including the uncertainty due to estimating K . It would

be of interest to compare the estimates of variability

for method (iii) [β fixed at β̂(t)] and those for

methods (v) and (viii) (β not fixed). The downside

of the Bayesian formulation for models which have

a variable number of parameters is that the results

are more than usually dependent on the choice of

prior. A noninformative prior cannot be used for K

and, as mentioned above, the prior for β (or any

parameter vector which changes dimension) cannot be

too diffuse or the smallest model will have highest

posterior probability.

The extension of the methods to multiple dimensions

is an important problem. It would seem that the

radial basis functions used in thin-plate smoothing
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TABLE 1

Summary of the eight methods; here β̂(t) is the MLE for β given the knot sequence t, and K is the number of knots;

method (iii) (Geometric prior on K) did best in the third grouping, and methods (v) (λ= 1/n, Uniform prior on K) and

(viii) (λ= 1/n, Geometric prior on K) did best in the fourth grouping

Method(s) Estimate Handling of β Algorithm Model size

(i) Minimizer of AIC Fixed at β̂(t) Greedy AIC

(ii) Minimizer of AIC (approxi-

mately the posterior mode)

Fixed at β̂(t) Simulated

annealing

AIC

(iii), (iv) Mean of predicted values for

posterior sample

Fixed at β̂(t) RJMCMC Prior on K

(v)–(viii) Mean of predicted values for

posterior sample

Prior on β parame-

terized by λ

RJMCMC Prior on K and prior

on β

splines would make a more natural generalization

than the triangulation approach used by the authors.

The thin-plate radial basis functions are smooth and

easily calculated, and each basis function is defined

by a single location, making addition and deletion

straightforward.

Comment
Grace Wahba, Yi Lin and Chenlei Leng

1. INTRODUCTION AND THANKS

The authors present greedy and Bayesian model

selection frameworks for studying adaptation in the

context of an extended linear model, with application

to logspline density estimation and bivariate triogram

regression models. We will confine our remarks to the
density estimation case. The authors define the setup

of their “extended linear model” as finding g ∈ G to

maximize the log likelihood

l(g)=
∑

i

l(g,Wi),(1)

where G is a linear space, generally of much lower di-

mension than the sample size n. Generally the famous

bias–variance tradeoff is controlled (most likely pri-

marily) by the dimension of G, as well as other pa-

rameters involved in the choice of G or spline spaces
in Hansen and Kooperberg (HK), the number of knots

governs the dimension of the space and the number

and location of the knots are to be chosen according to

several Bayesian methods and compared with a greedy
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method. Knot selection in the context of (1) is a dif-

ficult but not impossible task, as the authors clearly

show. The authors are to be thanked for an interest-

ing study of Bayesian knot selection methods and their

comparison with a greedy knot selection method.

To contrast with the ELM approach in the paper,

we will examine a penalized likelihood method for the

same (log) density estimation problem. It is based on

solving a variational problem in an infinite dimensional

(Hilbert) space, where the problem has a Bayesian fla-

vor, and where the solution to the variational problem is

(essentially) known to lie in a particular n-dimensional

subspace. Then the smoothing parameter(s) are chosen

by a predictive loss criteria. If the penalty functional

is square integral second derivative, the n-dimensional

subspace is spanned by a basis of cubic splines with

knots at the observation points. At this point we can

take one of several points of view. The three that

are relevant to the discussion here are the following:

(i) solve the variational problem exactly; (ii) find a

good approximation to the solution of the variational

problem, by using a representative or a random sam-

ple of the knots, instead of the complete set, when the

sample size is large; and (iii) instead of using the solu-

tion of the variational problem as the “gold standard”

as in (ii), use a greedy algorithm to choose a subset of
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the knots, actually, a subset of the representers (Wahba,

1990), which reduce to the knots in the case of poly-

nomial splines. This will have the effect of letting the

“wiggliness” of the solution vary where there are more

observations, and/or more variable responses. Then the

variational problem is solved in the greedily chosen

subspace. This so-called hybrid approach was taken in

Luo and Wahba (1997) in a Gaussian regression prob-

lem, using a relatively simple greedy algorithm, and,

as was also found in Stone, Hansen, Kooperberg and

Truong (1997) more knots are located near sharp fea-

tures, as well as where there are more observations.

We will focus on a density estimation version of (ii)

in the rest of this discussion. To carry out this program

we need a criterion for the choice of the smoothing pa-

rameters appropriate for density estimation and we will

use randomized generalized approximate cross valida-

tion (GACV) for density estimation (to be defined),

which is a proxy for the comparative Kullback–Leibler

distance of the “truth” from the estimate. In this dis-

cussion we will first give some details for the univariate

case and compare the results to Table 2 of HK. Loosely

speaking, the results compare fairly favorably with all

of the estimates whose MISE performance is given in

Table 2 with the exception of the two largest sample

sizes in the “sharp peak” example. After commenting

on these results, we will then describe some work in

progress, in which the penalized likelihood estimate is

extended to several dimensions via a smoothing spline

ANOVA (SS-ANOVA) model. We briefly demonstrate

a three-dimensional result. The conceptual extension of

the penalized likelihood method to higher dimensions

is fairly straightforward, and the real thrust of the work

is to be able to estimate densities in higher dimensions.

One of the rationales behind the use of the SS-ANOVA

model for density estimation in several dimensions is

that the pattern of main effects and interactions has an

interesting interpretation in terms of conditional depen-

dencies and can thus be used to fit graphical models

(Darroch, Lauritzen and Speed, 1980; Whittaker, 1990;

Jordan, 1998) nonparametrically.

2. PENALIZED LOG LIKELIHOOD DENSITY

ESTIMATION

Our density estimate is based on the penalized log

likelihood estimate of Silverman (1982). When going

to higher dimensions we will use the basic ANOVA

decomposition idea in Gu (1993). Our density estimate

will have compact support ;, which will be scaled

to the unit interval or the unit cube in Ed and then

rescaled back after fitting. Let the density p = eg

with g in some reproducing kernel Hilbert space

(RKHS) H with square seminorm J (g), where the

null space of J contains the constant function and is

low dimensional. Letting xi ∈ ;, Silverman showed

that the penalized log likelihood minimization problem

min g ∈H

−1

n

n∑

i=1

g(xi)+ λJ (g)(2)

subject to the condition
∫

;
eg = 1(3)

is the same as the minimizer of

Iλ(g)=−
1

n

n∑

i=1

g(xi)+
∫

;
eg + λJ (g).(4)

We will describe the estimate in general form so that its

extension from the univariate to the multivariate case is

clear. Let H =H0 ⊕H1, where H0 is the null space

of J , and let the reproducing kernel for H1 be K(x,x′).
If the term

∫
; eg were not in (4), then (it is well

known that) the minimizer of (4) would be in H
n ≡

H0 ⊕ span {ξi, i = 1, . . . , n}, where ξi(x)=K(x,xi).

(ξi is known as a representer.) We will therefore feel

confident that the minimizer of (4) in H
n is a good

approximation to the minimizer of (4) in H . In fact, we

will seek a minimizer in H
N = H0 ⊕ span {ξir , r =

1, . . . ,N}, where the ir is a representative subset

chosen sufficiently large that the minimizer in H
N is

a good approximation to the minimizer in H
n.

In order to carry out penalized log likelihood esti-

mation a method for choosing λ is required. We have

obtained a randomized generalized approximate cross

validation (ranGACV) estimate for λ, for density es-

timation. We briefly describe it here; details will be

given elsewhere. Let fλ be the estimate of the log den-

sity, and let f
[−i]
λ (xi) be the estimate with the ith ob-

servation left out. Define the ordinary leaving-out-one

function as

V0(λ)=OBS(λ)+D(λ),(5)

where

OBS(λ)=−1

n

n∑

i=1

fλ(xi)(6)

and

D(λ)= 1

n

n∑

i=1

[
fλ(xi)− f

[−i]
λ (xi)

]
.(7)
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TABLE 1

Distribution Sample MISE HK Ratio

size (pen.log.lik) [Table 2(i)] (pen.log.lik/HK)

Normal 50 0.01859 0.02790 0.666

200 0.00435 0.01069 0.407

1,000 0.00071 0.00209 0.340

10,000 0.00014 0.00020 0.700

Bimodal 50 0.01358 0.02502 0.543

200 0.00372 0.00770 0.483

1,000 0.00079 0.00164 0.482

10,000 0.00011 0.00020 0.550

Peak 50 0.10011 0.15226 0.657

200 0.03045 0.03704 0.822

1,000 0.02152 0.00973 2.212

10,000 0.01624 0.00150 10.83

Elsewhere (to appear) we show that nD(λ) can be

approximated by the trace of the inverse Hessian of Iλ

with respect to fλ(xi), i = 1, . . . , n, and that it can be

estimated by a randomization technique as follows. Let

Iλ(g, y) be

Iλ(g, y)=−
1

n

n∑

i=1

yig(xi)+
∫

;
eg + λJ (g).(8)

When y = (1, . . . ,1)′ then (8) becomes (4). Letting f
y
λ

be the minimizer of (8), D(λ) is estimated as

D̂(λ)= 1

nσ 2
ε

ε′(f y+ε
λ − f

y
λ ),(9)

where y = (1, . . . ,1)′, ε is a random vector with

mean 0 and covariance σ 2
ε I and, with some abuse

of notation, f z
λ = (f z

λ (x1), . . . , f
z
λ (xn))

′. Several repli-

cates in ε may be used for greater accuracy. Then

ranGACV(λ)=OBS(λ)+ D̂(λ).(10)

Our numerical results (to appear) show that ranGACV

is a good proxy for the comparative Kullback–Leibler

distance between the density determined by fλ and the

true density.

3. THE UNIVARIATE ESTIMATE

The procedure is to start with N representers. In

the one-dimensional case we choose roughly equally

spaced order statistics. Fix λ large. Use a Newton–

Raphson iteration to estimate the coefficients of

fλ in the basis functions spanning H
N. Evaluate

ranGACV(λ). Decrease λ and repeat, until the mini-

mizer over λ is found. Double N and repeat. Com-

pare the resulting estimates with N and 2N ; if they

agree within a specified tolerance, stop, otherwise dou-

ble N again. We tried this penalized log likelihood

estimate on the examples in HK, using H = W 2
2 ≡

{g :g,g′ abs. cont., g′′ ∈ L2} and J (g) =
∫ 1

0 (g
′′(x))2.

In this case H0 is spanned by linear functions and

K(x,x′) = k2(x)k2(x
′) − k4([x − x′]), x ∈ [0,1],

where [τ ] is the fractional part of τ and km(x) =
Bm(x)/x!, where Bm is the mth Bernoulli polynomial.

The estimate is a cubic spline (Wahba, 1990) with

knots at the xir . In the one-dimensional case this is

not the most efficient way to compute this estimate,

since a B-spline basis is available given the knots, and

that will lead to a sparse linear system, whereas the

present representation does not. However, this repre-

sentation generalizes easily to higher dimensional es-

timates. In our experiment the maximum allowed N

was 48. We made 100 replicates of each case in Ta-

ble 2 of HK, and computed the MISE in the same way

as HK did, by averaging the squared difference over

5,001 equally spaced quadrature points in the three in-

tervals (for the normal, slight bimodal and sharp peak

cases) of [−5,5], [−7,7] and [0,12]. (See our Table 1.)

We note that the ratio column suggests that this

estimate is among the better estimates in HK’s Table 2

with the exception of the n = 1,000 and n = 10,000

cases for the peak example.

4. MULTIVARIATE SMOOTHING SPLINE ANOVA

DENSITY ESTIMATION

The univariate penalized log likelihood density es-

timation procedure we have described can be general-

ized to the multivariate case in various ways. Here we

describe the smoothing spline ANOVA (SS-ANOVA)

model. The use of SS-ANOVA in a density estimate
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was suggested by Gu (1993), who also gave a method

for choosing the smoothing parameter(s). It can be

shown that (for the same smoothing parameters) the

estimates of Gu and Silverman are mathematically

equivalent; however, we found the variational prob-

lem in Silverman easier to compute. The problem in d

dimensions is transformed to the d-dimensional unit

cube, and xi = (xi1, . . . , xid). H will be an RKHS

on the d-dimensional cube which is formed as the di-

rect sum of subspaces of the tensor product of d one-

dimensional RKHSs. Details of SS-ANOVA models

may be found in Wahba (1990), Wahba et al. (1995)

and Lin et al. (2000). Letting u = (u1, . . . , ud) ∈
[0,1]d , we have

g(u)=µ+
d∑

α=1

gα(uα)+
∑

α "=β

gαβ(uα, uβ)+ · · · ,(11)

where the terms satisfy averaging conditions analogous

to those in ordinary ANOVA that insure identifiability,

and the series may be truncated somewhere. The in-

teresting feature of this representation of a log density

is the fact that the presence or absence of interaction

terms determines the conditional dependencies, that is,

a graphical model (see Whittaker, 1990). For example,

the main effects model represents independent compo-

nent random variables, and if, for example, d = 3 and

the g23 and g123 terms are missing, then the second and

third component random variables are conditionally in-

dependent, given the first.

Let H̃ be the d-fold tensor product of W 2
2 and

let H be the subspace of H̃ consisting of the di-

rect sum of subspaces containing the terms retained in

the expansion. (They are orthogonal in H̃ ). We have∫ 1
0 gα(uα) duα = 0, and so forth. The penalty func-

tional J (g) of (4) becomes Jθ (g), where the θ repre-

sents a vector of (relative) weights on separate penalty

terms for each of the components of (11). As before

H = H0 ⊕ H1, where H0 is the (low dimensional)

null space of Jθ . Let Kθ (x, x
′), x, x′ ∈ [0,1]d , be the

reproducing kernel for H1, where θ has been incorpo-

rated into the norm on H1. (See Wahba, 1990, Chap-

ter 10.) Let ξi(x) = ξiθ (x) = Kθ (x, xi). The same ar-

guments hold as in the one-dimensional case, and we

seek a minimizer of (4) (with J = Jθ ) in H
N =H0 ⊕

span {ξirθ , r = 1, . . . ,N}, and λ and θ are chosen using

the ranGACV of (10).

We will give a three-dimensional example, essen-

tially to demonstrate that the calculations are possi-

ble and the ranGACV reasonable in higher dimen-

sions. The SS-ANOVA model for this example con-

tained only the main effects and two factor interactions,

and we had altogether six smoothing parameters, pa-

rameterized in a convenient manner (details to appear

elsewhere). For fixed smoothing parameters λ, θ the

coefficients in the expansion in H
N are obtained via

a Newton–Raphson iteration. In this case integrations

over [0,1]3 are required, and we used quadrature for-

mulae based on the hyperbolic cross points; see Novak

and Ritter (1996) and Wahba (1978b). These quadra-

ture formulae seem particularly appropriate for SS-

ANOVA models and make high dimensional quadra-

ture feasible. Then the ranGACV was minimized over

smoothing parameters via a six-dimensional downhill

simplex calculation.

The underlying true density used in the example

is p(x) = 0.5N(µ1,1) + 0.5N(µ2,1), where µ1 =
(0.25,0.25,0.25), µ2 = (0.75,0.75,0.75),

1 =



10 0 10

0 20 30

10 30 80



−1

=



0.14 0.06 −0.04

0.06 0.14 −0.06

−0.04 −0.06 0.04


 .

(This density has a nonzero three-factor interaction

which is not in our two-factor model.) In this exam-

ple the sample size was n = 1,000. N = 40 and the

40 representers were randomly chosen from among

the n possibilities. The N = 80 estimate was essen-

tially indistinguishable from the N = 40 case. (Note

that the smoothing parameters will not generally be

FIG. 1. The true density: x1 = 0.1, . . . ,0.9 is fixed in the plots,

left to right, then top to bottom.
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FIG. 2. The estimated density: x1 = 0.1, . . . ,0.9 is fixed in the

plots, left to right, then top to bottom.

FIG. 3. The ranGACV and the CKL compared: the horizontal

axis is iteration number, using the downhill simplex method; the

ranGACV is minimized and the ranGACV and CKL are computed

at the minimizer at each step.

the same in the two cases.) Figure 1 gives cross sec-

tions of the true density, and Figure 2 gives the SS-

ANOVA penalized log likelihood estimate. Figure 3

compares the ranGACV and the CKL (CKL(λ) =
−

∫
; fλ,θ (u)p(u) du) as a function of iteration num-

ber in a downhill simplex minimization of the ran-

GACV.

5. CLOSING REMARKS

We have compared a penalized likelihood density

estimate with ranGACV to choose the smoothing pa-

rameter(s) for the greedy density estimate and the

Bayesian estimates in ELM models considered by HK.

Fairly favorable results were obtained except in the

highest n peak cases. We have shown that these pe-

nalized likelihood estimates can be extended to the

multivariate case (work in progress). It remains to de-

velop tests to allow the construction of graphical mod-

els from the SS-ANOVA estimates in higher dimen-

sions.

We would be interested in knowing to what extent

the Bayesian model selection methods can be incorpo-

rated in to ELM estimates for the multivariate case.

Splines of various flavors have been widely adopted

in many statistical problems. It is interesting to com-

pare the various flavors and we are pleased to compli-

ment the authors and contribute to the discussion.
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Comment
David Ruppert

I congratulate the authors for a very fine paper. There

is nothing more satisfying than a broad theory, such

David Ruppert is Professor, Department of Oper-
ations Research and Industrial Engineering, Cor-
nell University, Ithaca, New York 14853 (e-mail:
davidr@orie.cornell.edu).

as the extended linear models (ELM) methodology

presented here, that solves a wide range of practical

problems within a unified framework. The authors’s

clear introduction to ELM will be much appreciated by

those seeking to understand and apply nonparametric

models.
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By nonparametric modeling I do not mean the

absence of parameters but rather situations where

the shape of the curve or surface fit to the data is

determined by the data themselves, not by the dictates

of a predetermined model. In fact, nonparametric

modeling typically is implemented by the flexible use

of parametric models. There are at least three general

approaches to nonparametric modeling:

• local fitting—where a simple parametric model

is fitted separately in neighborhoods defined by

covariates;

• model selection—meaning selection of a model

or models from within a rich class of parametric

models; selection is followed by global maximum

likelihood estimation either applied to a single

model or averaged over all models according to

posterior probabilities;

• regularization—meaning penalized global estima-

tion using a large, overparametrized model.

In this discussion, I will attempt a brief overview

of these three approaches to highlight their relative

strengths and weaknesses. My hope is to show the

place of ELM within the large toolkit of nonparametric

estimation techniques. Hansen and Kooperberg’s paper

has already provided a very clear introduction to the

model selection method of nonparametric modeling, so

I will not discuss that approach much.

Local fitting includes the familiar local polynomial

method of nonparametric regression where the regres-

sion function is estimated at each point x by weighted

least-squares fitting of a low degree polynomial, with

weights decreasing with distance from x. My experi-

ence with local regression has been quite positive over-

all, but local fitting methods are best suited to simpler

situations such as univariate or bivariate regression.

For multivariate data, one usually needs to reduce

the dimensionality by, for example, using an additive

model or a semiparametric model. Then, “localness”

varies across different aspects of the model. For exam-

ple, when fitting an additive model, the local neigh-

borhoods change with each covariate and an iterative

backfitting algorithm is necessary. As another exam-

ple, single index models assume that the expected re-

sponse is η(αTx), where x is a vector of covariates,

α is a parametric vector and η is an unknown uni-

variate function. This is a semiparametric model where

the index αTx is the parametric component and η(·) is

the nonparametric component. Estimation of the para-

metric component requires an unweighted fit to all of

the data, while estimation of η(·) uses local neighbor-

hoods defined by the estimated indices α̂Tx. Carroll,

Fan, Gijbels and Wand (1997) have developed an algo-

rithm that iterates between global estimation of α and

local polynomial estimation of η(·) but the algorithm

can be computationally unstable because the neighbor-

hoods change as α is updated (Wand, personal com-

munication). The problem of differing local neighor-

hoods disappears if one uses model selection or regu-

larization and for this reason I favor these techniques.

For example, Yu and Ruppert (2002) use regularization

to fit single index models. Their algorithm uses stan-

dard nonlinear least-squares software and is computa-

tionally stable. Also, for nonparametric regression with

covariate measurement error, one would really like to

base the local neighborhoods upon the true covariate

values, but this is of course impossible. This problem

is likely to be one main reason why regularization is

the best current method for handling measurement er-

ror; see below.

The key idea of ELM and other model selection

methods is that overfitting is avoided by careful choice

of a model that is both parsimonious and suitable for

the data. Regularization takes a different approach to

the prevention of overfitting. Rather than seeking a

parsimonious model, one uses a highly parametrized

model and imposes a penalty on large fluctuations on

the fitted curve. Suppose the nonparametric component

of a model is a function f . We model f (x) using

a linear combination of the basis functions B(x) =
{B1(x), . . . ,BM(x)}, for example, the truncated power

basis functions given by (1) or (2) of the paper. The

dimension M is chosen to be large, so that some linear

combination of the basis functions, say, B(x)Tβ , will

be close to f . Let ℓ(β) be the log-likelihood and

let P (β) be a nonnegative penalty function. Then β̂

minimizes

−ℓ(β)+ λP (β),

where λ ≥ 0 is a penalty parameter. For univariate

regression, if B(x) is the natural cubic spline basis

functions with knots at the unique values of x in the

data and if P (β) =
∫
{B′′(x)Tβ}2 dx, then one obtains

a cubic smoothing spline.

As discussed in Ruppert (2002), penalized splines

or P-splines, generalize smoothing splines by allowing

any spline basis and any form of the penalty. For

example, the knots might be any regularly spaced

quantiles of the x values (e.g., every tenth unique

x value) rather than a knot at every unique x. Although

there are fast algorithms for univariate smoothing
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splines, for more complex models such as nested

curves in Brumback and Rice (1998), using an excess

of knots can slow down computations significantly.

However, there is no need for a knot at every data point

and major computational speedups are possible with

fewer knots.

As an alternative to the usual quadratic integral

penalties of derivatives that yield smoothing splines as

estimates, Ruppert and Carroll (2000) suggest penaliz-

ing the sum of the squared jumps at the knots of the

pth derivative of a pth degree spline. One interesting

feature of this penalty is that it has some useful variants

that are easily implemented. If one uses the truncated

power basis {1, x, . . . , xp, (x − t1)
p
+, . . . , (x − tK)

p
+}

and β = (β0, . . . , βp+K)T, then P (β) = ∑K
k=1 β

2
p+k .

An alternative penalty suggested by Ruppert and Car-

roll (2000) and studied in Yu and Ruppert (2001) is

P (β)=
K∑

k=1

|βp+k|q ,(1)

where q > 0. For q = 1 we are using Tibshirani’s

(1996) lasso, originally developed for parametric linear

regression. The lasso has the feature that many of the

components of β are shrunk all the way to 0. In effect,

these coefficients are deleted. Therefore, the lasso is

similar to model selection. If q < 1, then this shrinkage

of coefficients to 0 is even more pronounced.

A potentially serious problem with smoothing

splines is a lack of spatial adaptivity. Spatial adaptiv-

ity is the ability to impose less smoothing where the

regression function has sharp curvature or other fea-

tures that require higher resolution and more smooth-

ing where the regression function is relatively flat. Lo-

cal fitting methods can achieve spatial adaptivity if

they allow the bandwidth to vary spatially. Model se-

lection methods are spatially adaptive because they

can place knots at a higher density around features

of the regression function. Unfortunately, smoothing

splines, with their single global smoothing parameter,

cannot adjust to spatial inhomogeneity of the regres-

sion function. There are at least three ways to make

P-splines spatially adaptive. One is to use penalty (1)

with q ≤ 1 so that large jumps are not unduly penalized

as with q = 2. Another is to let the penalty parameter λ

vary spatially. Ruppert and Carroll (2000) developed

a P-spline estimator with penalty

P (β)=
K∑

k=1

λ(tk)β
2
p+k.

Here log{λ(·)} is a linear spline, with knots a small

subset of the knots for f . The penalty λ(·) should

be small where there are features in the regression

function and large where that function is flat. This

behavior can be achieved automatically by choosing

the parameters in λ(·) by GCV; see Ruppert and Carroll

(2001), who show that for inhomogeneous regression

functions spatially adaptive smoothing splines are

competitive with the model selection spline estimate

of Smith and Kohn (1996).

A third method of achieving spatial adaptivity is

to place the knots more closely together in regions

containing features. Luo and Wahba’s (1997) hybrid

adaptive splines (HAS) do precisely that. However,

the initial knot location step of their algorithm is

very similar to ELM and it is not clear from Luo

and Wahba’s work whether the second step where

a roughness penalty is imposed is really necessary. If

not, then HAS could be considered primarily a model

selection approach, not regularization.

There are interesting connections between regular-

ization, Bayesian estimation and mixed models. Wahba

(1978a) first noticed that a smoothing spline can be de-

rived as the mode of the posterior density when a par-

ticular prior is used. The smoothing parameter is the

ratio of the residual variance to the variance in the

prior for the regression function; that is, it is a noise-

to-signal ratio. This Bayesian formulation can also be

viewed as a mixed model, with the regression func-

tion being a random effect and the smoothing para-

meter being the ratio of variance components. This

fact allows one to estimate the smoothing parame-

ter by residual maximum likelihood (REML), some-

times called generalized maximum likelihood (GML)

or marginal likelihood in the spline literature; see

Wahba (1985) and Kohn, Ansley and Tharm (1991).

Therefore, nonparametric curve fitting including the

choice of smoothing parameter can be implemented by

standard mixed model software, for example, lme in

S-PLUS and Proc Mixed in SAS. Within the mixed

model framework other random effects can be intro-

duced, for example, to handle longitudinal data as in

Zhang, Lin, Raz and Sowers (1998). Moreover, mod-

eling the regression function with random effects ap-

plies to non-Gaussian responses using generalized lin-

ear mixed models (GLMMs). See, for example, Lin

and Zhang (1999) or Coull, Ruppert and Wand (2001),

who have an application to pollen count data.

If the smoothing parameter is estimated by REML,

for example, and then treated as fixed, which is a type
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of empirical Bayes estimation, then confidence inter-

vals do not fully reflect uncertainty in the smooth-

ing parameter. However, a fully Bayesian analysis is

possible using MCMC. Such an analysis can even

be extended to data where the predictor variables are

measured with error. See Berry, Carroll and Ruppert

(2002), where in an empirical study a fully Bayesian

analysis using P-splines was the best of several tech-

niques for nonparametric regression with measurement

error.

Local fitting will remain an attractive method for

simple smoothing problems, but model selection such

as ELM and regularization such as P-splines will grow

in popularity as nonparametric and semiparametric

models are applied to more complex types of data.

Since model selection and regularization both work

extremely well in practice, it is unlikely that either

method will surplant the other. Which approach works

best in a particular application will depend both on the

nature of that application and, perhaps even more so,

on which approach is most familiar to the researcher.

Both model selection and regularization view semi-

parametric and nonparametric modeling as extreme

cases of parametric modeling. This viewpoint is fortu-

nate, since it brings about a unity in statistics. Rather

than nonparametric modeling using its own special

techniques, such as local kernel weighting, nonpara-

metric modeling utilizes the same techniques as para-

metric modeling, for example, model selection, model

averaging, mixed models, Bayesian analysis, REML

and MCMC. This common framework is important for

those of us teaching the next generation of statisticians.

There is time to teach only so much, so the economies

of a unified approach to statistics are essential.

Rejoinder
Mark H. Hansen and Charles Kooperberg

INTRODUCTION

First, we thank the Editor, George Casella, for invit-

ing comments on our paper from such a distinguished

group of researchers. The diversity of approaches rep-

resented here certainly enriches the practice of func-

tion estimation. To best address these different perspec-

tives, we have organized our responses around each of

their discussions separately. However, there are some

common themes that we would like to briefly highlight

here because we will return to them repeatedly during

our Rejoinder.

• Priors—For function estimation, priors amount to

statements about the smoothness of the underly-

ing function φ. To the extent that subjective elic-

itation of prior distributions is possible here, for-

mulations in terms of characteristics of φ will

be most successful. Priors of convenience devel-

oped for generic model selection in regression or

other settings may not be appropriate when working

with finite-dimensional approximation spaces like

splines.

• Bayesian confidence intervals—In principle, the

Bayesian formalism provides an automatic mecha-

nism for making inference about features of φ. Un-

fortunately, we find very few examples of confidence

intervals for model-averaged spline estimates in the

Bayesian literature on function estimation. Perhaps

one difficulty here is that the object we are esti-

mating is not really a cubic spline, and there is al-

ways bias present. In our own experience, it has been

difficult to properly calibrate the prior distribution

to produce both sensible point estimates and confi-

dence intervals.

• Bayesianism—Many of the discussants comment on

what is or what is not a Bayesian procedure. Our in-

terest was mainly in evaluating computational meth-

ods, and each of the simulation setups we stud-

ied was motivated by our previous experience with

greedy schemes. We will not offer opinions as to

whether previously published approaches are legit-

imately Bayesian or not.

Finally, we want to remind readers of an early paper

in this area that has gone somewhat unreferenced in the

modern literature on Bayesian splines. Halpern (1973)

presented a thoughtful treatment of Bayesian knot

selection that is very close to the methods mentioned

in our paper and in this discussion. Unfortunately, the

state of Bayesian computation in 1973 made most

applications intractable.
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CHIPMAN, GEORGE AND McCULLOCH

We thank Chipman, George and McCulloch for

sharing their experiences formulating highly adaptive

Bayesian methods for function estimation. The work

by this trio on model selection, stochastic search and

Bayesian versions of CART has influenced much of

our paper. In terms of their characterization of priors

as “a bet on what kind of models we want to consider,”

we feel that this gamble is best worded in terms of

the object being studied, a function. Chipman, George

and McCulloch (2002) take an approach similar to

ours when developing tree-based estimators. In their

paper we find a nice division of prior specifications

into a linear model class (representing separate tree

structures; analogous to our linear spaces G) and

then a member given the class (through choosing

parameters; our selection of g ∈ G). Chipman et al.

(2002) specify a prior on G to control the complexity

of the trees that one expects, formulated in terms of

the number of splits. This can be tuned to reflect one’s

beliefs that the data can best be described by small

or large trees. As Chipman, George and McCulloch

(CGM) point out, the prior p(g|G) also plays a role

in determining how the posterior weights models

of different complexity (dimension). Given a knot

sequence t and a basis set B1, . . . ,BJ , we select this

prior via a distribution on the coefficient vector β in

the expansion

g(x;β, t)=
∑

j

βjBj (x; t).(R1)

In our paper, this was always taken to be normal

with mean zero and covariance (λA)−1. With a special

choice of A not related to smoothing, it is possible to

calibrate the influence of p(g|G) on posterior weights

for each model class in terms of well-known selection

criteria like AIC and BIC. We will have more to say

about this in our discussions of Holmes and of Kass

and Wallstrom.

When developing (greedy) Logspline and Triogram,

we attempted to make the “smoothing parameters”

understandable and controllable through our software

implementation. In so doing, users can tune these

methods to agree with their prior beliefs about the

smoothness of the function φ they are estimating.

This also allows users to experiment with strategies

like CGMs cross-validation. In the early stages of

an analysis, however, flexible smoothers are often

used in an exploratory way, helping users formulate

hypotheses about their data. In this setting, Logspline

and Triogram function more like black boxes, and it

is important to have reasonable automatic settings for

hyperparameters. Fast computation is also important,

given the iterative nature of data analysis. In crafting

the simulations for this paper, we hoped to identify

sensible default values for Bayesian versions of our

ELM methods. By expressing the hyperparameters

of our models in terms of the complexity of the

underlying function, users can still easily incorporate

their beliefs about φ in a natural way.

CGM are right about Logspline mixing more rapidly

than the Triogram procedures. This difference also

appears in the greedy implementation, where many

of the Triogram models found during addition were

visited again during deletion. At each deletion step,

we are only able to remove certain vertices and still

maintain a proper triangulation. In fact, at each step

the number of candidates for deletion is limited by the

structure imposed on the triangulations by the addition

process itself; vertices added in the first few steps

are typically too “connected” to be eliminated early

in the deletion process. We hoped that a Bayesian

Triogram procedure would allow us to visit more

models. In thinking about how to implement the

Triogram sampler, we borrowed from the experience of

CGM with trees. In some sense, the structure imposed

by our stepwise triangulation process is similar to the

node splitting used for building trees. We also explored

the tradeoffs between starting several chains versus

a single, long chain. The simulations in our paper

represent a technique that seemed to work best overall.

We agree with CGM on the potential gains of

bootstrapping. Our present paper was inspired by an

TABLE R1

MISE for bagging logspline on the 12 cases from Table 2

Distribution

Normal Slight bimodal Sharp peak

n 50 200 1,000 10,000 50 200 1,000 10,000 50 200 1,000 10,000 Average

Ratio over (i) 0.88 0.96 1.05 0.80 0.76 0.97 0.95 0.65 0.72 0.84 0.77 0.69 0.84
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attempt to assess the usefulness of (then) developing

Bayesian computational methods. Over the last five

years, techniques like stacking, bagging and boosting

have emerged from, and in response to, ideas in

computer science and machine learning. At this point,

they have developed into extremely powerful, general-

purpose methods for combining estimators. To see

what kinds of gains we can expect in our applications,

we implemented a bagged version of Logspline based

on 25 bootstrap samples. The column for Table 2 in

our original paper corresponding to this new estimate is

given in Table R1. We are not sure why bagging seems

to have the hardest time with moderate sample sizes

(200 and 1,000) for the two smoothest distributions.

Overall bagging improves over the greedy algorithm,

but not as much as some of the MCMC approaches.

HOLMES

We are pleased to have Holmes as a discussant. In

the past few years, Holmes and his collaborators have

applied the latest sampling techniques to problems in

function estimation. From Bayesian versions of MARS

that employ reversible jump Markov chain Monte

Carlo to wavelet methods via perfect sampling, this

group has contributed substantially to the practice of

Bayesian curve and surface fitting.

Holmes highlights a rather general problem encoun-

tered when specifying priors for Bayesian model se-

lection. For simplicity, consider the normal linear re-

gression model in a J -dimensional spline space G de-

fined by a given knot sequence t of length K , and a ba-

sis (R1). Let β, σ 2 have a conjugate normal-inverse

gamma prior distribution

w(β, σ 2)∝ (σ 2)(−d+k+2)/2

· exp

[−(β − b)tV−1(β − b)+ a

2σ 2

](R2)

that depends on several hyperparameters: a, d ∈R, the

vector b ∈R
J and a J ×J symmetric, positive definite

matrix V . Valid ranges for these parameters include all

values that make (R2) a proper density. We considered

covariance matrices of the form V = (λA)−1, where A

is chosen to reflect our beliefs about the smoothness

of an unknown function φ. For a fixed set of knots, the

prior precision parameter λ affects the look of the fitted

curve in a fairly predictable way. Given observations

(X1, Y1), . . . , (Xn, Yn), the posterior distribution of β

is multivariate t with mean

(B tB + λA)−1B tY,(R3)

where B is the n × J design matrix based on the

basis (R1), [B]ij = Bj (Xi) and Y = (Y1, . . . , Yn)
t .

Therefore, selecting a small value of λ can eliminate

the effect of smoothing, often producing a wiggly

fit; while large values tend to shrink β toward the

null-space of A (for the prior associated with cubic

smoothing splines, this is simply the space of linear

functions). In Bayesian terms, a small value of λ

indicates little information about β, while a large value

of λ indicates a strong belief that φ is very smooth.

As Holmes points out, however, things become more

complicated when comparing spline spaces of different

dimensions (having different numbers of knots). In this

case λ partially specifies the weight assigned to each

space and we are subject to the so-called Lindley–

Bartlett paradox; a noninformative prior for a fixed

model class becomes maximally informative when

comparing models of different dimensions. In short,

the posterior piles mass on the spline space with the

fewest knots.

Holmes presents a well-known covariance-represen-

tation that alleviates the paradox and is meant to calm

the non-Bayesian. Unfortunately, it does not eliminate

the difficulty in specifying λ. Many researchers, in-

cluding Holmes, have dealt with the problem of prior

choice by calibrating Bayesian procedures with fre-

quentist measures. In Holmes and Denison (1999), for

example, we find a prior on the precision parameter λ

that is tuned to the degrees of freedom of the fit, DF, or

explicitly

p(λ|σ 2)∝ exp(−cDF),

where DF is computed as the trace of the smoothing

matrix (and the domain of the distribution is truncated

to obtain a proper prior). The posterior dependence

on c is then compared in terms of an equivalence with

classical model selection criteria that is similar to our

range of AIC statistics.

Holmes correctly points out that one needs to be

careful in blindly matching terms to establish this kind

of correspondence, noting the difference between the

maximized or profile likelihood

p(y|β̂, t)=max
β

p(y|β, t)(R4)

and the marginal likelihood

p(y|t)=
∫

p(y|β, t)p(β|t) dβ.(R5)

Naturally, we agree that the two are very different,

and it was a comparison with model selection criteria

similar to Holmes’s that led us to the geometric prior on
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model size. In the discussion from Kass and Wallstrom

we are reminded that

logp(y|t)≈ logp(y|β̂, t)− J (t)

2
logn.

Therefore, by adjusting the prior on model size, we

could recover the general form of BIC and restore some

of the protection against overfitting Holmes claims

for the marginal likelihood. Inevitably, this kind of

benchmarking against known criteria seems useful

even for the purest Bayesian, and we will have more

to say about it in our response to Kass and Wallstrom.

Before we leave this point, we should mention that the

latest minimum description length criteria for model

selection developed by Barron, Rissanen and Yu (1998)

and Hansen and Yu (2001) attempt to make up for the

shortcomings of the maximized likelihood by a certain

(re)normalization procedure.

In evaluating procedures like Logspline and Tri-

ogram, we have looked to theoretical results for guid-

ance. While the results in Stone (1994), Hansen (1994)

and Huang (1998, 2001) are asymptotic, they do pro-

vide an indication that a spline-based approach to

ELMs is sensible. A similar theory for Bayesian ver-

sions of these methods is still emerging. For recent

results, we refer the interested reader to articles by

Zhao (1993, 1998), Barron, Schervish and Wasserman

(1999) and Shen and Wasserman (2001). In the last

paper we find rates of convergence associated with

so-called sieve-priors, a setup that most closely mim-

ics our own use of finite-dimensional approximating

spaces. Shen and Wasserman point out that, while early

work in this area produced a rich set of priors that led

to consistent estimators, achieving the optimal rate is

much more delicate.

KASS AND WALLSTROM

We first want to thank Kass and Wallstrom for a their

contribution to the discussion of Denison, Mallick and

Smith (1998a).

It seems that the work described by Kass and Wall-

strom and our own motivation for exploring Bayesian

procedures for splines share a common source. In our

Rejoinder to Stone, Hansen, Kooperberg and Truong

(1997), we presented a connection between the Bay-

esian method of Smith and Kohn (1996) and our own

greedy schemes that attempted an approximate min-

imization of a generalized AIC statistic. We began

with the straightforward observation that, by using

Zellner’s g-prior (Zellner, 1986) for the coefficients,

the resulting posterior is mathematically equivalent

(or nearly so) to AIC, BIC or anything “in between.”

In terms of (R2), this amounts to setting V = c(B tB)−1

and a = d = 0, and letting c vary. Ed George pointed

us to this posterior calibration in a paper he crafted

in 1997, which eventually appeared as George and Fos-

ter (2000). Of course the desire to relate Bayesian and

frequentist methods is an old one, and explicitly ex-

pressing a posterior in terms of known model selection

criteria goes back at least to Smith and Spiegelhalter

(1980) (these authors speak of a “generalized AIC” cri-

terion, of which BIC is just one example).

In their 1996 paper, Smith and Kohn were selecting

the “best” knot configuration having the highest pos-

terior probability. Given the equivalence between this

posterior and our own generalized AIC statistics for

ELM’s, both procedures were attempting to optimize

the same quantity. Having identified a good knot se-

quence, Smith and Kohn used the posterior mean of β

to form a curve estimate. Under the g-prior version

of (R2) this is simply c
c+1

β̂ , where β̂ is the OLS es-

timate [see (R3)]. Since the values of c used were at

least 100, the posterior mean was essentially β̂ , and

now the only difference between our greedy methods

and the Bayesian approach of Smith and Kohn was the

search scheme. This was our starting point.

To reduce computation, Smith and Kohn restricted

their attention to at most 30 knots, placed at order

statistics of the data. With such a small problem, it

was possible to even use branch and bound tech-

niques to search all possible combinations of can-

didate knots from within S-PLUS. Since that point,

many other Bayesian spline-based estimators have ap-

peared. Building on examples of Green (1995), Deni-

son, Mallick and Smith (1998a) treated the knot se-

quence more like our own greedy schemes, in that

each of the data points was a candidate knot. BARS

(Bayesian regression splines), proposed by DiMatteo,

Genovese and Kass (2001), is a hybrid that borrows the

prior structure of Smith and Kohn, but adapts Green’s

sampler. In writing our paper, we were naturally aware

of the shortcomings of DMS, although our insight

came not from formal Bayesian thinking but by a sim-

ple comparison of the “objective function” represented

by their posterior. Without a prior on the coefficients β ,

the posterior did not provide enough of a penalty for

large models. We attempted to correct this with the

geometric prior on model sizes, yielding a posterior

that agrees with BIC. In so doing, our penalty on di-

mension and that for BARS are the same.

Based on our experience with “free-knot splines,” we

also considered simulations that paired the geometric
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prior along with a proper prior on β, imposing an

extra penalty on large models. Recall when working

with free-knot splines, we treat the sequence t not

as a discrete index for separate models, but rather

as a continuous vector of parameters. Kooperberg

and Stone (2002) used free-knot splines for density

estimation and argued that the most appropriate form

of AIC was

logp(y|β̂, t)− J +K

2
a,

where again J is the dimension of the spline space

and K is the number of knots in t. In short, an extra

penalty on dimension was necessary to produce rea-

sonable point estimates. No matter what principle is

applied to determine the penalty, it is clear that the

tradeoffs between sample size, model dimension and

assumed smoothness of φ are complex. Since any the-

oretical guidance is likely to be asymptotic, new proce-

dures should be tested on a wide variety of simulations.

However, returning to the BARS paper, we find only

three simulations, each of which are based on mod-

estly sized problems with very similar characteristics.

That is, one expects the “optimal” number of knots

needed for approximating the three test functions is

similar and the signal-to-noise ratios were all close (ba-

sically 3:1). Curiously, the simulations for BARS only

involve 10 runs per test case, making the very strong

claims by Kass somewhat premature. It would be good

to see BARS run under many more conditions.

Aside from the posterior calibration to BIC, BARS

differs from DMS in two other ways. First, in designing

the moves for BARS, DiMatteo et al. (2001) borrow

a “key idea” of Zhou and Shen (2001), that more

knots are needed in regions where a curve changes

rapidly. This is nothing more than the definition of

a spline space with repeated knots (Schumaker, 1993);

that is, as one knot approaches another, the splines lose

a derivative. In a cubic spline space, two coalescent

knots allow the fit to break in the first derivative, and

three coalescent knots produce a break in the function

itself. This behavior has guided the design of our own

ELM procedures. In regression, if we have reason to

believe the underlying curve has sharp features, we

might consider relaxing the separation condition in the

definition of an allowable space. However, in most

cases, for reasonable sample sizes, this condition is

not restrictive and the final curves can track strong

features when they exist. We should add that, in BARS,

there is no encouragement in the prior itself for nearby

(or coalescent) knots. The “locality property” is purely

a function of the proposal.

Aside from the locality property, there is another big

difference between BARS and DMS. DiMatteo et al.

(2001) use a natural spline basis for BARS, while

DMS uses ordinary B-splines. While both are smooth,

piecewise polynomials, the natural splines are forced to

blend into linear functions outside the interval [t1, tK ].
It is well known that this reduced space improves

the variance at the ends of the data dramatically (we

know that one of the referees of DMS encouraged the

authors of that paper to use a natural spline basis).

Kass and Wallstrom state that BARS performs better

than a version of DMS that has been “corrected” to

agree with BIC. Unfortunately, it is not clear whether

the knot proposal distribution or the natural spline

basis is responsible for this improvement. DiMatteo

et al. (2001) have only one panel of plots comparing

the variants of DMS and BARS, and this consists of

a single estimated curve per method taken from one

simulation setup (the test function having a very sharp

break in the middle of the domain).

We should add that working with natural splines

is a bit trickier than regular B-splines because of

the boundary conditions. Breiman (1990) proposes

a constrained least squares fit to enforce linearity in

the tails during knot deletion. Luo and Wahba (1997)

describe a stepwise algorithm for natural splines that

would allow BARS to take advantage of one-degree-

of-freedom alterations as we have done for Logspline

and Triogram. For natural splines that are linear outside

the interval [0,1], Luo and Wahba use a basis of the

form

φ1(x), φ2(x) and R(x, tk), k = 1, . . . ,K,(R6)

where φ1(x)= 1, φ2(x)= k1(x) and

R(x, x′)= k2(x)k2(x
′)− k4(|x − x′|).(R7)

The functions k1, k2 and k4 are constant multiples of

Bernoulli polynomials and are given by

k1(x)= x − 1/2, k2(x)=
(
k2

1(x)− 1/12
)
/2

and

k4(x)=
(
k4

1(x)− k2
1(x)/2+ 7/240

)
/24.

Unlike the truncated power basis, the so-called kernel

functions R(·, ·) are not “one-sided” but have global

support. They do, however, share the property that

each candidate knot tl corresponds to a single function

R(·, tl). As it stands, it is not clear how BARS is
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implemented and whether or not this kind of shortcut

has been used.

Given (R3), taking V = c(XtX)−1 in the regres-

sion context makes things much easier computation-

ally because the posterior mean for β given a single

space G is a scale version of the OLS estimate c
1+c

β̂ .

What is troubling, however, is that the implied shrink-

age here is toward zero and depends on the basis (R1)

used. For moderate values of c, we expect to see odd

smoothing behavior which will become even more

problematic when we start averaging fits. This does

not seem appropriate to us, so for triogram regression

we chose a smoothing prior with a null space consist-

ing of planar functions. (The classical cubic smooth-

ing splines also reduce to linear functions.) Unfortu-

nately, our experiments with triograms are somewhat

inconclusive because any kind of reasonable averaging

can improve the piecewise linear fits if the underlying

function is smooth (there are bigger effects to over-

come before the behavior at the peaks is a concern).

Kass and Wallstrom also mention the idea of asigning

a prior to λ or setting it in an empirical-Bayes way.

The latter approach is followed in George and Foster

(2000) for V = c(XtX)−1. For a general prior covari-

ance matrix, a simple iteration is required to select c

in this way. Details can be found in Hansen and Yu

(2001).

When considering normal priors on β for density es-

timation, the story is a bit clearer. First, taking a nor-

mal prior with covariance proportional to (XtX)−1

does not represent a reduction in computation. Shrink-

ing toward zero in this context produces a uniform

density. Despite this seemingly bad property, we in-

vestigated the use of this prior and found that it

smooths away peaks (even when λ= 1/n, as proposed

by Kass and Wallstrom), and it makes methods (v)

and (viii) look very much like (vii). Unlike triograms

which generically benefit from averaging, the proper

smoothing can have a big effect on the performance in

Logspline.

In attempting to recast our results for Logspline,

Kass and Wallstrom fail to appreciate the fact that den-

sity estimation is a very different problem from (gen-

eralized) regression. As mentioned above, the closer

you position knots, the greater the (potential) discon-

tinuity in the fitted curve. In density estimation, this

extra flexibility can drive the likelihood to infinity if

knots are placed too close to each other relative to the

scale of the data, an artifact that does not reflect the

suitability of a model with nearby knots. When this

happens, the search procedures underlying both the

stepwise and our MCMC versions of Logspline can

get stuck in local solutions. Therefore, in each case

we require knots to be at least a few (usually three)

data points apart. Keep in mind that, for density es-

timation, regions with sharp features (peaks) contain

many more data points, and hence many more candi-

date knots; there is a natural coupling between struc-

tures in the function we are estimating and the spread

of the data. In short, the restriction on knot placement

does not hinder Logspline’s ability to track strong fea-

tures. In fact, under this restriction, we can ensure that

knots proposed fairly close together are much more

likely to be retained when they are near a peak, as the

likelihood will increase much more with the addition

of such knots (see Stone et al., 1997, Figure 1). We

have experimented with many different knot location

schemes, but for Logspline proposing too many close

knots actually reduces the ability of the MCMC algo-

rithm to explore the complete distribution, as the chain

gets stuck more easily. On the other hand, with care-

ful knot location, the convergence of MCMC chains

in Logspline is very good. We carried out a substan-

tial amount of additional chains, suggesting that the

Logspline chains mix well. See also the discussion of

Lindstrom, suggesting that a chain of length 500 is al-

most as good as a chain of length of 5,000. (For sin-

gle calculations, rather than a large simulation study,

we would advise somewhat longer chains too.) Finally,

we should add that the situation for (univariate) regres-

sion is different because the likelihood is well behaved

as knots coalesce providing we use a sensible basis

(and do not add so many knots that we lose identifi-

ability of the model). Still, it is not clear if the locality

heuristic used in DiMatteo et al. (2001) actually per-

forms better or if the potential improvements claimed

by Kass and Wallstrom are due to their implementa-

tion of the reversible jump algorithm (as compared to

that of DMS), their use of the natural spline basis or

their selection test cases (small problems with common

noise levels).

We mostly agree with Kass and Wallstrom’s in-

terpretation of our results; the label attached to (iii),

whether it be Bayesian or approximately Bayesian or

quasi-Bayesian, is of little concern for us. As suggested

method (vii) looks like smoothing splines; judging by

the MISE results, the method proposed by Wahba, Lin

and Leng in their discussion behaves most like this

approach. We believe that the “perplexing anomalies”

cited by Kass and Wallstrom are primarily caused by

a lack of appreciation for Logspline and the stepwise
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algorithm, which is really quite good. When we com-

pare approaches (iii) and (viii) we note that for small

sample sizes (iii) tends to overfit, so that the prior on β

[which makes it (viii)] helps, and without that prior the

overfitting for (iii) hurts relative to the greedy algo-

rithm, which overfits much less, but for large sample

sizes there is enough variability in (iii) to compensate

for the overfitting. Also, we actually do carry out an-

nealing for method (ii). Details were omitted when we

were asked to reduce the length of the paper during re-

visions.

We agree with Kass and Wallstrom that one of the

interesting features of a Bayesian analysis is the assess-

ment of uncertainty. While these Bayesian schemes

seem to give sensible point estimates, we do not hold

out much hope for confidence intervals. The BARS

paper, for example, does not present any results with

simulated data on coverage, but reserves plots with in-

tervals for real-data problems (assessing their quality

subjectively). In Kooperberg and Stone (2002) we ex-

amine Bayesian confidence intervals for the income

data for versions (v) and (vi) based on an MCMC run of

length 100,000. Based on comparisons with bootstrap-

ping procedures we concluded there that these inter-

vals were considerably narrower than frequentist con-

fidence intervals; that is, calibrating the posterior to

achieve a reasonable point estimate yielded optimistic

intervals. This really emphasizes the points made by

Lindstrom in her discussion that to obtain “credible”

Bayesian confidence intervals the priors need to be se-

lected much more carefully. We would challenge the

Bayesian function estimators to produce a few confi-

dence intervals in their papers. It is very hard to find

any that come from simulations where we can judge

their usefulness. Wang and Wahba (1995) compare

Bayesian intervals for smoothing splines with those for

bootstrapping. A similar study for the model-averaged

fits would be useful.

The goal of our paper was to compare Bayesian and

stepwise methods, and to compare how well they are

doing. Our goal was not to advocate one approach

or another. From Kass and Wallstrom’s discussion

of BARS we get the impression that it is a useful

procedure. We would like to see a comparison of their

procedure with the one by Smith and Kohn (1996),

which sounds very similar. However, we feel that

the conclusion that “BARS appears to be the most

powerful available method for spline-based curve-

fitting in ELMs” is somewhat premature. In particular,

we would like to see the performance of BARS:

• illustrated on a suite of very different test functions

with different sample sizes and different signal-to-

noise ratios;

• extended to demanding nonlinear applications, such

as density estimation and survival analysis;

• tested in high dimensional applications with thou-

sands of cases;

• compared to greedy (stepwise) algorithms in terms

of computing time.

KOENKER AND MIZERA

The L-1 methods made popular by Koenker and

his co-authors have filtered into extremely effective

spline methods for estimating median fits (Koenker,

Ng and Portnoy, 1994; He, Ng and Portnoy, 1998).

Koenker and Mizera base their version of triograms

on a Delaunay triangulation, producing an underly-

ing linear space G from which a single model is se-

lected via a roughness-penalized L-1 error criterion.

In Rippa (1990) we find an interesting characteriza-

tion of the Delaunay triangulation based on roughness

that we think is worth mentioning. Suppose we have

data points (x1, Y1), . . . , (xn, Yn). We want to inter-

polate the values Yi at xi and will do so by creating

a triangulation with xi as the vertices. There are many

many ways to do this. For each one, we will measure

its roughness via the (Sobolev seminorm)

∑∫

δ

[(
∂g

∂x1

)2

+
(

∂g

∂x2

)2
]
dx1 dx2,

where the sum is over all triangles δ ∈ △ and x =
(x1, x2). Then, Rippa (1990) shows that the Delaunay

triangulation of a set of points x1, . . . ,xn is a mini-

mal roughness triangulation. Therefore, with at least

one sensible smoothness constraint, the Delaunay tri-

angulation is the appropriate thing to do. However,

it is likely that, for other smoothness measures, the

Delaunay is not optimal and that other structures are

more appropriate. Rippa (1992) explores a similar line

of reasoning and uses an edge-swap algorithm to find

promising triangulations. It is known that we can gen-

erate all the triangulations of a given set of points

x1, . . . ,xn by the first move type in Figure 4 of our

original paper. In developing the greedy version of tri-

ogram and its Bayesian counterpart, however, we felt

that there was much to be gained by taking smaller tri-

angulations that were better adapted to the underlying

function being estimated. Hence, it was important to

develop a suite of moves that allowed us to step through

models of different sizes.
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FIG. R1. The volt data from Cleveland and Fuentes (1996): (left) the fit from prior specification (v); (right) the fit for (iii).

For our prior on β, we borrowed the penalty from

Koenker and Mizera, first communicated to us by

Koenker. We were pleased with the form because

it built both on their work and on the approach of

Nicholls (1998), who considered piecewise constant

surfaces over adaptively chosen triangulations. We

tried a variety of other penalties, including those

suggested in Dyn, Levin and Rippa (1990a, b). Each

have a null space of planar functions. In simulations

with this form using both smooth functions and simple

examples exhibiting sharp edges, it seems to perform

well. As a further test, we consider a dataset known

to exhibit a simple hinge, not aligned with either

coordinate axis (Cleveland and Fuentes, 1996). While

we have seen that a certain amount of smoothing

is possible with the Bayesian estimator when the

underlying target function is smooth, in this case,

we hope that the sampler will spend time in very

simple, “nearby” ridge models. This would allow the

nongreedy schemes to still capture ridges effectively.

In Figure R1 we present two surfaces, one from

simulation setup (v) and one from (iii). A careful

analysis by Cleveland and Fuentes suggested that the

best fit was a hinged pair of planes, very similar to

the fit in the left-hand panel corresponding to (v). It is

clear from this figure that Poisson prior (iii) yields a

chain that spends too much time in overly complex

models and the fit is badly degraded. The surface

obtained by prior specification (v), on the other hand,

is an improvement over the greedy scheme. While it is

difficult to tell from the perspective plot, the ridge or

central hinge more closely follows the line found by

Cleveland and Fuentes (1996).

LINDSTROM

Lindstrom has a considerable background in work-

ing with free-knot splines. She has developed an ex-

tremely attractive penalized appraoch to fitting such

models (Lindstrom, 1999) and has a long history of

working with functional data in medical applications

(see, e.g., Lindstrom, 1995). We appreciate her exten-

sive comments on the computational aspects of our

Bayesian schemes. In our implementation of the sam-

plers in this paper, we used the same number of iter-

ations for each of the model selection schemes. The

greedy scheme naturally takes far fewer “iterations” or

moves. For the income data, on our current machine

(which is not the machine on which the original cal-

culations were carried out), the greedy Logspline al-

gorithm takes about 0.5 second of CPU time, while

a simulated annealing or MCMC run of 5,500 itera-

tions takes about 200 seconds. The differences between

the various versions of the sampling methods do not

have a major influence on the CPU time.

Lindstrom asks us to compare this to stepwise

algorithms with random restarts. This comparison

appears most relevant to the greedy version (i) and

the simulated annealing version (ii). For the income

data, version (i) has a BIC value of 161,936.4, while

the simulated annealing version, using a chain length

of 5,500 and the best greedy solution as initial knots,

has a BIC value of 161,918.3. Table R2 contains some

alternative approaches using (several) shorter chains,

or the stepwise algorithm with several random restarts.

(For the random restarts, we positioned 7 knots at

randomly selected datapoints, followed by the stepwise

addition and deletion algorithm of Stone et al., 1997,

allowing a maximum of 15 knots.) The bottom line

of this seems to be that, at least for this example,

random restarts are just as good as (but not better than)

simulated annealing using the same amount of CPU

time. It remains open what works better if we want

to get close to the “best” solution. However, for all

purposes the differences in BIC are not very large.

We fully agree with Lindstrom’s remark that when

we want to use Bayesian methods to carry out infer-

ence, the choice of priors becomes much more critical
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TABLE R2

CPU and BIC results for various alternative stochastic optimization methods: for the last three

methods the BIC value is the average over five repetitions of the complete procedure, and the SD

is the corresponding standard deviation

Number of Number of seeds Seconds

Method steps or restarts BIC SD CPU time

Stepwise (version (i)) 1 1 161,936.4 — 0.4

Simulated annealing (ii) 5,500 1 161,918.3 — 200

Shorter annealing chains 500 1 161,922.1 2.5 20

Combining real short chains 100 5 161,921.7 1.9 20

Stepwise with restart 1 50 161,921.8 0.8 20

than when we primarily want to get a point estimate.

See our remarks about the contributions by Kass and

Wallstrom and by Chipman, George and McCulloch

and also the example in Kooperberg and Stone (2002).

Finally, we agree with Lindstrom that radial basis func-

tions are a sensible approach to multivariate modeling.

In this case, we might consider an expansion of the

form

g(x)=
∑

βiR(x,vi)(R8)

for a fixed “kernel function” R and a set of “knots”

v1, . . . ,vK . Holmes and Mallick (1998) describe

a Bayesian setup that also uses reversible jump Markov

chain Monte Carlo, but selects how many knots and

where they should be placed. The basis (R7) is an ex-

ample of this kind of expansion for univariate func-

tions. Having said that, we still feel that the Triogram

basis has its role in multivariate function estimation.

It is better able to capture sharp features in the data and

has the added advantage that the entire procedure is in-

variant to affine transformations. This property makes

it ideal for many spatial applications.

RUPPERT

Ruppert is a pioneer in the area of function esti-

mation, contributing kernel, local polynomial and now

spline methods, and we are pleased to have such an

informative contribution to the discussion. Ruppert

presents a penalized formulation that mimics smooth-

ing splines. The so-called P-spline approach originally

put forward by Eilers and Marx (1996) was designed as

a shortcut to smoothing splines and illustrated for gen-

eralized linear models. Ruppert’s version of this tech-

nique is really nothing more than ridge regression ap-

plied to a special truncated power basis. As such, it

inherits a certain degree of familiarity and represents

an accessible smoothing method for people with a ba-

sic introductory regression course. In comparing Rup-

pert’s method and that of Eilers and Marx we do find

one important difference: the basis. Ruppert makes use

of the truncated power basis and (for cubic splines) he

penalizes jumps in the second derivative at each knot.

That is, penalties of the form

K∑

k=1

|βp+k|q ,(R9)

where β = (β0, . . . , βK+p) is associated with the

truncated power basis {1, x, . . . , xp, (x − t1)
p
+, . . . ,

(x − tK )
p
+}. Eilers and Marx choose the numerically

stable B-spline basis and derive a quadratic penalty

by taking differences of coefficients associated with

adjacent basis elements (this shortcut is a rough ap-

proximation to the derivative-based penalties we ap-

plied in our paper, although we are not convinced

of its reasonableness). Ruppert’s use of values of q

in (R9) other than 2 is interesting. As he mentions,

this amounts to the lasso of Tibshirani. In Hastie, Tib-

shirani and Friedman (2001), we find a close connec-

tion between forward stagewise fitting like boosting

and the lasso. These authors suggest that boosting is

like combining all possible models (R8) with a lasso

penalty.

Finally, we comment on a couple of the P-spline

improvements mentioned by Ruppert. First, reducing

the number of knots to ease the computational burden

of traditional cubic smoothing splines was examined

in detail by O’Sullivan (1988) and is implemented

in S-PLUS. To help improve the spatial adaptivity,

Ruppert suggests two approaches; the first involves

a variable penalty that is again modeled as a spline.

A form of this was also suggested in Wahba (1995).
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TABLE R3

Geometric average for the MISE ratios for the Logspline simulation study reported in Table 2

Version

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) Wahba et al. Bagging

Geometric average 1.00 0.69 0.70 1.07 0.76 0.75 0.95 0.74 0.79 0.83

WAHBA, LIN AND LENG

Over the years Wahba and her co-workers have pi-

oneered the use of smoothing splines in function es-

timation. Wahba’s influence has been mentioned sev-

eral times throughout this Rejoinder already. As for

smoothing spline density estimation, we would have

liked to see some of the plots of the estimates corre-

sponding to their Table 1, as the numbers reported sug-

gest that the proposed method best compares to a less

extreme version of our approach (vii), which, as was

demonstrated in our Table 3 and Figure 2 smoothes

away details too much.

When we read Wahba, Lin and Leng’s discussion,

we realized that the average in Table 2 is not a good

summary of the table, and that for a particular method

the geometric average would be a fairer comparison.

Those are given in Table R3. This new summary table,

even more than the one in the main paper, shows that

we cannot just judge performance by MISE: except

for (iv) and (vii) we have no way to choose. Summaries

like the number of peaks need to play a role in deciding

which version to use. See also the first example in

Kooperberg and Stone (1991).

The smoothing spline ANOVA models for multivari-

ate density estimation look quite promising. We are

looking forward to seeing actual estimates. In particu-

lar we wonder how efficient the algorithm is if many λ

parameters have to be estimated simultaneously. Also,

we wonder how one would choose the terms in the

ANOVA decomposition. Methods like MARS do this

automatically (during passes of addition and deletion),

but it does not appear to be an easy calculation in the

smoothing spline world. Perhaps it would be best to

combine the greedy search with the penalized fit as was

done in Luo and Wahba (1997) for saturated models.
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